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Abstra
tWe survey some re
ent results 
on
erning the Osserman 
onje
ture: if theeigenvalues of the Ja
obi operator are 
onstant, need the manifold be lo
allyrank one symmetri
? The 
onje
ture is known to hold in the Lorentzian settingand in 
ertain 
ases to hold in the Riemannian setting. If the manifold hassignature (2,2) and if the Ja
obi operator is diagonalizable, the 
onje
ture isknown to hold; if the manifold has signature (2,2) and if the Ja
obi operator isnot diagonalizable, there are 
ounter-examples to the 
onje
ture.Mathemati
s Subje
t Classi�
ation: 53B30, 53C50Key words: pseudo-Riemannian metri
, Ja
obi operator, Osserman manifold.x0 Introdu
tion and notational 
onventionsLet M be a n{dimensional pseudo{Riemannian manifold of signature (p; q). Denotethe metri
 tensor by h�; �i. The 
ase p = 0 or q = 0 is the Riemannian 
ase; the 
asep = 1 or q = 1 is the Lorentzian setting. We shall also be interested in 
ase of neutralEinstein manifolds of dimension 4; this is the 
ase (p; q) = (2; 2), see Borowie
 et. al.[12℄, Guillemin and Strenberg [24℄, and Law [29℄ for other related results.Let S�(p) := fX 2 TpM j hX;Xi = �1g be the set of all unit spa
elike (� = +) ortimelike (� = �) tangent ve
tors at p 2M . Let S�(M) = [pS�(p). Let X 2 S�p. Sin
eX is not a null ve
tor, we have X � X? = TpM . The Ja
obi operator KX : Y 7!R(Y;X)X indu
es a symmetri
 endomorphism of the ve
tor spa
e TX(S�p) = X? =fY 2 TpM j hX;Y i = 0g. This operator is important in the study of Riemannianmanifolds. It is equally important in the study of pseudo{Riemannian manifolds. Forexample, the family of free falling parti
les along a geodesi
 
 in a Lorentz manifold isdes
ribed by the normal variational Ja
obi ve
tor �eld V along 
. The Ja
obi operatorplays the role of the tidal for
e and V satis�es Newton's se
ond law: V 00 = RV 
0(
0) =K
0V:We say thatM is spa
elike (� = +) or timelike (� = �) Osserman if the eigenvaluesof KX are 
onstant on S�(M); we say that M is spa
elike or timelike Osserman at apoint p 2 M if the eigenvalues of KX are 
onstant on S�(p). There are manifolds ofsignature (0; 4) whi
h are Osserman at ea
h point p 2M but whi
h are not Osserman;the eigenvalues 
an 
hange from point to point, see Gilkey, Swann, and Vanhe
ke [23℄Balkan Journal of Geometry and Its Appli
ations, Vol.2, No.2, 1997, pp. 1-12
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for details. Let X 2 S�(p). If p � 2 and if q � 2, the indu
ed metri
 on TXS�(p) isnot de�nite and thus KX need not be diagonalizable. We say that M is spa
elike ortimelike algebrai
-Osserman at a point p of M if the minimal polynomial of KXis 
onstant on S�(p); similarly we say that M is spa
elike or timelike algebrai
{Osserman if the minimal polynomial of KX is 
onstant on S�(M). This �xes thealgebrai
 stru
ture of KX . There are manifolds of signature (2; 2) whi
h are Ossermanbut whi
h are not algebrai
 Osserman, see x3 for details. More generally, we say thatMis spa
elike or timelike Jordan{Osserman at p if the Jordan form of KX is independentof X 2 S�p. M is pointwise spa
elike or timelike Jordan{Osserman if M is spa
elikeor timelike Jordan-Osserman at ea
h p 2 M . Note that if M is 4 dimensional, thenthe Jordan-Osserman 
ondition is equivalent with the algebrai
-Osserman 
ondition.Let M be a Riemannian manifold. If M is lo
ally a rank one symmetri
 spa
e oris lo
ally 
at, then M is lo
ally a 2 point homogeneous spa
e. This means that lo
alisometries of M a
t transitively on the unit sphere bundle S+(M). Conversely, anymanifold whi
h is lo
ally a 2 point homogeneous spa
e is lo
ally a rank one symmetri
spa
e or is lo
ally 
at. For su
h a manifold, the eigenvalues of the Ja
obi operatorKX are 
onstant on S+(M). Osserman [32℄ 
onje
tured that the 
onverse holds; werestate his 
onje
ture as follows:0.1. Conje
ture. If a Riemannian manifold M is Osserman, then M is lo
ally a 2point homogeneous spa
e.This paper is devoted to the study of the Osserman 
onje
ture and its general-izations to pseudo Riemannian metri
s. In x1, we review the known results in theRiemannian setting and in x2 we review the known results in the Lorentzian; theseare the 
ases p = 0 or q = 0, p = 1 or q = 1. In these 
ases, KX is diagonalizableso the multipli
ity of the eigenvalues of KX determines the algebrai
 stru
ture ofthis operator. In x3, we present some examples of Riemannian manifolds of signature(2; 2) whi
h are Osserman but not algebrai
 Osserman and whi
h are algebrai
 Osser-man but not lo
ally symmetri
. In x4, we give normal forms for the Ja
obi operatorswhi
h 
an o

ur and in Theorem 4.2 we give the basi
 
hara
terization result foralgebrai
-Osserman manifolds of signature (2; 2). Se
tions x5 and x6 outline the proofof Theorem 4.2. We 
on
lude in x7 with some open problems. There is a large historyon this subje
t. In addition to the papers we shall 
ite later, we refer to the followingpapers for additional related work: M.Daj
zer and K.Nomizu [16℄, A.I.Mal
ev [30℄,Singer [36℄, and A.G.Walker [42℄. It is a pleasant task to thank D.M.Alekseevsky,G.Hall, O.Kowalski, L.Vanhe
ke and other 
olleagues for helpful dis
ussions on thissubje
t.1 The Osserman 
onje
ture for RiemannianmanifoldsSuppose p = 0 (or equivalently q = 0) so that M is a Riemannian manifold. Chi[13℄ proved Conje
ture 0.1when n � 2 mod 4, and when n = 4. We sket
h his proofin the 
ase n 6= 4 as follows. If n is odd, all the eigenvalues of KX are equal; ifn = 4k + 2, then either all the eigenvalues of KX are equal or there is one eigenvalue�1 of multipli
ity 1 and the remaining eigenvalue �2 has multipli
ity n � 2. Thisargument uses results of Adams [1℄ from algebrai
 topology. If all the eigenvalues are



Pseudo-Riemannian Osserman Manifolds 3equal, then M has 
onstant se
tional 
urvature. If �1 6= �2, Chi shows that thereexists an almost 
omplex stru
ture J on M so that KXJX = �1JX . Chi then usesthe Bian
hi identities to show J is parallel and dedu
es thatM is modeled on 
omplexproje
tive spa
e or its negative 
urvature dual. The 
ase n = 4 is more 
ompli
atedand uses spe
ial properties of 4 dimensional geometry. We also refer to [14℄, [15℄ forother work by Chi on related questions.Chi 
lassi�ed the 
urvature tensors whi
h 
an arise if a manifold is Osserman ata single point and if n 6� 0 mod 4. Gilkey [22℄ has 
onstru
ted germs of Riemannianmetri
s on R4k whi
h are Osserman at 0 but whi
h have 
urvature tensors whi
h arenot based on those of a rank 1 symmetri
 spa
e; in parti
ular, there 
an be more than2 eigenvalues. These examples show that the algebrai
 
lassi�
ation of the 
urvaturetensors whi
h 
an arise from a manifold whi
h is Osserman at a single point 
an bequite 
ompli
ated if n � 0 mod 4.There are other 
onditions whi
h are 
losely related to the Osserman 
onditionwhi
h have been studied. For example, Berndt and Vanhe
ke [4℄ introdu
ed the notionof C spa
e as a Riemannian manifold for whi
h the Ja
obi operators have 
onstanteigenvalues along every geodesi
. Ivanov and Petrova [26℄ studied 
onformally 
at 4manifolds su
h that the eigenspa
es of the Ja
obi operator are parallel along geodesi
s.Ivanova [25℄ and Ivanov and Petrova [27℄ studied similar questions for the skew{symmetri
 
urvature operator. Stanilov [37℄ studied also geometry of 4 dimensionalOsserman manifolds.DR-spa
es are a 
lass of non
ompa
t harmoni
 nonsymmetri
 spa
es 
onstru
tedby E. Damek and R. Ri

i [17℄. Szabo [39℄ proved that DR-spa
es do not provide
ounter-examples for the Osserman 
onje
ture. Tri
erri and Vanhe
ke [40℄ gave arather short proof of this fa
t. Boe
kx [8℄ proved that semisymmetri
 spa
es whi
hhave volume{preserving geodesi
 symmetries or whi
h have 
onstant eigenvalues ofthe Ja
obi operator K
0 along geodesi
 
 are lo
ally symmetri
. Moreover he showedthat semisymmetri
 globally Osserman spa
es are lo
ally isometri
 to a two pointhomogeneous spa
e. Let �(�3 + �1(m;X)�2 + �2(m;X)� + �3(m;X)) = 0 be the
hara
teristi
 equation of the Ja
obi operator,m 2M . Stanilov and Videv [38℄ provedthat (M4; g) is already a pointwise Osserman spa
e if only �1 and �3 are independentof X .2 The Osserman 
onje
ture for LorentzianmanifoldsThe Lorentzian 
ase was �rst studied by Gar
ia{Rio et al. [19, 20℄. They showed thattimelike Osserman manifolds has 
onstant se
tional 
urvature. They also showed thatif n � 4, that spa
elike Osserman manifolds has 
onstant se
tional 
urvature. Therestri
tion that n � 4 was removed by later work of [5℄; these authors also gave adi�erent proof of the result of Gar
ia{Rio et. al. [20℄ 
on
erning timelike Ossermanmanifolds. We refer to [5℄ for the proof of theTheorem 2.2. The following 
onditions are equivalent for a Lorentzian manifold.(1) M is spa
elike Osserman at a point p 2M .(2) M is timelike Osserman at a point p 2M .(3) M has 
onstant se
tional 
urvature at a point p 2M .
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Here is a brief sket
h of the proof. Let M be a n dimensional Lorentzian manifoldand let E1; : : : ; Em�1; Em a pseudo orthonormal base of type (+; : : : ;+;�). If M isOsserman at a point p 2 M , then trK2X is independent of X , where X is a timelike(or spa
elike) unit ve
tor. With a bit of work, one 
an use this observation to showthat Pi;jf(R1imj + Rmi1j)2 + (R1i1j + Rmimj)2g = 0: This shows that we have theidentities R1imj + Rmi1j = 0 and R1i1j + Rmimj = 0; it then follows that M has
onstant se
tional 
urvature at p. If one uses a similar argument in the Riemannian
ase, one ends up with a similar identity whi
h is not 
oer
ive; a positive de�nitesum is not obtained for signature (p; q) if p > 1 and q > 1 either as will be evidentpresently; this argument works only for Lorentzian signature! Note that there existsa S
hur type lemma for pseudo{Riemannian manifolds; see O'Neill [31℄, p. 231, andexer
ise 3.21, p. 96. Thus if a 
onne
ted Lorentzian manifoldM is spa
elike or timelikeOsserman at every point, then M has 
onstant se
tional 
urvature 
 for some 
. Werefer to Gar
ia{Rio and Kupeli [20℄ for a dis
ussion of the null Osserman 
ondition.3 Examples of Osserman manifolds ofsignature (2; 2)In this se
tion, we present examples of manifolds M of signature (2; 2) whi
h areOsserman; 0 is a triple eigenvalue of KX for all non{null ve
tors X . Some of theseexamples are not lo
ally symmetri
. In some of the examples, the minimal polynomialvaries from point to point so they are not algebrai
 Osserman. Su
h manifolds areEinstein, see [6, Proposition 2.1℄ for details.Example 3.1. Firstly, the existen
e of a manifold M of signature (2,2) for whi
hthe Osserman 
onje
ture fails was proved in [6℄. This manifold is a lo
ally symmetri
manifold of rank 2 whi
h has signature (2,2); 0 is a triple eigenvalue of KX for anytimelike or spa
elike unit ve
tor X . The 
onstru
tion used a result of Wu [44℄. Thismanifold admits an interesting integrable para{quaternioni
 stru
ture and a paralleldual (neutral) stru
ture N , N2 = 0 and rN = 0; we refer to Rozen�eld [34℄ forfurther details. This provides a 
ounter example to the Osserman 
onje
ture.Example 3.2. The following metri
 on R4 of signature (2; 2) was 
onstru
ted byRaki�
 [33℄. The existen
e of su
h manifold was proved in [6℄ and it is a 
ounter-example to the Osserman 
onje
ture. Let6g = u22du1 
 du1 + u21du2 
 du2 � u1u2[du1 
 du2 + du2 
 du1℄� 3[du1 
 du4 + du4 
 du1 + du2 
 du3 + du3 
 du2℄:Example 3.3. Gar
ia{Rio et. al. [21℄ 
onstru
ted the following family of metri
s onR4 of signature (2; 2). If �f1=�u2 + �f2=�u1 = 0, letg(f1;f2) = u3f(u1; u2)du1 
 du1 + u4f2(u1; u2)du2 
 du2+ a[du1 
 du2 + du2 
 du1℄+ b[du1 
 du3 + du3 
 du1 + du2 
 du4 + du4 
 du2℄;0 is a triple eigenvalue of KX for any non null ve
tor X . The minimal polynomialis either �2 or �3; there are examples when the minimal polynomials 
hange degree
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tions f1 and f2 
an be 
hosen su
h that the metri
 isnot lo
ally symmetri
. There are metri
s with similar properties of signature (p; q)for any p � 2 and q � 2, see Gar
ia{Rio et. al. [21℄ for details.Example 3.4. Bonome et. al. [10℄ 
onstru
ted Osserman manifolds with inde�niteK�ahler metri
s of nonnegative or nonpositive holomorphi
 se
tional 
urvature whi
hare not lo
ally symmetri
.Example 3.5. Ruse et. al. [35, p. 211℄ 
onstru
ted a metri
 whi
h is simple harmoni
and whi
h is neither symmetri
 nor re
urrent, but it is Osserman:g = u2u3du1 
 du1 � u1u4du2 
 du2+ [du1 
 du3 + du3 
 du1 + du2 
 du4 + du4 
 du2℄:4 Chara
terization of Osserman manifolds ofsignature (2,2)For the remainder of this paper, we restri
t to the spe
ial 
ase that M has signa-ture (2; 2) and assume that M is spa
elike algebrai
-Osserman or timelike algebrai
-Osserman. We distinguish 4 di�erent 
ases depending on the algebrai
 form of theendomorphism KX of R3.De�nition 4.1.(1) We say M is type Ia if KX is diagonalizable.(2) We sayM is type Ib if the 
hara
teristi
 polynomial of the Ja
obi operator hasa 
omplex root.(3) We say that M is type II if KX is not diagonalizable and if the minimalpolynomial has a double root �.(4) We say that M is type III if KX is not diagonalizable and if the minimalpolynomial has a triple root �.There exists a suitable basis so the matrix KX has the following form:0� � 0 00 � 00 0 
 1A (I-a); 0� � � 0�� � 00 0 
 1A (I-b) � 6= 0; 0B� � 0 p220 � p22�p22 p22 � 1CA (III);0� �� 12 12 0� 12 �+ 12 00 0 � 1A or 0� ��+ 12 � 12 012 ��� 12 00 0 � 1A (II):Theorem 4.2. Let M be a 4{dimensional pseudo{Riemannian manifold of signature(2; 2). Then the following 
onditions are equivalent:(1) M is timelike algebrai
-Osserman.(2) M is spa
elike algebrai
-Osserman.(3) The universal 
overing spa
e ~M of M is one of the following manifolds(a) ~M is a manifold of 
onstant se
tional 
urvature;(b) ~M is a K�ahler manifold of 
onstant holomorphi
 se
tional 
urvature;(
) ~M is a para-
omplex manifold of 
onstant para{holomorphi
 se
tional 
urva-ture;
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(d) Ja
obi operator of ~M is nondiagonalizable, its 
hara
teristi
 polynomial hastriple zero � and its 
urvature is given by Lemma 6.3.Proof. We refer to [6℄ for 
omplete details regarding the proof of this theorem andwill 
ontent ourselves in this note with sket
hing the proof. Sin
e M is Osserman,the quantities trKX , trK2X , and trK3 are 
onstant; it now follows that M is Einstein.Furthermore, we 
an determine the 
omponents of the 
urvature tensor for the fourtypes relative to some appropriate basis. It then follows that the manifold is 
urvaturehomogeneous; we refer to Kowalski et. al. [28℄ for further details. In the next se
tion,we shall 
omplete the proof by studying the 4 
ases individually.5 Proof of Theorem 4.2 in Case Ia and IbWe begin by re
alling some 
lassi�
ation results for spa
es of 
onstant se
tional 
ur-vature, for K�ahler manifolds of 
onstant holomorphi
 se
tional 
urvature, and forpara{K�ahler manifolds of 
onstant paraholomorphi
 se
tional 
urvature.5.1 Manifolds with 
onstant se
tional 
urvature. Let M be a pseudo Rieman-nian manifold of signature (p; q) whi
h has 
onstant se
tional 
urvature 
. The 
ur-vature tensor of M is given by R(u; v)w = 
fg(v; w)u� g(u;w)vg. If M is 
omplete,
onne
ted and simply 
onne
ted, M = M(
; p; q) is determined by (
; p; q). Thesemanifolds have been 
lassi�ed by Wolf [43℄; M(�1; 2; 2) is the pseudo{sphere in R5with the appropriate non{Eu
lidean metri
.5.2 K�ahler manifolds of 
onstant holomorphi
 se
tional 
urvature. The pro-je
tive spa
e CP2 is a Riemannian manifold with 
onstant holomorphi
 se
tional
urvature 
 > 0; there is a negative 
urvature dual. In a similar fashion, the inde�niteproje
tive spa
e CPns (
) of signature (2p; 2n� 2p) 
an be 
onstru
ted, see Baros et.al. [3℄ for details. The K�ahler spa
e form CPns (
) has 
onstant holomorphi
 se
tional
urvature 
 6= 0 with 
urvature tensor:R(u; v)w = 
4fg(v; w)u� g(u;w)v+ g(Jv; w)Ju� g(Ju;w)Jv � 2g(Ju; v)Jwg:Furthermore, every K�ahler manifold M of signature (2s; 2n� 2s) with 
onstant holo-morphi
 se
tional 
urvature 
 6= 0 is holomorphi
ally isometri
 to CPns (
).5.3 Para-K�ahler manifolds of 
onstant paraholomorphi
 se
tional 
urva-ture. The tangent bundle TSn of the standard sphere 
an be equipped with a pseudoRiemannian metri
 g of signature (n; n) and a para{
omplex stru
ture su
h thatPn(B) = (TSn; g; F ) is of 
onstant paraholomorphi
 se
tional 
urvature 
, 
 6= 0. Forn > 1, Pn(B) is 
omplete, 
onne
ted and simple 
onne
ted, see Gadea et. al. [18℄ fordetails. Furthermore, every para{K�aehler manifold M2n with 
onstant paraholomor-phi
 se
tional 
urvature 
 is F holomorphi
ally isometri
 to Pn(B). The 
urvaturetensor of Pn(B) is given byR(x; y)z = 
4fg(v; w)u� g(u;w)v� g(Jv; w)Ju+ g(Ju;w)Jv + 2g(Ju; v)Jwg:We note that inde�nite K�ahler manifolds with vanishing holomorphi
 se
tional 
ur-vature are 
at; similarly para{K�ahler manifolds with vanishing paraholomorphi
 se
-
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urvature are 
at. But the 
omplete 
lassi�
ation of 
at{pseudo Riemannianmanifolds is not known, see Wolf [43℄.5.4. Type Ia. We prove Theorem 4.2 when the Ja
obi operator is diagonalizableby studying the 
ovariant derivatives of the 
urvature tensor. Let M be algebrai
Osserman and have signature (2,2), where KX is diagonalizable. We use the se
ondBian
hi identity to show that (M; g) has to be a lo
ally rank one symmetri
 spa
eor 
at. It then follows that M must be a spa
e of 
onstant se
tional 
urvature or bea K�ahler manifold of 
onstant holomorphi
 se
tional 
urvature or be a para{K�ahlermanifolds of 
onstant paraholomorphi
 se
tional 
urvature. The argument is similarto given by Chi [13℄ in the Riemannian 
ase in dimension 4. The 
ru
ial point inthe proof is if the Ja
obi operator KX is of type Ia, then the eigenvalues �, � and
 
an not be all distin
t. If � = � = 
, M has 
onstant 
urvature. If � = 
, it ispossible to 
onstru
t an integrable 
omplex or para
omplex stru
ture and 
ompletethe 
lassi�
ation. This yields (a)-(
) in Theorem 4.2. (3).5.5. Type Ib. We show that the Ja
obi operator of an algebrai
{Osserman manifold
an not be of type Ib, see [6℄ for the proof of the following theorem:5.6. Theorem. Let M be a timelike or spa
elike algebrai
{Osserman manifold ofsignature (2; 2). Then KX is not of type Ib.6 Proof of Theorem 4.2 in 
ase II and IIIIn this se
tion, we assumeM is a timelike or spa
elike algebrai
 Osserman manifold ofsignature (2; 2) su
h that KX is not diagonalizable and has all real eigenvalues. This
ase is of the spe
ial interest; there exists a non-
at algebrai
 Osserman manifoldwhi
h is not lo
ally rank one symmetri
.If the minimal polynomial of KX has a double root, then � = 4� or � = �.Furthermore if � = 4�, then � = 4� = 0. Suppose � 6= 0. Then M admits a parallel(integrable) null 2-plane distribution. We refer to Ruse et. al. [35℄ for the proof of the6.1.Theorem. Let M4 admit a parallel 2{dimensional null plane. There exist 
oor-dinates on M su
h that ds2 = fdu21+2sdu1du2+gdu22+du1du3+du2du4 for suitably
hosen fun
tions f , s, and g.6.2 KX has a triple zero. The only remained possibility is that KX has a triplezero and the minimal polynomial is se
ond or third order. In this 
ase, it is possibleto determine the 
omponents of the 
urvature tensor and to prove the existen
e ofsome null distributions. We work with a null basis fFig and 
urvature tensors Q, P ,and S, where(1) F1 := (E1 �E4)=p2, F2 := (E2 +E3)=p2,F3 := (E2 �E3)=p2, F4 = (E1 +E4)=p2,and fEig is a pseudo-orthonormal basis, so the matrix KX has the form (II) or (III).(2) Q(U; V )W = 
(g(V;W )U � g(U;W )V ); Q is the 
urvature tensor of the
onstant se
tional 
urvature metri
(3) P := (F3 ^ F4) _ (F3 ^ F4).(4) S := (F1 ^ F3) _ ((F1 ^ F4)� (F2 ^ F3)).We refer to [6℄ for the proof of the following Lemma; all 
urvature tensors are
omputed with respe
t to the basis Fi.6.3. Lemma. Let M be Jordan Osserman of signature (2; 2).
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(1) If the minimal polynomial of KX has a double root �, then R = �2P + �Q,R1441 = R2332 = R1243 = R1342 = � and R4334 = 2.(2) If the minimal polynomial of KX has a triple root �, then R = p2S � �Q,R1441 = R2332 = R1243 = R1342 = ��, and R1332 = R1314 = p2.This lemma shows these 
urvature tensors are similar to the 
urvature tensor ofa 
onstant se
tional 
urvature metri
 when � 6= 0. For manifolds in this 
lass theholonomy algebra is full, i.e., h = so(2; 2); these manifolds admit an autoparallelintegrable null plane �eld, we refer to [6℄, Proposition 7.8 for details. Note that in x3we showed that there are manifolds in this 
lass when � = 0.7 Open problemsThe results presented in the previous se
tions show that the Osserman 
onje
ture is
losely related to other 
onje
tures and that there are mu
h more examples of Osser-man manifolds in pseudo-Riemannian geometry. There are still many open problemsin this area; we present a few as follows:7.1. Question.Do there exist Osserman manifolds with nondiagonalizable Ja
obioperators whi
h are not Ri

i 
at?7.2. Question. Is it ne
essary for timelike (spa
elike) Osserman manifold to be lo-
ally homogeneous? Note that if one supposes only that the 
hara
teristi
 polynomialof the Ja
obi operator is 
onstant, then it does not follow that the manifolds are lo-
ally homogeneous. Further details 
on
erning the relationship between the Osserman
onje
ture and the lo
al homogeneity in the Riemannian setting 
an be found in [41℄.The following question is a very natural one; an aÆrmative answer was given in[11℄ and [21℄ under some additional assumptions.7.3. Question. Is a timelike (spa
elike) Osserman manifold with a diagonalizableJa
obi operator ne
essarily either a lo
ally rank 1 symmetri
 spa
e or a 
at spa
e?Motivated by results of Gilkey (see [22℄) in the Riemannian setting, one 
an for-mulate the following problem.7.4. Question. Do there exist manifolds Mn su
h that Mn is pointwise Jordan-Osserman but so thatMn is not Jordan Osserman; i.e., is it possible to �nd a manifoldwhere the Jordan form of KX 
hanges from point to point?A
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