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Abstract

We survey some recent results concerning the Osserman conjecture: if the
eigenvalues of the Jacobi operator are constant, need the manifold be locally
rank one symmetric? The conjecture is known to hold in the Lorentzian setting
and in certain cases to hold in the Riemannian setting. If the manifold has
signature (2,2) and if the Jacobi operator is diagonalizable, the conjecture is
known to hold; if the manifold has signature (2,2) and if the Jacobi operator is
not diagonalizable, there are counter-examples to the conjecture.
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80 Introduction and notational conventions

Let M be a n—dimensional pseudo—Riemannian manifold of signature (p, ¢). Denote
the metric tensor by (-,-). The case p = 0 or ¢ = 0 is the Riemannian case; the case
p=1or g =1is the Lorentzian setting. We shall also be interested in case of neutral
Einstein manifolds of dimension 4; this is the case (p,¢) = (2,2), see Borowiec et. al.
[12], Guillemin and Strenberg [24], and Law [29] for other related results.

Let S¢(p) :=={X € T,M | (X, X) = €1} be the set of all unit spacelike (e = +) or
timelike (e = —) tangent vectors at p € M. Let S¢(M) = U,S(p). Let X € S;. Since
X is not a null vector, we have X @ X+ = Tp,M. The Jacobi operator Lx : Y —
R(Y, X)X induces a symmetric endomorphism of the vector space Tx (S5) = X+ =
{Y € T,M | (X,Y) = 0}. This operator is important in the study of Riemannian
manifolds. It is equally important in the study of pseudo Riemannian manifolds. For
example, the family of free falling particles along a geodesic  in a Lorentz manifold is
described by the normal variational Jacobi vector field V along «. The Jacobi operator
plays the role of the tidal force and V satisfies Newton’s second law: V"' = Ry (y') =
K, V.

We say that M is spacelike (e = +) or timelike (¢ = —) Osserman if the eigenvalues
of Kx are constant on S¢(M); we say that M is spacelike or timelike Osserman at a
point p € M if the eigenvalues of Kx are constant on S¢(p). There are manifolds of
signature (0,4) which are Osserman at each point p € M but which are not Osserman;
the eigenvalues can change from point to point, see Gilkey, Swann, and Vanhecke [23]

Balkan Journal of Geometry and Its Applications, Vol.2, No.2, 1997, pp. 1-12
(©Balkan Society of Geometers, Geometry Balkan Press



2 N.Blazié, N.Bokan, P.Gilkey and Z.Rakic¢

for details. Let X € S¢(p). If p > 2 and if ¢ > 2, the induced metric on T'x S¢(p) is
not definite and thus K x need not be diagonalizable. We say that M is spacelike or
timelike algebraic-Osserman at a point p of M if the minimal polynomial of K x
is constant on S¢(p); similarly we say that M is spacelike or timelike algebraic

Osserman if the minimal polynomial of Kx is constant on S°(M). This fixes the
algebraic structure of Ky. There are manifolds of signature (2, 2) which are Osserman
but which are not algebraic Osserman, see §3 for details. More generally, we say that M
is spacelike or timelike Jordan—Osserman at p if the Jordan form of K x is independent
of X € §,. M is pointwise spacelike or timelike Jordan Osserman if M is spacelike
or timelike Jordan-Osserman at each p € M. Note that if M is 4 dimensional, then
the Jordan-Osserman condition is equivalent with the algebraic-Osserman condition.

Let M be a Riemannian manifold. If M is locally a rank one symmetric space or
is locally flat, then M is locally a 2 point homogeneous space. This means that local
isometries of M act transitively on the unit sphere bundle S*(M). Conversely, any
manifold which is locally a 2 point homogeneous space is locally a rank one symmetric
space or is locally flat. For such a manifold, the eigenvalues of the Jacobi operator
Kx are constant on S*(M). Osserman [32] conjectured that the converse holds; we
restate his conjecture as follows:

0.1. Conjecture. If a Riemannian manifold M is Osserman, then M is locally a 2
point homogeneous space.

This paper is devoted to the study of the Osserman conjecture and its general-
izations to pseudo Riemannian metrics. In §1, we review the known results in the
Riemannian setting and in §2 we review the known results in the Lorentzian; these
are the cases p =0 or ¢ = 0, p =1 or ¢ = 1. In these cases, Kx is diagonalizable
so the multiplicity of the eigenvalues of Kx determines the algebraic structure of
this operator. In §3, we present some examples of Riemannian manifolds of signature
(2,2) which are Osserman but not algebraic Osserman and which are algebraic Osser-
man but not locally symmetric. In §4, we give normal forms for the Jacobi operators
which can occur and in Theorem 4.2 we give the basic characterization result for
algebraic-Osserman manifolds of signature (2, 2). Sections §5 and §6 outline the proof
of Theorem 4.2. We conclude in §7 with some open problems. There is a large history
on this subject. In addition to the papers we shall cite later, we refer to the following
papers for additional related work: M.Dajczer and K.Nomizu [16], A.I.Malcev [30],
Singer [36], and A.G.Walker [42]. It is a pleasant task to thank D.M.Alekseevsky,
G.Hall, O.Kowalski, L.Vanhecke and other colleagues for helpful discussions on this
subject.

1 The Osserman conjecture for Riemannian
manifolds

Suppose p = 0 (or equivalently ¢ = 0) so that M is a Riemannian manifold. Chi
[13] proved Conjecture 0.1when n = 2 mod 4, and when n = 4. We sketch his proof
in the case n # 4 as follows. If n is odd, all the eigenvalues of Kx are equal; if
n = 4k + 2, then either all the eigenvalues of K x are equal or there is one eigenvalue
A1 of multiplicity 1 and the remaining eigenvalue Ay has multiplicity n — 2. This
argument uses results of Adams [1] from algebraic topology. If all the eigenvalues are
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equal, then M has constant sectional curvature. If Ay # Ao, Chi shows that there
exists an almost complex structure .J on M so that x.JX = A\ JX. Chi then uses
the Bianchi identities to show .J is parallel and deduces that M is modeled on complex
projective space or its negative curvature dual. The case n = 4 is more complicated
and uses special properties of 4 dimensional geometry. We also refer to [14], [15] for
other work by Chi on related questions.

Chi classified the curvature tensors which can arise if a manifold is Osserman at
a single point and if n Z 0 mod 4. Gilkey [22] has constructed germs of Riemannian
metrics on R** which are Osserman at 0 but which have curvature tensors which are
not based on those of a rank 1 symmetric space; in particular, there can be more than
2 eigenvalues. These examples show that the algebraic classification of the curvature
tensors which can arise from a manifold which is Osserman at a single point can be
quite complicated if n = 0 mod 4.

There are other conditions which are closely related to the Osserman condition
which have been studied. For example, Berndt and Vanhecke [4] introduced the notion
of C space as a Riemannian manifold for which the Jacobi operators have constant
eigenvalues along every geodesic. Ivanov and Petrova [26] studied conformally flat 4
manifolds such that the eigenspaces of the Jacobi operator are parallel along geodesics.
Ivanova [25] and Ivanov and Petrova [27] studied similar questions for the skew
symmetric curvature operator. Stanilov [37] studied also geometry of 4 dimensional
Osserman manifolds.

D R-spaces are a class of noncompact harmonic nonsymmetric spaces constructed
by E. Damek and R. Ricci [17]. Szabo [39] proved that DR-spaces do not provide
counter-examples for the Osserman conjecture. Tricerri and Vanhecke [40] gave a
rather short proof of this fact. Boeckx [8] proved that semisymmetric spaces which
have volume—preserving geodesic symmetries or which have constant eigenvalues of
the Jacobi operator K, along geodesic vy are locally symmetric. Moreover he showed
that semisymmetric globally Osserman spaces are locally isometric to a two point
homogeneous space. Let A(A* + a1 (m, X)A\? 4+ o2(m, X)X + o3(m, X)) = 0 be the
characteristic equation of the Jacobi operator, m € M. Stanilov and Videv [38] proved
that (M*, g) is already a pointwise Osserman space if only o; and o3 are independent
of X.

2 The Osserman conjecture for Lorentzian
manifolds

The Lorentzian case was first studied by Garcia Rio et al. [19, 20]. They showed that
timelike Osserman manifolds has constant sectional curvature. They also showed that
if n < 4, that spacelike Osserman manifolds has constant sectional curvature. The
restriction that n < 4 was removed by later work of [5]; these authors also gave a
different proof of the result of Garcia Rio et. al. [20] concerning timelike Osserman
manifolds. We refer to [5] for the proof of the
Theorem 2.2. The following conditions are equivalent for a Lorentzian manifold.

(1) M is spacelike Osserman at a point p € M.

(2) M is timelike Osserman at a point p € M.

(3) M has constant sectional curvature at a point p € M.
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Here is a brief sketch of the proof. Let M be a n dimensional Lorentzian manifold
and let Ey,..., Ep_1, E,, a pseudo orthonormal base of type (+,...,+,—). If M is
Osserman at a point p € M, then trK% is independent of X, where X is a timelike
(or spacelike) unit vector. With a bit of work, one can use this observation to show
that Zi7j{(R1imj + Rpi1j)? + (Rii1j + Rmimj)?} = 0. This shows that we have the
identities Rijmj + Rmii; = 0 and Rij1j + Rpimj = 0; it then follows that M has
constant sectional curvature at p. If one uses a similar argument in the Riemannian
case, one ends up with a similar identity which is not coercive; a positive definite
sum is not obtained for signature (p,q) if p > 1 and ¢ > 1 either as will be evident
presently; this argument works only for Lorentzian signature! Note that there exists
a Schur type lemma for pseudo Riemannian manifolds; see O’Neill [31], p. 231, and
exercise 3.21, p. 96. Thus if a connected Lorentzian manifold M is spacelike or timelike
Osserman at every point, then M has constant sectional curvature ¢ for some c. We
refer to Garcia—Rio and Kupeli [20] for a discussion of the null Osserman condition.

3 Examples of Osserman manifolds of
signature (2,2)

In this section, we present examples of manifolds M of signature (2,2) which are
Osserman; 0 is a triple eigenvalue of Kx for all non—null vectors X. Some of these
examples are not locally symmetric. In some of the examples, the minimal polynomial
varies from point to point so they are not algebraic Osserman. Such manifolds are
Einstein, see [6, Proposition 2.1] for details.

Example 3.1. Firstly, the existence of a manifold M of signature (2,2) for which
the Osserman conjecture fails was proved in [6]. This manifold is a locally symmetric
manifold of rank 2 which has signature (2,2); 0 is a triple eigenvalue of Kx for any
timelike or spacelike unit vector X. The construction used a result of Wu [44]. This
manifold admits an interesting integrable para quaternionic structure and a parallel
dual (neutral) structure N, N> = 0 and VN = 0; we refer to Rozenfield [34] for
further details. This provides a counter example to the Osserman conjecture.
Example 3.2. The following metric on R* of signature (2,2) was constructed by
Raki¢ [33]. The existence of such manifold was proved in [6] and it is a counter-
example to the Osserman conjecture. Let

69 = wuiduy @ duy +uiduy @ dus — ujus[duy @ dus + dus @ duy)
—  3ldu1 ® duyg + dug ® duy + dus ® dus + dus ® dus].

Example 3.3. Garcia—Rio et. al. [21] constructed the following family of metrics on
R* of signature (2,2). If 9, /0us + 0f2/0u; = 0, let
9 fa) = usf(ur,uz)dur @ duy + ug four, uz)dus @ dus
+  a[du; ® dug + dus ® duy]
+ blduy ® dus + dusg ® duy + dus @ duy + duy Q dus];

0 is a triple eigenvalue of Kx for any non null vector X. The minimal polynomial
is either A2 or A?; there are examples when the minimal polynomials change degree



Pseudo-Riemannian Osserman Manifolds 5

from point to point. The functions f; and fy; can be chosen such that the metric is
not locally symmetric. There are metrics with similar properties of signature (p,q)
for any p > 2 and g > 2, see Garcia—Rio et. al. [21] for details.

Example 3.4. Bonome et. al. [10] constructed Osserman manifolds with indefinite
Kahler metrics of nonnegative or nonpositive holomorphic sectional curvature which
are not locally symmetric.

Example 3.5. Ruse et. al. [35, p. 211] constructed a metric which is simple harmonic
and which is neither symmetric nor recurrent, but it is Osserman:

g = usuzdu; ® duy — ujugdus & dus

+  [dui ® duz + dus ® duy + dus ® dug + dus ® dus).

4 Characterization of Osserman manifolds of
signature (2,2)

For the remainder of this paper, we restrict to the special case that M has signa-
ture (2,2) and assume that M is spacelike algebraic-Osserman or timelike algebraic-
Osserman. We distinguish 4 different cases depending on the algebraic form of the
endomorphism Ky of R?.
Definition 4.1.

(1) We say M is type Ia if Kx is diagonalizable.

(2) We say M is type Ib if the characteristic polynomial of the Jacobi operator has
a complex root.

(3) We say that M is type II if Kx is not diagonalizable and if the minimal
polynomial has a double root «.

(4) We say that M is type III if Kx is not diagonalizable and if the minimal
polynomial has a triple root «.

There exists a suitable basis so the matrix x has the following form:

a 0 0 a B 0 a 0 ¥
0 8 0| @a),| -8 a 0 | (I-h) B #£0, 0 o X2 | (1),
0 0 v 0 0 v 7@ @ o
a1 1 A S
1 1 1 1
0 0 8 0 0o B

Theorem 4.2. Let M be a 4—dimensional pseudo—Riemannian manifold of signature
(2,2). Then the following conditions are equivalent:

(1) M is timelike algebraic-Osserman.

(2) M is spacelike algebraic-Osserman.

(3) The universal covering space M of M is one of the following manifolds

(a) M is a manifold of constant sectional curvature;

(b) M is a Kihler manifold of constant holomorphic sectional curvature;

(c) M is a para-complex manifold of constant para—holomorphic sectional curva-
ture;
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(d) Jacobi operator of M is nondiagonalizable, its characteristic polynomial has
triple zero a and its curvature is given by Lemma 6.35.
Proof. We refer to [6] for complete details regarding the proof of this theorem and
will content ourselves in this note with sketching the proof. Since M is Osserman,
the quantities trKy, trK$, and trKC> are constant; it now follows that A is Einstein.
Furthermore, we can determine the components of the curvature tensor for the four
types relative to some appropriate basis. It then follows that the manifold is curvature
homogeneous; we refer to Kowalski et. al. [28] for further details. In the next section,
we shall complete the proof by studying the 4 cases individually.

5 Proof of Theorem 4.2 in Case Ia and Ib

We begin by recalling some classification results for spaces of constant sectional cur-
vature, for Kdhler manifolds of constant holomorphic sectional curvature, and for
para—Ké&hler manifolds of constant paraholomorphic sectional curvature.

5.1 Manifolds with constant sectional curvature. Let M be a pseudo Rieman-
nian manifold of signature (p,q) which has constant sectional curvature ¢. The cur-
vature tensor of M is given by R(u,v)w = ¢{g(v,w)u — g(u, w)v}. If M is complete,
connected and simply connected, M = M(c,p,q) is determined by (c,p,q). These
manifolds have been classified by Wolf [43]; M (£1,2,2) is the pseudo-sphere in R®
with the appropriate non—Euclidean metric.

5.2 Kahler manifolds of constant holomorphic sectional curvature. The pro-
jective space CP? is a Riemannian manifold with constant holomorphic sectional
curvature ¢ > 0; there is a negative curvature dual. In a similar fashion, the indefinite
projective space CP% (c) of signature (2p,2n — 2p) can be constructed, see Baros et.
al. [3] for details. The Kahler space form CP7 (c) has constant holomorphic sectional
curvature ¢ # 0 with curvature tensor:

R(u,v)w = z{g(v,w)u—g(u,w)v
+ g(Jv,w)Ju — g(Ju,w)Jv — 2g(Ju,v)Jw}.

Furthermore, every Kahler manifold M of signature (2s, 2n — 2s) with constant holo-
morphic sectional curvature ¢ # 0 is holomorphically isometric to CP% (c).

5.3 Para-Kiahler manifolds of constant paraholomorphic sectional curva-
ture. The tangent bundle 7'S™ of the standard sphere can be equipped with a pseudo
Riemannian metric g of signature (n,n) and a para complex structure such that
P™(B) = (T'S™, g, F) is of constant paraholomorphic sectional curvature ¢, ¢ # 0. For
n > 1, P*(B) is complete, connected and simple connected, see Gadea et. al. [18] for
details. Furthermore, every para—Kiehler manifold M?" with constant paraholomor-
phic sectional curvature ¢ is F' holomorphically isometric to P"(B). The curvature
tensor of P™(B) is given by

R(,y)z = Jlo(v,wu—glu,w)

- g(Jv,w)Ju+ g(Ju,w)Jv + 2¢g(Ju,v)Jw}.

We note that indefinite Kdhler manifolds with vanishing holomorphic sectional cur-
vature are flat; similarly para—K&hler manifolds with vanishing paraholomorphic sec-
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tional curvature are flat. But the complete classification of flat—pseudo Riemannian
manifolds is not known, see Wolf [43].

5.4. Type Ia. We prove Theorem 4.2 when the Jacobi operator is diagonalizable
by studying the covariant derivatives of the curvature tensor. Let M be algebraic
Osserman and have signature (2,2), where Kx is diagonalizable. We use the second
Bianchi identity to show that (M, g) has to be a locally rank one symmetric space
or flat. It then follows that M must be a space of constant sectional curvature or be
a Kéahler manifold of constant holomorphic sectional curvature or be a para—Kéahler
manifolds of constant paraholomorphic sectional curvature. The argument is similar
to given by Chi [13] in the Riemannian case in dimension 4. The crucial point in
the proof is if the Jacobi operator Ky is of type la, then the eigenvalues «, § and
v can not be all distinct. If @« = 8 = ~, M has constant curvature. If § = ~, it is
possible to construct an integrable complex or paracomplex structure and complete
the classification. This yields (a)-(c) in Theorem 4.2. (3).

5.5. Type Ib. We show that the Jacobi operator of an algebraic Osserman manifold
can not be of type Ib, see [6] for the proof of the following theorem:

5.6. Theorem. Let M be a timelike or spacelike algebraic Osserman manifold of
signature (2,2). Then Kx is not of type Ib.

6 Proof of Theorem 4.2 in case II and 111

In this section, we assume M is a timelike or spacelike algebraic Osserman manifold of
signature (2, 2) such that Kx is not diagonalizable and has all real eigenvalues. This
case is of the special interest; there exists a non-flat algebraic Osserman manifold
which is not locally rank one symmetric.

If the minimal polynomial of Kx has a double root, then § = 4a or § = a.

Furthermore if § = 4a, then f = 4a = 0. Suppose a # 0. Then M admits a parallel
(integrable) null 2-plane distribution. We refer to Ruse et. al. [35] for the proof of the
6.1.Theorem. Let M* admit a parallel 2 dimensional null plane. There exist coor-
dinates on M such that ds® = fdu% + 2sduidus + gdug + duydus + dusduy for suitably
chosen functions f, s, and g.
6.2 x has a triple zero. The only remained possibility is that Kx has a triple
zero and the minimal polynomial is second or third order. In this case, it is possible
to determine the components of the curvature tensor and to prove the existence of
some null distributions. We work with a null basis {F;} and curvature tensors @, P,
and S, where

(1) Fy:= (B, — E4) /2, Fy == (Ey + F3) /2,

Fy = (BEy — E3)/\/?2, Fy = (E1 + Ey)/V2,
and {E;} is a pseudo-orthonormal basis, so the matrix Xx has the form (II) or (III).

(2) QU VYW = ¢(g(V,W)U — g(U,W)V); @ is the curvature tensor of the
constant sectional curvature metric

(3) P = (Fg/\F4)V(F3 /\F4)

(4) S = (Fl/\Fg)V((Fl/\F4)*(F2/\F3))

We refer to [6] for the proof of the following Lemma,; all curvature tensors are
computed with respect to the basis Fj.

6.3. Lemma. Let M be Jordan Osserman of signature (2,2).
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(1) If the minimal polynomial of Kx has a double root a, then R = —2P + a(),
Ri441 = Raz3s = Rio43 = Rizan = o and Ryzz4 = 2.

(2) If the minimal polynomial of Kx has a triple root a, then R = /258 — aQ,
Rias1 = Razzs = Rysaz = Rizaz = —«, and Rizzs = Rizia = V2.

This lemma shows these curvature tensors are similar to the curvature tensor of
a constant sectional curvature metric when a # 0. For manifolds in this class the
holonomy algebra is full, i.e., h = 50(2,2); these manifolds admit an autoparallel
integrable null plane field, we refer to [6], Proposition 7.8 for details. Note that in §3
we showed that there are manifolds in this class when o = 0.

7 Open problems

The results presented in the previous sections show that the Osserman conjecture is
closely related to other conjectures and that there are much more examples of Osser-
man manifolds in pseudo-Riemannian geometry. There are still many open problems
in this area; we present a few as follows:

7.1. Question.Do there exist Osserman manifolds with nondiagonalizable Jacobi
operators which are not Ricci flat?

7.2. Question. Is it necessary for timelike (spacelike) Osserman manifold to be lo-
cally homogeneous? Note that if one supposes only that the characteristic polynomial
of the Jacobi operator is constant, then it does not follow that the manifolds are lo-
cally homogeneous. Further details concerning the relationship between the Osserman
conjecture and the local homogeneity in the Riemannian setting can be found in [41].

The following question is a very natural one; an affirmative answer was given in
[11] and [21] under some additional assumptions.

7.3. Question. Is a timelike (spacelike) Osserman manifold with a diagonalizable
Jacobi operator necessarily either a locally rank 1 symmetric space or a flat space?

Motivated by results of Gilkey (see [22]) in the Riemannian setting, one can for-
mulate the following problem.

7.4. Question. Do there exist manifolds M"™ such that M" is pointwise Jordan-
Osserman but so that M™ is not Jordan Osserman; i.e., is it possible to find a manifold
where the Jordan form of Kx changes from point to point?
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this paper was presented by N.Blazi¢ at the First Conference of Balkan Society of
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