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Abstract

The ovoids of the generalized quadrangle of order (4,2) are derived from
properties of the cubic surface with 27 lines over the complex numbers.

1 Introduction

A generalized quadrangle of order (s, t) is an incidence structure of points and lines

such that:
(a) there is at most one line through two points;
(b) two lines intersect in at most one point:
(c) there are s+ 1 points on every line where s ≥ 1;

(d) there are t + 1 lines through every point where t ≥ 1;
(e) for any point P and line ` not containing P there exists a unique line `′ through
P meeting `.

The only book devoted exclusively to this topic is Payne and Thas [6]. It is shown
in Chapter 6 that there is a unique generalized quadrangle GQ(4, 2) of order (4, 2),

which can be represented as the 45 points and 27 lines of the Hermitian surface
U3,4 with equation x3

0 + x3
1 + x3

2 + x3
3 = 0 over GF(4). Its properties and analogy

to the configuration of 27 lines of a cubic surface over the complex numbers or, for
that matter, over any algebraically closed field of characteristic zero were noted by

Freudenthal [3].
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An ovoid of a generalized quadrangle S is a set O of points such that every line
of S contains precisely one point of O. For surveys of the known ovoids, see [6,

§3.4] and [5, Appendix VI]. In [1], Brouwer and Wilbrink classify all the ovoids of
GQ(4, 2); there are precisely two non-isomorphic types. Here it is shown that this
classification is implicit in the properties of the 27 lines of a non-singular, non-ruled
cubic surface over the complex numbers as described by Steiner [9], [10] in 1856-

1857. The 27 lines were discovered by Cayley and Salmon [2], [7] in 1849. The
notation used below depends on the double-six configuration found by Schläfli [8] in
1858.

2 Review of properties of the complex cubic sur-
face

Let F be a non-singular, non-ruled cubic surface over the complex numbers C. The
27 lines on F are

ai, i = 1, . . . , 6,
bi, i = 1, . . . , 6,
cij = cji, i, j = 1, . . . , 6, i 6= j.

Each line meets 10 others:

ai meets bj, cij, j 6= i;

bi meets aj, cij , j 6= i;
cij meets ai, aj, bi, bj, cmn, m, n 6= i, j.

They lie in threes in 45 planes:

15 aibjcij, j 6= i
30 cijcklcmn, {i, j, k, l,m, n} = {1, 2, 3, 4, 5, 6}.

Steiner showed how to partition the 27 lines into three sets of 9; in each set of 9,
the lines are the intersections of two triads of planes, known as a Steiner trihedral
pair. The trihedral pairs are typically as follows:

T123 T12,34 T123,456

c23 a3 b2

b3 c13 a1

a2 b1 c12

a1 b4 c14

b3 a2 c23

c13 c24 c56

c14 c25 c36

c26 c34 c15

c35 c16 c24.

There are 20 Tijk, 90 Tij,kl, 10 Tijk,lmn. The 120 trihedral pairs form 40 triads, each
giving a trichotomy of the 27 lines:

10 like T123, T456, T123,456,
30 like T12,34, T34,56, T56,12.
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These two triads are displayed:

T123 T456 T123,456

c23 a3 b2

b3 c13 a1

a2 b1 c12

c56 a6 b5

b6 c46 a4

a5 b4 c45

c14 c25 c36

c26 c34 c15

c35 c16 c24;

T12,34 T34,56 T56,12

a1 b4 c14

b3 a2 c23

c13 c24 c56

a3 b6 c36

b5 a4 c45

c35 c46 c12

a5 b2 c25

b1 a6 c16

c15 c26 c34.

If three coplanar lines are concurrent, the point of intersection is an Eckardt
point or E-point for short. Over C, the maximum number of E-points is 18 and this
only occurs for the equianharmonic surface E, which has canonical equation

x3
0 + x3

1 + x3
2 + x3

3 = 0. (1)

The 27 lines on E are now simply described from the tetrahedron of reference T .

Each of the six edges of T meets E in three points. Take any one of these points
and join it to the three points on the opposite edge; the 27 lines so formed are the
lines of E. The 18 points on the edges are the E-points. In fact, the points on the
edge with equation xi = xj = 0 are

xi = xj = x3
k + x3

l = 0,

where {i, j, k, l} = {0, 1, 2, 3}.
Now, consider on E, a set S of 9 points meeting all the lines. Then S can only

be a set of 9 E-points on three edges of T such that no two of the three edges are
opposite. Hence such a set of three edges is either the three edges through a vertex

of T or the three edges in a face of T . Hence there are 8 distinct sets S on E.

3 Ovoids on GQ(4, 2)

Over GF(4), a cubic surface with 27 lines is Hermitian and has canonical form
U3,4 = E, [4, §20.3]. It has 45 points and the tangent plane at a point meets the

surface in three concurrent lines; that is, each point is an E-point. The 45 points
and the 27 lines form the GQ(4, 2) quadrangle. An ovoid of GQ(4, 2) is a set of 9
points through which all 27 lines pass. By the polarity of U3,4 this becomes a set of
9 planes containing the 27 lines. This gives the following result.

Theorem 3.1 An ovoid of GQ(4, 2) is equivalent to choosing one trihedron from
each pair in a triad of Steiner trihedral pairs.

In other words, if a triad of Steiner trihedral pairs is written out as three 3 × 3
matrices of lines, choose the rows or the columns of each matrix.

Theorem 3.2 For a complex cubic surface F , the number of ways of choosing a set
of 9 tritangent planes covering the 27 lines is 320.
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Proof. Each of the 40 triads of trihedral pairs gives 8 sets of tritangent planes.

To calculate the number of ovoids on GQ(4, 2), it is necessary to consider the last
paragraph of §2 as it applies to U3,4. Consider the equation 1 for U3,4. The simplex

of reference is a self-polar tetrahedron. Each edge contains three points apart from
the vertices. As for E, the joins of the three points on one edge to the three points
on the opposite edge give 9 lines of the surface; the other pairs of opposite edges

give the total of 27 lines. Thus each self-polar tetrahedron corresponds to a triad of
trihedral pairs. Also, an ovoid is equivalent to a set of three edges of a tetrahedron,
no two of which are opposite; that is, such a set of three edges is either the three
edges through a vertex or the three edges in face of a tetrahedron.

Each plane section of U3,4 that is not a tangent plane is a Hermitian curve
consisting of 9 points which, with the lines meeting three of the nine points, form
a (94, 123) configuration, equivalent to the affine plane AG(2, 3). There are four

triangles partitioning the 9 points. This means that each plane set of 9 points on
U3,4 giving an ovoid will occur for 4 tetrahedra. An ovoid from three concurrent
edges of a tetrahedron is uniquely defined by the vertex on the three edges. So the
number of ovoids corresponding to a face of a tetrahedron is 40× 4/4 = 40, and the

number of ovoids corresponding to a vertex of a tetrahedron is 40 × 4 = 160. This
gives the conclusion.

Theorem 3.3 The number of ovoids on U3,4 is 200.
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