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Abstract

81 finds the explicit expressions for all projective projections on the set of
(1,2)-tensors. §2 analyses the action of extended projective projections on the
set of connections and shows that in particular one gets the classical Thomas
connection. §3 gives properties of the almost projective transformations of con-
nections.
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Introduction

The theory of invariant decompositions of tensors and connections using global projec-
tions built with the Kronecker §-tensor or the d-tensor together with the Riemannian
metric, almost complex structure, almost contact structure etc have been initiated by
the first author in 1975. It was discussed by letters (1976-1977) with Prof.Dr. Lieven
Vanhecke and was orally communicated as remarks at different Conferences in Geom-
etry. A part of this theory is detailed in this paper on (1,2)-tensors and connections,
but of course it can be generalized for (p, ¢)-tensors. The most interesting generaliza-
tion is to apply the theory for the curvature (1,3)-tensor, and to relate the projection
on connections with the projection on the corresponding curvature tensors, but this
subject will be developed in another paper.

As was remarked by Krupka [4], [6] whose invariant trace decompositions are
special cases of ours, the results can be applied in the representation theory of the
orthogonal group, developed by Weyl [12]. Extensive literature on this subject can be
found from different perspectives. For examples, N.Bokan [1] considers the case of a
torsion free connection on a space endowed with a positive definite metric and finds
a decomposition of the underlying tensor space, invariant with respect to the group

SO(n).
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1 Family of projective projections on
(1,2)-tensors

Let V be a real n-dimensional vector space, where n > 2, T} (V) = {T2} be the vector
space of all tensors T of type (1,2), 5; be the symbol of Kronecker, I = {673%5¢} be
the identity on Ty (V).
A projection P = {P? ",} on T}(V) of the form
P T, = 2y 80065 + wa0b0167 + wa0L058! + wadiolo] + ws05oL8) + wedbol]
is called a projective projection. The adjective "projective” is justified by the fact that
there exist induced projections P which transform a symmetric connection into the
Thomas projective connection (see Section 2).
Of course, P is a projection iff P = P or P} [, Pt L, = P, e,
r% + m% =
2x1x9 + na:é + Z2X5 + T3T5 + TaZe + 3T + NT5Tg = T2
(1 1) 21’1$3 = T3
) 2124 + T376 + nmi + T4%6 + T3T5 + TaZT5 + NT5Tg = T4
2015 + Xox3 + Toxy + T3T4 + NT4T5 + NET2T5 + mg =I5
201T6 + Xox3 + Toxy + NToTg + 3Ty + Ny + mg = Zg.

This algebraic system is easily obtained via the simplified expression P = x11; +
... + zgIg, the condition P2 = P and the table of compositions

ML | L || s | ;| I
L | L | L || L | s | Is
12 IQ ’I'LIQ 16 16 IQ nIG
Iy | I | I | L | L | b | Iy
14 I4 I5 15 nI4 77,[5 14
15 I5 77,[5 14 14 I5 nI4
Iﬁ IG .[2 12 TLIG ’I’L.Iz Iﬁ

If P = {PP "} is a projective projection, then its supplement @ = I — P is also
a projective projection. That in way the following theorem is true.
Theorem 1.1.. If (29,...,23) is a solution for the algebraic system (1.1), then (1 —
a0, —3, ..., —x0) is also a solution.

The projective projection P belongs to the class of invariant tensors studied by
D.Krupka and J.Janyska [5] (a tensor T' € T (V') being invariant iff Ao T = T, for
any A € GL(V)).

Let us solve the system (1.1). For that reason we start with

2 2 _
(1.2) { it = n
21’11’3 = 3.

This system is equivalent to
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2ZE1$3 = I3 2ZE1$3 = 1T3.

(13) { z1 +x3 =0 or (14) { Ty +x3 =1

or 1 - The supplementary solutions

1

=0 331:5
0

T3

From (1.3) we obtain { ;1 B
3= -

5"

are obtained from (1.4). We solve the initial system (1.1)

,’L‘l:]_ o r, =
.’E3:0

r3 =

N = N =

1
for z1 = 0, z3 = 0 and for x1 = z3 = —. The other two cases are obtained taking

supplementary solutions for the system (1.1).
I. In the case z; = 23 = 0, from (1.1) we get the system

(1.5)

T ( ) = 6 ( )
x5(1 — nxe — x5) = x4(x2 + NX5)
24(1 —nxy — xg) = w5( )
wﬁ(l—nu—aze) o( )
Multiplying the first equation with the third equation and the second equation
with the fourth equation, we get

(1.6)

T9z4(1 — nwy — x5)(1 — nzy — T6) = T536(T2 + NT6) (T4 + NT4)
2526(1 — nwe — x5)(1 — nwy — x6) = Taxa(T2 + nx5) (T4 + NT6).

A). We study the case zoz4 — z526 # 0. From (1.5) we obtain

nre +x5 =1 T4 +nxg =0
and
Ty +nxs =0 Tg + nxry = 1.
We get the solution
n

12
1

Ty = T4
I e
B). We study the case zoz4 = T5x6.

B1). Let z9z4 = z526 # 0. The system (1.6) implies

(1 —nxe — x5)(1 — nzy — x6) = (x2 + nxs) (x4 + nwe).

We find the system
n(za +x4) + x5 + 26 = 1
Loy = T5Tg-
B2) Let Loy = T5Lg — 0.
o z4(l —nxg —26) =0 _
a) If zo = x5 = 0, then (1.5) becomes { 26(1 — nzs — 1) = 0. We get x5 =
Iy = Ty = 0

Ty =25 = x¢ = 0 or
5 6 {1:n:r4+:r6.
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I5(1 — Iy 7’”/,’E4) = 0
24(1 — x5 —nzy4) = 0.

b) If o = z¢ = 0, then (1.5) implies { We find 2o = 24 =

ZEQZZEGZO

x5=$6=00r{ 1 = nwy + 5.

c) If 4 = x5 = 0, then (1.5) becomes { #o(1 = ny = x5) ig Consequently

x6(1 — nwe — xg)
s — e — e =0 T4 =25 =0

T2 = =5 =26 = or{ 1 =nzy + zg.

xo(1 — nxe — x5)

d) If 4 = z¢ = 0, then (1.5) gives { x5(1 — nze — x5)

ig We get o = x4 =

Ty =26 =0

m5:w6:00r{ 1 = nay + a5,

1
II. The case 1 = z3 = 3 From (1.1) we get

. 1 1
f nTy 4+ Tars + 5335 + 5336 + zoxs + nxszg = 0

1 1
n:r?l + x4 + —x5 + =g + Taxg + nrsrg = 0

(1.7) : 22
§:E2 + 5.2:4 + xox4 + Nxyx5 + N2k + :Eg =0
1 2
5332 + 53}4 + Zozs + nT2T6 + nTaze + x5 = 0.

From the first two equations of the system (1.7) we obtain
(2 — x4)[(x2 + T4)n + x5 + 26] = 0.
From the last equations of the system (1.7) we obtain (x5 —2¢)[(z2+24)n+25+26] = 0.
Let
To = T4
s = Zg-
From the first equation and the third equation of (1.7)

nw3 + 2975 + T5 + nr: =0
:E% + 2nzoxs + T2 +:E§ =0

we get (z0 — x5)[(n — 1)(z2 — x5) — 1] = 0. If 9 = x5, then z5[(2n + 2)zy + 1] = 0.

We obtain
Iy = Iy =0
(1.81) { JPE———
or
1
1. = — g = _
(1.87) Tg =@y = Ty = Tg 2+ 1)

1
If 29 = x5 + 1 then we obtain the solution
n —
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$2=$4=m Ty = T4

T =T = ————~ Iy = Te =

The system

n(za +x1) + x5 + 26 =0

. 1 1
nazé + 2975 + 5336 + 5335 + zox6 + nrsxre = 0

1 .
2
—Ty + —T4 + Tox4 + Nxgx5 + nr2xs + 25 =0

2 2
is equivalent to
n(xe +x4) + x5 + 26 =0
1
T5Tg = 5(372 + 1‘4) + Toxy.
Theorem 1.2. The solutions of the quadratic system (1.1) and hence the set of all
projective projections P on T3 (V) are given by

I

a) T1 = X9 = T3 = T4 = T5 = x¢ = 0.

b)iL“l =0,23=0, 290 =24 =

n2 -1’ T 1-n

¢) 1 =x3 =0, X224 = T516, 1 = n(x2 + 24) + T5 + 5.

/\—l—,u—l)2>

Introducing the parameters x5 = A, xg = pu and imposing the condition (
n

, 1
4 \p, N\, i € R, the values o = , x4 = B are solutions of the equation 2% + H(A +

p—1)z+ A =0.
The supplementary solutions for I are
I
a)x1 =1, 13 = 13 = 14 = 15 = 76 = 0;
n _ _ 1 )
T T =W =

c)xy =1, 23 =0, xomwy = w526, —1 = n(vy + z4) + x5 + 6.

b):Elzl, .’E3:0, Iy = Ty =

1 2
A+p+ ) >
n

Denoting 5 = X, g = u, and imposing the condition (

1
A\, N\, € R, the values 19 = o, w4 = 3 are solutions of the equation z* + —(\ +

n
p+1)z4+Ap=0.

I1.

3)3712373:%, To =4 = 25 = g = 0

b)azlza}g:l.m2:m4:m5:m6:—71 ;
2’ 2(n+1)
1 1

C) IE1:$3:§, ’E2:,’E4:*.’E5:*.’E6:2(n_1),
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1 n
y L2 =24 = ———, =’E5==’E6=1 2

d).’Elz.’Eg:

e):rl = I3 =

[N R NN S

1
n(xe +x4) + x5 + 16 =0, T5206 = 5(12 + x4) + @oy.

1 2
With x5 = A\, g = p, [—(A—f—u) — 1} > 1+ 4 u, A\, u € R, the values x5 =
n

1 1
a, T4 = B are solutions of the equation z° + —(\ + p)z + A\ + 2—(/\ +pu) =0.
n n

The supplementary solutions for II are

Ir'.
a) -”1312*-”133:%, Ty = x4 = x5 = 6 = 0;

1 1
b)$1:—1‘3:§,$2=$4=$5_$6 TCESE

1 1
c)m1:—m3:§7m2:m4:—m5 T 20—
d)mlz—ﬂfa‘:l-ﬂ?z:ﬂuz ! , Ts = T = n

2 1—mn? n?—1

1 1
e) m1 = —r3 = 5 n(xy + x4) + x5 + 26 =0, T574 Z*E(ﬂc2+x4)+:p2:p4.

1 2
With x5 = X, zg = u, {—(/\+u) + 1] > 144Xy, A pu € R, the values x5 =
n

1
a, x4 = B are solutions of the equation 2> + — ()\ +p)z+ Ap— —(/\ +pu) =0.

The images of a (1,2)-tensor by the precedent projections are obv10us and contain
the following generalizations of the results of Krupka [4].
Theorem 1.3. Let T = (1) € T3 (V). There exists an infinity of projective pro-
jections P = (P’ ") such that Q = PT = (P ", T2) is a traceless tensor (i.e.
Q8, = Q5. =0).

L7 = 0.

Q=0 forz =x3 =24 =25 =0, nxeo + 26 = 1;

2) Oy =Ty — —— (11,05 —nTg.0;) for

1—n tas
=1, a3 =0, w6 +nwy =0, 74 = — S
ry =1, r3 = U, Tg n¢2—7$4—1_n27$5—n2_1a
1 T r r a 1 1 1
3) Q:tZE(T +T0 )+ otasTy — 0, T, ( +nxs), forxy = x3 = 3 §+IE4+HIE5:
1 1
0, n(xze + z4) + 5 + 6 =0, T526 = 2(3:2 + x4) + TaT4, §+$6+n$2 # 0;
1 1 1 1
4)Qr, = §(Tsrt—TtTS)+a:56§Ttaa (2 nxs)o; T, forzy = —x3 = 5 —§+m4+nm5 =
1 1
0, n(za +z4) + x5 + 16 =0, x516 = 75(,%2 + x4) + Ty, 3 + 26 + nzs # 0.

IL T9 = T¢ = 0.
DQ=T, forz =1, 13 =13 =14 = 15 = 76 = 0;

n 1
2)0:0,f0r$1:$3:07 x2:$4:—n2_1,z5:l’6:_1_n2;
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1 1
3) O, = §(Tsrt +T7.), forxy = x5 = 3 T2 =Ty =I5 = w6 = m?
1 1 1
4) Qgt = §(T;t — 117;)7 for T = —x3 = 57 To =Xy =I5 = Tg = m
III. T¢, = —T},. .
D) O = (T + T3,), for w = w5 = 5, @2 = w4 = 25 = 76 = 0;
1 1 1
2) Oy = i(TsTt - T) + m(‘nggt = 6{T3y), form = —x3 = 9 Ts = T =
n _ B 1
ey i pel
Iv. 7% zil’t‘fl. . ,
1) Qg = E(T; +T},) — n—H(‘Sngt + 6;Ty5), for &1 = z3 = 382 = T4 =
1 noo
n2717 Ts5 :1376: 1*712’
2) O = S(T%, — T7,). for
1
a) T1 =3 =g, Ty = T4 = Ts = T = 0;
1 1
b) €I :7,’E3:§, .’E2:,’E4:7,’E5:7,’E6:72(1_n);
T + NT2
V. T = —mT;t =0 =0, for
Ty # —nx5  Taky = x5%g, 1 = n(wy + x4) + 5 + x6.
VI
14+ zg + nzo Ty Ts
vt =-—""T7T" =, =7, - ——T%0, — ———T%6"
ta T4 + nxs at st st T4 + nzs ast T4+ nzs ats»
for
Ty £ —NT5, Toky = T5Te, —1 = n(z2 + T4) + T5 + T6-
VII.
a 142z +2nzs
T =175 Tu
1+ 2x4 + 2nxs
1 Tg + T2 T4 + x5
QT’ — _ TT’ TT’ a T_ a T
st 2( st t3)+1+2:r4+2n:r5 @1 4 2mg 4 2naws S
for

1 1
T =13 = o n(xe +x4) + x5 + 26 =0, T526 = 5(2:2 + x4) + oy, Ty + nws #£ —=.

Ta _ 1+ 2z6 + 2n22

te ™ ] 4 2w, + 2nws °F
1 T4 — Ts
0, = (1%~ T3) + — e (1587~ T2,

for
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1 1
T1= 5, T3 = o, n(xe+zg)+as+ag =0, v506 = f§($2+$4)+x2$4, Tat+nrs 7 3

IX. For any T having arbitrary traces one gets

1) Q=T + o1 [0 (—nTay + T,) + 6{ (T, — nTg,], for

n 1

z1=1,23=0, 20 =4 = ——, T5 = Tg =
1—n?

1 n
2) gy = 03 (2215 + 5 Tia) + 0t (a2 1o, + 77— T5,), for

3312333:07335: T4

1—n?’ Tnz_1

3)N=0,forzy =29 =23 =34 =25 = 26 = 0
4) QL =Th+05x TS =07 (14nay) Tl forxy = 1,23 = 24 = x5 = 0, nza+z6+1 =

0;
1 r r a a r r
5) Qgt = §(Tst +Tts) o 2(7’L+ 1) (Tat +Tta)(5s +6t)7 f07”
J— _1 J— p— p— J— 1 .
331—333—2=332—334—335—336— 2(n+1)’
6) QF 1(T"+T’“)+6"[ T+ T4 +67] (1+ VT8 + ! T
= — T e E— —(=+nz A
st 2 st ts slb24dat 2(1—’!1) ta t 2 2)tas 2(71—1) sal’
for
—ry = h mmy b we s =0, By = w5 =
I1—$3—27”=’E2 Te 9= ; Ly = I5_2(n—1)’
7)QF 1(T"+T7“)+6"[ Ty + Ti ] +67] (1+ VT o+ = T2
= - x —_— —(z +nz: —_—
st 2 st ts slt24at 2(1+n) ta t 2 2)tas 2(ﬂ+1) sal
for
p— p— p— p— J— 1 .
ry = -T3—2:$6— nrs 2,$4—I5—2(n+1);
n a a r a a
8) Qgt = TsT;ﬁ + 6;(1 —n2 Tat - nm‘tha) + +6t (n2 o lTas + m4Tta)= fOT
n 1
Ty =1, 23 =0, Ty = 7 e = 5 T = N

0) Q, = T, + 67(1 — nwa)T8, + +672aTf), for
z1=23=0, 20 =26 =0, 5 =1 — nay.
Proof. 2 is a traceless tensor iff

19) { (1 + m6 + nx2)TY + (23 + T4 + nas)TEL =0

(z1 + nay + 25)T5, + (25 + nwe + 22)T5; = 0.

This system with the unknowns T, T2 is compatible. We study all the cases of the
theorem 1.2.
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I' a) The system (1.9) is equivalent to T4 = T2 = 0. We get II, 1);

b) We obtain the case IX, 1);

c) 1) &4 = —nzs.

1.1. 14+ 26 + nzy = 0. In this case we find IX, 4) and 8);

1.2. T4 =0 and 1 + x6 + nzay # 0. We get I, 2).

2) If x4 # —nx5 we obtain VI.

I. a) We get IX, 3);

b) The system (1.9) is equivalent to T2, = T, = 0. We get II, 2);

c) 1) If 4 + nzs # 0, then we obtain V.;

2) g +nxs =0. T2 =0 and zg + nzy # 0, then we get I, 1).
If z + nxo = 0, then we arrive at IX, 2) and 9).

II. a) The system becomes T2 + T2 = 0. We obtain III, 1);

b) (1.9) is identic satisfied and we have IX, 5);

1.9) is equivalent with T}, = T, = 0. We get II, 3);

c) (
d) (1.9) becomes T, = T2 and we obtain IV, 1)
1 1
e) 1) 3 + x4 +nzs = 0. We get I, 3) for 7% = 0 and IX, 6) for 3 + 26 +nxy = 0.
1
2) If 3 + 24 + nxy # 0, then we find VIIL.
IT'. a) The system (1.9) is equivalent to T2 = T'%. We get the case IV, 2), a);
b) (1.9) becomes T¢ = T% = 0. We have the case II, 4);
c) (1.9) is equwalent with T, =T2. We get the case IV, 2), b);
d) (1.9) becomes T, = —T7,. We get the case III, 2);
1
e) 1) x4 +nzs = 3

1.1. TS =0, we get I, 4);
1.2. If g + nzy = 5 then we get the case IX, 7);

1
2) If x4 + nas # —g We get VIIL.

Remark 1.1. a) If T is a traceless tensor, then ) = PT is a traceless tensor, for any
projective projection P.

b) The theorem ” Let V' be a real n-dimensional vector space, where n > 2 and let
A = (AL)) € T3 (V). Then there exist a unique traceless tensor B = (Bi,) € Ty (V)
and unique 1-forms C = (Cy,), D = (Dy) € AY(V), such that A}, = BL,+6! Dy +6.C),

where . .
Cr= —_1(”14@ — Ay, Dy = m(ﬂ‘lik +ndly),

nZ
] . .
By = Al — [5k (nA}, — A}) + 0 (= Af + nA})],”

proved by Krupka in [4], is a partlcular case of ours (IX, 1). Its trace decomposition
problem corresponds to the case z; = 1, x5 = 0 for our projective projections.

2 Family of projective projections on affine
connections

Let M be a differentiable n-dimensional manifold and 7;' M be the bundle of (1,2)-
tensor fields over M. The previous projection P extends to a global projection field



148 C.Udriste and 1.E.Hirica

on T,' M denoted also by P whose extended coefficients 1, ..., 7¢ are scalar fields.
Some of the scalar fields z1, .., z¢ are arbitrary functions, others depend on the these
arbitrary functions, and some of them are constant functions.

Denote with A} (M) the set of all geometrical objects of type (1,2) whose difference
is a (1, 2)-tensor field. The set A}(M) is an affine vector space modelled on the vector
space Tt (M). Obviously, the set C of all affine connections on M and T;! (M) are affine
subspaces of A3(M). Any projection on T} (M) induces a projection on A3 (M).

LetT' = {F;k} be an affine connection on M. The projective projections P of The-
orem 1.2 work on C by the rule Il = PI' = (P’7,I'? ). They produce almost projective

a st
connections II iff 27 + 23 = 1. Otherwise (z; + 23 = 0), the image P(C) consists of

geometrical objects fields II of type (1,2) which are not connections; particularly the
1 . .
torsion tensor E(F;k — I'};) is the image of I' by the projective projection P having
the coefficients . 1
Ty ==, T3 =——=, Ty =24 = x5 = g = 0.
1= 5, T3 g %2 4 5 6

Theorem 2.1. Let 1 = 1, z3 = 0. The images of the projective projections P on C
consist of the almost projective connections

g = T + 054 + 07 s,

where p, and Yy are defined by
a) Forzo =m4 =25 = w6 =0, 1 = o1 = 0;

n
b) For x; = —$4m7 T5 = Tg = FURRER
_ a @ _ 1 " .
Yy = U 1(*nrat + Fta); PYs = m(ras — nrsa),
Ad+pu+1

2
C) Ts =\, Tg = U, ( ) >4 u, M, pu € R, ©o = a, ©4 = 8 solutions of

n

1
the equation 2> + E(/\ +pu+1)z+Au=0,
U’t = ath + Argaa ()03 = 6Fga + Nrgs

Remark. The geometrical objects ¢4 and ¢; are not 1-forms.

Corollary 2.1. Let x1 = 1, 3 = 0 and P the corresponding projective projections
acting on symmetric affine connections. The images of P consist of the almost pro-
jective connections

I, =Ty + 050 + 07 s,
where Y and s are related to 'y = T', in the following ways:
1
Case b) = oy = pp = —

n+1
Case a) = s = ps = 0.
Case ¢) = P = (a + A)t, o5 = (B + p)Ts.

In particular, for the case ¢) with a+A =84+ p=—

I;.

and for the case b) we

n+1
find the Thomas projective connection [11]
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1
g, =15 — n—H(CS;Ft +6;T),

corresponding to the projection

Pbc Zt :6r5b607 —6b5r607 —6b505r
n +

a 1ast

Theorem 2.1'. Let x1 = x3 = 0. The images of the projective projections P on C
consist of the objects of type (1,2)

I, = 051 + 07 s,

where @ and vy are defined by
a) for xo = x5 = x4 = 6 = 0,

n 1
b)f0r$2:$4:n2—— = —F
1 1 a @,
nZ — a nZ — 1(nrsa - Fas)’

A
c) for xs = =X, xg = —pu, <7N> > A u, L p e R 10 = —a, 1y = —f
n
1
solutions of the equation 2> — —(1 — XA — p)z + Au = 0,
n
’l/}t = —Oél—‘gt - )‘F?m 1/18 - BF as

1
Theorem 2.2. Let 1 = x3 = ok The images of the projective projections P on C
consist of the almost projective connections

1
5T + Thy) + 054 + 01 s,

H;t:2

where @ and Yy are defined by
a)for xo = x4y = x5 =16 =0, Yy :1% =0;

1
b Y — 4 — s — g = (%, 4T
) for xa = T4 = TH = T4 2(n+1)7'l/1t 2(n+1)(at+ fa);
) 1 :
c) forxy =x4 = o5 = 25 = ————
2 4 5 6 An—1)
b=y = o (0 TY,):
t — (pt_Q(n—l) at ta/s
1
d) for xe = x4 = FORREE Ts = Tg = 1_nn2
_ 1 a a _ 1 a a \.
wt—m(rat*”ﬂa): ‘Ps—nz (F —nlgy);
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1 2
e) for xs = A\, xg = u, {—(/\+u)1] >1+4M\p, Mp€eR, zy=a, 24 =
n

1 1
solutions of the equation 2% + —(\ + p)z + A\ + 2—()\ +pu) =0,
n n
’l/}t = aFZt + AF?{N Ps = Brga + :urgs‘

1
Corollary 2.2. Let 11 = 3 = 3 and P the corresponding projective projections work-

ing on symmetric connections. The images of P consist of the next almost projective
connections
a) x2:z4:z5:x6:0:>1'[7s"t:1“§t

b 5 = = = = - = HT = FT _ 6TF 6TFS
) Ty = T4 = T5 = T 2n+ 1) st st n+1(st+t )
1 T T
C)$2:$4=—$5:_$6:minst:nt§
]' n T r 1 T (s
d)$2:$4:m=$5:$6:1_n2iHst:Fst_—n+1(5srt+5trs)-

e) T5 = A: Tg = W, T2 = Q, Tgq = B: a,ﬁ,)\“u € R: satzsfymg

n(a+B)+A+pu=0, /\u:f%(a+ﬁ)+aﬁ:>

ST, =T, + 6" (A+ )Ty + 67 (B8 + pw)Ts).

1
Remark 2.1. In particular, the case e) A+ a =+ pu = — and the cases b)
n

+1
and d) produce the Thomas projective connection.

Theorem 2.2'. Let z; = 7 T8 =3 The images of the projective projections P on
C consist of the objects of type (1,2)
1
MM, = 5 (T, = T5) + 640 + s,

where @ and Yy are defined by:
a) forzy =24 =0, 25 =26 =0, ¢y = s = 0;

b) for xo = x4 = x5 = x5 = m Y =Yy = ﬁ(rgt +T5.);
1
) for ko =y = —5 = —x6 = m,
1 a a
Yr=—pr = m(rat =1
d) for:rgzmzﬁ, x5:$6:%,
1 a a 1 a a
Yy = m(rat —nlY), vs = m(rsa —nly,);

1 2
e) for xzs = =\, xg = —pu, [—(A+u)+1} >14+4 u, A, p€R, 19 = =\, 14 =
n

1
z——A+p)+ =0,
2n

d)t = *ath - /\Fl[flm Ps = 761—‘[3]‘& - I'I’FZS

. 1
—B solutions of the equations 2> + E()\ + 1)
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3 Almost projective transformations of
connections

Let M be a finite dimensional differentiable manifold endowed with the affine connec-
tion I'. The class T' of the almost projective transformations (apt) of the connection
I is defined by [3], [9]

F=T+n@I+I®¢,

where 7, & € A'(M).
Theorem 3.1. For each connection I' and each projective projection P in Theorems
2.1, 2.2, 2.1, 2.2 there exists a class of connections ' satisfying the commutative
diagram

t
an}

r r
Pl 1P
n = 1

)

where I = PT’, I = PT. This diagram reflects also the invariance of I with respect
to T (the gauge invariance of I with respect to the projective group).
Proof. We fix a projective projection P = (P’ ") by (1, ..., ¢). Since

a st
[j. = Lhe +md; + &0y
it is enough to prove that there exist the 1-forms n = (n;), £ = (&) such that
P (00 + €07) = (a1 +ng + 20)11s + (53 + 74 + 1,167 +
+[(z2 + z3 + nxs)n + (1 + nzy + x5)&]0% = 0.
This condition is equivalent to the linear system

(1 + nxy + x6)ns + (23 + T4 + nwg)és =0
(2 + 3 + nxs)ns + (x1 + nee + x5)& = 0,

with 2n unknows (1, ..., M, &1, ..., &) and with 2n equations. The determinant of the
matrix of this linear system is

A = —[(z1 + nzy + z6)(T1 + N2 + x5) — (T2 + T3 + nws5) (T3 + T4 + n26)]".

For each (z1,...,x6) in Theorems 2.1, 2.2, 2.1', 2.2’ one proves that A is as a rule zero,
excepting few cases in which A # 0. In other words the preceding linear system is as
a rule compatible undetermined, excepting few cases in which n =0, & = 0.

In the sequel we suppose that I is a symmetric connection, and we identify the con-
nection I' with the induced covariant derivative V. The class of the almost projective
transformations of V is characterized by

VxY =VxY +p(X)Y + V)X, VX, Y € X(M), n,&€AY(M).

The curvature tensor fields R of V and R of V are related by

R(X,Y)Z =R(X,Y)Z - C(Y,Z)X + C(X,2)Y +dn(X,Y)Z
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where
C(X,Y) = (Vx(Y) = E(X)EY).

Let (M, g) be a Riemannian space. Denote by g;; the components of the metric
g, and by R;j;; the components of the curvature tensor field. Introduce the symbols
R- R and Q(g, R) by

(B R)nijkim = — Ry Rsijie — Ry Rusje — Ry Ruisk — By Rhijs,
(3.1) Q(9: R)nijkim = —gmnRuijk + gruBRmijk — 9mi Ruije + g Rhmjx—

—gimBrik + gj1Brimk — GemBhrijit + griBuijm -

Pseudo-symmetric manifolds [2], i.e., Riemannian spaces (M, g) for which the fields
(¥) R- R, Q(g, R) are linearly dependent at every point of the manifold, constitute a
generalization of spaces of constant sectional curvature, along the line of locally sym-
metric and semi-symmetric spaces R - R = 0, studied by Szabo in [8]), consecutively.
The linear dependence of the fields (x) is equivalent to

(%) R-R=LQ(g,R) on U={ze M|IR#R(1) at =z},

where &
R(D)piji = m(—gikgjh + 9ij9kn),

k being the scalar curvature. Similarly to (3.1) we can define Q(g, 4),
R-A, Q(D,A), where D, A are tensors of type (0,2).

Let us consider the square matrix whose entries are R;;z;, where ¢j indicate the
rows and kl indicate the colums. The rank of this symmetric matrix will be denoted

by ¢(x). Obviously ¢(z) < @, Vo e M (]10)).

Theorem 3.2. Let V be the Levi-Civita connection of the Riemannian space (M, g)
and V its almost projective transformation

VxY = VxY +(X)Y +£(Y)X,

such that 1 is a closed 1-form and C = fg, f € F(M). IfV is a metrique connection
(i.e. there exists g € T (M), symmetric and positive definite such that Vg = 0) and
(M, g) is a pseudo-symmetric manifold with L a constant function, then

(32) (+D) |- Traelgha| =0

holds on the open set U.
Proof. Because Vg = 0, we get

Gijk = 20%Gij + &Gk + &Gk,

where the comma denotes covariant differentiation with respect to the Levi-Civita
connection. The second covariant derivative is

Gijokt = 200 + EaGrj + &Gk + 20 (28955 + &igij + €5 9a)+
+&2mgr; + +kgij + &) + & mgin + &Gk + ExGar)-
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From (3.3) we get
Gijkt — Gijak = Grj (&g — &&) + 9in (&5 — &&) — 915 &k — k&) — 9a(&n — &),
which is equivalent to (R . g)z‘jkl = —Q(C7§)z‘jkl = —Q(g, fg)ijkl-
Using the Theorem 1 of [2] we find

(f+1L) [9 - %Trace(g)g} =0 on U.

Proposition 3.1. In the same hypothesis of the Theorem 3.2, if moreover (U, g) is
not conformally related to (U,g), then (R - R)?jklm =0 holds on U.
Proof. o o o o o

(R : R)?jklm = R{ijﬁlm - RﬁklRflm - Rz"lrkR;'Zm - Rz"lerZZm'

This relation is equivalent to

(R- R)Zklm = (L + f)Q(g, R)?jklm'

Using (3.2) we find L = —f and hence (R - R)?jklm =0 on the set U.

Proposition 3.2. In the same hypothesis of the previous Proposition, if moreover V
_ -1

is a symmetric connection and the rank of the matriz (Rijr) is q(x) = %, then

(U, g) has constant curvature.

Proof. The proposition is a direct consequence of the Proposition 3.1 and Theorem
2 of [10].

Remark 3.1. If p = ¢, then V is the Levi-Civita connection associated to g and hence
(M, g) and (M, g) are special geodesically related spaces. The Theorem 3.2 generalizes
the Theorem 2 of [2]. In this special case (U, g) has also constant curvature.
Theorem 3.3. Let V be the almost projective transformation of the Levi-Civita con-
nection of the Riemannian space (M,g),

VY = VxVY +n(X)Y + V)X

such that 1 is a closed 1-form and & a closed, non vanishing 1-form. If (M, g) is an
Einstein space and V-recurrent (i.e. VxR = w(X)R, w being a 1-form, and R the
curvature tensor field), then the two connections are flat projective (i.e. the projective

1 . . iy
. (63.Sj1 — 6/ Sjx) is 0 and also Wj,, =0, where S

i _ pi
curvature tensor ijl = Rjkl + ﬁ

is the Ricci tensor field).

Proof. The projective curvature tensor field is invariant with respect to this special
almost projective transformation of connections. The relations R}y, , = w,R}, and
Sji;r = wrSj imply

(3.4) szkl;r = WerZkl-

The relation (3.4) is equivalent to
(3.5) Wijkt.r + 9ir&s Wi — &eWijrt — EWijkr — §§Wirkr = (Wi + 202)Wijr .-

Because (M, g) is an Einstein space, we have Wi + Wi = 0. From (3.5) we get
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(3.6) Gir&s Wi + 9ir&Wity — EWirkt — &Wjrm = 0
Contracting with ¢'" in (3.6) we obtain

(3.7) EWin = 0.

From (3.6) and (3.7) we get & Wirki + &Wir = 0 and hence W = W =0.

Theorem 3.3. Let V be the almost projective transformation of the affine connection
Vv,
VaY = ViV + kE(X)Y + V)X, keZ\ {—1, g} ,

€ being a closed 1-form. If V and V are projective recurrent so that VxW =
(X)W, VxW = u(X)W, u being a 1-form, then the two connections V,V are flat
projective.

Proof. From the relation

(VoW)(X,Y)Z = (VugW)(X,Y)Z + EW(X,Y)Z2)U — (X)W (U,Y)Z—~

B8) ey yW(X,0)Z — e(2)W(X,V)U — 2ke(UYW(X,V)Z
we obtain
(3.9) (U)W (X, Y)Z + (X)W (U, X)Z + £(V)W (X, U) Z+

HE( D)W (X, YU = £(W(X,Y), Z)U.

If {\'} C AY(M) and {X;} C X(M) are dual local bases, let us take U = X; in (3.9).
Contracting the resulting formula with A\ we get

(3.10) (n— 2k)E(W(X,Y)Z) = 0.

From (3.9) and (3.10) it follows

(3.11) 2kE(UYW (X, Y)Z+E(X)W (U, X)Z +£(Y)W(X,U)Z +£(Z)W (X, Y)U = 0.
Taking U = Z = X in (3.11) we have

(3.12) 2(k + 1)E(X)W (X, Y)X = 0.

There is T € X (M) so that £(T") # 0 and hence W(T,Y)T = 0. Using (3.11) we get
W(X,Y)Z =0.
Remark 3.2. If we suppose that M is endowed with two affine connections V,V
and A = V — V, we can construct the deformation algebra U(M,V,V) considering
X xY = A(X,Y). An element X € U(M,V,V) is called a characteristic vector
field if there exists A € F(M) such that A(X,X) = AX and is called an almost
principal vector field if there are f € F(M) and w € A'(M) such that A(Z,X) =
fZ+w(2)X, VX, Z e X(M) [7].
Theorem 3.4. Let V be the almost projective transformation of the affine connection
V,V=V4+I®E+nRI, n ¢ being arbitrary 1-forms. All the elements of the
deformation algebra U(M,V,V,) are characteristic vector fields and almost principal
vector fields.
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