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Integral Formulas Related to Ovals
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Abstract. Using the notion of isoptics introduced and investigated in
[1] and [2], we derive some new integral Cauchy-Crofton type formulas
related to ovals in the plane.
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1. Introduction

In what follows we give a preview of certain facts concerning isoptics as the fun-
damental tool in our constructions (cf. [1] and [2]).

Definition 1.1. A plane, closed, simple, positively oriented C2-curve C of posi-
tive curvature is called an oval.

We take a coordinate system with origin O in the interior of C. Let p(t), t ∈ [0, 2π],
be the distance from O to the support line l(t) of C perpendicular to the vector
eit = cos t+ i sin t. It is well-known that the parametrization of C in terms of p(t)
is given by the formula

z(t) = p(t)eit + p′(t)ieit,

where ieit = − sin t + i cos t. Note that the support function p can be extended to
a periodic function on R with the period 2π.

Now we want to define the notion of isoptics. To avoid confusion, we note
that this notion is sometimes also used with different meanings in other fields and
concepts, such as in classical illumination geometry (see, e.g., [7]) or in the theory
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of the light field (cf. [4]), for example describing so called isophotic families of area
elements.

Π-Α

Figure 1. Construction of an isoptic to C and a few isoptics of an ellipse

Definition 1.2. Let Cα be a locus of apices of a fixed angle π−α, where α ∈ (0, π),
formed by two support lines of the oval C. The curve Cα will be called an α-isoptic
of C.

It is convenient to parametrize the α-isoptic Cα by the same angle t so that the
equation of Cα takes the form

zα(t) = p(t)eit +

(
−p(t) cot α +

1

sin α
p(t + α)

)
ieit.

Note that
zα(t) = z(t) + λ(t, α)ieit = z(t + α) + µ(t, α)iei(t+α)

and
z′α(t) = −λ(t, α)eit + %(t, α)ieit

for suitable functions λ, µ and %. Since zα(t) = z(t + α) + µ(t, α)iei(t+α), then
µ(t, α) is negative for all values t and α. Moreover, we have

λ(t, α) =
p(t + α)− p′(t) sin α− p(t) cos α

sin α
,

%(t, α) =
p(t) sin α + p′(t + α)− p′(t) cos α

sin α
,

µ(t, α) = λ(t, α) cos α− %(t, α) sin α.

If we introduce the notation

q(t, α) = z(t)− z(t + α),

then there exists a smooth function ϕ(t, α) such that

q

‖q‖
(t, α) = eiϕ(t,α).
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After some calculations we get

∂ϕ

∂t
(t, α) =

[q, q′]

‖q‖2
(t, α) =

λ(t, α)Rα(t)− µ(t, α)R(t)

(λ2(t, α) + %2(t, α)) sin α
> 0,

where [ , ] denotes the determinant of the arguments and R(t) is the radius of
curvature of C at t, and then again Rα(t) = R(t+α). This formula states that for
each α we have a smooth function t = ϕ−1(w,α), and thus we can reparametrize
the isoptics by using the mapping (t, α) = (ϕ−1(w, α), α). In what follows we take

z̃α(w) = zα(ϕ−1(w, α)) = z(ϕ−1(w, α)) + λ(ϕ−1(w,α))ieiϕ−1(w,α).

We will make use of this formula in the next section.

2. Cauchy-Crofton type formula

Let Ω be the exterior of an oval C. We define a mapping

F : (ϕ(0), ϕ(2π))× (0, π) → Ω \ {a certain support half-line},
F (w,α) = z̃α(w).

The partial derivatives of F at (w, α) are given by

∂F

∂w
(w,α) =

(
%(ϕ−1(w, α), α)ieiϕ−1(w,α) − λ(ϕ−1(w, α), α)eiϕ−1(w,α)

) ∂ϕ−1

∂w
(w, α),

∂F

∂α
(w, α) = −λ(ϕ−1(w,α), α)

∂ϕ−1

∂α
(w, α)eiϕ−1(w,α) − µ(ϕ−1(w, α), α)

sin α
ieiϕ−1(w,α)+

+%(ϕ−1(w, α), α)
∂ϕ−1

∂α
(w, α)ieiϕ−1(w,α).

Hence the jacobian ∂(z̃α(w))
∂(w,α)

of F at (w,α) is equal to

∂(z̃α(w))

∂(w,α)
=

[
∂F

∂w
,
∂F

∂α

]
(w, α) =

µ(ϕ−1(w,α), α)λ(ϕ−1(w, α), α)

sin α
· ∂ϕ−1

∂w
(w,α) < 0.

But taking into consideration that

∂ϕ−1

∂w
(w,α) =

1
∂ϕ
∂t

(ϕ−1(w, α), α)
=
‖q‖2

[q, q′]
(ϕ−1(w, α), α),

we obtain
∂(z̃α(w))

∂(w, α)
=

µλ

sin2 α
· ‖q‖2

λRα − µR
. (2.1)

Theorem 2.1. Under the above assumptions and with notation introduced in Fig-
ure 2 we have ∫∫

Ω

sin2 ω

h2

(
R1

t1
+

R2

t2

)
dxdy = 2π2,

where R1 and R2 denote the curvature radii at the tangency points t1 and t2,
respectively.
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Figure 2. Notation to be used in Theorem 2.1

Proof. Using the formula for change of variables in multiple integrals for the
mapping

(x, y) = F (w, α)

and the formula (2.1) we get t1 = λ(ϕ−1(w, α), α), t2 = −µ(ϕ−1(w, α), α), ω =
π − α, ‖q(ϕ−1(w, α), α)‖ = h, R1 = R, R2 = Rα and∫∫

Ω

sin2 ω

h2

(
R1

t1
+

R2

t2

)
dxdy =

=

π∫
0

ϕ(2π)∫
ϕ(0)

sin2 α

h2

(
R

λ(ϕ−1(w, α), α)
− Rα

µ(ϕ−1(w, α), α)

) ∣∣∣∣∂(z̃α(w))

∂(w, α)

∣∣∣∣ dwdα =

=

π∫
0

ϕ(2π)∫
ϕ(0)

dwdα = π (ϕ(2π)− ϕ(0)) = 2π2. �

°q´

Π -Α
- Μ

Α2

Λ

Α1

Figure 3. The sine theorem

At the end of this chapter we give an interesting form of the above formula. For
this purpose we will need the sine theorem proved in [2].
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Theorem 2.2. With the notation introduced in Figure 3, the following identities
hold:

‖q‖
sin α

=
λ

sin α1

=
−µ

sin α2

.

Having suitably manipulated this formula, we get the following corollary.

Corollary 2.1. Under the above assumptions and with the notation from Fig. 2
we have ∫∫

Ω

(
R1 sin2 α1

t31
+

R2 sin2 α2

t32

)
dxdy = 2π2,

where R1 and R2 denote the curvature radii at the tangency points of t1 and t2,
respectively.

3. Some by-product formulas

Let us canonically associate a regular surface C̃ in R3 with the oval C. This
surface is given by a single parametrization r(t, α) = (q(t, α), α), for t ∈ ]0, 2π[,

α ∈ ]0, π[. Note that the first fundamental form of C̃ is nonzero in its domain,
since

EG− F 2 = Rα(t)2R2(t) sin2 α + R2(t) + R2
α(t)− 2R(t)Rα(t) cos α > 0

for t ∈ ]0, 2π[, α ∈ ]0, π[.

Figure 4. Surface C̃ associated with a curve given by the support function p(t) =
10 + cos 3t

Note that for a fixed oval C we have two natural quantities – the area A(C̃) of C̃

and its volume V (C̃), which will be called the extended area and extended volume
of the oval C.

Theorem 3.1. Under the above assumptions and with the notation from Figure 2
we have ∫∫

Ω

sin2 ω

(
R1

t1
+

R2

t2

)
dxdy = 2V (C̃),
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where R1 and R2 denote the curvature radii at the tangency points of t1 and t2,
respectively.

Proof. Let qα denote the curve given by the equation

qα : ]0, 2π[→ R2, qα(t) = q(t, α),

and let A(qα) denote its area. Using two times the formula for change of variables
in multiple integrals, we get

∫∫
Ω

sin2 ω

(
R1

t1
+

R2

t2

)
dxdy =

π∫
0

ϕ(2π)∫
ϕ(0)

‖q(ϕ−1(x, α), α)‖2dwdα =

=

π∫
0

2π∫
0

[q, q′](t, α)dtdα = 2V (C̃),

since
2π∫
0

[q, q′](t, α)dt = 2A(qα),

and from the elementary calculus it follows that

π∫
0

A(qα)dα = V (C̃). �

Finally we prove an integral formula involving the extended area of C̃.

Theorem 3.2. Under the above assumptions and the notation from Figure 2 we
have ∫∫

Ω

sin ω

t1t2

√
R2

2R
2
1 sin2 α + R2

1 + R2
2(t)− 2R1R2(t) cos α dxdy = A(C̃),

where R1 and R2 denote the curvature radii at the tangency points of t1 and t2,
respectively.

Proof. This time we use the following substitution for change of variables in
multiple integrals:

(x, y) = zα(t),

where by the formula (3.3) in [2] we have

∂(zα(t))

∂(t, α)
=

µλ

sin α
< 0.
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Thus, using the formula for the area of a surface, we get∫∫
Ω

sin ω

t1t2

√
R2

2R
2
1 sin2 α + R2

1 + R2
2 − 2R1R2 cos α dxdy =

=

π∫
0

2π∫
0

√
Rα(t)2R2(t) sin2 α + R2(t) + R2

α(t)− 2R(t)Rα(t) cos α dtdα =

=

π∫
0

2π∫
0

√
EG− F 2dtdα = A(C̃). �
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[5] Santaló, L. A.: Integral geometry and geometric probability. Addison-Wesley
Publishing Company, Reading, Mass. 1976. Zbl 0342.53049−−−−−−−−−−−−

[6] Stoka, M.: Integralgeometrie. Editura Academiei, Bucuresti 1967.
Zbl 0145.42601−−−−−−−−−−−−

[7] Weiss, G.; Martini, H.: On curves and surfaces in illumination geometry. J.
Geom. Graphics 4 (2000), 169–180. Zbl 0982.53007−−−−−−−−−−−−

Received January 10, 2009

http://www.emis.de/MATH-item?0725.52002
http://www.emis.de/MATH-item?0739.53001
http://www.emis.de/MATH-item?0726.53001
http://www.emis.de/MATH-item?0679.52004
http://www.emis.de/MATH-item?0342.53049
http://www.emis.de/MATH-item?0145.42601
http://www.emis.de/MATH-item?0982.53007

