
Blowing up in Rigid Analytic
Geometry

Hans Schoutens

Abstract

We define the concept of blowing up map in rigid analytic geometry and
show that such maps exist in full generality by giving an explicit construction.
We then derive some elementary properties of blowing up maps, similar to
those in the classical case.

0 Introduction and preliminaries

0.1. Introduction. The purpose of this work is to give a concise treatment on the

existence of blowing up in rigid analytic geometry. (For an introduction into rigid
analytic geometry, we refer to the book [BGR].)

To our knowledge, such an exposé did not yet appear in the literature and there-

fore, we found ourselves without any source for proper referencing. We had been us-
ing blowing up maps in rigid analytic geometry already in our Ph.D. thesis ([Sch 0])
and in our papers on the uniformization of (strongly) rigid subanalytic sets ([Sch 2])
and on the semianalyticity of these subanalytic sets lying in the plane ([Sch 3]). In

the former article, we used a rigid analytic version of Hironaka’s Embedded Resolu-
tion of Singularities (in the zero characteristic case), without having any reference
for this theorem either. This was the motivation of recently writing down yet an-
other paper called Embedded Resolution of Singularities in Rigid Analytic Geometry

([Sch 4]), in which we heavily relied on the existence and various elementary prop-
erties of blowing up maps in rigid analytic geometry. We hope therefore, that the
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current work can establish a thorough work of reference for these and other papers
on the subject.

In algebraic geometry, one is familiar with the general definition of a blowing up
map as a solution to the universal problem of rendering a coherent sheaf of ideals

invertible. We will take this too as the definition of a blowing up map in rigid
analytic geometry. In the algebraic case, the existence of a blowing up, is proved
by taking the Proj of the graded algebra associated to this ideal (see for instance
[Hart,§7, p.163]). General as this construction might be, it is not a very illusive one

to work with.
However, when one works over a field, more transparent constructions are avail-

able. In particular, we want to mention the construction proposed by Hironaka in
his paper [Hi], in the complex analytic case, this time. It is exactly this construction
we will mimic in our case, proving not only the existence of a blowing up of any rigid
analytic variety by a closed analytic subvariety, but also indicating how to calculate

this blowing up. We like to mention that we show the existence of a blowing up
map without any reducedness requirement.

Let K be an algebraic closed field endowed with a complete non-archimedean

norm. We denote by R the corresponding valuation ring. In the first paragraph, we
give the definition of a blowing up of a rigid analytic variety with center a closed
analytic subvariety. We prove the existence in case our variety is just the closed unit

(poly-)disk Rn and, as center of the blowing up, we take the origin. Then we show,
that given a blowing up map, base change over a flat map gives us again a blowing
up map (see proposition (1.4.1)). In particular, we derive from this that the blowing
up of Rk+n with center Rk exists.

In the second paragraph we then give our main theorem (2.2.2) on the existence
of a blowing up. We show first, that, given a blowing up map, we can define the

strict transform W̃ of any closed analytic subvariety W under this map. Moreover,
this strict transform W̃ turns out to be the blowing up of W with center the original
center intersected with W (see proposition (2.2.1)). The general construction goes
now as follows. Let X be a general rigid analytic variety and take as center a closed

analytic subvariety Z of X. By the flat base change property, we show that, by
taking an admissible affinoid cover of X, we may already assume from the start that
X is affinoid. Then we embed X as a closed analytic subvariety in Rk+n, in such way
that the intersection of X with Rk is exactly the center Z. By supra, the blowing

up π : Ỹ → Rk+n of Rk+n with center Rk exists, so that the desired blowing up of
X is given by the strict transform of X under π.

In the last paragraph, we show some elementary properties of blowing up, which
hold also in the algebraic case. More precisely, in (3.2.1) we prove that a blowing
up map is proper (in the sense of Kiehl). Moreover, if our variety is irreducible, we
obtain as a corollary in (3.2.2) that this blowing up map is also surjective (excluding

the extreme and uninteresting case that (the support of) the center is the whole
space).

0.2. Conventions. We fix, once and for all an algebraic closed field K endowed
with a complete non-archimedean norm. We denote the corresponding valuation
ring by R. In the sequel we will adopt the notation and the terminology of [BGR].
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In particular, let X be a rigid analytic variety. We will denote its structure sheaf by
OX . Let i : Y → X be a closed immersion of rigid analytic varieties. Then we call Y

a closed analytic subvariety of X. Let i# : OX → i∗(OY ) denote the corresponding
surjective homomorphism of OX -modules. The kernel I = ker(i#) is a coherent
OX -ideal and we call it the OX-ideal defining Y , or alternatively, we say that Y is
the closed analytic subvariety of X associated to the OX-ideal I.

The underlying set |i(Y )| of the image i(Y ) is an analytic subset of X. By abuse
of notation, we will sometimes consider Y itself as an analytic subset of X, especially
when we consider the admissible open given by X \ Y , where the correct notation

should be X \ |i(Y )|. Note that on an analytic subset Y of X, we can define many
structures of a closed analytic subvariety. Namely one for each coherent OX-ideal
I, such that V (I) = Y . Recall that

V (I) = {x ∈ X | Ix 6= OX,x } ,

and we call this analytic subset the zero-set of I. (Any analytic subset is realized
in such way). In particular there is exactly one structure of a reduced analytic
subvariety on Y , given by the coherent OX-ideal id(Y ), which is a radical ideal.

0.3. Definition. Given a map f : Y → X and a coherent sheaf of OX-ideals I,
we call the inverse image ideal sheaf of I, the image of the canonical map f∗I →
OY , and we denote this coherent sheaf of OY -modules by f−1(I)OY , or, when no
confusion can arise, simply by IOY .

If Z is the closed analytic subvariety of X defined by I, then we define f−1(Z) to

be the closed analytic subvariety of Y associated to IOY . In other words, we have
that f−1(Z) = Z ×X Y . Of course, if Z is only considered as an analytic subset of
X, we mean by f−1(Z) only the analytic subset, which is the set-theoretical inverse
image of Z.

In particular, if both X and Y are affinoid, with corresponding affinoid algebra
A, respectively B, and if a is the ideal of A corresponding to I, then aB corresponds
to IOY .

If y ∈ Y , then we will sometimes denote the stalk of f−1(I)OY at y by IOY,y,
in stead of the more cumbersome (f−1(I)OY )y or IxOY,y, where x = f(y).

0.4. Lemma. Let X = SpA be an affinoid variety and let a be an ideal in A.
Let U be an admissible open of X, contained in X \V (a). Then aOX(U) = OX(U).

Proof. Let {Ui}i be an admissible affinoid covering of U . Note that the Ui ∩Uj
are also affinoid since U is separated and [BGR,9.6.1. Proposition 6].

First of all we have, for each i, that aOX(Ui) = OX(Ui). Indeed, suppose the
contrary. So there exists a maximal ideal m of OX(Ui) containing aOX(Ui). Let
x ∈ Ui be the corresponding point. Then we have that f(x) = 0, for all f ∈ a,
contradicting the fact that Ui ⊂ U ⊂ X \ V (a).

Due to the fact that OX is a sheaf, we have, by [BGR,9.2.1. Definition 2], the
following exact diagram

(1) OX(U)
σ−→
∏
i

OX(Ui)
σ′

⇒
σ′′

∏
i,j

OX(Ui ∩ Uj),
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where σ is induced by the restriction maps OX(U)→ OX(Ui) and where σ′ (respec-
tively, σ′′) is induced by the restriction maps OX(Ui) → OX(Ui ∩ Uj) (respectively,

OX(Uj) → OX(Ui ∩ Uj)). On the other hand, let I denote the coherent OX-ideal
corresponding to a. Our previous remark implies that I(Ui) = OX(Ui), as well as
I(Ui ∩ Uj) = OX(Ui ∩ Uj), since the intersections Ui ∩ Uj are also affinoid. Hence
the exact diagram expressing that I is a sheaf is identical with (1), except for the

first module, which equals I(U). By exactness this implies that these two also must
agree, so that we have that aOX(U) = I(U) = OX(U). �

1 Blowing Up in Rigid Analytic Geometry

1.1 Invertible Ideals

1.1.1. Definition. Let X be a rigid analytic variety. We call a sheaf of OX-ideals
I invertible, if, for each point x ∈ X, we have that Ix is an invertible ideal in OX,x
in the ring theoretic sense, meaning that Ix is generated by a regular element of
OX,x. It is then an exercise to prove that I is invertible, if and only if, it is locally
(in the Grothendieck topology on X) free of rank one.

1.1.2. Lemma. Let (S, p) be a local ring and a an ideal of S. If a = (α1, . . . , αs)
is invertible, then there exists an i, such that a = αiS and αi is a regular element

of S.
Proof. Let e be a regular element of S, such that a = eS. Hence we can find

ri, si ∈ S, for i = 1, . . . , s, such that αi = rie and

(1) e =
s∑
i=1

siαi.

But then, substituting αi = rie in (1), and using that e is regular, we find that

1 =
s∑
i=1

risi.

Hence one of the ri /∈ p, say r1 /∈ p, and hence is a unit in S. Hence we obtain that
a = eS = α1S. �

1.1.3. Lemma. Let (S, p) → (T, q) be a faithfully flat local morphism of local
rings. Let a be an ideal of S. Then a is invertible, if and only if, aT is invertible.

Proof. ⇒. Let e be a regular element of S, generating a. Then clearly aT = eT
and since S → T is flat, e is regular in T .
⇐. Let a = (α1, . . . , αs), with the αi ∈ S. By (1.1.2), we can find an i, say i = 1,

such that aT = α1T and α1 is regular in T . Since S → T is faithfully flat, we have
that

a = aT ∩ S = α1T ∩ S = α1S,

and clearly, since α1 is regular in T , it is also regular in S, since S → T is injective.
�
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Remark. Note that for the only if part, we do not need to assume that S nor T
are local and we only need that S → T is (not necessarily faithfully) flat.

1.1.4. Proposition. Let X = Sp(A) be an affinoid variety and a an ideal of
A. Let x be a point of X and m the corresponding maximal ideal of x. Then aOX,x
is invertible, if and only if, aAm is.

Proof. By [BGR,7.3.2. Proposition 3], we know that

ÔX,x ∼= Âm.

Hence the proposition now follows from applying (1.1.3) twice. �

1.2 Definition of Blowing Up

1.2.1. Definition. Let X be a rigid analytic variety and let Z be a closed analytic
subvariety of X. Let I be the coherent OX-ideal defining Z. We call a map of rigid
analytic varieties

π : X̃ → X,

the blowing up of X with center Z, (or, the blowing up of X with respect to the

OX -ideal I), if the following two conditions hold.

(i) π−1(I)OX̃ is an invertible OX̃ -sheaf.

(ii) If f : Y → X is a map of rigid analytic varieties, such that f−1(I)OY is

invertible, then there exists a unique factorization g : Y → X̃ of f over π, i.e.,
the following diagram commutes

Y qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
g

X̃

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

π

Y qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
f

X.

Sometimes we will call X̃ the blowing up of X, rather than the map π. In these
cases it should be clear which map we mean.

Note that since a blowing up is defined by an universal problem, if it exist, it
must be unique (up to an isomorphism).

1.2.2. Example. Let X be a rigid analytic variety and take Z = ∅, which is

considered as a closed analytic subvariety of X by the OX-ideal OX itself. Clearly
this ideal is already invertible, hence the blowing up of X with empty center is
nothing but the identity map on X.

1.2.3. Example. Let X be a rigid analytic variety and take now as center Z
any closed analytic subvariety structure on the the whole space X. In other words,



404 H. Schoutens

X and Z have the same underlying point set. The defining coherent OX-ideal of
Z is now a nilpotent ideal. Since this can never be invertible, unless there are no

points, the blowing up must be the empty rigid analytic variety.

1.2.4. Lemma. Let X be a rigid analytic variety and I a coherent OX-ideal. In

order to check that a map of rigid analytic varieties π : X̃ → X for which (1.2.1.(i))
holds, is the blowing up of X with respect to I, it is enough to check condition
(1.2.1.(ii)) for Y affinoid.

Proof. Assume that (1.2.1.(ii)) has been verified for all Y affinoid and let Y

be an arbitrary rigid analytic variety. Let f : Y → X be a map of rigid analytic
varieties such that IOY is invertible. Let {Yi}i be an admissible affinoid covering of
Y and denote by fi the restriction of f to Yi.

Because being invertible is a local property, we can find, by our assumption,

unique maps of rigid analytic varieties gi : Yi → X̃ , making the following diagram
commute

Yi qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
gi

X̃

(1)

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

π

Y qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
f

X.

By the uniqueness of these gi, we must have that gi and gj agree on Yi ∩ Yj, for all
i and j. Indeed, let {Uk}k be an admissible affinoid covering of Yi ∩ Yj . Then by

our assumption, gi| Uk and gj| Uk must agree, since they are both solutions to the
commutativity of the following diagram

Uk qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq X̃

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

π

Y qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
f

X.

Since this holds for all k, our claim follows.
Hence we can paste the gi together ([BGR,9.3.3. Proposition 1]) in order to

obtain a map g : Y → X̃, which, when restricted on Yi, equals gi. Hence this map

gives a commutative diagram

Y qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
g

X̃

(2)

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

π

Y qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
f

X.
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The uniqueness of g follows from the following observation. The restriction to Yi of
any other morphism g which makes diagram (2) commute, is also a solution to the

commutativity of (1), and hence must be equal to gi. �

1.3 Blowing Up at the Origin

1.3.1. Definition. Let Pn denote the n-dimensional projective space over K
([BGR,9.3.4., Example 3]). Define the following analytic subset X of Rn×Pn−1, by

X̃
def
= {(x, ξ) ∈ Rn × Pn−1 | for all i, j = 1, . . . , n : xiξj = xjξi},

where (x, ξ) = (x1, . . . , xn, ξ1; . . . ; ξn) are coordinates in Rn×Pn−1. We will consider
X̃ as a rigid analytic variety by putting the reduced closed subvariety structure on
it. Let us denote by π̃ the canonical projection Rn × Pn−1 → Rn and define π as

the restriction of π̃ to X̃ . In other words,

π : X̃ → Rn : (x, ξ) 7→ x.

We will prove below that π is the blowing up of Rn with center the origin, where
we consider the origin with its reduced closed subvariety structure.

1.3.2. Proposition. The in (1.3.1) defined rigid analytic variety X̃, is the
blowing up of X = Rn at the origin (with its reduced closed subvariety structure).

Proof. Let I = (S1, . . . , Sn) be the maximal ideal in K〈S〉 corresponding to the
origin, where S = (S1, . . . , Sn) is a set of variables. For each k, let

X̃k = {(s, ξ) | ∀i, j : siξj = sjξi and |ξi| ≤ |ξk|}.

Then X̃k is an admissible affinoid of X̃. Indeed, letting ti = ξi/ξk, for all i, we see
that the affinoid algebra of X̃k is isomorphic with

(1) Ak =
K〈S, T 〉

(S1 − SkT1, . . . , Sn − SkTn, Tk − 1)
,

where T = (T1, . . . , Tn) is another set of variables. Under this isomorphism, the
image of I in Ak is the ideal generated by Sk and the latter element is regular in

Ak. (Recall that an element in a ring R is called regular if it is not a zero-divisor).
This proves that IOX̃ is invertible.

Therefore, by (1.2.4), we need only to show that every map f : Y → X, with
Y = SpB affinoid and such that IB is invertible, can uniquely be factored over X̃.

Let
ak = ((Sk)B : IB)

def
= {s ∈ B | sIB ⊂ (Sk)B},

for every k. Let Yk = Y \ V (ak). A point y ∈ Y belongs to Yk, if and only if,

IOY,y = (Sk)OY,y. Using lemma (1.1.2), we therefore get that the Yk cover Y , in
other words, form an admissible covering of Y . (Here we used that each covering by
Zariski open subsets is admissible).

In order to define a factorization g : Y → X̃ of f , it is enough, by [BGR,9.3.3.

Proposition 1], to define factorizations Yk → X̃, which agree on the intersections
Yk ∩Yl, for all k 6= l. Let us therefore define maps gk : Yk → X̃k, such that following
diagram commutes
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Yk qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
gk

X̃k

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

π

Y qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
f

X.

Therefore, by [BGR,9.3.3. Corollary 2], in order to define these maps gk it is
enough to give morphisms γk : Ak → Bk = OY (Yk), such that following diagram
commutes

K〈S〉 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqσ
B

(2)

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

uk

Ak
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqγk Bk.

where σ : K〈S〉 → B denotes the algebra morphism corresponding to the map

f : Y → X.
Fix k and let si = σ(Si). Consider the si as elements of Bk, via the canonical

map uk. By construction and (0.4), we have that akBk = Bk, or, in other words,

that sk generates IBk. Since the latter is invertible, because uk is flat, we must have
that sk is regular in Bk. So, we can find, for all i, unique elements ti ∈ Bk, with
tk = 1, such that

(3) si = tisk.

Define now the γk, by sending Si to si and Ti to ti. It is left to the reader to verify

that the thus constructed maps gk agree on their common intersection and that we
obtain a factorization g of the original map f .

To finish the proof, we have to show that this map g is unique. Therefore, it
is enough to prove the uniqueness of the γk. Hence, let γ be an other map making

diagram (2) commute.
From the commutativity of (2), we get that si = γ(Si). Hence, from the relation

Si = SkTi in Ak, we get that
si = skγ(Ti),

for all i. Hence, by the uniqueness of ti in equation (3), we obtain that ti = γ(Ti),
what we had to prove. �

1.4 Flat Base Change and Blowing Up

1.4.1. Proposition. Let S be a rigid analytic variety. Let X and Y be a rigid
analytic varieties over S. Let Z be a closed analytic subvariety of X. Suppose that
the blowing up of X with center Z exists, say

π : X̃ → X.
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If Y → S is flat, then
π ×S 1Y : X̃ ×S Y → X ×S Y

is the blowing up of X ×S Y with center Z ×S Y .
Proof. Let I be the coherent OX-ideal defining Z. Put J = IOX×SY . Hence

J is the coherent OX×SY -ideal defining Z ×S Y .

Let z be a point of X̃ ×S Y , with respective projections x̃ ∈ X̃ and y ∈ Y and
let s ∈ S be the image of z under the structure map X̃ ×S Y → S. Note that we
have the following isomorphism of local rings

(1) ÔX̃×SY,z ∼= ÔX̃,x̃⊗̂OS,sÔY,y.

By base change and taking completion, our hypothesis implies that the latter is a
faithfully flat OX̃,x̃-algebra. Hence, by using (1.1.3) twice and the fact that IOX̃,x̃
is invertible, we conclude that IOX̃×SY = JOX̃×SY is invertible. This establish

condition (i) of the definition (1.2.1) of a blowing up.
Let T be an arbitrary rigid analytic variety and f : T → X ×S Y a map of rigid

analytic varieties, such that JOT is invertible. But then, by the universal property
of blowing up, applied to the composite map

T
f−→X ×S Y → X,

we find a factorization g : T → X̃, making following diagram commute,

T qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
g

X̃

f

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

π

X ×S Y qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq X.

Using the composition T
f−→X ×S Y → Y and using the universality of the fiber

product, we then obtain a map g′ : T → X̃×SY , making following diagram commute

T qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
g′

X̃ ×S Y qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
π ×S 1

X ×S Y

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

T qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqg X̃ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqπ X.

From this diagram, one obtains that f = (π ×S 1)g′, since both maps are the same
when composed with the two canonical projections X×S Y → X and X×S Y → Y ,

hence, by universality of the fiber product, they have to be equal. This proves that f
factors through g′. The uniqueness of g′ follows from the corresponding uniqueness
in the fiber product and the blowing up. Hence we proved our claim. �
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Remark. The condition on Y → S to be flat, can not be left out, as should be
clear from proposition (2.2.1) infra.

1.4.2. Corollary. Let X be a rigid analytic variety and Z a closed analytic
subvariety of X. Suppose that

π : X̃ → X

is the blowing up of X with center Z. Let Y be a rigid analytic variety. Then

π × 1Y : X̃ × Y → X × Y

is the blowing up of X × Y with center Z × Y .
Proof. The canonical map Y → SpK is flat and a direct product is nothing but

a fiber product over SpK. Hence we can apply proposition (1.4.1) to this situation.
�

1.4.3. Corollary. The blowing up of Rn ×Rk with center Rk exists.

Remark. As our notation suggests, we considerRk as a reduced closed subvariety
of Rn+k = Rn×Rk, where we identify Rk with O×Rk and where O is the origin of
Rn.

Proof. Let

π : X̃ → Rn

be the blowing up of Rn with center the origin O (considered as a reduced closed
analytic subvariety), as given by (1.3.2). We are now done by the previous corollary
(1.4.2). �

1.4.4. Proposition. Let X and X̃ be rigid analytic varieties and Z a closed
analytic subvariety of X. Let π : X̃ → X be a map of rigid analytic varieties. Let

{Xi}i be an admissible covering of X and let X̃i = π−1(Xi). Then the following are
equivalent.

(i) π : X̃ → X is the blowing up of X with center Z.

(ii) π|X̃i : X̃i → Xi is the blowing up of Xi with center Z ∩Xi, for all i.

Proof. (i) ⇒ (ii). By [BGR,7.3.2. Corollary 6] we obtain that the open
immersion Xi ⊂ X is flat. Hence we are able to apply (1.4.1) with Y = Xi and
S = X. From [BGR,9.3.5. Lemma 3] we get that

X̃ ×X Xi
∼= π−1(Xi)

and that Z ×X Xi = Xi ∩ Z.

(ii)⇒ (i). Let I be the ideal defining Z. It is easy to see, since being invertible
is local, that IOX̃ is invertible. Let Y be a rigid analytic variety and f : Y → X
be a map of rigid analytic varieties, such that IOY is invertible. We need to show
that f uniquely factorizes over X̃ .

Let Yi = f−1(Xi) and let fi denote the restriction of f to Yi. Clearly IOYi is
invertible, for each i, so that by our hypothesis, there exists a unique map gi : Yi →
X̃i, making following diagram commute
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Yi qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
gi

X̃i

(1)

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

π|X̃i

Yi qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
fi

Xi.

By the universal property of blowing up, we get that gi and gj agree on Yi∩Yj , for
all i 6= j. Hence, we can paste the gi together, in order to obtain a map g : Y → X̃,

such that gi equals the restriction of g to Yi, for each i. Therefore, from (1), we get
a commutative diagram

Y qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
g

X̃

(2)

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

π

Y qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
f

X.

The uniqueness of g follows from the fact that any morphism g which renders (2)
commutative, when restricted to Yi, is a solution of the commutativity of (1), and
hence must coincide with gi. �

1.4.5. Corollary. Let X be a rigid analytic variety and Z a closed analytic
subvariety of X. Suppose that

π : X̃ → X

is the blowing up of X with center Z. Then the restriction

π|X̃\π−1(Z) : X̃ \ π−1(Z)→ X \ Z

is an isomorphism.
Proof. Let U = X \Z. Hence U is an admissible open of X. By (1.4.4), we get

that

(1) π|π−1(U ) : π−1(U)→ U

is the blowing up of U with center U ∩ Z = ∅. But by example (1.2.2), we know
that the identity on U must be the blowing up of U with empty center. Therefore,
by universality, (1) must be an isomorphism. Clearly π−1(U) = X̃ \ π−1(Z). �

2 Existence of Blowing Up

2.1 Minimality Condition

2.1.1. Definition. Let X be a rigid analytic variety and W a closed analytic
subvariety. We say that the pair (X,W ) satisfies the minimality condition, if, for
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every analytic subset V of X, the equality

V \W = X \W

implies V = X.

Remark. Note that this condition only depends on the underlying set of W , in
other words, on the analytic subset determined by W and not on its structure of an

analytic variety.

2.1.2. Lemma. Let X be a rigid analytic variety and W a closed analytic
subvariety of X. Let {Ui}i be an arbitrary covering of X by admissible affinoid
opens Ui. Suppose that, for each i, the pair (Ui, Ui ∩W ) satisfies the minimality
condition. Then the pair (X,W ) also satisfies the minimality condition.

Proof. Straightforward. �

2.1.3. Proposition. Let X = SpA be an affinoid variety and W a closed
analytic subvariety of X defined by the ideal a of A. If AnnA(a) = 0, then the pair
(X,W ) satisfies the minimality condition.

Proof. Let V be an analytic subset of X, such that

(1) V \W = X \W.

By [BGR,9.5.2. Corollary 8] we know that V is affinoid. Let N be the (radical)
ideal in A defining V , i.e. V = V (N). From (1) one gets that X = V ∪W and
therefore that rad(aN) = rad(0). Hence some power (aN)k = 0. By our hypothesis,
we therefore get that Nk = 0, and thus X = V . �

2.1.4. Corollary. Let X be a rigid analytic variety and W a closed analytic

subvariety with associated OX-ideal I. If, for every point x ∈ X, we have that
AnnOX,x(Ix) = 0, then the pair (X,W ) satisfies the minimality condition.

Proof. For each point x ∈ X, we can find an admissible affinoid U = SpC in
X, containing x, such that AnnOX(U )(I(U)) = 0. Hence by (2.1.3) we get that the

pair (U,W ∩ U) satisfies the minimality condition. We can now finish the proof by
(2.1.2). �

2.2 Existence of Blowing Up

2.2.1. Proposition. Let X be a rigid analytic variety and Z a closed analytic

subvariety of X. Suppose that the blowing up

π : X̃ → X

of X with center Z exists. Let W be a closed analytic subvariety of X. Then there
exists a closed analytic subvariety W̃ of π−1(W ) with the following properties.

(i) The pair (W̃ , π−1(Z) ∩ W̃ ) satisfies the minimality condition.

(ii) W̃ \ π−1(Z) = π−1(W ) \ π−1(Z).
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(iii) The restriction

π|W̃ : W̃ → W

is the blowing up of W with center W ∩ Z.

Remark. We call the closed analytic subvariety W̃ of X̃ the strict transform of
W under the blowing up map π. By property (iii), this strict transform is unique.

Proof. Let I be the coherent OX-ideal defining Z. Let T = π−1(W ) = X̃×XW .

For an arbitrary OT -module F , let AnnOT (F) denote the sheafification (see
[BGR,9.2.2]) of the presheaf

(1) U 7→ AnnOT (U )(F(U)),

where U runs over all admissible opens of T . One obtains that the following sequence

of OT -modules is exact, by checking this on the stalks,

0→ AnnOT (F)→OT → HomOT (F ,F).

This proves that if F is coherent, then also AnnOT (F) is. Let H be the union

H =
∞∑
m=1

AnnOT (ImOT ).

One verifies that this, being a union of coherent OT -ideals, is again coherent. By

[BGR,9.2.2. Corollary 7], we have, for t ∈ T , that

(2) Ht =
∑
m

AnnOT,t(ImOT,t).

Let W̃ be the closed analytic subvariety of T corresponding to H. In other words,

as a set,

(3) W̃ = {t ∈ T | Ht 6= OT,t},

whereas the structure sheaf on W̃ is given by OW̃ = OT/H. We claim that this
subvariety satisfies the conditions of the theorem.

Let t ∈ T \ π−1(Z). Hence π(t) /∈ Z, so that by definition Iπ(t) = OX,π(t).
Therefore, by (2) we get that Ht = 0, implying that t ∈ W̃ by (3). This proves (ii).

The sheaf IOW̃ is the coherent OW̃ -ideal defining W̃ ∩π−1(Z). Let t ∈ W̃ . Using
that OW̃ ,t

∼= OT,t/Ht, one easily verifies from (2) that

(4) AnnOW̃ ,t
(IOW̃ ,t) = 0.

Therefore, by (2.1.4), we obtain (i).

Let us finally prove (iii). Since IOX̃ is invertible, we get, for t ∈ W̃ , by the

canonical local surjection OX̃,t � OW̃,t that

IOW̃ ,t = eOW̃,t
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where e ∈ OX̃,t is a regular element of OX̃,t. But using (4), we get that e is also a

non-zero divisor in OW̃ ,t. Hence IOW̃ is an invertible sheaf on W̃ , proving (i) in the
definition (1.2.1) of a blowing up.

Let Y be a rigid analytic variety and f : Y → W a map of rigid analytic varieties,
such that IOY is invertible. Hence by definition of the blowing up π, there exists a

unique morphism g : Y → X̃ , making the following diagram commutative

Y qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
g

X̃

f

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

π

W qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq X.

Hence π(g(Y )) ⊂ W , meaning that g(Y ) ⊂ T = π−1(W ). Let y ∈ Y and put
x̃ = g(y). Therefore, x̃ ∈ T and we have a local morphism

OT,x̃→ OY,y.

Since IOY,y is invertible, we get that

(5) HOY,y = 0.

But this implies that necessarily Hx̃ 6= OT,x̃. By (3) therefore, we get that x̃ ∈
W̃ , proving, together with (5), that g : Y → W̃ . This finishes the proof of our
proposition. �

2.2.2. Theorem. Let X be a rigid analytic variety and Z a closed analytic
subvariety of X. Then the blowing up of X with center Z exists.

Proof. Case 1. Let us assume that X = SpA is affinoid. Let a = (α1, . . . , αn)
be the ideal in A defining Z. By definition of an affinoid algebra there exists a set of
variables U = (U1, . . . , Uk) and an ideal I in K〈U〉, such that A = K〈U〉/I . Define
the following morphism of affinoid algebras

u∗ : K〈T, U〉 → A : Ti 7→ αi
Ui 7→ Ui mod I,

where T = (T1, . . . , Tn) is another set of variables. Let u : X → Rn × Rk be the

corresponding map of affinoid varieties. Since u∗ is clearly surjective, we have that
u is a closed immersion. Hence, from now on we consider X as a closed analytic
subvariety of Rn×Rk through this closed immersion u. Moreover, since u∗(T ) = a,
we have, considered as closed analytic subvarieties, that

(1) u−1(O × Rk) = Z,

where O is the origin of Rn with its reduced closed subvariety structure. In other
words, we can identify Z with O × Rk. Let

π1 : X1 → Rn × Rk
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be the blowing up of Rn × Rk with center O × Rk, which exists by (1.4.3). Let X̃

be the strict transform of X under the blowing up map π1, as given by proposition
(2.2.1) and let π denote the restriction of π1 to X̃ . From (2.2.1), we know that π is
the required blowing up map. Note that this necessarily has to be independent of
the chosen closed immersion u.

Case 2. Let X be an arbitrary rigid analytic variety and let {Xi}i be an admis-
sible affinoid covering of X. By Case 1 we can find blowing up maps

πi : X̃i → Xi

with center Z ∩Xi. By (1.4.4), we have, for each i 6= j, that

πi : πi
−1(Xi ∩Xj)→ Xi ∩Xj

is the blowing up of Xi∩Xj with center Z∩Xi∩Xj . Interchanging i and j and using

the uniqueness of the blowing up, we obtain that there is an unique isomorphism

(3) πi
−1(Xi ∩Xj) ∼= πj

−1(Xi ∩Xj),

such that, after identifying these two rigid analytic varieties through the unique
isomorphism (3), the maps πi and πj agree. Hence, by [BGR,9.3.2. and 9.3.3]
we can paste the X̃i together, along these ’common’ opens in order to get a rigid

analytic variety X̃ and we can paste the πi together, in order to get a map

π : X̃ → X

of rigid analytic varieties, such that

π−1(Xi) ∼= X̃i,

and π|X̃i = πi. The proof is now finished by (1.4.4). �

3 Properties of Blowing Up

3.1 Strict Transform

3.1.1. Definition. Let X and Y be rigid analytic varieties and let f : Y → X be
a map of rigid analytic varieties. Let Z be a closed analytic subvariety of X. Let
π : X̃ → X be the blowing up of X with center Z and let θ : Ỹ → Y be the blowing

up of Y with center f−1(Z). We call Ỹ the strict transform of Y under π. Moreover,
there exists a unique map f̃ : Ỹ → X̃ making the following diagram commute

Ỹ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqθ
Y

(1) f̃

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

f

X̃ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqπ X.
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This follows immediately from the definition of blowing up. We call f̃ the strict
transform of f under the blowing up π.

Note that this definition is compatible with our previous definition of the strict

transform of a closed subvariety in (2.2.1). From this it follows that if f is a closed
immersion, then also f̃ is.

3.1.2. Proposition. Let X and Y be rigid analytic varieties and let f : Y → X
be a map of rigid analytic varieties. Let π : X̃ → X be the blowing up of X with
center Z, where Z is a closed analytic subvariety of X. Let θ : Ỹ → Y be the strict

transform of Y under π. Then there exists a map i : Ỹ → X̃ ×X Y , such that
following diagram commutes

Ỹ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqθ
Y

i

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

Ỹ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqi
X̃ ×X Y qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

q
Y

f̃

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

p

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

f

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

X̃ X̃ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqπ X,

where p and q are the canonical projections onto the first and second factor respec-

tively. Moreover, i is a closed immersion.
Proof. The existence of i follows from the definition of a fiber product. Let

Γ = Γ(f) = X ×X Y
be the graph of f . Hence, Γ ∼= Y . Let us identify Y with Γ under this isomorphism.
By using [BGR,6.1.1. Proposition 10], we get a closed immersion j : Y = Γ =
X ×X Y ↪→ X × Y , so that we can consider Y as a closed analytic subvariety of

X × Y . Moreover, one checks that under these identifications, we have that

Y ∩ (Z × Y ) = Z ×X Y = f−1(Z).

In other words, Ỹ is the blowing up of Y with center Y ∩ (Z × Y ).
But by (1.4.2) we know that π × 1Y : X̃ × Y → X × Y is the blowing up of

X × Y with center Z × Y . From (2.2.1), since Y is a closed analytic subvariety of
X×Y , we know that we can realize the blowing up Ỹ of Y with center Y ∩ (Z×Y )

as a closed analytic subvariety of X̃ × Y . Hence we have a commutative diagram

Ỹ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqi
X̃ ×X Y

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

u

Ỹ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqα
X̃ × Y,
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where α is a closed immersion. Using [BGR,6.1.1. Proposition 10] again, we have
that u is a closed immersion. It is an exercise to conclude that then also i has to be

a closed immersion. �

3.2 Properness of Blowing Up

3.2.1. Theorem. Let X be a rigid analytic variety and Z a closed analytic subva-
riety of X. Let π : X̃ → X be the blowing up of X with center Z. Then the map π

is proper.
Proof. We will prove this by splitting up in four cases, according to the way we

proved the existence of a blowing up map in (2.2.2).

Case 1. Let X = Rn and let Z be the (reduced) one point set consisting of the
origin O. By construction, X̃ is a closed analytic subvariety of Rn × Pn−1 and π is
the restriction of p : Rn × Pn−1 → Rn to X̃. Since p is proper (as a base change of

the proper map Pn−1 → O), we have that π is also proper. This settles this case.
Case 2. Let X = Rn × Rk and let Z = {O} × Rk = Rk, where O is the origin

of Rn. The map π is just the base change of the analogous map in Case 1, and

therefore is also proper.
Case 3. Let X be affinoid and consider the closed immersion

u : X → Rn × Rk

as given in the proof of (2.2.2), such that

u−1(O × Rk) = Z.

Let π1 : X1 → Rn×Rk be the blowing up map of Rn×Rk with centerRk. Hence from
(2.2.2), we know that X̃ is a closed analytic subvariety of X1. From the commutative
diagram

X̃ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqπ
X

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

u

X1
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqπ1
Rn × Rk,

we get that the composite map uπ is proper, since π1 is, by Case 2. Therefore we

are done by [BGR,9.6.2. Proposition 4].
Case 4. Let finally X be an arbitrary rigid analytic variety. Since properness

can be checked on an admissible affinoid covering, we are done by the previous case.

�

3.2.2. Corollary. Let X be a rigid analytic variety and Z a closed analytic
subvariety of X. Let π : X̃ → X be the blowing up of X with center Z. If Z is
nowhere dense in X, then π−1(Z) is nowhere dense in X̃.
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Remark. Here we say that an analytic subset Z is nowhere dense in a rigid
analytic variety X, if the difference set X \ Z is dense in the Zariski-topology on

X, in other words, every non-empty Zariski-open subset of X has a non-empty
intersection with X \ Z.

Proof. Let U = X \ Z. Let W̃ be an arbitrary Zariski-open in X̃. By (3.2.1)
the map π is proper, and hence by [BGR,9.6.3. Proposition 3], π(X̃ \ W̃ ) is an
analytic subset of X. Let W = X \ π(X̃ \ W̃ ). By our assumption we have that
U ∩ W 6= ∅. Therefore, let u be a point of U ∩ W . By (1.4.5) there exists a

(unique) ũ ∈ X̃ \ π−1(Z), such that π(ũ) = u. Hence ũ ∈ W̃ , since otherwise
u = π(ũ) ∈ π(X̃ \ W̃ ). �

3.2.3. Corollary. Let X be an irreducible rigid analytic variety and let Z be a

closed analytic subvariety of X. Let π : X̃ → X be the blowing up of X with center
Z. Unless we are in the extreme case that the underlying point set of Z is equal to
the whole space X, we have that π is surjective and X̃ is also irreducible.

Proof. Let us denote the underlying analytic subset of Z still by Z. From
(1.4.5) we get that

(1) X \ Z ⊂ π(X̃).

From (3.2.1) we have that π is proper. Hence from [BGR,9.6.3. Proposition 3] we
have that π(X̃) is an analytic subset of X. Combining this with (1), we have that

X = Z ∪ π(X̃). Since X is irreducible and Z  X (as sets), we must have that
X = π(X̃). This proves the first part.

For the irreducibility of X̃, suppose that

(2) X̃ = X̃1 ∪ X̃2,

with each X̃k an analytic subset of X̃. By (3.2.1) and above π is proper and surjec-

tive. Hence taking the image of (2) under π, we get that

X = π(X̃1) ∪ π(X̃2),

where by the properness of π, both π(X̃k) are analytic subsets of X. Since the latter
is irreducible, this implies that, say, X = π(X̃1). Since by (1.4.5) the restriction of
π to X̃ \ π−1(Z) induces an isomorphism with X \ Z, we must have an inclusion

(3) X̃ \ π−1(Z) ⊂ X̃1.

But Z is nowhere dense in X, hence, by (3.2.2), the same holds for π−1(Z) in X̃. In
other words X̃ \π−1(Z) is dense in X̃, which together with (3) implies that X̃ = X̃1,

as we needed to show. �
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[FvdP] J. Fresnel and M. van der Put, Géométrie analytique rigide et applications,
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