On the history of generalized quadrangles

J. W. P. Hirschfeld

Dedicated to J. A. Thas on his fiftieth birthday

Abstract

The ovoids of the generalized quadrangle of order $(4,2)$ are derived from properties of the cubic surface with 27 lines over the complex numbers.

1 Introduction

A generalized quadrangle of order (s, t) is an incidence structure of points and lines such that:
(a) there is at most one line through two points;
(b) two lines intersect in at most one point:
(c) there are $s+1$ points on every line where $s \geq 1$;
(d) there are $t+1$ lines through every point where $t \geq 1$;
(e) for any point P and line ℓ not containing P there exists a unique line ℓ^{\prime} through P meeting ℓ.

The only book devoted exclusively to this topic is Payne and Thas [6]. It is shown in Chapter 6 that there is a unique generalized quadrangle GQ $(4,2)$ of order $(4,2)$, which can be represented as the 45 points and 27 lines of the Hermitian surface $\mathcal{U}_{3,4}$ with equation $x_{0}^{3}+x_{1}^{3}+x_{2}^{3}+x_{3}^{3}=0$ over $\mathrm{GF}(4)$. Its properties and analogy to the configuration of 27 lines of a cubic surface over the complex numbers or, for that matter, over any algebraically closed field of characteristic zero were noted by Freudenthal [3].

[^0]An ovoid of a generalized quadrangle \mathcal{S} is a set \mathcal{O} of points such that every line of \mathcal{S} contains precisely one point of \mathcal{O}. For surveys of the known ovoids, see [6, $\S 3.4$] and [5, Appendix VI]. In [1], Brouwer and Wilbrink classify all the ovoids of GQ $(4,2)$; there are precisely two non-isomorphic types. Here it is shown that this classification is implicit in the properties of the 27 lines of a non-singular, non-ruled cubic surface over the complex numbers as described by Steiner [9], [10] in 18561857. The 27 lines were discovered by Cayley and Salmon [2], [7] in 1849. The notation used below depends on the double-six configuration found by Schläfli [8] in 1858.

2 Review of properties of the complex cubic surface

Let \mathcal{F} be a non-singular, non-ruled cubic surface over the complex numbers C . The 27 lines on \mathcal{F} are

$$
\begin{array}{ll}
a_{i}, & \\
b_{i}, & \\
c_{i j}=c_{j i}, & i=1, \ldots, 6, \ldots, 6, \\
& i=1, \ldots, 6, i \neq j .
\end{array}
$$

Each line meets 10 others:

$$
\begin{array}{lll}
a_{i} \text { meets } b_{j}, c_{i j}, & j \neq i ; \\
b_{i} \text { meets } a_{j}, c_{i j}, & j \neq i ; \\
c_{i j} \text { meets } & a_{i}, a_{j}, b_{i}, b_{j}, c_{m n}, & m, n \neq i, j .
\end{array}
$$

They lie in threes in 45 planes:

$$
\begin{array}{lll}
15 & a_{i} b_{j} c_{i j}, & j \neq i \\
30 & c_{i j} c_{k l} c_{m n}, & \{i, j, k, l, m, n\}=\{1,2,3,4,5,6\} .
\end{array}
$$

Steiner showed how to partition the 27 lines into three sets of 9 ; in each set of 9 , the lines are the intersections of two triads of planes, known as a Steiner trihedral pair. The trihedral pairs are typically as follows:

T_{123}												
c_{23}	a_{3}	b_{2}		$T_{12,34}$					$T_{123,456}$			
c_{4}	c_{14}	c_{14}	c_{25}	c_{36}								
b_{3}	c_{13}	a_{1}	b_{3}	a_{2}	c_{23}	c_{26}	c_{34}	c_{15}				
a_{2}	b_{1}	c_{12}	c_{13}	c_{24}	c_{56}	c_{35}	c_{16}	c_{24}.				

There are $20 T_{i j k}, 90 T_{i j, k l}, 10 T_{i j k, l m n}$. The 120 trihedral pairs form 40 triads, each giving a trichotomy of the 27 lines:

10 like $T_{123}, T_{456}, T_{123,456}$,
30 like $T_{12,34}, T_{34,56}, T_{56,12}$.

These two triads are displayed:

T_{123}		T_{456}		$T_{123,456}$	
c_{23}	$a_{3} \quad b_{2}$	c_{56}	$a_{6} \quad b_{5}$	c_{14}	$c_{25} \quad c_{36}$
b_{3}	$c_{13} \quad a_{1}$	b_{6}	$c_{46} \quad a_{4}$	c_{26}	$c_{34} \quad c_{15}$
a_{2}	$b_{1} \quad c_{12}$	a_{5}	$b_{4} \quad c_{45}$	c_{35}	$c_{16} \quad c_{24}$;
	$T_{12,34}$		$T_{34,56}$		$T_{56,12}$
a_{1}	$b_{4} \quad c_{14}$	a_{3}	$b_{6} \quad c_{36}$	a_{5}	$b_{2} \quad c_{25}$
b_{3}	$a_{2} \quad c_{23}$	b_{5}	$a_{4} \quad c_{45}$	b_{1}	$a_{6} \quad c_{16}$
c_{13}	$c_{24} \quad c_{56}$	c_{35}	$c_{46} \quad c_{12}$	c_{15}	$c_{26} \quad c_{34}$

If three coplanar lines are concurrent, the point of intersection is an Eckardt point or E-point for short. Over \mathbf{C}, the maximum number of E-points is 18 and this only occurs for the equianharmonic surface \mathcal{E}, which has canonical equation

$$
\begin{equation*}
x_{0}^{3}+x_{1}^{3}+x_{2}^{3}+x_{3}^{3}=0 . \tag{1}
\end{equation*}
$$

The 27 lines on \mathcal{E} are now simply described from the tetrahedron of reference \mathcal{T}. Each of the six edges of \mathcal{T} meets \mathcal{E} in three points. Take any one of these points and join it to the three points on the opposite edge; the 27 lines so formed are the lines of \mathcal{E}. The 18 points on the edges are the E-points. In fact, the points on the edge with equation $x_{i}=x_{j}=0$ are

$$
x_{i}=x_{j}=x_{k}^{3}+x_{l}^{3}=0,
$$

where $\{i, j, k, l\}=\{0,1,2,3\}$.
Now, consider on \mathcal{E}, a set \mathcal{S} of 9 points meeting all the lines. Then \mathcal{S} can only be a set of $9 E$-points on three edges of \mathcal{T} such that no two of the three edges are opposite. Hence such a set of three edges is either the three edges through a vertex of \mathcal{T} or the three edges in a face of \mathcal{T}. Hence there are 8 distinct sets \mathcal{S} on \mathcal{E}.

3 Ovoids on GQ (4, 2)

Over GF(4), a cubic surface with 27 lines is Hermitian and has canonical form $\mathcal{U}_{3,4}=\mathcal{E},[4, \S 20.3]$. It has 45 points and the tangent plane at a point meets the surface in three concurrent lines; that is, each point is an E-point. The 45 points and the 27 lines form the GQ $(4,2)$ quadrangle. An ovoid of $\mathrm{GQ}(4,2)$ is a set of 9 points through which all 27 lines pass. By the polarity of $\mathcal{U}_{3,4}$ this becomes a set of 9 planes containing the 27 lines. This gives the following result.

Theorem 3.1 An ovoid of $G Q(4,2)$ is equivalent to choosing one trihedron from each pair in a triad of Steiner trihedral pairs.

In other words, if a triad of Steiner trihedral pairs is written out as three 3×3 matrices of lines, choose the rows or the columns of each matrix.

Theorem 3.2 For a complex cubic surface \mathcal{F}, the number of ways of choosing a set of 9 tritangent planes covering the 27 lines is 320 .

Proof. Each of the 40 triads of trihedral pairs gives 8 sets of tritangent planes.
To calculate the number of ovoids on $\mathrm{GQ}(4,2)$, it is necessary to consider the last paragraph of $\S 2$ as it applies to $\mathcal{U}_{3,4}$. Consider the equation 1 for $\mathcal{U}_{3,4}$. The simplex of reference is a self-polar tetrahedron. Each edge contains three points apart from the vertices. As for \mathcal{E}, the joins of the three points on one edge to the three points on the opposite edge give 9 lines of the surface; the other pairs of opposite edges give the total of 27 lines. Thus each self-polar tetrahedron corresponds to a triad of trihedral pairs. Also, an ovoid is equivalent to a set of three edges of a tetrahedron, no two of which are opposite; that is, such a set of three edges is either the three edges through a vertex or the three edges in face of a tetrahedron.

Each plane section of $\mathcal{U}_{3,4}$ that is not a tangent plane is a Hermitian curve consisting of 9 points which, with the lines meeting three of the nine points, form a $\left(9_{4}, 12_{3}\right)$ configuration, equivalent to the affine plane $A G(2,3)$. There are four triangles partitioning the 9 points. This means that each plane set of 9 points on $\mathcal{U}_{3,4}$ giving an ovoid will occur for 4 tetrahedra. An ovoid from three concurrent edges of a tetrahedron is uniquely defined by the vertex on the three edges. So the number of ovoids corresponding to a face of a tetrahedron is $40 \times 4 / 4=40$, and the number of ovoids corresponding to a vertex of a tetrahedron is $40 \times 4=160$. This gives the conclusion.

Theorem 3.3 The number of ovoids on $\mathcal{U}_{3,4}$ is 200 .

References

[1] A. E. Brouwer and H. A. Wilbrink. Ovoids and fans in the generalized quadrangle $G Q(4,2)$. Geom. Dedicata, 36, pp. 121-124, 1990.
[2] A. Cayley. On the triple tangent planes of surfaces of the third order. The Cambridge and Dublin Mathematical Journal, 4, pp. 118-132, 1849.
[3] H. Freudenthal. Une étude de quelques quadrangles généralisés. Ann. Mat. Pura Appl., 102, pp. 109-133, 1975.
[4] J. W. P. Hirschfeld. Finite Projective Spaces of Three Dimensions. Oxford University Press, 1985.
[5] J. W. P. Hirschfeld and J. A. Thas. Sets with more than one representation as an algebraic curve of degree three. In Finite Geometries and Combinatorial Designs, pages 99-110. American Mathematical Society, 1990.
[6] S. E. Payne and J. A. Thas. Finite Generalized Quadrangles, volume 104 of Research Notes in Mathematics. Pitman, 1984.
[7] G. Salmon. On the triple tangent planes to a surface of the third order. The Cambridge and Dublin Mathematical Journal, 4, pp. 252-260, 1849.
[8] L. Schläfli. An attempt to determine the twenty-seven lines upon a surface of the third order and to divide such surfaces into species in reference to the reality of the lines upon the surface. Quart. J. Math., 2, pp. 55-65,110-120, 1858.
[9] J. Steiner. The twenty-seven straight lines on the cubic surface. Monatsberichte der Königlichen Preussischen Akademie der Wissenchaften zu Berlin, pages 50-61, 1856.
[10] J. Steiner. Über die Flächen dritten Grades. J. Reine Angew. Math., 53, pp. 133-141, 1857.
J. W. P. Hirschfeld

School of Mathematical and Physical Sciences
University of Sussex
Brighton BN1 9QH
United Kingdom

[^0]: Received by the editors in February 1994
 AMS Mathematics Subject Classification: Primary 51E12, Secondary 05B25
 Keywords: Generalized quadrangles.

