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Abstract

The Chern–Rund connection from Finsler geometry is settled in the
generalized Lagrange spaces. For the geometry of these spaces, we refer to
[5].
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Introduction

In a recent paper, [1], we showed that in a Finsler space the connection intro-
duced by S.S. Chern in 1948 is the same with the connection proposed by H.
Rund ten years later and bearing his name. Accordingly, we proposed the name
of Rund be replaced with that of Chern, but several geometers including S.S.
Chern himself, suggested to call it from now on a Chern–Rund connection.

As S.S. Chern and D. Bao showed in [2], the Chern–Rund connection is
very convenient in treating of many global problems in Finsler geometry. This
fact determined us to come back to the subject.

The efforts made in defining a covariant derivative and accordingly, a paral-
lel displacement in Finsler space led to a concept generically called a Finsler con-
nection. Among the Finsler connections there exist four, which are remarkable
by their properties named the Cartan, Berwald, Chern–Rund and Hashiguchi
connections, respectively. These are usually put together in a nice commutative
diagram (cf. [3, Ch. III]).

The most utilized is the Cartan connection because it is fully metrical i.e.
h– and v–metrical, in spite of the fact it has torsion.

But there are some problems involving the Berwald connection which is by
no means metrical or the Hashiguchi connection which is only v–metrical.

The Chern–Rund connection being h–metrical and free of torsion is the
nearest to the Levi–Civita connection a fact which explains its adequacy for
global problems in Finsler geometry.
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The Finsler connections are also suitable for the geometries more general
than the Finslerian one as the Lagrange geometry or generalized Lagrange geo-
metry. Our purpose is to review Finsler connections and to settle the Chern–
Rund connection in this more general framework.

First, we give in §1 a definition of Finsler connection by local components
and introduce its compatibility with a generalized Lagrange metric. Then, in
§2, a Finsler connection is defined as a pair (N,∇), where N is a nonlinear
connection on TM and ∇ is a linear connection in the pull–back bundle τ−1 :
M−→TM with τ : TM−→M , the tangent bundle over a manifold M . These
definitions are equivalent. The four remarkable connections mentioned above
are characterized. A special attention is paid to the possibility of determining
N from ∇.

1 Finsler connections. A definition by local com-
ponents

Let M be a smooth i.e. C∞ manifold of finite dimension n and τ : TM →M
its tangent bundle. A local chart (U, (xi)) on M induces a local chart
(τ−1(U), (xi, yi)) on TM , where xi ≡ xi ◦ τ and (yi) are provided by

u = yi ∂

∂xi

∣∣
p
, p = τ(u).

A change of coordinates (xi, yi)−→(x̃i, ỹi) on TM has the form

(1.1)
x̃i = x̃i(x1, ..., xn), rank

(
∂x̃i

∂xj

)
= n

ỹi =
∂x̃i

∂xj
(x)yj .

The indices i, j, k, ... will run from 1 to n and Einstein’s convention on summation
is implied.

Let L : TM−→R be a scalar function on TM . Then L̃(x̃(x), ỹ(y)) =
L(x, y), from which, taking partial derivatives and using (1.1), one gets

(1.2)
∂L

∂yi
=

∂x̃k

∂xi

∂L

∂ỹk
,

(1.3)
∂L

∂xi
=

∂x̃k

∂xi

∂L

∂x̃k
+

∂2x̃k

∂xj∂xi
yj ∂L

∂ỹk
·

According to (1.2), the set of functions
(

∂L

∂yi
(x, y)

)
may be regarded as the com-

ponents of a covector field on TM . From (1.2), it follows that
(

∂2L

∂yi∂yj
(x, y)

)

may be also viewed as the components of a (symmetric) tensor field on TM .
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Thus on TM there exist geometrical objects whose law of transformation un-
der (1.1) is the same as of the corresponding objects on M . These were called
d–objects (d is from distinguished) in [4], Finsler objects in [3] and sometimes
M–objects.

The geometry of d–objects is essentially involved in the study of those met-
rical structures which are more general than Riemannian structures i.e. Finsler
structures, Lagrange structures, generalized Lagrange structures (see [4]).

Coming back to (1.3), we see that the behaviour of the operators
∂

∂xi
is

drastically different from that of
∂

∂yi
· Let us introduce a correction of

∂

∂xi
:= ∂i,

(1.4) δiL = ∂iL + Nk
i (x, y)∂̇k, ∂̇k̇ :=

∂

∂yk̇
,

such that, with respect to (1.1):

(1.5) δiL =
∂x̃k

∂xi
δ̃kL,

i.e. (δiL) to appear as the components of a covector field on TM . Then the
functions (Nk

i (x, y)) have to satisfy

(1.6)
∂x̃j

∂xi
Ñh

j = N j
i

∂x̃h

∂xj
+

∂2x̃h

∂xi∂xj
yj .

Note that (N j
i (x, y)) are not the components of a (1, 1)–tensor field on TM but

the difference of two sets of this type is so.
As it is well–known, when M is paracompact, there exists on M a linear

connection, say of local coefficients (Γi
jk(x)). Then N i

k(x, y) = Γi
jk(x)yj verify

(1.6). This example assures also the existence of a nonlinear connection within
a generally accepted hypothesis on M .

The local vector fields (δi), i = 1, 2, ..., n, given by (1.4) are linearly inde-
pendent and in a point u ∈ TM they span an n–dimensional subspace HuTM
of TuTM.

Let τ∗,u be the tangent mapping (the Jacobian) of τ. Then VuTM = ker τ∗,u
is called the vertical subspace of TuTM. A vertical vector is of the form
Xk(x, y)∂̇k such that under (1.1) one has

(1.7) X̃k =
∂xk

∂xi
Xi.

We immediately have

(1.8) TuTM = VuTM ⊕HuTM.

Furthermore, τ∗,u restricted to HuTM gives an isomorphism of it with Tτ(u)M

such that τ∗,u(δi) = ∂i

∣∣
τ(u)

.

Conversely, if a supplement of VuTM in TuTM is specified by a basis (δi),
i = 1, 2, ..., n, which is carried by τ∗ to (∂i), then letting δi = ∂i − Nk

i ∂̇i, the
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condition δi =
∂x̃k

∂xi
δ̃k implies (1.6) for (Nk

i ). One says that (Nk
i (x, y)) are the

coefficients of a nonlinear connection.
A reason for this term is that when (Nk

i ) are linear with respect to (y) i.e.
Nk

i (x, y) = Gk
ji(x)yj , then (Gk

ji) are the coefficients of a linear connection on
M .

Summarizing the foregoing discussion we may formulate the following two
equivalent definitions for a nonlinear connections.
Definition 1.1. A nonlinear connection is a set of functions (N i

j(x, y)) defined
on each domain of local chart on TM such that an overlaps, (1.6) holds good.
Definition 1.2. A nonlinear connection is a smooth distribution u−→HuTM
supplementary to the vertical distribution u−→VuTM i.e. (1.7) holds good for
every u ∈ TM.

Let (vi(x, y)) be the components of a d–vector field. Then
(

∂vi

∂yj
(x, y)

)

are the components of a d–tensor field of type (1, 1). In other words the partial
derivatives with respect to (yi) are covariant. However, in some circumstances,
these have to be replaced by

(1.9) vi|j =
∂vi

∂yj
+ Ci

kj(x, y)vk,

where (Ci
kj(x, y)) are the components of a d–tensor field. One of them is as

follows.
First, we introduce

Definition 1.3. A d–tensor field of type (0, 2) of components (gij(x, y)) which
is a) symmetric, i.e. gij = gji, b) nondegenerate i.e. det(gij(x, y)) 6= 0 and
c) the quadratic form gij(x, y)ξiξj (ξ ∈ IRn) has constant signature is called a
generalized Lagrange metric (GL–metric for brevity).

Extending (1.9), the covariant derivative of (gij) is given by

(1.10) g
ij
∣∣k = ∂jv

i − Ch
ikghj − Ch

jkgih.

One says that the GL–metric (gij(x, y)) is v–covariant constant if g
ij
∣∣k = 0. For

the general vi∣∣j , the condition g
ij
∣∣k = 0 can be fulfilled with

(1.11)
c

C
h
ij =

1
2
ghk(∂̇igkj + ∂̇jgik − ∂̇kgij).

The partial derivatives with respect to (xi) are far to be covariant derivatives.
A correction of them could be ∂jv

i + Hi
kj(x, y)vk, but (Hi

kj(x, y)) have a com-
plicated law of transformation A better one is

(1.12) vi|j = δjv
i + F i

kj(x, y)vk,

since then (F i
kj(x, y)) changes under (1.1) as the local coefficients of a linear

connection on M . These derivatives can be extended to any d–tensor field. For
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instance, the v–covariant derivative of (gij(x, y)) is given by (1.10) and its h–
covariant derivative is

(1.13) gij|k = δkgij − Fh
ikghj − Fh

jkgih.

The GL–metric (gij(x, y)) is said to be h–covariant constant if gij|h = 0.
It is easy to check that the equation gij|h = 0 is satisfied with

(1.14)
c

F
k
ij =

1
2
gkh(δighj + δjgih − δhgij).

The foregoing discussions suggest
Definition 1.4. A Finsler connection is a triad FΓ = (N i

j(x, y), F i
jk(x, y),

Ci
jk(x, y)), where N i

j(x, y) are the coefficients of a nonlinear connection, F i
jk(x, y)

are like the coefficients of a linear connection on M and Ci
jk(x, y) are the com-

ponents of a d–tensor field.
We have also got a first example of Finsler connection CΓ = (N i

j(x, y),
c

F i
jk(x, y),

c

C i
jk(x, y)).

Definition 1.5. Let FΓ be a Finsler connection and (gij(x, y)) a GL–metric.
FΓ is said to be h–metrical if gij|h = 0, v–metrical if g

ij
∣∣h = 0 and metrical if

the both equations hold.
In the above we have proved

Proposition 1.1. The Finsler connection CΓ is metrical.
The following d–tensor fields are called the torsions of FΓ :

(1.15)
T i

jk = F i
jk − F i

kj , Ri
jk = δkN i

j − δjN
i
k, Ci

jk,

P i
jk = ∂̇kN i

j − F i
kj , Si

jk = Ci
jk − Ci

kj .

Remark 1.1. Ri
jk is the integrability tensor of the horizontal distribution. It

measures also the curvature of the nonlinear connection N .
The d–tensor fields

(1.16) Di
j = F i

kjy
k −N i

j , di
j = δi

j + Ci
kjy

k,

where (δi
j) is Kronecker’ symbol, are called h–deflection and v–deflection of FΓ,

respectively.
From (1.6) we infer that Gi

jk = ∂̇jN
i
k transform under (1.1) as F i

jk. Thus
BΓ = (N i

j , G
i
jk, 0) is a Finsler connection. It will be called the Berwald connec-

tion. This connection is neither v–metrical nor h–metrical and is free of torsions
if and only if N is integrable (Ri

jk = 0) and symmetric (∂̇jN
i
k = ∂̇kN i

j).
The connection CΓ will be called the Cartan connection. It is h–metrical,

h–symmetric (
c

F i
jk(x, y) =

c

F i
kj(x, y)), v–metrical and v–symmetric. The Finsler

connection HΓ = (N i
j , G

i
jk(x, y),

c

C i
kj(x, y)) will be called the Hashiguchi connec-

tion. This is v–metrical, no h–metrical and has torsion. The Finsler connection
CRΓ = (N i

j ,
c

F i
jk(x, y), 0) will be called the Chern–Rund connection. This is

h–metrical but not v–metrical.
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Summarizing, for a fixed nonlinear connection N and a GL–metric
(gij(x, y)) we have four typical Finsler connections: BΓ, CΓ,HΓ and CRΓ.

Let us replace TM by T0M = TM \ 0.
A GL–metric (gij(x, y)) on T0M reduces to a Finsler metric if there ex-

ists a fundamental Finsler function F : T0M−→R+ such that gij(x, y) =
1
2
∂̇i∂̇jF

2(x, y)). Taking as N the Cartan nonlinear connection of coefficients
c

N i
j =

1
2
∂̇jγ

i
oo, γi

oo = γi
jkyjyk, γi

jk =
1
2
gih(∂jghk +∂kgjh−∂hgjk), the afore men-

tioned Finsler connections reduce to the four remarkable connections in Finsler
geometry (3, [Ch. III]).

The form of Di
j in (1.6) shows that one may associate to any FΓ a new

Finsler connection (F i
kjy

k−Di
j , F

i
kj , C

i
kj) whose h–deflection is just Di

j , when this
is prescribed. In particular, for Di

j = 0 a Finsler connection without h–deflection
is obtained. In Finsler geometry BΓ, CΓ,HΓ and CRΓ are h–deflection free. So
we have an explanation why the nonlinear connection was noted quite late in
Finsler geometry.

2 Another definition of Finsler connections

Let be τ−1TM = {(u, v) ∈ TM × TM, τ(u) = τ(v)} fibered over TM by
π(u, v) = u. The local fiber in (u, v) is Tτ(u)M. A section in (τ−1TM, π, TM)
is locally of the form X̄ = X̄i(x, y)∂̄i with (∂̄i) the natural basis in Tτ(u)M . It
follows that under (1.1) we have

(2.1) ˜̄Xi =
∂x̃i

∂xk
X̄k.

X̄ will be called a τ–vector field on TM . It can be identified with the d–vector
field (X̄i(x, y)). More general, the tensorial algebra of the pull–back bundle
τ−1TM can be thought of as algebra of d–tensor fields on TM . There exists a
remarkable τ–vector field CC : u−→(u, u), which locally is yi∂̄i and so it can be
identified to the Liouville vector field CC = yi∂̇i.
Theorem 2.1. There exists a one–to–one correspondence between the set of
Finsler connections FΓ and the set of pairs (N,∇) with N a nonlinear connec-
tion on TM and ∇ a linear connection in the pull–back bundle τ−1TM.
Proof. If FΓ is specified by (N i

j , F
i
jk, Ci

jk), we take N = (N i
j) and define ∇ by

(2.2) ∇δk
∂̄i = F i

jk∂̄i, ∇∂̇k
∂̄j = Ci

jk∂̄i.

In the natural basis ∇ takes the form

(2.3) ∇∂k
∂̄j = Γi

jk∂̄i, ∇∂̇k
∂̄i = Ci

jk∂̄i.

(2.4) Γi
jk = F i

jk + Nh
k Ci

jh.

Conversely, given N = (N i
j) and ∇ specified by (2.3) it results that

(N i
j , F

i
jk, Ci

jk) with F i
jk given by (2.4) is a Finsler connection.
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A GL–metric (gij(x, y)) defines a metrical structure g in the bundle
τ−1TM :

(2.5) g = gij(x, y)dxi ⊗ dxj .

Conversely, any metrical structure in the bundle τ−1TM defines by (2.5)
a GL–metric.

One easily checks
Theorem 2.2. In the correspondence FΓ ←→ (N,∇) we have

a) FΓ is h–metrical if and only if ∇hXg = 0,
b) FΓ is v–metrical if and only if ∇vXg = 0,
c) FΓ is metrical if and only if ∇Xg = 0,
for every X ∈ X (TM).
Let ρ : TTM−→τ−1TM be the morphism of vector bundles given by

ρ(Xu) = (u, τ∗,uXu), Xu = TuTM, u ∈ TM . It follows that ker ρu = VuTM

i.e. ρ(∂̇i) = 0 and ρ(δi) = ∂̄i. Alternatively, we may define a morphism
σ : TTM−→τ−1TM on basis by σ(δi) = 0, σ(∂̇i) = ∂̄i. We say that

(2.6)
TT ρ(X, Y ) = ∇Xρ(Y )−∇Y ρ(X)− ρ[X, Y ],
TTσ(X, Y ) = ∇Xσ(Y )−∇Y σ(X)− σ[X, Y ], X, Y ∈ X (TM),

are torsions of ∇.
The following characterizations of the Finsler connections BΓ, HΓ, CRΓ

and CΓ follow.
Theorem 2.3. In the correspondence FΓ ←→ (N,∇) we have

a) BΓ ←→ (N,∇) with TT σ(hX, vY ) = 0, TT ρ(hX, vY ) = 0;
b) HΓ ←→ (N,∇) with TTσ(hX, vY ) = 0, TTσ(vX, vY ) = 0, ∇vXg = 0;
c) CRΓ ←→ (N,∇) with TT ρ(hX, vY ) = 0, TT ρ(hX, hY ) = 0, ∇hXg = 0;
d) CΓ ←→ (N,∇) with TT ρ(hX, vY ) = 0, TTσ(vX, vY ) = 0, ∇Xg = 0.

Proof. The local expressions of TT ρ and TT σ in conjunction with Theorem 2.2
give the desired results.

Now the following question appears. Which conditions sould satisfy ∇ in
order to determine N such that the pair (N,∇) to correspond to a Finsler con-
nection. An answer is as follows.
Definition 2.1. A linear connection ∇ in the pull–back bundle τ−1TM is said
to be regular if the subspace {Xu | ∇XuCC = 0, X ∈ X (TM)} of TuTM is
supplementary to VuTM for every u ∈ TM.

By the definition, every regular connection ∇ induces a nonlinear connec-
tion N on TM . The pair (N,∇), as we have seen before, corresponds to a Finsler
connection FΓ. This FΓ has to be of a particular form. Indeed, one has
Theorem 2.4. There exists a bijection between the set of regular connections
in τ−1TM and the set of Finsler connections FΓ = (N i

j , F
i
jk, Ci

jk) satisfying
Di

j = 0 and det(di
h) 6= 0.

Proof. Let ∇ be specified by (2.3). Using N = (N i
j) provided by the regularity

of ∇, we define F i
jk as in (2.4). Then 0 = ∇δk

CC = (yjF i
jk − N i

k)∂̄k implies
Di

k = 0. Contracting (2.4) by yj we get Nh
k (di

h) = yjΓi
jk and as (Nh

k ) is specified
this equation has to have an unique solution. Hence with necessity det(di

h) 6= 0.
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Conversely, let (N,∇) be in correspondence with FΓ. The condition Di
j =0

assures that the subspace {Xu|∇Xu
CC = 0, X ∈ X (TM), u ∈ TM} is contained

in the horizontal subspace HuTM of N . The condition det(di
k) 6=0 implies that

this subspace is supplementary to VuTM. Thus ∇ is regular and the nonlinear
connection derived from it coincides with N .

Let us assume that (gij) reduces to a Finsler metric on T0M . Then CΓ is
characterized by the following Matsumoto’s axioms:

(∗) T i
jk = 0, gij|k = 0, Si

jk = 0, g
ij
∣∣k = 0, Di

j = 0.

It results di
j = δi

j .
Combining these with Theorems 2.4 and 2.3, one obtains

Theorem 2.5. Let Fn = (M, F ) be a Finsler space. There exists a unique
regular connection ∇ in π−1T0M satisfying the conditions:

TT ρ(hX, hY ) = 0, TTσ(vX, vY ) = 0, ∇Xg = 0, X, Y ∈ X (T0M)

where h and v are projectors of N induced by ∇.
We note that ∇ is determined by F only.
According to 4 the Chern–Rund connection in a Finsler space is characte-

rized by the following axioms:

T i
jk = 0, gij|k = 0, Ci

jk = 0, Di
j = 0.

We have again di
j = δi

j . By Theorems 2.3 and 2.4 we have
Theorem 2.6. Let Fn = (M, F ) be a Finsler space. There exists a unique
regular connection ∇ in π−1T0M satisfying the conditions:

TT ρ(hX, hY ) = 0, TT ρ(hX, vY ) = 0, ∇hXg = 0, X, Y ∈ X (T0M)

where h and v are projectors of N induced by ∇.
The systems of axioms for HΓ and BΓ discussed for minimality in 4 give

similar results in view of Theorems 2.3 and 2.4.
The Finsler connections may be viewed also as special liner connections

on TM or in the Finsler bundle π−1LM , where LM is the principal bundle of
linear frames on M . We refer to 4 and 3, respectively.
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R-6600 Iaşi, Romania


