Erratum to:
 A. Joos: Covering the Unit Cube by Equal Balls

Beitr. Algebra Geom. 49 (2008), 599-605

A. Joós
College of Dunaújváros
2400 Dunaújváros, Táncsics M. u. 1/a, Hungary
e-mail: ajoos@kac.poliod.hu

We showed in the above paper that 8 balls with radius $\sqrt{\frac{5}{12}}$ can cover the 4dimensional unit cube. We wanted to show that 8 congruent balls with smaller radius can not cover the 4 -dimensional unit cube. We showed that each ball contains an edge completely. We assumed that each ball contains an edge completely and additionally parts of 6 edges which are incident with one of the 2 vertices of the edge. An anonymous referee found a gap in the proof that the balls can contain some further part of some edge of the cube. We are closing this gap.

We prove Lemma 5 and in the proof of the Theorem of the above paper we have to use Lemma 5 instead of Lemma 4.

Lemma 5. Let $a_{1}, a_{2} \in B^{4}(o, r)$ be two vertices of C^{4}, where $\frac{1}{2}<r<\sqrt{\frac{5}{12}}$. Let E be the set of the edges of C^{4}. Then

$$
\sum_{e \in E} \operatorname{diam}\left(B^{4}(o, r) \cap e\right)<4
$$

Proof. Without loss of generality we can assume that $a_{1}=(0,0,0,0), a_{2}=$ $(0,0,0,1)$. As in Lemma 4 (of the above paper) we can assume that $r=\sqrt{\frac{5}{12}}$. If $B^{4}(o, r)$ intersects only the edges emanating from $B^{4}(o, r)$ then the statement comes from Lemma 4 (of the above paper).

0138-4821/93 \$ 2.50 © 2009 Heldermann Verlag

We assume that $B^{4}(o, r)$ intersects an edge not emanating from a point of $B^{4}(o, r)$. Of course, $B^{4}(o, r)$ can not contain three vertices of C^{4}. Denote by $a b$ the edge with endpoints a and $b . \quad B^{4}(o, r)$ can intersect only one of the edges $(1,0,0,0)(1,0,0,1),(0,1,0,0)(0,1,0,1)$ and $(0,0,1,0)(0,0,1,1)$. Without loss of generality we assume that $B^{4}(o, r)$ intersects the edge $(1,0,0,0)(1,0,0,1)$. Then $B^{4}(o, r)$ does not intersect the edges $(0,1,0,0)(0,1,0,1)$ and $(0,0,1,0)(0,0,1,1)$. By Lemma 2 (of the above paper) we can assume that $o_{4}=\frac{1}{2}$. Denote by $2 h$ the length of the intersection of the ball with the edge $(1,0,0,0)(1,0,0,1)$ (Figure 1). Of course, $0 \leq 2 h \leq 2 \sqrt{\frac{2}{\sqrt{6}}}-\frac{3}{4}=0.51 \ldots$. Denote by $e_{1}, e_{2}, e_{3}, e_{4}, e_{5}$ and e_{6} the edges $(0,0,0,0)(1,0,0,0),(0,0,0,0)(0,1,0,0),(0,0,0,0)(0,0,1,0),(0,0,0,1)(1,0$, $0,1),(0,0,0,1)(0,1,0,1)$ and $(0,0,0,1)(0,0,1,1)$, respectively. The length of $B^{4}(o, r) \cap e_{1}$ and $B^{4}(o, r) \cap e_{4}$ are at most $1+\frac{1}{\sqrt{6}}-\sqrt{\frac{5}{12}-h^{2}}$, respectively.

Figure 1. The Four Circle Problem. $r=\sqrt{\frac{5}{12}}, s=1+\frac{1}{\sqrt{6}}-\sqrt{\frac{5}{12}-h^{2}}, d=$ $2 \sqrt{\frac{2}{\sqrt{6}}-\frac{3}{4}}=0.51 \ldots$

We will show that the maximum of $\operatorname{diam}\left(B^{4}(o, r) \cap e_{2}\right)+\operatorname{diam}\left(B^{4}(o, r) \cap e_{3}\right)$ and $\operatorname{diam}\left(B^{4}(o, r) \cap e_{5}\right)+\operatorname{diam}\left(B^{4}(o, r) \cap e_{6}\right)$ are at most $4 \sqrt{3} \frac{\sin \phi}{3}$, where $\phi=$ $\arccos \frac{3 / 4+h^{2}}{2 / \sqrt{6}}$. Denote by $P_{i, j}$ the affine hull of the edges e_{i}, e_{j}, where $\{i, j\} \subset$ $\{1, \ldots, 6\}$ and $i \neq j$. Let B_{0}^{3}, B_{1}^{3} be the intersection of the ball $B^{4}(o, r)$ and the hyperplane $x_{4}=0, x_{4}=1$, respectively. If $\operatorname{diam}\left(B^{4}(o, r) \cap e_{2}\right)+\operatorname{diam}\left(B^{4}(o, r) \cap e_{3}\right)$ and $\operatorname{diam}\left(B^{4}(o, r) \cap e_{5}\right)+\operatorname{diam}\left(B^{4}(o, r) \cap e_{6}\right)$ are the greatest then $(0,0,0,0)$ and $(0,0,0,1)$ lie on the relative boundary of B_{0}^{3}, B_{1}^{3}, respectively. Thus we can assume that $(0,0,0,0)$ and $(0,0,0,1)$ lie on the boundary of $B^{4}(o, r)$. Then o lies on the 3 -dimensional sphere with centre $\left(0,0,0, \frac{1}{2}\right)$ and radius $\frac{1}{\sqrt{6}}$ which lies on the hyperplane $x_{4}=\frac{1}{2}$. Additionally o lies on the 3 -dimensional sphere with centre $\left(1,0,0, \frac{1}{2}\right)$ and radius $\sqrt{\frac{5}{12}-h^{2}}$ which lies on the hyperplane $x_{4}=\frac{1}{2}$. Thus o lies on the 2 -dimensional sphere with centre $\left(\frac{\cos \phi}{\sqrt{6}}, 0,0, \frac{1}{2}\right)$ and radius $\frac{\sin \phi}{\sqrt{6}}$ which lies on the affine plane $x_{1}=\frac{\cos \phi}{\sqrt{6}}, x_{4}=\frac{1}{2}$, where $\phi=\arccos \frac{3 / 4+h^{2}}{2 / \sqrt{6}}$ (Figure 2).

Figure 2. The Four Circle Problem
So $o=\left(\frac{\cos \phi}{\sqrt{6}}, \frac{\sin \phi}{\sqrt{6}} \sin \psi, \frac{\sin \phi}{\sqrt{6}} \cos \psi, \frac{1}{2}\right)$, where $\psi \in[0,2 \pi)$. Therefore $d\left(o, P_{2,3}\right)=$ $\sqrt{\frac{\cos ^{2} \phi}{6}+\frac{1}{4}}$. Then the radius of the 2-dimensional ball $B^{2}=B^{4}(o, r) \cap P_{2,3}$ is $r_{1}=\sqrt{\frac{5}{12}-\left(\frac{\cos ^{2} \phi}{6}+\frac{1}{4}\right)}=\frac{\sin \phi}{\sqrt{6}}$. Thus $\operatorname{diam}\left(B^{4}(o, r) \cap e_{2}\right)+\operatorname{diam}\left(B^{4}(o, r) \cap e_{3}\right) \leq$ $2 \sqrt{2} r_{1}=2 \sqrt{3} \frac{\sin \phi}{3}$. Similarly we get that $\operatorname{diam}\left(B^{4}(o, r) \cap e_{5}\right)+\operatorname{diam}\left(B^{4}(o, r) \cap e_{6}\right) \leq$ $2 \sqrt{3} \frac{\sin \phi}{3}$. Thus we have $\sum_{e \in E} \operatorname{diam}\left(B^{4}(o, r) \cap e\right)=1+\sum_{i=1, \ldots, 6} \operatorname{diam}\left(B^{4}(o, r) \cap e_{i}\right)+$ $2 h \leq 1+2\left(1+\frac{1}{\sqrt{6}}-\sqrt{\frac{5}{12}-h^{2}}\right)+4 \sqrt{3} \frac{\sin \phi}{3}+2 h \leq 1+2\left(1+\frac{1}{\sqrt{6}}-\sqrt{\frac{5}{12}-h^{2}}\right)+$ $4 \sqrt{3} \frac{\sin \phi}{3}+2 \sqrt{\frac{2}{\sqrt{6}}-\frac{3}{4}}=: f(h)$.

Then $f^{\prime}(h)=\frac{12 h}{\sqrt{15-36 h^{2}}}-\frac{\sqrt{3}}{12} \frac{288 h+384 h^{3}}{\sqrt{10-144 h^{2}-96 h^{4}}}$. We have $f^{\prime}(h)<0$, where $0<$ $h<\sqrt{\frac{2}{\sqrt{6}}-\frac{3}{4}}$, if and only if $0<-384 h^{6}-368 h^{4}+96 h^{2}+85$ that is true if $0<h<\sqrt{\frac{2}{\sqrt{6}}-\frac{3}{4}}$. So the maximum value of f between 0 and $\sqrt{\frac{2}{\sqrt{6}}-\frac{3}{4}}$ is achieved at 0 and this maximum value is $3.95 \ldots$. Therefore $f(h) \leq 4$. This completes the proof of the lemma.

Acknowledgement. I am indebted to K. Swanepoel.
Received October 8, 2008

