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Abstract. We characterize rings R in which certain elements x have
the property that CR(x) (resp. the set of zero divisors in CR(x)) is finite.
We also explore the consequences of an assumption that certain x satisfy
CR(x) = 〈x〉.

1. Introduction

Let R be a ring with center Z, and let D be the set of zero divisors of R. For
x ∈ R, let CR(x) be the centralizer of x in R. We study rings in which CR(x) is
finite for all x ∈ R\Z and rings in which CR(x) ∩D is finite for all x ∈ D\Z. In
the first case we show that R is either finite or commutative; in the second case
we show that either R is finite or D ⊆ Z.

As in [2], we call an element x ∈ R extremely noncommutative if CR(x) = xZ[x]
– i.e. if CR(x) is the subring generated by x. Our most difficult result deals with
rings such that each element of D\Z is extremely noncommutative.

Let us fix some additional notation and terminology. Let N = N(R) denote the
set of nilpotent elements of R, and T = T (R) the set of elements of finite additive
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order. For x ∈ R, let 〈x〉 and A(x) be respectively the subring generated by x
and the two-sided annihilator of x. For a subring S of R, let [R : S] denote the
index of (S, +) in (R, +); and for a subset X of R, let |X| denote the cardinality
of X. An element x ∈ R is called periodic if there exist distinct positive integers
m, n for which xm = xn, and the ring R is called periodic if each of its elements
is periodic.

The following lemmas will be useful.

Lemma 1.1. [6] If R is a periodic ring with N ⊆ Z, then R is commutative.

Lemma 1.2. [3] Let R be a ring such that for each x ∈ R there exist a positive
integer m and a polynomial p(X) ∈ Z[X] for which xm = xm+1p(x). Then R is
periodic.

Lemma 1.3. [7] If R is infinite and x ∈ N , then |A(x)| = |R|. In particular,
A(x) is infinite.

2. Finite-centralizer conditions

Theorem 2.1. If R is a ring such that CR(x) is finite for all x ∈ R\Z, then R
is either finite or commutative.

Proof. Suppose that R is infinite. Since A(x) ⊆ CR(x), it follows by Lemma
1.3 that N ⊆ Z. Suppose also that R is not commutative and x ∈ R\Z. Since
〈x〉 ⊆ CR(x), 〈x〉 is finite and hence x is periodic; and since Z is clearly finite,
central elements are periodic as well. Thus, R is a noncommutative periodic ring
with N ⊆ Z, contrary to Lemma 1.1. Therefore R must be commutative. �

Theorem 2.2. Let R be a ring such that CR(x) ∩ D is finite for all x ∈ D\Z.
Then either R is finite or D ⊆ Z.

Proof. Note that if S is any infinite subring of R such that CS(x) = CR(x) ∩ S is
finite for all x ∈ S\Z , S is commutative by Theorem 2.1 and therefore S ⊆ Z.
In particular, if S is any infinite subring contained in D, S ⊆ Z.

Suppose that D\Z 6= φ, and assume without loss of generality that xy = 0 with
x ∈ D\Z and y 6= 0. If Al(y) is infinite, we have x ∈ Al(y) ⊆ Z – a contradiction;
therefore Al(y) is finite. For each w ∈ Al(y), consider the map fw : R → Al(y)
given by fw(r) = rw. By applying the first isomorphism theorem for additive
groups, we see that ker(fw) = Al(w) is of finite index in R; hence S = Al(Al(y))
is of finite index and therefore is infinite. Thus S ⊆ Z; and since S ⊆ Al(x), we
see that A(x) is an infinite subset of CR(x) ∩D – a contradiction. �

3. An extreme non-commutativity condition

In [2], the following theorem is proved.

Theorem 3.1. If R is a ring in which all noncentral elements are extremely
noncommutative, then R is either finite or commutative.
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In [8], we were led to consider an infinite noncentral subring A with subring
B = A ∩ Z such that A2 ⊆ Z , A = 〈a〉 for all a ∈ A\B , and [A : B] is a prime.
In the sections headed Proof of Theorem 2.1 and Completion of proof of Theorem
2.1, we showed that such a subring cannot exist. Thus, we proved, but did not
explicitly state, the following lemma.

Lemma 3.2. Let R be an infinite noncommutative ring. Then R contains no
infinite noncentral subring A such that A2 ⊆ Z , A = 〈a〉 for all a ∈ A\Z, and
[A : A ∩ Z] is a prime.

The principal theorem of this section, which we now state, is obtained by weak-
ening the extreme noncommutativity hypothesis in Theorem 3.1.

Theorem 3.3. Let R be a ring in which every element of D\Z is extremely
noncommutative. Then either R is finite or D ⊆ Z.

The proof will be presented as a series of lemmas, the first of which is almost
obvious. In each lemma, it will be assumed without explicit mention that R is a
ring in which every element of D\Z is extremely noncommutative.

Lemma 3.4. If D 6⊆ Z, then R is indecomposable. Hence R has no nonzero
central idempotent zero divisors.

Lemma 3.5. If N 6⊆ Z, then R is finite.

Proof. Since Z centralizes N\Z, Z ⊆ N . We show first that all zero divisors are
periodic. This is clearly true for nilpotent elements, so we consider d ∈ D\N .
Then d2 /∈ N , so d2 /∈ Z and hence d ∈ 〈d2〉. Thus there exists p(X) ∈ Z[X]
such that d = d2p(d). Since each element of D is in some subring of zero divisors,
Lemma 1.2 shows that zero divisors are periodic.

Next we show that D ⊆ T (R). Let d ∈ D and D′ = 〈d〉. By [1, Lemma 1(c)],
d = a + u with u ∈ N and a a power of d such that an = a for some n > 1.
Now e = an−1 is an idempotent such that a = ae; and since e is in the periodic
ring D′ , 2e is periodic, hence e ∈ T (R) and a ∈ T (R). We now need to show
that N ⊆ T (R); and since Z = Z ∩ N ⊆ (N\Z) − (N\Z), it suffices to show
that N\Z ⊆ T (R). Let u ∈ N\Z and suppose uk ∈ T (R) for k ≥ 2. Since
u /∈ Z , there exists n ≥ 2 such that nu /∈ Z; and it follows that u ∈ 〈nu〉 , so
that there exist c1, c2, . . . , ct ∈ Z such that u = c1(nu) + c2(nu)2 + · · · + ct(nu)t.
Multiplying by uk−2 gives (1 − c1n)uk−1 ∈ T (R) and hence uk−1 ∈ T (R). By
backward induction, u ∈ T (R).

We now know that if d ∈ D\Z , 〈d〉 is finite and consequently CR(d) is finite.
Thus, R is finite by Theorem 2.2. �

Lemma 3.6.
(i) If D 6⊆ Z and N ⊆ Z , then dn ∈ Z for all d ∈ D and n ≥ 2.

(ii) If D 6⊆ Z, there exists a prime p such that pD ⊆ Z.
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Proof. By Lemma 3.4, R has no nonzero idempotent zero divisors. Hence, we
need only adapt in an obvious way the proof of Lemma 2.8 of [2]. �

Lemma 3.7. If N ⊆ Z , then every subring of zero divisors is commutative.

Proof. Let H be any subring of zero divisors, and let h ∈ H\Z(H). Then
CH(h) = 〈h〉, so H is either finite or commutative by Theorem 3.1. Moreover, if
H is finite, it is commutative by Lemma 1.1. �

Lemma 3.8. Let R be infinite with D 6⊆ Z and N ⊆ Z. Then

(i) D is infinite;

(ii) D is a commutative ideal and hence D2 ⊆ Z;

(iii) D = 〈d〉 for every d ∈ D\Z;

(iv) [D : D ∩ Z] = p for some prime p.

Proof. (i) follows immediately from an old theorem of Ganesan [4,5], which asserts
that any ring R with 1 ≤ |D\{0}| < ∞ must be finite.

(ii) Use the proof of Lemma 2.4 of [8], which employs Lemma 3.7.

(iii) Let d ∈ D\Z. By (ii), D ⊆ CR(d) = 〈d〉; and obviously 〈d〉 ⊆ D.

(iv) Since we now know that D is an additive subgroup, the result follows from
(iii) and Lemma 3.6.

Proof of Theorem 3.3. Assume that D 6⊆ Z. By Lemmas 3.8 and 3.2, we cannot
have N ⊆ Z; hence R is finite by Lemma 3.5. �

Theorem 3.3 does not provide a characterization of rings such that all d ∈ D\Z
are extremely noncommutative, since we do not have complete information about
the finite examples. We do, however, have partial information.

Theorem 3.9. Let R be a finite ring with D 6⊆ Z such that each d ∈ D\Z is
extremely noncommutative. Then either R is isomorphic to a matrix ring of form
GF (p)e11 + GF (p)e12 or GF (p)e11 + GF (p)e21 , or R is nil.

Proof. If R = D , the result follows by Theorem 2.11 of [2]. Otherwise, if x ∈ R\D,
some power of x is a regular idempotent, necessarily 1. Now by Lemma 1.1, there
exists u ∈ N\Z; and since 1 + u ∈ CR(u), 1 + u ∈ 〈u〉. But this is not possible,
since 〈u〉 is a nil ring and 1 + u is invertible. �
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