Minimum-Area Axially Symmetric Convex Bodies containing a Triangle and its Measure of Axial Symmetry

Marek Lassak Monika Nowicka
Institute of Mathematics, Polish Academy of Sciences
Śniadeckich 8, 00-956 Warsaw
and
University of Technology, Kaliskiego 7, 85-796 Bydgoszcz, Poland
e-mail: lassak@utp.edu.pl
University of Technology
Kaliskiego 7, 85-796 Bydgoszcz, Poland
e-mail: mnowicka@utp.edu.pl

Abstract

Denote by K_{m} the mirror image of a planar convex body K in a straight line m. It is easy to show that $K_{m}^{*}=\operatorname{conv}\left(K \cup K_{m}\right)$ is the smallest (by inclusion) convex body whose axis of symmetry is m and which contains K. The ratio $\operatorname{axs}(K)$ of the area of K to the minimum area of K_{m}^{*} is a measure of axial symmetry of K. A question is how to find a line m in order to guarantee that K_{m}^{*} be of the smallest possible area. A related task is to estimate $\operatorname{axs}(K)$ for the family of all convex bodies K. We give solutions for the classes of triangles, right-angled triangles and acute triangles. In particular, we prove that $\operatorname{axs}(T)>\frac{1}{2} \sqrt{2}$ for every triangle T, and that this estimate cannot be improved in general.

MSC 2000: 52A10, 52A38
Keywords: triangle, convex body, axially symmetric body, mirror image, area, measure of axial symmetry

1. Introduction

Denote by E^{2} the Euclidean plane, and let $K \subset E^{2}$ be a convex body, i.e., a compact, convex set with interior points. The mirror image of K in a straight line m is denoted by K_{m}. We call m the mirror line and put $K_{m}^{*}=\operatorname{conv}\left(K \cup K_{m}\right)$. It is easy to show that K_{m}^{*} is the smallest (by inclusion) convex body containing K whose axis of symmetry is m. We omit proofs of the following claims.

Claim 1. Let $K \subset E^{2}$ be a convex body. If the position of a straight line m changes continuously, then area $\left(K_{m}^{*}\right)$ changes continuously.

Claim 2. Let $K \subset E^{2}$ be a convex body and let m and n be two parallel straight lines such that only m passes through K. Then $\operatorname{area}\left(K_{m}^{*}\right)<\operatorname{area}\left(K_{n}^{*}\right)$.

By the above claims and by compactness arguments we conclude that the infimum of the area of K_{m}^{*} over all straight lines m is attained. So using the term minimum instead of infimum is correct here (the same remark concerns many other places of the paper where we consider compact families of straight lines m). If area $\left(K_{m}^{*}\right)$ attains the minimum value for a line m, we call it a best mirror line of K. The number

$$
\operatorname{axs}(K)=\frac{\operatorname{area}(K)}{\min _{m}^{\operatorname{area}\left(K_{m}^{*}\right)}}
$$

is the measure of axial symmetry of K, mainly studied in this paper.
We conjecture that $\operatorname{axs}(K)>\frac{1}{2} \sqrt{2}$ for every convex body $K \subset E^{2}$ and that this value cannot be improved. In [10] it is shown that for every K we have $\operatorname{axs}(K) \geq \frac{16}{31}$. The papers [1] and [2] refer to the related question of finding an axially symmetric set of possibly small area containing K; the approach is algorithmic. Miscellaneous measures of axial symmetry are discussed in [1-7], [9] and [11]. We also refer to the well known survey article [8], concerning mostly the measures of central symmetry of convex bodies. Moreover, Part 4.2 of the survey article [9] considers measures of symmetry of convex bodies, and in particular their measures of axial symmetry.

Denote by T an arbitrary triangle. In Sections 2-6 we find the minima of the area of T_{m}^{*} when m belongs to an arbitrary pencil of parallel lines and to pencils of lines which give the angles of T. It allows us to find the best mirror line (or lines) for T, and we obtain a formula for the minimum area of T_{m}^{*}. In Section 7 we present a formula for $\operatorname{axs}(T)$. Next we prove that $\operatorname{axs}(T)>\frac{1}{2} \sqrt{2}$ for every triangle T and that $\operatorname{axs}(T) \geq \frac{1}{2} \sqrt[3]{4}$ for acute and right-angled triangles T. We show that both the estimates cannot be improved.

Let $T=a b c$ be a triangle and let $|b c| \leq|a c| \leq|a b|$. We put $A=\angle b a c$, $B=\angle c b a$, and $C=\angle a c b$. The measures of A, B, and C are denoted by α, β, and γ, respectively. For every other angle the same symbol denotes the angle and its measure, and instead of "measure of angle" we simply say "angle" as well. Clearly, $\alpha \leq \beta \leq \gamma$. In order to shorten considerations, right-angled triangles are treated as obtuse triangles.

By \mathcal{A} (respectively, \mathcal{B} and \mathcal{C}) we mean the pencil of straight lines through a (respectively, through b and through c) and through a different point of T (over all such points).

Let D be any of the angles from amongst the angles A, B, C of T. Denote by $\mathrm{bi}(D)$ the straight line containing the bisectrix of D and by $\operatorname{per}(D)$ the straight line through the vertex of the angle D perpendicular to the opposite side of T.

2. Translating the mirror line m in order to minimize area $\left(T_{m}^{*}\right)$

Proposition 1. Consider a triangle T and the pencil of all straight lines m parallel to a fixed straight line. The family of the straight lines from this pencil for which area $\left(T_{m}^{*}\right)$ is minimal forms a strip. A straight line from $\mathcal{A} \cup \mathcal{B} \cup \mathcal{C}$ is in this strip.

Proof. Having in mind Claim 2, we consider only the lines m from our pencil which have nonempty intersection with T. It is easy to show that there is exactly one line $l \in \mathcal{A} \cup \mathcal{B} \cup \mathcal{C}$ in the pencil. Let us assume that $l \in \mathcal{C}$. If $l \in \mathcal{A}$ or $l \in \mathcal{B}$, the considerations are similar (what is more, Case 1 is then impossible).

If p is a point, then by p_{m} denote the mirror image of p in the line m.
For the need of further Subcases 1.2 and 2.2 denote by a^{\prime} the intersection of the straight line through a perpendicular to m with the line containing $b c$, and for the need of the remaining subcases, by b^{\prime} the intersection of the line through b perpendicular to m with the line containing $a c$. Let $a^{\prime \prime}$ be the midpoint of $a a^{\prime}$, and $b^{\prime \prime}$ of $b b^{\prime}$.

Figure 1.

Figure 2.

Below by the angle between $c a$ (respectively, between $c b$) and l we mean the angle $\angle a c d$ (respectively, $\angle d c b$), where d is the intersection point of l with $a b$.

Case 1. The straight line through c perpendicular to m intersects the segment $a b$. Subcase 1.1. The angle between $c a$ and l is smaller than that between $c b$ and l.
In this subcase denote by \mathcal{S} the strip of all straight lines between the following two straight lines from our pencil: the line n through a and the line k through $b^{\prime \prime}$.

Observe that for $m \in \mathcal{S}$ we have $T_{m}^{*}=a a_{m} b b_{m}$ (see Figure 1) and that $\left|a a_{m}\right|+\left|b b_{m}\right|$ is constant here. So area $\left(T_{m}^{*}\right)$ is constant here. In particular, it equals area $\left(T_{l}^{*}\right)$.

If $m \notin \mathcal{S}$, then m and l are on the opposite sides of k and thus $T_{m}^{*}=a a_{m} c_{m} b b_{m} c$ (see Figure 2). Imagine T_{m}^{*} as the union of two trapezia: the first with bases $a a_{m}$ and $c c_{m}$, and the second with bases $c c_{m}$ and $b_{m} b$. Hence area $\left(T_{m}^{*}\right)=\frac{1}{2}\left(\left|a a_{m}\right|+\right.$ $\left.\left|c c_{m}\right|\right) h_{1}+\frac{1}{2}\left(\left|c c_{m}\right|+\left|b_{m} b\right|\right) h_{2}$, where h_{1} and h_{2} are heights of the first and the second trapezium, respectively. If the distance of m from \mathcal{S} increases, $\left|a a_{m}\right|+\left|c c_{m}\right|$ increases and $\left|c c_{m}\right|+\left|b_{m} b\right|$ is constant. This and the fact that h_{1} and h_{2} are constant imply that area $\left(T_{m}^{*}\right)$ increases. So area $\left(T_{l}^{*}\right)<\operatorname{area}\left(T_{m}^{*}\right)$.
Subcase 1.2. The angle between $c a$ and l is at least the angle between $c b$ and l.
Clearly, the first angle must be greater than the second. We repeat the considerations of Subcase 1.1 taking this time in the part of \mathcal{S} the pencil of straight lines between the following two lines parallel to l : the line through b and the line k through $a^{\prime \prime}$.
Case 2. The line through c perpendicular to m does not intersect $a b$.
Subcase 2.1. The angle between $c a$ and l is smaller than the angle between $c b$ and l.
By \mathcal{S} we mean the pencil of lines between l and the parallel line k through $b^{\prime \prime}$.
First assume that m and l are weakly on one side of k (see Figure 3). Since b_{m} does not belong to the interior of T, we conclude that T_{m}^{*} is the hexagon $a a_{m} b c_{m} c b_{m}$ when $m \in \mathcal{S}$ and the hexagon $a a_{m} b c c_{m} b_{m}$ in the opposite case. The hexagon T_{m}^{*} is the union of two trapezia: the first with bases $a a_{m}$ and $b b_{m}$, and the second with bases $b_{m} b$ and $c_{m} c$.
Consequently, $\operatorname{area}\left(T_{m}^{*}\right)=\frac{1}{2}\left(\left|a a_{m}\right|+\left|b b_{m}\right|\right) h_{1}+\frac{1}{2}\left(\left|b b_{m}\right|+\left|c c_{m}\right|\right) h_{2}$, where h_{1} is the height of the first trapezium and h_{2} is the height of the second. Observe that $\left|b b_{m}\right|+\left|c c_{m}\right|$ and $\left|a a_{m}\right|+\left|b b_{m}\right|$ are constant for $m \in \mathcal{S}$. Moreover, if the distance of m from \mathcal{S} increases, then $\left|a a_{m}\right|+\left|b b_{m}\right|$ does not change and $\left|b b_{m}\right|+\left|c c_{m}\right|$ increases. Thus from the fact that h_{1} and h_{2} are constant we obtain that area $\left(T_{m}^{*}\right)$ is constant for $m \in \mathcal{S}$ (since $l \in \mathcal{S}$, it is equal to area $\left(T_{l}^{*}\right)$) and larger if $m \notin \mathcal{S}$.

Now assume that m and l are strictly on the opposite sides of k (so $m \notin \mathcal{S}$). Then $T_{m}^{*}=a a_{m} c_{m} c$ (see Figure 4). Clearly, $\left|a a_{m}\right|$ and $\left|c c_{m}\right|$ grow as the distance of m from \mathcal{S} grows. Since the height of T_{m}^{*} does not change, we see that area $\left(T_{m}^{*}\right)$ grows. This, the preceding paragraph, and $k \in \mathcal{S}$ give area $\left(T_{l}^{*}\right)=\operatorname{area}\left(T_{k}^{*}\right)<$ $\operatorname{area}\left(T_{m}^{*}\right)$ for every $m \notin \mathcal{S}$.
Subcase 2.2. The angle between $c a$ and the straight line l is at least the angle between $c b$ and l and simultaneously at most $\frac{\pi}{2}-\alpha$.
Now the strip \mathcal{S} is the pencil of straight lines between l and the parallel straight line k through $a^{\prime \prime}$. If $k=l$ (that is, if l is the bisectrix of C), then only l belongs to

Figure 3.

Figure 4.
\mathcal{S}. For this special situation the proof is left to the reader (hint: look to Figures 5 and 6 with $k=l$). Since now assume that $k \neq l$ (that is, l is not the bisectrix of C).

First assume that m and l are weakly on one side of k (observe that this side is the one which does not contain a). Hence T_{m}^{*} is the trapezium $a a_{m} c_{m} c$ if $m \notin \mathcal{S}$ (see Figure 5), and $a a_{m} c c_{m}$ if $m \in \mathcal{S}$. Thus area $\left(T_{m}^{*}\right)=\frac{1}{2}\left(\left|a a_{m}\right|+\left|c c_{m}\right|\right) h$, where h stands for the height of this trapezium. Observe that $\left|a a_{m}\right|+\left|c c_{m}\right|$ is constant for $m \in \mathcal{S}$ and that it grows when the distance of m from \mathcal{S} grows. Moreover, h is constant. Thus area $\left(T_{m}^{*}\right)$ is constant for $m \in \mathcal{S}$, and it grows when the distance of m from \mathcal{S} grows. So from $l \in \mathcal{S}$ we obtain that area $\left(T_{l}^{*}\right) \leq \operatorname{area}\left(T_{m}^{*}\right)$ with equality if and only if $m \in \mathcal{S}$.

Now assume that m and l are strictly on the opposite sides of k (so $m \notin \mathcal{S}$). Clearly, $T_{m}^{*}=a a_{m} b c c_{m} b_{m}$ is the union of the trapezia $a a_{m} b b_{m}$ and $b_{m} b c c_{m}$ (see Figure 6). Thus area $\left(T_{m}^{*}\right)=\frac{1}{2}\left(\left|a a_{m}\right|+\left|b b_{m}\right|\right) h_{1}+\frac{1}{2}\left(\left|b b_{m}\right|+\left|c c_{m}\right|\right) h_{2}$, where h_{1} denotes the height of the first trapezium and h_{2} denotes the height of the second. If the distance of m from \mathcal{S} increases, $\left|a a_{m}\right|+\left|b b_{m}\right|$ does not change and $\left|b b_{m}\right|+\left|c c_{m}\right|$ increases. Hence the first trapezium has constant area, and the area of the second

Figure 5.

Figure 6.
one grows. Consequently, area $\left(T_{m}^{*}\right)$ grows and thus area $\left(T_{l}^{*}\right)<\operatorname{area}\left(T_{m}^{*}\right)$.
Subcase 2.3. The angle between the side $c a$ and the straight line l is over $\frac{\pi}{2}-\alpha$.
We repeat the considerations of Subcase 2.1 exchanging always the letters a and b (so, for instance, exchanging also the symbols a_{m} and b_{m}).

Corollary 1. For every triangle T we have $\min _{m} \operatorname{area}\left(T_{m}^{*}\right)=\min _{m \in \mathcal{A} \cup \mathcal{B} \cup \mathcal{C}} \operatorname{area}\left(T_{m}^{*}\right)$.
Remark 1. Let P be a convex n-gon. An algorithm for finding a mirror line m parallel to a given line which minimizes area $\left(P_{m}^{*}\right)$ is presented in [2]. It asks to choose a line m from amongst a finite number of specific straight lines which minimizes area $\left(P_{m}^{*}\right)$. Our proof of Proposition 1 shows all such best straight lines for a triangle T. What is more, without evaluating area $\left(T_{m}^{*}\right)$. But as far as we see, our approach works only for $n=3$.

3. Minimizing area $\left(T_{m}^{*}\right)$ for m from the pencil \mathcal{A}

Proposition 2. For every triangle T we have $\min _{m \in \mathcal{A}} \operatorname{area}\left(T_{m}^{*}\right)=\frac{\sin (\alpha+\beta)}{\sin \beta} \cdot \operatorname{area}(T)$. This minimum is attained only for $m=\mathrm{bi}(A)$.

Proof. In the proof, besides the last paragraph, for simplicity we assume that $|a b|=1$. Let $m \in \mathcal{A}$. The angle between $a b$ and m (smaller than $\frac{\pi}{2}$) is denoted by ψ.
Case 1. (for all T): $\psi \in\left[0, \frac{\alpha}{2}\right]$.
Of course, T_{m}^{*} is the pentagon $a c_{m} b b_{m} c$ (see Figure 7). Clearly, $T_{m}^{*}=a c_{m} b \cup$ $a b b_{m} \cup a b_{m} c$. Since b_{m} is symmetric to b with respect to m, we have $\angle b a b_{m}=$ 2ψ. This and $|a b|=\left|a b_{m}\right|=1$ imply that area $\left(a b b_{m}\right)=\frac{1}{2} \sin 2 \psi$. Obviously, $\angle b_{m} a c=\angle b a c-\angle b a b_{m}$. Hence $\angle b_{m} a c=\alpha-2 \psi$. From this, from $\left|a b_{m}\right|=1$ and from $|a c|=\frac{\sin \beta}{\sin (\alpha+\beta)}$ it follows that area $\left(a b_{m} c\right)=\frac{1}{2} \frac{\sin \beta}{\sin (\alpha+\beta)} \sin (\alpha-2 \psi)$. By axial symmetry, area $\left(a c_{m} b\right)$ has the same value. These facts lead imply that area $\left(T_{m}^{*}\right)$ equals $f_{1}(\psi)=\frac{1}{2} \sin 2 \psi+\frac{\sin \beta}{\sin (\alpha+\beta)} \sin (\alpha-2 \psi)$. The second derivative of this function is $f_{1}^{\prime \prime}(\psi)=-2 \sin 2 \psi-4 \frac{\sin \beta}{\sin (\alpha+\beta)} \sin (\alpha-2 \psi)$. Since 2ψ and $\alpha-2 \psi$ belong to $[0, \pi]$, we get $f_{1}^{\prime \prime}(\psi)<0$. So $f_{1}(\psi)$ is concave in the interval $\left[0, \frac{\alpha}{2}\right]$.
Case 2. (for all T): $\psi \in\left[\frac{\alpha}{2}, \frac{\pi}{2}-\beta\right]$ for acute T, and $\psi \in\left[\frac{\alpha}{2}, \alpha\right]$ for obtuse T.
We easily conclude that $T_{m}^{*}=a b b_{m}$ (see Figure 8). Hence $\angle b a b_{m}=2 \psi$. So $\operatorname{area}\left(T_{m}^{*}\right)=\frac{1}{2} \sin 2 \psi$. The function $f_{2}(\psi)=\frac{1}{2} \sin 2 \psi$ is concave in each of the intervals $\left[\frac{\alpha}{2}, \frac{\pi}{2}-\beta\right]$ and $\left[\frac{\alpha}{2}, \alpha\right]$ because its second derivative $f_{2}^{\prime \prime}(\psi)=-2 \sin 2 \psi$ is negative in both.
Case 3. (only for acute T): $\psi \in\left[\frac{\pi}{2}-\beta, \alpha\right]$.
In this case T_{m}^{*} is the pentagon $a b c_{m} c b_{m}$ (see Figure 9). Observe that $T_{m}^{*}=$ $a b c_{m} \cup a c_{m} c \cup a c b_{m}$. Of course, $\angle b a b_{m}=2 \psi$. This and $\angle c a b_{m}=\angle b a b_{m}-\angle b a c$ imply that $\angle c a b_{m}=2 \psi-\alpha$. Since the triangles $a c b_{m}$ and $a b c_{m}$ are symmetric with respect to m, we see that $\angle c a b_{m}=\angle b a c_{m}=2 \psi-\alpha$. This, $\angle c_{m} a c=$

$\angle b a c-\angle b a c_{m}$ and $\angle b a c=\alpha$ imply that $\angle c_{m} a c=2 \alpha-2 \psi$. Clearly, $|a b|=1$ and $|a c|=\frac{\sin \beta}{\sin (\alpha+\beta)}$. The above considerations show that area $\left(T_{m}^{*}\right)$ is given by the function $f_{3}(\psi)=\frac{1}{2}\left(\frac{\sin \beta}{\sin (\alpha+\beta)}\right)^{2} \sin (2 \alpha-2 \psi)+\frac{\sin \beta}{\sin (\alpha+\beta)} \sin (2 \psi-\alpha)$. We have $f_{3}^{\prime \prime}(\psi)=-2\left(\frac{\sin \beta}{\sin (\alpha+\beta)}\right)^{2} \sin (2 \alpha-2 \psi)-4 \frac{\sin \beta}{\sin (\alpha+\beta)} \sin (2 \psi-\alpha)$. By the assumption of Case 3 we get $0 \leq 2 \alpha-2 \psi \leq \pi$ and $0 \leq 2 \psi-\alpha \leq \pi$. By both inequalities, and also since $2 \alpha-2 \psi$ and $2 \psi-\alpha$ cannot be simultaneously 0 or π, we have $f_{3}^{\prime \prime}(\psi)<0$. So the function $f_{3}(\psi)$ is concave in the interval $\left[\frac{\pi}{2}-\beta, \alpha\right]$. This finishes the considerations of Case 3.

The functions $f_{1}(\psi), f_{2}(\psi)$ (and $f_{3}(\psi)$ for acute T) are concave in the considered intervals. So the smallest value of each of them is attained at an end-point, or at both, of the corresponding interval. Since the three (for acute T) and two (for obtuse T) intervals are neighboring, $\min _{m \in \mathcal{A}} \operatorname{area}\left(T_{m}^{*}\right)$ is attained at at least one end-point of these intervals.

From Cases 1-3 and from the above explanation we see that in order to find the smallest value of area $\left(T_{m}^{*}\right)$ for acute T and $m \in \mathcal{A}$ we choose the smallest from the numbers $f_{1}(0)=\frac{\sin \alpha \sin \beta}{\sin (\alpha+\beta)}, f_{1}\left(\frac{\alpha}{2}\right)=f_{2}\left(\frac{\alpha}{2}\right)=\frac{1}{2} \sin \alpha, f_{2}\left(\frac{\pi}{2}-\beta\right)=f_{3}\left(\frac{\pi}{2}-\beta\right)=$ $\frac{1}{2} \sin (\pi-2 \beta)$ and $f_{3}(\alpha)=\frac{\sin \alpha \sin \beta}{\sin (\alpha+\beta)}$. Clearly, $\frac{\sin \alpha \sin \beta}{\sin (\alpha+\beta)}=2 \cdot \operatorname{area}(T)$. The remaining two values $\frac{1}{2} \sin \alpha$ and $\frac{1}{2} \sin (\pi-2 \beta)$ are smaller. Which of them is smaller? From $\alpha+\beta+\gamma=\pi$ and $\beta \leq \gamma$ we get $\alpha+2 \beta \leq \pi$. So $\alpha \leq \pi-2 \beta$. Moreover, since T is acute, $\alpha+\beta>\frac{\pi}{2}$, and thus $\beta>\frac{\pi}{4}$, which implies $\pi-2 \beta<\frac{\pi}{2}$. Hence $\frac{1}{2} \sin \alpha \leq \frac{1}{2} \sin (\pi-2 \beta)$. We see that $\frac{1}{2} \sin \alpha$ is the smallest possible area of T_{m}^{*}. It is attained for $\psi=\frac{\alpha}{2}$, i.e. for $m=\operatorname{bi}(A)$ (if $\frac{1}{2} \sin \alpha=\frac{1}{2} \sin (\pi-2 \beta)$, then $\beta=\gamma$, and thus $\operatorname{bi}(A)$ and $\operatorname{per}(A)$ are the best mirror lines which coincide).

In order to find the smallest value of area $\left(T_{m}^{*}\right)$ for obtuse T over all $m \in \mathcal{A}$ we choose the smallest from the numbers $f_{1}(0)=\frac{\sin \alpha \sin \beta}{\sin (\alpha+\beta)}, f_{1}\left(\frac{\alpha}{2}\right)=f_{2}\left(\frac{\alpha}{2}\right)=\frac{1}{2} \sin \alpha$ and $f_{2}(\alpha)=\frac{1}{2} \sin 2 \alpha$. It is $\frac{1}{2} \sin \alpha$. Here is why. The inequality $\frac{1}{2} \sin \alpha<\frac{1}{2} \sin 2 \alpha$ follows from $0<\alpha \leq \frac{\pi}{4}$. Since $\frac{\sin \alpha \sin \beta}{\sin (\alpha+\beta)}$ is the double area of T, the value $\frac{1}{2} \sin \alpha$ is smaller.

We see that for both types of triangles, namely acute and obtuse ones, with $|a b|=1$ the line $\operatorname{bi}(A)$ in the part of m minimizes area $\left(T_{m}^{*}\right)$, which is area $\left(T_{\mathrm{bi}(A)}^{*}\right)=$ $\frac{1}{2} \sin \alpha$.

In the general situation when $|a b|$ is arbitrary, the area of T_{m}^{*} is $|a b|^{2}$ times larger than for a homothetic image with $|a b|=1$. Since $\operatorname{area}(T)=\frac{1}{2} \frac{\sin \alpha \sin \beta}{\sin (\alpha+\beta)}|a b|^{2}$,
we obtain $|a b|^{2}=2 \frac{\sin (\alpha+\beta)}{\sin \alpha \sin \beta} \cdot \operatorname{area}(T)$. So for arbitrary $|a b|$ we have $\operatorname{area}\left(T_{\mathrm{bi}(A)}^{*}\right)=$ $\frac{1}{2} \sin \alpha \cdot 2 \frac{\sin (\alpha+\beta)}{\sin \alpha \sin \beta} \cdot \operatorname{area}(T)=\frac{\sin (\alpha+\beta)}{\sin \beta} \cdot \operatorname{area}(T)$. Clearly, it minimizes area $\left(T_{m}^{*}\right)$ in the general situation, again with $m=\operatorname{bi}(A)$ as the only best mirror line in \mathcal{A}.

4. The minimum of $\operatorname{area}\left(T_{m}^{*}\right)$ for $m \in \mathcal{B}$ is at least the minimum for $m \in \mathcal{A}$

Proposition 3. For every triangle T we have $\min _{m \in \mathcal{A}} \operatorname{area}\left(T_{m}^{*}\right) \leq \min _{m \in \mathcal{B}} \operatorname{area}\left(T_{m}^{*}\right)$.
Proof. Having in mind Proposition 2, it is sufficient to prove that area $\left(T_{\mathrm{bi}(A)}^{*}\right) \leq$ area $\left(T_{m}^{*}\right)$ for every $m \in \mathcal{B}$. The angle between $a b$ and m (smaller than $\frac{\pi}{2}$) is denoted by ψ. Without loss of generality we may assume that $|a b|=1$.
Case 1. When $\psi \in\left[0, \frac{\alpha}{2}\right]$.
Clearly, T_{m}^{*} is the pentagon $a c_{m} b c a_{m}$, and thus $T_{m}^{*}=a c_{m} b \cup a b a_{m} \cup a_{m} b c$. Observe that $\angle a_{m} b a=2 \psi$. The last fact and $|b a|=\left|b a_{m}\right|=1$ imply that area $\left(a b a_{m}\right)=$ $\frac{1}{2} \sin 2 \psi$. By $\left|b a_{m}\right|=1$ and $|b c|=\frac{\sin \alpha}{\sin (\alpha+\beta)}$, from $\angle c b a_{m}=\angle c b a-\angle a_{m} b a=\beta-2 \psi$ we get area $\left(a_{m} b c\right)=\frac{1}{2} \frac{\sin \alpha}{\sin (\alpha+\beta)} \sin (\beta-2 \psi)$. Since triangles $a_{m} b c$ and $a c_{m} b$ are symmetric with respect to m, area $\left(a_{m} b c\right)=\operatorname{area}\left(a c_{m} b\right)$. The above facts show that area $\left(T_{m}^{*}\right)$ is given by the function $f_{1}(\psi)=\frac{1}{2} \sin 2 \psi+\frac{\sin \alpha}{\sin (\alpha+\beta)} \sin (\beta-2 \psi)$. From $0 \leq 2 \psi \leq \pi$ and $0 \leq \beta-2 \psi \leq \pi$ we get that $f_{1}^{\prime \prime}(\psi)=-2 \sin 2 \psi-$ $4 \frac{\sin \alpha}{\sin (\alpha+\beta)} \sin (\beta-2 \psi)$ is negative in the interval $\left[0, \frac{\alpha}{2}\right]$. So $f_{1}(\psi)$ is concave here and the smallest value of $f_{1}(\psi)$ is attained at least at one end-point of the interval $\left[0, \frac{\alpha}{2}\right]$. We have $f_{1}(0)=\frac{\sin \alpha \sin \beta}{\sin (\alpha+\beta)}, f_{1}\left(\frac{\alpha}{2}\right)=\frac{1}{2} \sin \alpha+\frac{\sin \alpha}{\sin (\alpha+\beta)} \sin (\beta-\alpha)$. Clearly $\frac{\sin \alpha \sin \beta}{\sin (\alpha+\beta)}$ is the double area of T and $\operatorname{area}\left(T_{\mathrm{bi}(A)}^{*}\right)=\frac{1}{2} \sin \alpha$ is smaller. Moreover, from $0 \leq \frac{\sin \alpha}{\sin (\alpha+\beta)} \sin (\beta-\alpha)$ we get $\frac{1}{2} \sin \alpha \leq \frac{1}{2} \sin \alpha+\frac{\sin \alpha}{\sin (\alpha+\beta)} \sin (\beta-\alpha)$. Consequently, $\operatorname{area}\left(T_{\mathrm{bi}(A)}^{*}\right) \leq \operatorname{area}\left(T_{m}^{*}\right)$ for every $m \in \mathcal{B}$ and every $\psi \in\left[0, \frac{\alpha}{2}\right]$.
Case 2. When $\psi \in\left[\frac{\alpha}{2}, \beta\right]$.
In this case T_{m}^{*} contains the triangle $a b a_{m}$. From Case 1 we know that area $\left(a b a_{m}\right)$ $=\frac{1}{2} \sin 2 \psi$. Since $\psi \in\left[\frac{\alpha}{2}, \beta\right]$, we obtain that $\alpha \leq 2 \psi \leq 2 \beta$. From $\alpha+\beta+\gamma=\pi$ and $\beta \leq \gamma$ we get $2 \beta \leq \pi-\alpha$. The last fact implies that $\alpha \leq 2 \psi \leq \pi-\alpha$. Hence $\frac{1}{2} \sin \alpha \leq \frac{1}{2} \sin 2 \psi \leq \frac{1}{2} \sin (\pi-\alpha)$. Thus area $\left(T_{\mathrm{bi}(A)}^{*}\right) \leq \operatorname{area}\left(a b a_{m}\right)$. Since $a b a_{m} \subset T_{m}^{*}$, we obtain the inequality $\operatorname{area}\left(T_{\mathrm{bi}(A)}^{*}\right) \leq \operatorname{area}\left(T_{m}^{*}\right)$ for every $m \in \mathcal{B}$ and every $\psi \in\left[\frac{\alpha}{2}, \beta\right]$.

5. Minimizing area $\left(T_{m}^{*}\right)$ for m from the pencil \mathcal{C}

Proposition 4. Let T be a triangle. We have $\min _{m \in \mathcal{C}} \operatorname{area}\left(T_{m}^{*}\right)=\frac{2 \cos \alpha \sin \beta}{\sin (\alpha+\beta)} \cdot \operatorname{area}(T)$ for $3 \alpha+\beta<\pi$ and $\min _{m \in \mathcal{C}} \operatorname{area}\left(T_{m}^{*}\right)=\frac{\sin \beta}{\sin \alpha} \cdot \operatorname{area}(T)$ for $3 \alpha+\beta>\pi$. The first minimum is attained only for $m=\operatorname{per}(C)$, and the second only for $m=\mathrm{bi}(C)$.

If $3 \alpha+\beta=\pi$, then $\min _{m \in \mathcal{C}} \operatorname{area}\left(T_{m}^{*}\right)$ is given by both formulas and holds only for $m=\operatorname{per}(C)$ and $m=\operatorname{bi}(C)$.

Proof. Besides the last paragraph, for simplicity assume that $|a b|=1$. Let $m \in \mathcal{C}$. By ψ denote the angle $\angle a c d$, where d is the intersection point of m with $a b$. Clearly, $\gamma=\pi-\alpha-\beta$.
Case 1. (only for obtuse T): $\psi \in\left[0, \gamma-\frac{\pi}{2}\right]$.
In that case $T_{m}^{*}=a a_{m} b b_{m}$. Of course, the angle between $a b$ and $a_{m} b_{m}$ (that is, $\left.\angle b d b_{m}\right)$ is twice the angle $\angle b d c$. From $\angle b d c+\angle c b d+\angle d c b=\pi$ and from $\angle c b d=\beta$ and $\angle d c b=\gamma-\psi$ we obtain that $\angle b d c=\alpha+\psi$. Consequently, $\angle b d b_{m}=2(\alpha+\psi)$. This and $|a b|=\left|a_{m} b_{m}\right|=1$ imply that area $\left(T_{m}^{*}\right)=\frac{1}{2} \sin (2 \alpha+2 \psi)$. The function $f_{1}(\psi)=\frac{1}{2} \sin (2 \alpha+2 \psi)$ is concave in the interval $\left[0, \gamma-\frac{\pi}{2}\right]$ because $f_{1}^{\prime \prime}(\psi)=$ $-2 \sin (2 \alpha+2 \psi)$ is negative here.
Case 2. (for all T): $\psi \in\left[0, \frac{\gamma}{2}\right]$ for acute T, and $\psi \in\left[\gamma-\frac{\pi}{2}, \frac{\gamma}{2}\right]$ for obtuse T.
In this case T_{m}^{*} is the pentagon $c b_{m} a a_{m} b$. We have $T_{m}^{*}=c a_{m} b \cup c b_{m} a \cup c a a_{m}$. From $\angle a c a_{m}=2 \psi$ and $|c a|=\left|c a_{m}\right|=\frac{\sin \beta}{\sin \gamma}$ we get that area $\left(c a a_{m}\right)=\frac{1}{2}\left(\frac{\sin \beta}{\sin \gamma}\right)^{2} \sin 2 \psi$. Clearly, $\angle a_{m} c b=\angle a c b-\angle a c a_{m}=\gamma-2 \psi$. This, $\left|c a_{m}\right|=\frac{\sin \beta}{\sin \gamma}$ and $|b c|=$ $\frac{\sin \alpha}{\sin \gamma}$ imply that area $\left(c a_{m} b\right)=\frac{1}{2} \frac{\sin \alpha}{\sin \gamma} \frac{\sin \beta}{\sin \gamma} \sin (\gamma-2 \psi)$. Of course, triangles $c a_{m} b$ and $c b_{m} a$ are symmetric with respect to m. Hence area $\left(c a_{m} b\right)=\operatorname{area}\left(c b_{m} a\right)$. All this leads to the conclusion that area $\left(T_{m}^{*}\right)$ is given by the function $f_{2}(\psi)=$ $\frac{1}{2}\left(\frac{\sin \beta}{\sin \gamma}\right)^{2} \sin 2 \psi+\frac{\sin \alpha}{\sin \gamma} \frac{\sin \beta}{\sin \gamma} \sin (\gamma-2 \psi)$. Here is the second derivative: $f_{2}^{\prime \prime}(\psi)=$ $-2\left(\frac{\sin \beta}{\sin \gamma}\right)^{2} \sin 2 \psi-4 \frac{\sin \alpha}{\sin \gamma} \frac{\sin \beta}{\sin \gamma} \sin (\gamma-2 \psi)$. From the assumptions of Case 2 we obtain that $0 \leq 2 \psi \leq \pi$ and $0 \leq \gamma-2 \psi \leq \pi$. Thus for every $\psi \in\left[0, \frac{\gamma}{2}\right]$ we have $f_{2}^{\prime \prime}(\psi)<0$. Consequently, the function $f_{2}(\psi)$ is concave in the interval [0, $\frac{\gamma}{2}$] (and, in particular, in the interval $\left[\gamma-\frac{\pi}{2}, \frac{\gamma}{2}\right]$ for obtuse triangles T).
Case 3. (for all T): $\psi \in\left[\frac{\gamma}{2}, \frac{\pi}{2}-\alpha\right]$.
Observe that $T_{m}^{*}=c a a_{m}$ and that $\angle a c a_{m}=2 \psi$. So area $\left(T_{m}^{*}\right)$ equals $f_{3}(\psi)=$ $\frac{1}{2}\left(\frac{\sin \beta}{\sin \gamma}\right)^{2} \sin 2 \psi$. By $0 \leq 2 \psi \leq \pi$ we see that $f_{3}^{\prime \prime}(\psi)=-2\left(\frac{\sin \beta}{\sin \gamma}\right)^{2} \sin 2 \psi$ is negative in our interval. Thus the function $f_{3}(\psi)$ is concave in the interval $\left[\frac{\gamma}{2}, \frac{\pi}{2}-\alpha\right]$.
Case 4. (for all T): $\psi \in\left[\frac{\pi}{2}-\alpha, \gamma\right]$ for acute T, and $\psi \in\left[\frac{\pi}{2}-\alpha, \frac{\pi}{2}\right]$ for obtuse T.
Since T_{m}^{*} is the pentagon $c a b_{m} b a_{m}$ (see Figure 10), we have $T_{m}^{*}=c b a_{m} \cup c a b_{m} \cup$ $c b_{m} b$.

Figure 10.
From $\angle a c a_{m}=2 \psi$ and $\angle b c a_{m}=\angle a c a_{m}-\angle a c b$ we obtain $\angle b c a_{m}=2 \psi-\gamma$. The symmetry of triangles $c b a_{m}$ and $c a b_{m}$ with respect to m implies that $\angle b c a_{m}=$
$\angle a c b_{m}=2 \psi-\gamma$. This, $\angle b_{m} c b=\angle a c b-\angle a c b_{m}$ and $\angle a c b=\gamma$ give $\angle b_{m} c b=2 \gamma-2 \psi$. From these facts, from $|c b|=\frac{\sin \alpha}{\sin \gamma}$ and $|c a|=\frac{\sin \beta}{\sin \gamma}$ we obtain that area $\left(T_{m}^{*}\right)$ equals $f_{4}(\psi)=\frac{1}{2}\left(\frac{\sin \alpha}{\sin \gamma}\right)^{2} \sin (2 \gamma-2 \psi)+\frac{\sin \alpha}{\sin \gamma} \sin \beta \sin \gamma \sin (2 \psi-\gamma)$. Since $2 \gamma-2 \psi$ and $2 \psi-\gamma$ are between 0 and π, we see that the second derivative $f_{4}^{\prime \prime}(\psi)=-2\left(\frac{\sin \alpha}{\sin \gamma}\right)^{2} \sin (2 \gamma-$ $2 \psi)-4 \frac{\sin \alpha}{\sin \gamma} \sin \beta \sin \gamma \sin (2 \psi-\gamma)$ is negative for acute and obtuse T. Hence $f_{4}(\psi)$ is concave in the intervals $\left[\frac{\pi}{2}-\alpha, \gamma\right]$ and $\left[\frac{\pi}{2}-\alpha, \frac{\pi}{2}\right]$.
Case 5. (only for obtuse T): $\psi \in\left[\frac{\pi}{2}, \gamma\right]$.
We easily conclude that T_{m}^{*} is the quadrangle $a b_{m} b a_{m}$. Similarly like in Case 1 we show that the angle between $a b$ and $a_{m} b_{m}$ is $2(\gamma-\psi+\beta)$. The last fact and $|a b|=\left|a_{m} b_{m}\right|=1$ imply that area $\left(T_{m}^{*}\right)$ is given by the function $f_{5}(\psi)=\frac{1}{2} \sin (2 \gamma-$ $2 \psi+2 \beta)$. Of course, $f_{5}^{\prime \prime}(\psi)=-2 \sin (2 \gamma-2 \psi+2 \beta)$. Since $0 \leq 2 \gamma-2 \psi+2 \beta \leq \pi$, we have $f_{5}^{\prime \prime}(\psi)<0$. Hence $f_{5}(\psi)$ is concave in the interval $\left[\frac{\pi}{2}, \gamma\right]$. This finishes our considerations of Case 5 .

The functions $f_{i}(\psi)$ for $i=2,3,4$ (for acute T) and for $i=1, \ldots, 5$ (for obtuse T) are concave in the intervals considered in corresponding cases. So the smallest value of each of them is attained at an end-point (or at both) of the corresponding interval. Since the three (for acute T) and five (for obtuse T) intervals are neighboring, the smallest value of area $\left(T_{m}^{*}\right)$ is attained at least at one end-point of at least one of the intervals.

Our proposition is true if $\beta=\alpha$ (see Remark 2 below). So assume that $\beta \neq \alpha$.
In order to find the smallest value of $\operatorname{area}\left(T_{m}^{*}\right)$ for acute T when $m \in \mathcal{C}$, we look at Cases 2-4. We choose the smallest from the numbers $f_{2}(0)=\frac{\sin \alpha \sin \beta}{\sin (\alpha+\beta)}$, $f_{2}\left(\frac{\gamma}{2}\right)=f_{3}\left(\frac{\gamma}{2}\right)=\frac{1}{2} \frac{\sin ^{2} \beta}{\sin (\alpha+\beta)}, f_{3}\left(\frac{\pi}{2}-\alpha\right)=f_{4}\left(\frac{\pi}{2}-\alpha\right)=\frac{1}{2} \frac{\sin ^{2} \beta \sin 2 \alpha}{\sin ^{2}(\alpha+\beta)}$ and $f_{4}(\gamma)=$ $\frac{\sin \alpha \sin \beta}{\sin (\alpha+\beta)}$. Clearly, $\frac{\sin \alpha \sin \beta}{\sin (\alpha+\beta)}$ is the double area of T. Hence $\frac{1}{2} \frac{\sin ^{2} \beta \sin 2 \alpha}{\sin ^{2}(\alpha+\beta)}$ is smaller. It remains to compare $\frac{1}{2} \frac{\sin ^{2} \beta}{\sin (\alpha+\beta)}$ and $\frac{1}{2} \frac{\sin ^{2} \beta \sin 2 \alpha}{\sin ^{2}(\alpha+\beta)}$. If $\frac{1}{2} \frac{\sin ^{2} \beta}{\sin (\alpha+\beta)}=\frac{1}{2} \frac{\sin ^{2} \beta \sin 2 \alpha}{\sin ^{2}(\alpha+\beta)}$, then $3 \alpha+\beta=\pi$. We have $\frac{1}{2} \frac{\sin ^{2} \beta \sin 2 \alpha}{\sin ^{2}(\alpha+\beta)}<\frac{1}{2} \frac{\sin ^{2} \beta}{\sin (\alpha+\beta)}$ if and only if $3 \alpha+\beta<\pi$. So if $3 \alpha+\beta<\pi$, the area of T_{m}^{*} is minimum for $\psi=\frac{\pi}{2}-\alpha$, i.e., for $m=\operatorname{per}(C)$, and it is $\frac{1}{2} \frac{\sin ^{2} \beta \sin 2 \alpha}{\sin ^{2}(\alpha+\beta)}$. We also conclude that if $3 \alpha+\beta>\pi$, the area of T_{m}^{*} is minimum for $\psi=\frac{\gamma}{2}$, this is for $m=\operatorname{bi}(C)$. It is $\frac{1}{2} \frac{\sin ^{2} \beta}{\sin (\alpha+\beta)}$. If $3 \alpha+\beta=\pi$, then we have two minima: for $\psi=\frac{\pi}{2}-\alpha$ (i.e., for $m=\operatorname{per}(C)$) and for $\psi=\frac{\gamma}{2}$ (i.e., for $m=\operatorname{bi}(C)$).

In order to find the smallest value of area $\left(T_{m}^{*}\right)$ for obtuse T when $m \in \mathcal{C}$, we look at all Cases 1-5, and thus we choose the smallest from the numbers $f_{1}(0)=\frac{1}{2} \sin 2 \alpha, f_{1}\left(\gamma-\frac{\pi}{2}\right)=f_{2}\left(\gamma-\frac{\pi}{2}\right)=\frac{1}{2} \sin 2 \beta, f_{2}\left(\frac{\gamma}{2}\right)=f_{3}\left(\frac{\gamma}{2}\right)=\frac{1}{2} \frac{\sin ^{2} \beta}{\sin (\alpha+\beta)}$, $f_{3}\left(\frac{\pi}{2}-\alpha\right)=f_{4}\left(\frac{\pi}{2}-\alpha\right)=\frac{1}{2} \frac{\sin ^{2} \beta \sin 2 \alpha}{\sin ^{2}(\alpha+\beta)}, f_{4}\left(\frac{\pi}{2}\right)=f_{5}\left(\frac{\pi}{2}\right)=\frac{1}{2} \sin 2 \alpha$ and $f_{5}(\gamma)=\frac{1}{2} \sin 2 \beta$. Since $\frac{1}{2} \sin 2 \alpha$ and $\frac{1}{2} \sin 2 \beta$ are at least the double area of T, we obtain that $\frac{1}{2} \frac{\sin ^{2} \beta \sin 2 \alpha}{\sin ^{2}(\alpha+\beta)}$ is smaller. From $\alpha+\beta \leq \frac{\pi}{2}$ and from $\alpha<\beta$ we get $2 \alpha<\alpha+\beta \leq \frac{\pi}{2}$ and thus $\frac{1}{2} \frac{\sin ^{2} \beta \sin 2 \alpha}{\sin ^{2}(\alpha+\beta)}<\frac{1}{2} \frac{\sin ^{2} \beta}{\sin (\alpha+\beta)}$. From the above considerations we conclude that the smallest from the four considered numbers is $\frac{1}{2} \frac{\sin ^{2} \beta \sin 2 \alpha}{\sin ^{2}(\alpha+\beta)}$. This means that the minimum area of T_{m}^{*} is attained for $m=\operatorname{per}(C)$.

In the general situation when $|a b|$ is arbitrary, we proceed as in the last
paragraph of the proof of Proposition 2. So now $\min _{m \in \mathcal{C}} \operatorname{area}\left(T_{m}^{*}\right)=\operatorname{area}\left(T_{\mathrm{bi}(C)}^{*}\right)=$ $\frac{1}{2} \frac{\sin ^{2} \beta}{\sin (\alpha+\beta)} \cdot 2 \frac{\sin (\alpha+\beta)}{\sin \alpha \sin \beta} \cdot \operatorname{area}(T)=\frac{\sin \beta}{\sin \alpha} \cdot \operatorname{area}(T)$ provided $3 \alpha+\beta>\pi$, and $\min _{m \in \mathcal{C}} \operatorname{area}\left(T_{m}^{*}\right)$ $=\operatorname{area}\left(T_{\operatorname{per}(C)}^{*}\right)=\frac{1}{2} \frac{\sin ^{2} \beta \sin 2 \alpha}{\sin ^{2}(\alpha+\beta)} \cdot 2 \frac{\sin (\alpha+\beta)}{\sin \alpha \sin \beta} \cdot \operatorname{area}(T)=\frac{2 \cos \alpha \sin \beta}{\sin (\alpha+\beta)} \cdot \operatorname{area}(T)$ provided $3 \alpha+\beta<\pi$. The last part of Proposition 4 results from the preceding paragraph.

Remark 2. If $\beta=\alpha$, then $\operatorname{per}(C)$ and $\operatorname{bi}(C)$ coincide and thus both formulas for $\min _{m \in \mathcal{C}} \operatorname{area}\left(T_{m}^{*}\right)$ from Proposition 4 give the same greatest value.

6. A formula for the minimum of area $\left(T_{m}^{*}\right)$ over all mirror lines m

Corollary 1 and Propositions 2-4 imply the following proposition.
Proposition 5. We have $\min _{m} \operatorname{area}\left(T_{m}^{*}\right)=\min \left\{\frac{\sin (\alpha+\beta)}{\sin \beta}, \frac{2 \cos \alpha \sin \beta}{\sin (\alpha+\beta)}, \frac{\sin \beta}{\sin \alpha}\right\} \cdot \operatorname{area}(T)$ for any triangle T such that $\alpha \leq \beta \leq \gamma$. This minimum equals $\frac{\sin (\alpha+\beta)}{\sin \beta} \cdot \operatorname{area}(T)$ if and only if $\operatorname{bi}(A)$ is a best mirror line, equals $\frac{2 \cos \alpha \sin \beta}{\sin (\alpha+\beta)} \cdot \operatorname{area}(T)$ if and only if $\operatorname{per}(C)$ is a best mirror line, and equals $\frac{\sin \beta}{\sin \alpha} \cdot \operatorname{area}(T)$ if and only if $\operatorname{bi}(C)$ is a best mirror line.

Propositions 2-5 and the proof of Proposition 1 imply the following remark.
Remark 3. If $\operatorname{per}(C)$ is a best mirror line, all parallel mirror lines between $\operatorname{per}(C)$ and the parallel line passing through the midpoint of $a b$ are also best mirror lines. Besides this exceptional case, we never have parallel best mirror lines.

7. Estimates of the measure of axial symmetry of triangles

From the definition of $\operatorname{axs}(K)$ and from Proposition 5 we immediately get Theorem 1.

Theorem 1. We have $\operatorname{axs}(T)=\max \left\{\frac{\sin \beta}{\sin (\alpha+\beta)}, \frac{\sin (\alpha+\beta)}{2 \cos \alpha \sin \beta}, \frac{\sin \alpha}{\sin \beta}\right\}$ for any triangle T with measures $\alpha \leq \beta \leq \gamma$ of angles. Here $\operatorname{axs}(T)=\frac{\sin \beta}{\sin (\alpha+\beta)}$ if and only if $\operatorname{bi}(A)$ is a best mirror line, $\operatorname{axs}(T)=\frac{\sin (\alpha+\beta)}{2 \cos \alpha \sin \beta}$ if and only if $\operatorname{per}(C)$ is a best mirror line, and $\operatorname{axs}(T)=\frac{\sin \alpha}{\sin \beta}$ if and only if $\operatorname{bi}(C)$ is a best mirror line.
How to recognize the triangles for which each of the three formulas $f=\frac{\sin \beta}{\sin (\alpha+\beta)}$, $g=\frac{\sin (\alpha+\beta)}{2 \cos \alpha \sin \beta}$ and $h=\frac{\sin \alpha}{\sin \beta}$ from Theorem 1 gives the maximum? We omit an elementary calculation which shows that $f=g$ if and only if $\beta=\arctan \frac{\sin \alpha}{\sqrt{2 \cos \alpha}-\cos \alpha}$, that $f=h$ if and only if $\alpha=\frac{1}{2} \arccos \left(\cos \beta-2 \sin ^{2} \beta\right)-\frac{1}{2} \beta$, and that $g=h$ if and only if $\beta=\pi-3 \alpha$ or $\beta=\alpha$. These equivalences permit to draw Figure 11 showing the domain of all pairs (β, α) (every pair represents all triangles with angles $\alpha \leq \beta \leq \gamma$). This domain is divided into three regions $R_{\mathrm{bi}(A)}$,

Figure 11.
$R_{\mathrm{per}(C)}$ and $R_{\mathrm{bi}(C)}$ whose points represent triangles for which the mirror lines $\operatorname{bi}(A), \operatorname{per}(C)$ and $\mathrm{bi}(C)$, respectively, are the best, and for which the three successive formulas from Theorem 1 give the maximum value. Moreover, by Remark 2 , if $\beta=\alpha$ then $\operatorname{per}(C)$ and $\operatorname{bi}(C)$ coincide, and thus the last two formulas give the same greatest value 1. In Figure 11 we see only the pieces of the curves $f=g, f=h$ and $g=h$ which separate our regions. It is easy to check that the three curves meet at the point $\left(\beta_{0}, \alpha_{0}\right)$ representing each triangle with angles $\alpha_{0}=\arcsin x \approx 0.73009$, where $x \approx 0.66694$ is a root of the equation $4-4 x^{2}=\left(3-4 x^{2}\right)^{4}$ and $\beta_{0}=\pi-3 \alpha_{0} \approx 0.95131$.

The segment $\alpha=\frac{\pi}{2}-\beta$ (not marked in Figure 11) connecting the points $\left(\frac{\pi}{4}, \frac{\pi}{4}\right)$ and $\left(\frac{\pi}{2}, 0\right)$ consists of points representing right-angled triangles and divides the "regions" of acute and obtuse triangles. The region $R_{\mathrm{bi}(C)}$ in which $\operatorname{axs}(T)=\frac{\sin \alpha}{\sin \beta}$ is a subset of the "region" of acute triangles. This and Theorem 1 give the following corollary.

Corollary 2. If T is an arbitrary obtuse (in particular, right-angled) triangle, then $\operatorname{axs}(T)=\max \left\{\frac{\sin \beta}{\sin (\alpha+\beta)}, \frac{\sin (\alpha+\beta)}{2 \cos \alpha \sin \beta}\right\}$.

Theorem 2. For every triangle T we have $\operatorname{axs}(T)>\frac{1}{2} \sqrt{2}$. This estimate cannot be improved: the infimum of $\operatorname{axs}(T)$ over all triangles T equals $\frac{1}{2} \sqrt{2}$.

Proof. The inequality $\frac{\sin (\alpha+\beta)}{2 \cos \alpha \sin \beta} \leq \frac{\sin \beta}{\sin (\alpha+\beta)}$ is equivalent to $\frac{\sin ^{2} \beta}{\sin ^{2}(\alpha+\beta)} \geq \frac{1}{2 \cos \alpha}$ and thus to $\frac{\sin \beta}{\sin (\alpha+\beta)} \geq \frac{1}{\sqrt{2 \cos \alpha}}$. On the other hand, $\frac{\sin (\alpha+\beta)}{2 \cos \alpha \sin \beta} \geq \frac{\sin \beta}{\sin (\alpha+\beta)}$ is equivalent to $\frac{\sin ^{2}(\alpha+\beta)}{4 \cos ^{2} \alpha \sin ^{2} \beta} \geq \frac{1}{2 \cos \alpha}$, and consequently it is equivalent to $\frac{\sin (\alpha+\beta)}{2 \cos \alpha \sin \beta} \geq$ $\frac{1}{\sqrt{2 \cos \alpha}}$. From Theorem 1 and from the above equivalences we obtain $\operatorname{axs}(T)=$ $\max \left\{\frac{\sin \beta}{\sin (\alpha+\beta)}, \frac{\sin (\alpha+\beta)}{2 \cos \alpha \sin \beta}, \frac{\sin \alpha}{\sin \beta}\right\} \geq \max \left\{\frac{\sin \beta}{\sin (\alpha+\beta)}, \frac{\sin (\alpha+\beta)}{2 \cos \alpha \sin \beta}\right\} \geq \frac{1}{\sqrt{2 \cos \alpha}}>\frac{1}{2} \sqrt{2}$.

Consider the family of triangles for which $\frac{\sin \beta}{\sin (\alpha+\beta)}=\frac{\sin (\alpha+\beta)}{2 \cos \alpha \sin \beta}$ (i.e., $f=g$; a piece of this curve is shown in Figure 11). Their common value is $\frac{1}{\sqrt{2 \cos \alpha}}$, which follows from the first two sentences of this proof. It tends to $\frac{1}{2} \sqrt{2}$ when α tends to 0 . So by Corollary 2 the estimate $\operatorname{axs}(T)>\frac{1}{2} \sqrt{2}$ cannot be improved for our family, and hence in general.

Remark 4. In order to show the second part of Theorem 2 we can also use other families of triangles with α close to 0 , for instance, the family with $\frac{\beta}{\alpha}=\sqrt{2}+1$, or with $\frac{\sin \beta}{\sin \alpha}=\sqrt{2}+1$, or with $\frac{\tan \beta}{\tan \alpha}=\sqrt{2}+1$ (this ratio equals $|a d| /|d b|$, where d is the projection of c on $a b$).

Theorem 3. For every acute triangle T we have $\operatorname{axs}(T)>\frac{1}{2} \sqrt[3]{4}$, and this estimate cannot be improved. For every right-angled triangle T we have $\operatorname{axs}(T) \geq \frac{1}{2} \sqrt[3]{4}$ with equality only for right-angled triangles with $\beta=\arcsin \sqrt[3]{1 / 2} \quad(\approx 0.91687)$.

Proof. Apply Theorem 1. Since $0<\alpha \leq \frac{\pi}{3}$ and $\frac{\pi}{2}<\alpha+\beta<\pi$ for acute T, the derivatives of $\frac{\sin \beta}{\sin (\alpha+\beta)}, \frac{\sin (\alpha+\beta)}{2 \cos \alpha \sin \beta}$ and $\frac{\sin \alpha}{\sin \beta}$ with respect to α are positive. So these three functions are increasing with respect to α. Thus, if β is constant and we decrease α to $\frac{\pi}{2}-\beta$ (which gives a right-angled triangle), we get $\frac{\sin \beta}{\sin (\alpha+\beta)}>$ $\sin \beta, \frac{\sin (\alpha+\beta)}{2 \cos \alpha \sin \beta}>\frac{1}{2 \sin ^{2} \beta}$ and $\frac{\sin \alpha}{\sin \beta}>\cot \beta$. It is easy to see that the minimum of $\max \left\{\sin \beta, \frac{1}{2 \sin ^{2} \beta}, \cot \beta\right\}$ is $\frac{1}{2} \sqrt[3]{4}$; it is attained for the root $\beta=\arcsin \sqrt[3]{1 / 2}$ of the equation $\sin \beta=\frac{1}{2 \sin ^{2} \beta}$. So $\operatorname{axs}(T)>\frac{1}{2} \sqrt[3]{4}$ for acute triangles and $\operatorname{axs}(T) \geq \frac{1}{2} \sqrt[3]{4}$ for right-angled triangles. The last estimate cannot be improved for right-angled triangles with $\beta=\arcsin \sqrt[3]{1 / 2}$. Acute triangles arbitrarily close to them show that also the preceding estimate cannot be improved.

References

[1] Ahn, H. K.; Brass, P.; Cheong, O.; Na, H. S.; Shin; C. S.; Vigneron, A.: Approximation algorithms for inscribing or circumscribing an axially symmetric polygon to a convex polygon. Lecture Notes on Computer Sciences 3106 (2004), 259-267.

Zbl 1091.68109
[2] Ahn, H. K.; Brass, P.; Cheong, O.; Na, H. S.; Shin; C. S.; Vigneron, A.: Inscribing an axially symmetric polygon and other approximation algorithms for planar convex sets. Computational Geometry - Theory and Applications 33 (2006), 152-164. Zbl 1137.68608
[3] Buda, A. B.; Mislow, K.: On a measure of axiality for triangular domains. Elem. Math. 46 (1991), 65-73.

Zbl 0749.52002
[4] Chakerian G. D.; Stein, S. K.: Measures of symmetry of convex bodies. Can. J. Math. 17 (1965), 497-504.

Zbl 0137.15302
[5] deValcourt, B. A.: Measures of axial symmetry for ovals. Bull. Am. Math. Soc. 72 (1966), 289-290.
[6] deValcourt, B. A.: Measures of axial symmetry for ovals. Israel J. Math. 4 (1966), 65-82.

Zbl 0144.44201
[7] deValcourt, B. A.: Axially symmetric polygons inscribed in and circumscribed about convex sets. Elem. Math. 22 (1967), 121-133. Zbl 0171.20901
[8] Grünbaum, B.: Measures of symmetry of convex bodies. Proc. Sympos. Pure Math. 7 (1963), 233-270.

Zbl 0142.20503
[9] Heil, E.; Martini, H.: Special Convex Bodies. In: P. M. Gruber and J. M. Wills (eds.) Handbook of Convex Geometry, Vol. A, 347-385. North-Holland, Amsterdam 1993.
[10] Lassak, M.: Approximation of convex bodies by axially symmetric bodies. Proc. Am. Math. Soc. 130 (2002), 3075-3084. Erratum in 131 (2003), 2301. Zbl 1007.52001
[11] Nohl, W.: Die innere axiale Symmetrie zentrischer Eibereiche der Euklidischen Ebene. Elem. Math. 17 (1962), 59-63.

Zbl 0118.17304

Received January 9, 2009

