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Abstract. In this article we obtain a result about the uniqueness of

factorization in terms of conjugates of the matrix U =

[
1 1
0 1

]
, of

some matrices representing the conjugacy classes of those elements of
SL(2,Z) arising as the monodromy around a singular fiber in an elliptic
fibration (i.e. those matrices that appear in Kodaira’s list). Namely we
prove that if M is a matrix in Kodaira’s list, and M = G1 · · ·Gr where
each Gi is a conjugate of U in SL(2,Z), then after applying a finite
sequence of Hurwitz moves the product G1 · · ·Gr can be transformed
into another product of the form H1 · · ·HnG

′
n+1 · · ·G′

r where H1 · · ·Hn

is some fixed shortest factorization of M in terms of conjugates of U ,
and G′

n+1 · · ·G′
r = Id2×2. We use this result to obtain necessary and

sufficient conditions under which a relatively minimal elliptic fibration
without multiple fibers φ : S → D = {z ∈ C : |z| < 1}, admits a weak
deformation into another such fibration having only one singular fiber.

1. Introduction

The purpose of this article is twofold. On the one hand we begin the study of
the extent to which a given element of the mapping class group of an oriented
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torus (i.e. SL(2,Z)) factors uniquely as a product of right handed Dehn twists,
i.e. conjugates of the matrix

U =

[
1 1
0 1

]
.

Our first main result (Theorem 19) addresses this question, and gives an affirma-
tive answer for those elements in SL(2,Z) which arise as the monodromy around
a singular fiber in an elliptic fibration. As far as we know this subject has two
predecessors. The first one is a well known result due to R. Livne and Moishezon
[7], which says that any factorization of the identity matrix in SL(2,Z) in terms
of r conjugates of U can be transformed by applying a finite sequence of Hurwitz
moves, into a standard factorization (V U)6s where s ≥ 0, r = 12s, and

V =

[
1 0

−1 1

]
.

The second one arose in the study of branched covers of 2-manifolds, and was
initiated by Hurwitz, Clebsch and Luroth, and more recently continued by sev-
eral other authors (see [2] and the references therein). These authors study the
analogous problem when one replaces SL(2,Z) by the symmetric group Sn, and
right handed Dehn twists by transpositions. For instance, Natanzon’s result (see
[9]) claims that if σ ∈ Sn, and σ = τ1 · · · τk = τ ′1 · · · τ ′k are two factorizations
in terms of transpositions, such that the subgroups 〈τ1, . . . , τk〉 and 〈τ ′1, . . . , τ ′k〉
act transitively on the n symbols, then there exists a sequence of Hurwitz moves
which transforms the product τ1 · · · τk into the product τ ′1 · · · τ ′k. In particular, this
implies a result (which parallels Theorem 19) saying that if one picks a particular
shortest transitive factorization µ1 · · ·µsσ of σ in terms of transpositions (i.e. such
that 〈µ1, . . . , µsσ〉 acts transitively on the n symbols), then any transitive factor-
ization τ1 · · · τk of σ in terms of transpositions, transforms after a finite sequence
of Hurwitz moves into a factorization of the form σ = µ1 · · ·µsστ

′
sσ+1 · · · τ ′k. The

proof of Theorem 19 is based on the careful study of the description of PSL(2,Z)
as the direct product Z2 ∗ Z3 developed by R. Livne (see [7]).

On the other hand, we study the problem of when an elliptic fibration over a
disk can be deformed into another elliptic fibration over a disk having only one
singular fiber. Our result in this direction (Theorem 21) provides necessary and
sufficient conditions under which a given relatively minimal elliptic fibration over
a disk without multiple fibers can be weakly deformed into another such fibration
having only one singular fiber (Definition 7). Weak deformation allows the passing
from one deformation family to another whenever there exists a member of each
family being topologically equivalent with each other. This result is obtained as
an application of our normal factorization result.

This type of problem was posed by Naruki in [8]. In [8] that author considers
the confluence of three singular fibers F1, F2 and F3, of types Ia, Ib and Ic in
an elliptic fibration into one singular fiber F after a deformation, and studies in
depth the necessary condition for the existence of the confluence that if M1, M2

and M3 are the monodromies around F1, F2 and F3, and M is the monodromy
around the singular fiber F they coalesce to, then M = M1M2M3 and χ(F ) =
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χ(F1) + χ(F2) + χ(F3). He solves the algebraic problem of classifying up to the
braid group action, those triples (M1,M2,M3) such that each Mi is a conjugate of
Uai , M = M1M2M3 is a matrix in Kodaira’s list, and a1 + a2 + a3 = χ(FM) (see
Table 1). The opposite problem, namely that of finding necessary and sufficient
conditions under which a singular fiber in a fibration of arbitrary fiber genus
admits a deformation which splits it into several ones has been intensely studied
(see for example [10] and the references therein). Moishezon completely solved
this problem in the elliptic case (cf. Theorem 6).

2. Basic definitions and facts

Throughout this article, S will denote a complex manifold with complex dimension
2 and D will denote the open unit disk {z ∈ C : |z| < 1}.

Definition 1. By an elliptic fibration we will mean a triple (φ, S,D) where φ :
S → D is a proper surjective holomorphic map with a finite number (possibly zero)
of critical values q1, . . . , qk ∈ D, such that the preimage of each regular value is a
(compact) connected Riemann surface of genus 1.

We will say that an elliptic fibration is singular if it has at least one singular fiber.
A singular fiber φ−1(qi) is said to be of Lefschetz type if

Ci := {p ∈ φ−1(qi) : p is a critical point of φ}

is finite, and for each p ∈ Ci there exist holomorphic charts around p and qi relative
to which φ takes the form (z1, z2) → z2

1 + z2
2 . If a fiber of Lefschetz type contains

exactly one critical point, it will be said to be simple. Every fiber φ−1(q) of an
elliptic fibration can be regarded as an effective divisor w1,qX1,q+· · ·+wrq ,qXrq ,q. A
(necessarily) singular fiber φ−1(q) is called a multiple fiber if gcd(w1,q, . . . , wrq ,q) >
1, and it is said to be of smooth multiple type if it is of the form w1,qX1,q with
w1,q > 1 and X1,q is a smooth submanifold of S. An elliptic fibration is said to be
relatively minimal if no fiber contains an embedded sphere with selfintersection
−1.

All elliptic fibrations in this article will be assumed to be relatively minimal.

The Euler characteristic of the domain of an elliptic fibration can be calculated
using the following formula which is analogous to the Riemann-Hurwitz formula

χ(S) =
k∑

i=1

χ(φ−1(qi)).

Next we define when two elliptic fibrations will be regarded as being (topologically)
the same.

Definition 2. Two elliptic fibrations (φ1, S1, D) and (φ2, S2, D) are said to be
topologically equivalent if there exist orientation preserving diffeomorphisms h :
S1 → S2 and h′ : D → D such that φ2 ◦ h = h′ ◦ φ1. In this case we write
(φ1, S1, D) ∼ (φ2, S2, D) or simply φ1 ∼ φ2.
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Definition 3. By a family of elliptic fibrations we will mean a triple (Φ,S, D ×
Dε) where S is a three-dimensional complex manifold, Dε = {z ∈ C : |z| < ε} and
Φ : S → D ×Dε is a surjective proper holomorphic map, such that

1. if for each t ∈ Dε, Dt := D × {t}, St := Φ−1(Dt) and Φt := Φ|St : St → Dt,
then each (Φt,St, Dt) is an elliptic fibration;

2. the composition S Φ→ D ×Dε
pr2→ Dε does not have critical points.

A family of elliptic fibrations (Φ,S, D × Dε) is said to be a deformation of a
given elliptic fibration (φ, S,D), if (φ, S,D) is biholomorphically equivalent to
(Φ0,S0, D0), i.e. there exist biholomorphic maps h : S → S0 and h′ : D → D
such that Φ0 ◦ h = h′ ◦ φ.

Remark 4. It can be seen that if (Φ,S, D×Dε) is a family of elliptic fibrations,
the (oriented) diffeomorphism type of St is independent of t ∈ Dε. In particular,
χ(St) is also independent of t ∈ Dε.

Definition 5. Let (φ, S,D) be an elliptic fibration. A deformation (Φ,S, D×Dε)
of (φ, S,D) will be said to be a morsification of (φ, S,D), if for each t 6= 0, each
singular fiber of Φt : St → Dt is either of simple Lefschetz type or of smooth
multiple type.

The following fundamental result is due to Moishezon (see [7]).

Theorem 6. Every elliptic fibration admits a morsification. Moreover, if the
elliptic fibration does not have multiple fibers, then it admits a morsification such
that none of its members contains a multiple fiber.

The following definition is introduced in order to state one of our main results.

Definition 7. Two elliptic fibrations (φ1, S1, D) and (φ2, S2, D) will be said to be
weakly deformation equivalent whenever there exist a finite collection of families
of elliptic fibrations (Φ1,S1), . . . , (Φk,Sk), and si, ti ∈ Dεi

for each i = 1, . . . , k,
such that φ1 ∼ Φ1

s1
, Φi

ti
∼ Φi+1

si+1
for i = 1, . . . , k − 1, and Φk

tk
∼ φ2.

We now turn to the combinatorial description of elliptic fibrations. Let (φ, S,D)
be an elliptic fibration and let q1, . . . , qk be its critical values. Take 0 < r < 1 such
that the open disk Dr having center 0 and radius r contains the points q1, . . . , qk.
Let us fix a point q0 ∈ ∂Dr. Notice that q0 is a regular value. Let us also fix
an orientation preserving diffeomorphism j between the genus 1 Riemann surface
φ−1(q0) and the genus 1 Riemann surface C/Z2. These choices uniquely determine
an antihomomorphism

λr,q0,j : π1(D − {q1, . . . , qk}, q0) → SL(2,Z)

where SL(2,Z) is the group formed by all 2 × 2 integral matrices whose deter-
minant is 1. Such antihomomorphism is said to be a representation monodromy
of (φ, S,D). In order to make the presentation more standard, we turn the mon-
odromy representation into a homomorphism by regarding π1(D−{q1, . . . , qk}, q0)
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as the group whose binary operation ? is defined by [γ1] ? [γ2] := [γ2].[γ1], where
“.” denotes the usual composition of homotopy classes of paths. The matrix
λr,q0,j([Cr]), where Cr denotes the path q0 exp(2π

√
−1t), 0 ≤ t ≤ 1, will be called

the total monodromy of (φ, S,D).

Remark 8. The conjugacy class of λr,q0,j([Cr]) in SL(2,Z) is independent of the
choices r, q0 and j, and if (Φ,S, D × Dε) is a family of elliptic fibrations and
t1, t2 ∈ Dε then the conjugacy classes of the total monodromies of (Φt1 ,St1 , D)
and (Φt2 ,St2 , D) are the same.

The group π1(D − {q1, . . . , qk}, q0) is free and has rank k. We now describe a
method for obtaining free bases for this group. The bases obtained by this method
will be called special bases. Pick closed disks D1, . . . , Dk contained in Dr, centered
at q1, . . . , qk, respectively, and mutually disjoint. Pick simple paths β1, . . . , βk

whose interiors are mutually disjoint and contained in Dr − ∪Di, with β1(0) =
· · · = βk(0) = q0 and q0

i := βi(1) ∈ ∂Di for each i = 1, . . . , k, and such that their
initial velocity vectors β′1(0), . . . , β′k(0) are all nonzero and 0 < θ1 < · · · < θk < π
where θi is the angle between the vectors β′i(0) and

√
−1q0. Let γi be a path

which starts at q0, follows βi until it reaches q0
i , then traverses once and positively

the circle ∂Di, and finally comes back to q0 following βi in the opposite direction.
Then {[γ1], . . . , [γk]} is a basis for the free group π1(D − {q1, . . . , qk}, q0). Notice
that [Cr] = [γ1] · · · [γk] = [γk]? · · ·? [γ1] and therefore the total monodromy λ([Cr])
equals λ([γk]) · · ·λ([γ1]).

The following proposition is standard. Its statement requires the concept of Hur-
witz move which we define next.

Definition 9. Let G be a group and let g1 · · · gk be a product of elements of G.
Another such product g′1 · · · g′k is said to be obtained from g1 · · · gk by applying a
Hurwitz move if for some 1 ≤ i ≤ k − 1, g′j = gj for j /∈ {i, i + 1}, and either

g′i = gi+1, g
′
i+1 = g−1

i+1gigi+1 or g′i = gigi+1g
−1
i , g′i+1 = gi. We will also say that

an ordered set {g′1, . . . , g′k} is obtained from another ordered set {g1, . . . , gk} by
applying one Hurwitz move, if the same relations hold between the g′i’s and the
gi’s.

It is important to remark that the Hurwitz moves

g1 · · · gigi+1 · · · gk → g1 · · · gi+1(g
−1
i+1gigi+1) · · · gk

and
g1 · · · gigi+1 · · · gk → g1 · · · (gigi+1g

−1
i )gi · · · gk

are inverse of each other.

Proposition 10. Let (φ, S,D) and (φ′, S ′, D) be relatively minimal elliptic fibra-
tions without multiple fibers and having the same number of singular fibers. Let
q1, . . . , qk (resp. q′1, . . . , q

′
k) be the critical values of (φ, S,D) (resp. (φ′, S ′, D)). Let

λ (resp. λ′) be a monodromy representation for (φ, S,D) (resp. (φ′, S ′, D)). The
following statements are equivalent
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1. (φ, S,D) ∼ (φ′, S ′, D);

2. there exist an orientation preserving diffeomorphism h : D → D with h({q1,
. . . , qk}) = {q′1, . . . , q′k}, h(q0) = q′0, and a matrix A ∈ SL(2,Z), such that
cA ◦ λ = λ′ ◦ h∗, where cA denotes the automorphism of SL(2,Z) defined by
cA(B) = A−1BA, and

h∗ : π1(D − {q1, . . . , qk}, q0) → π1(D − {q′1, . . . , q′k}, q′0)

is the group isomorphism induced by h;

3. there exist an isomorphism

ψ : π1(D − {q1, . . . , qk}, q0) → π1(D − {q′1, . . . , q′k}, q′0)

sending [Cr] to [Cr′ ], and a matrix A ∈ SL(2,Z), such that cA ◦ λ = λ′ ◦ ψ,
where cA denotes the automorphism of SL(2,Z) defined by cA(B) = A−1BA;

4. there exist special bases {[γ1], . . . , [γk]} and {[γ′1], . . . , [γ′k]} for the groups π1(D
− {q1, . . . , qk}, q0) and π1(D − {q′1, . . . , q′k}, q′0), respectively, and a matrix A ∈
SL(2,Z) such that the product λ([γk]) · · ·λ([γ1]) becomes the product λ′([γ′k]) · · ·
λ′([γ′1]) after the application of a (finite) number of Hurwitz moves, followed by
the conjugation of all the elements in the resulting product by A;

5. for any pair of special bases {[γ1], . . . , [γk]} and {[γ′1], . . . , [γ′k]} for the groups
π1(D − {q1, . . . , qk}, q0) and π1(D − {q′1, . . . , q′k}, q′0), respectively, there exists
a matrix A ∈ SL(2,Z) such that the product λ([γk]) · · ·λ([γ1]) becomes the
product λ′([γ′k]) · · ·λ′([γ′1]) after the application of a (finite) number of Hurwitz
moves, followed by the conjugation of all the elements in the resulting product
by A.

In the rest of this section π1(D − {q1, . . . , qk}, q0) (resp. π1(D − {q′1, . . . , q′k},
q′0)) will be abbreviated by π1 (resp. π′1).

The equivalence 1 ⇔ 2 is a particular case of the result mentioned immediately
after the statement of Theorem 2.4 of [6].

2 ⇒ 3 is immediate, but its reciprocal is less obvious. Let f : D → D be an
orientation preserving diffeomorphism such that f(q′i) = qi for i = 0, . . . , k. It
is enough to prove that the automorphism f∗ ◦ ψ : π1 → π1 (which preserves
[Cr]) equals h∗ for some orientation preserving diffeomorphism h : D → D such
that h({q1, . . . , qk}) = {q1, . . . , qk} and h(q0) = q0. Actually, let us see that
every automorphism ϕ of π1 such that ϕ([Cr]) = [Cr] is induced by some ori-
entation preserving diffeomorphism h with the properties described in the last
sentence. Let {[γ1], . . . , [γk]} be a special basis for the group π1, let F (x1, . . . , xk)
be the free group in the alphabet {x1, . . . , xk} and ν : F (x1, . . . , xk) → π1 the
isomorphism sending xi to [γi] for i = 1, . . . , k. Notice that ν(xk · · ·x1) =
[γk] ? · · · ? [γ1] = [Cr]. The well known fact (see [4]) that the group of auto-
morphisms of F (x1, . . . , xk) which send the product xk · · ·x1 to itself, is gener-
ated by the elementary automorphisms {φ1, . . . , φk−1} such that φi(xj) = xj if
j /∈ {i, i + 1}, and φi(xi) = x−1

i xi+1xi, φi(xi+1) = xi, allows us to reduce the
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problem to proving that each automorphism of π1 defined as ϕi := ν ◦ φi ◦ ν−1

for i = 1, . . . , k − 1, is induced by some orientation preserving diffeomorphism
hi : D → D with hi({q1, . . . , qk}) = {q1, . . . , qk} and hi(q0) = q0. hi is explic-
itly constructed as a half twist performed on an appropriately chosen annulus
containing the points qi and qi+1.

2 ⇒ 4 is an immediate consequence of the fact that if {[γ1], . . . , [γk]} is a special
basis for π1 then for any orientation preserving diffeomorphism h : D → D with
h({q1, . . . , qk}) = {q′1, . . . , q′k} and h(q0) = q′0, h∗([γ1]), . . . , h∗([γk]) is a special
basis for π′1.

4 ⇒ 5 Let {[δ1], . . . , [δk]} (resp. {[δ′1], . . . , [δ′k]}) be special bases for π1 (resp. π′1).
We have that [δk]?· · ·?[δ1] = [γk]?· · ·?[γ1] and [δ′k]?· · ·?[δ′1] = [γ′k]?· · ·?[γ′1]. The well
known fact from [4] invoked above is equivalent to the fact that if y1, . . . , yk and
z1, . . . , zk are free bases for F (x1, . . . , xk), such that yk · · · y1 = zk · · · z1, then there
exists a finite sequence of Hurwitz moves that transforms the product yk · · · y1 into
the product zk · · · z1. Applied to our situation this gives the existence of a finite
sequence of Hurwitz moves which transforms the product [δk] ? · · · ? [δ1] into the
product [γk] ? · · · ? [γ1], and another finite sequence of Hurwitz moves transform-
ing the product [γ′k] ? · · · ? [γ′1] into the product [δ′k] ? · · · ? [δ′1]. Combining this
with the existence of a sequence of Hurwitz moves and a conjugation transform-
ing the product λ([γk]) · · ·λ([γ1]) into the product λ′([γ′k]) · · ·λ′([γ′1]) allows us to
conclude that there exists a finite sequence of Hurwitz moves and a conjugation
transforming the product λ([δk]) · · ·λ([δ1]) into the product λ′([δ′k]) · · ·λ′([δ′1]).
5 ⇒ 3 Let {[γ1], . . . , [γk]} (resp. {[γ′1], . . . , [γ′k]}) be a special basis for π1 (resp. π′1).
Then the product λ([γk]) · · ·λ([γ1]) can be transformed to the product λ′([γ′k]) · · ·
λ′([γ′1]) by applying a sequence µ1, . . . , µl of Hurwitz moves, followed by the con-
jugation of all the elements in the resulting product by a matrix A ∈ SL(2,Z).
Let {[γ′′1 ], . . . , [γ′′k ]} be the special basis for π1 obtained by applying the sequence
µ−1

l , . . . , µ−1
1 of Hurwitz moves to {[γ′1], . . . , [γ′k]}. Let ψ : π → π′ be the isomor-

phism determined ψ([γi]) = [γ′′i ] for each i = 1, . . . , k. It can easily verified that
cA ◦ λ = λ′ ◦ ψ.

3. Kodaira’s list

Let (φ, S,D) be an elliptic fibration and let q ∈ D. It is a well known fact that
the fiber φ−1(q) is a triangulable topological space. In [3] Kodaira studied the
problem of classifying fibers in elliptic fibrations under the following equivalence
relation which takes into account not only the topological structure of the fiber
but also the structure of the map φ in a regular neighborhood of it.

Definition 11. Let (φ, S,D) and (φ′, S ′, D) be elliptic fibrations and let q, q′ ∈
D. Let

∑
miXi and

∑
njYj be the effective divisors associated to φ−1(q) and

(φ′)−1(q′), respectively. The fibers φ−1(q) and (φ′)−1(q′) are said to be of the same
type if there is a homeomorphism f : φ−1(q) → (φ′)−1(q′), so that the induced
map f∗ : H2(φ

−1(q); Z) → H2((φ
′)−1(q′); Z) sends the class

∑
mi[Xi] to the class∑

nj[Yj].



412 C. A. Cadavid, J. D. Vélez: Normal Factorization in SL(2, Z) . . .

We will rely heavily on the following classical result due to Kodaira (see [3]).

Theorem 12. Let (φ, S,D) be a relatively minimal elliptic fibration and let qi be
a critical value of φ. Then

1. the fiber φ−1(qi) is of the same type of one and only one of the following pairs:

wI0: wX0, w > 1 where X0 is a non-singular elliptic curve;

wI1: wX0, w ≥ 1 where X0 is a rational curve with an ordinary double point;

wI2: wX0 + wX1, w ≥ 1 where X0 and X1 are non-singular rational curves
with intersection X0 ·X1 = p1 + p2;

II: 1X0 where X0 is a rational curve with one cusp;

III: X0 +X1 where X0 and X1 are non-singular rational curves with X0 ·X1 =
2p;

IV: X0 + X1 + X2, where X0, X1, X2 are non-singular rational curves and
X0 ·X1 = X1 ·X2 = X2 ·X0 = p.

The rest of the types are denoted by wIb, b ≥ 3, I∗b , II∗, III∗, IV∗ and are
composed of non-singular rational curves X0, X1, . . . , Xs, . . . such that Xs ·Xt ≤
1 (i.e. Xs and Xt have at most one simple intersection point) for s < t and
Xr ∩ Xs ∩ Xt is empty for r < s < t. These types are therefore described
completely by showing all pairs Xs, Xt with Xs ·Xt = 1 together with

∑
wiXi.

wIb: wX0 + wX1 + · · · + wXb−1, w = 1, 2, 3, . . ., b = 3, 4, 5, . . ., X0 · X1 =
X1 ·X2 = · · · = Xs ·Xs+1 = · · · = Xb−2 ·Xb−1 = Xb−1 ·X0 = 1;

I∗b : X0+X1+X2+X3+2X4+· · ·+2X4+b where b ≥ 0, and X0 ·X4 = X1 ·X4 =
X2 ·X4+b = X3 ·X4+b = X4 ·X5 = X5 ·X6 = · · · = X3+b ·X4+b = 1;

II∗: X0 + 2X1 + 3X2 + 4X3 + 5X4 + 6X5 + 4X6 + 3X7 + 2X8, where X0 ·X1 =
X1 ·X2 = X2 ·X3 = X3 ·X4 = X4 ·X5 = X5 ·X7 = X5 ·X6 = X6 ·X8 = 1;

III∗: X0 +2X1 +3X2 +4X3 +3X4 +2X5 +2X6 +X7, where X0 ·X1 = X1 ·X2 =
X2 ·X3 = X3 ·X5 = X3 ·X4 = X4 ·X6 = X6 ·X7 = 1;

IV∗: X0 + 2X1 + 3X2 + 2X3 + 2X4 + X5 + X6, where X0 · X1 = X1 · X2 =
X2 ·X3 = X2 ·X4 = X3 ·X5 = X4 ·X6 = 1.

2. the conjugacy class of λ([γi]), where [γi] is the ith term in any special basis for
π1(D − {q1, . . . , qk}, q0), depends only on the type of the fiber φ−1(qi).

3. for each type T above there exists a relatively minimal elliptic fibration (φT , ST ,
D) with FT := φ−1

T (0) as its unique singular fiber, and having type T .

The following table contains for each type T , a matrix representative MT of the
conjugacy class of the total monodromy of (φT , ST , D), the Euler characteristic of
ST (which is the same as the Euler characteristic of FT ) (see [11]), and a particular
factorization of MT in SL(2,Z) which will play a central role in next section.
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T MT χ(ST ) m.n.f.

wIn (w ≥ 1, n ≥ 0)

[
1 n
0 1

]
n Un

II

[
1 1

−1 0

]
2 V U

III

[
0 1

−1 0

]
3 V UV

IV

[
0 1

−1 −1

]
4 (V U)2

I∗n (n ≥ 0)

[
−1 −n

0 −1

]
n+ 6 Un(V U)3 (= −Un)

II∗
[

0 −1
1 1

]
10 V U(V U)3 (= −V U)

III∗
[

0 −1
1 0

]
9 V UV (V U)3 (= −V UV )

IV∗
[
−1 −1

1 0

]
8 (V U)2(V U)3 (= −(V U)2)

Table 1

4. Factorization of Kodaira’s matrices in terms of conjugates of U

In this section we recall some basic facts about the group SL(2,Z), formed by
all 2× 2 matrices with integral entries and determinant 1, and about the modu-
lar group PSL(2,Z) defined as the quotient SL(2,Z)/{±Id2×2}, and prove some
uniqueness results (Theorems 19 and 20) about the factorization in terms of con-
jugates of the matrix

U =

[
1 1
0 1

]
,

of the matrices appearing in Kodaira’s list (second column of Table 1).

4.1. Study of PSL(2, Z) as 〈w, b | w2 = b3 = 1〉

Although a significant part of the material in this section can be found in references
[7], [1], [5], for the sake of completeness we have included complete proofs of those
results that are more specialized.
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In what follows we will refer to particular elements (classes) in PSL(2,Z) by
specifying one of its representatives. We will use capital letters for the elements of
SL(2, Z) and the corresponding lower case letters for their images in PSL(2,Z).

For example, since U =

[
1 1
0 1

]
then u denotes the class ±U .

It is a well known fact that the modular group is isomorphic to the free product

Z2 ∗ Z3 via an isomorphism taking a generator of Z2 to w =

[
0 1
−1 0

]
, and a

generator of Z3 to b = wu. Hence,

G = PSL(2,Z) ∼=
〈
w, b

∣∣ w2 = b3 = 1
〉
.

From this we see that the abelianization of G is Z2 × Z3 with any conjugate of
u being sent to 1. Consequently, the abelianization of SL(2,Z) is Z12, with any
conjugate of the matrix U being sent to 1.

It also follows that each element a 6= id2×2 in this group can be written
uniquely as a product a = tk · · · t1, where each ti is either w, b, or b2 and no
consecutive pair ti+1ti is formed either by two powers of b or two copies of w.
We call the product tk · · · t1 the reduced expression of a, and k the length of a,
which we will denote it by l(a). Let c = t′1 · · · t′l be the reduced expression of an
element c 6= id2×2. If exactly the first m ≥ 1 terms of c cancel with those of a,
i.e. t′i = t−1

i , for 1 ≤ i ≤ m, and if m < min(k, l), then ac = tk · · · tm+1t
′
m+1 · · · t′l

and tm+1t
′
m+1 has to be equal to a non trivial power of b. This is because if tm+1

were not a power of b then it would have to be w and therefore tm would be a first
or second power of b, and so would be t′m. Hence, t′m+1 would also have to be w
but in this case there would be m + 1 instead of m cancellations at the juncture
of a and c. Thus, tm+1 and t′m+1 are both powers of b and since there are exactly
m cancellations their product must be non trivial. Thus, the reduced expression
for ac is of the form

ac = tk · · · tm+2b
et′m+2 · · · t′l, e = 1 or 2, if m < min(k, l). (1)

Let s1 denote the element bwb. The shortest conjugates of s1 in G are precisely
s0 = b2(bwb)b = wb2 with length 2, s2 = b(bwb)b2 = b2w with length 2, and s1

itself with length 3. It can easily be seen that any other conjugate g of s1 has
length greater than 3, and that its reduced expression is of the form q−1s1q, where
q is a reduced word that begins with w (see [1]), therefore l(g) = 2l(q) + 3. A
conjugate g of s1 will be called short if g ∈ {s0, s1, s2}, and it will be called long
otherwise.

Let cb(a) = b−1ab denote conjugation by b. This is an automorphism of G that
sends u = wb to b2wb2. The map ϕ : Z2 ∗ Z3 → Z2 ∗ Z3 defined by sending w to
itself, and b to b2, that is, ϕ = Id ∗ ψ, where ψ is the automorphism of Z3 that
sends b to b2, is an automorphism that maps b2wb2 to s1. Hence the composite
ϕ ◦ cb of these two automorphisms is an automorphism ρ that sends u and v into
s1 and s0, respectively, and takes conjugates of u into conjugates of s1.
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The following notion is the key ingredient for understanding the reduced expres-
sion of a product of conjugates of s1.

Definition 13. We will say that two conjugates g and h of s1 join well if

l(gh) ≥ max(l(g), l(h)).

In [1] (Lemma 4.10) the following result is proved.

Lemma 14. Suppose that g = tk · · · t1 and h = t′1 · · · t′l are the reduced expressions
of two conjugates of s1 that join well. When gh is calculated either:

1. no cancellation occurs, and in this case tk · · · t1t′1 · · · t′l is the reduced expression
of gh, or

2. exactly the first m ≥ 1 terms of g and h cancel out, in which case

m < min(k, l). (2)

Moreover, if g is short or h is short, then both are short and they are s2 and s0,
respectively. If both are long with reduced expressions of the form g = q−1

1 s1q1
and h = q−1

2 s1q2, hence with lengths 2l(qi) + 3, then the reduced expression of
gh is of the form

gh = tk · · · tm+2b
et′m+2 · · · t′l, e = 1 or 2,

and the inequality (2) can be improved to

m < min((k − 1)/2, (l − 1)/2)

which implies that m ≤ min(l(q1), l(q2)).

Now suppose that g and h are two conjugates of s1 that do not join well, and
are not both short. The next lemma shows that in this case there exist g′ and h′

conjugates of s1 such that gh = g′h′ and l(g′)+ l(h′) < l(g)+ l(h) ([1], Proposition
4.15).

Lemma 15. Suppose that g and h are conjugates of s1 which satisfy the inequality
l(gh) < max(l(g), l(h)), and assume that at least one of them is long. Then
l(g) 6= l(h). If l(g) < l(h), the elements g′ = ghg−1, h′ = g are conjugates of s1

and satisfy:

1. gh = g′h′, and

2. l(g′) + l(h′) < l(g) + l(h).

If instead, l(h) < l(g), then the same conclusion holds taking g′ = h, and h′ =
h−1gh.

Notice that in the previous proof, the pair (g′, h′) is obtained from the pair (g, h)
by performing one Hurwitz move.
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Using the previous lemma we can prove that a product g1 · · · gr of conjugates of s1

can always be transformed by applying a finite number of Hurwitz moves into a
product g′1 · · · g′r of conjugates of s1 in which each pair of consecutive terms joins
well. Notice that if g′1 · · · g′s is obtained from g1 · · · gr by applying a finite number
of Hurwitz moves, then s = r, g′1 · · · g′s = g1 · · · gr and {C(g′1), . . . , C(g′r)} =
{C(g1), . . . , C(gr)} where C(g) denotes the conjugacy class of g.

Proposition 16. Let g1 · · · gr be a product of r conjugates of s1. Then after a
finite number of Hurwitz moves one can obtain a new product g′1 · · · g′r of conjugates
of s1, such that either they are all short, or any pair of consecutive factors g′ig

′
i+1

join well.

Before proving this proposition we need to know how to handle pairs of consecutive
short conjugates of s1 that do not join well.

Proposition 17. Let p = si1si2 · · · sil with l ≥ 2 be a product of short conju-
gates of s1, where there is at least one pair of consecutive terms that do not join
well. Then after a finite number of Hurwitz moves, p can be written as a product
sj1sj2 · · · sjl

of short conjugates of s1 (with the same number of terms) where sj1

can be chosen arbitrarily from the set {s0, s1, s2}. In a similar way, si1si2 · · · sil

can be transformed by applying a finite number of Hurwitz moves into another
product of short conjugates of s1 with the same number of terms, where the last
conjugate can be chosen arbitrarily.

Proof. We use induction on l. For l = 2 a direct computation shows that the
pairs s2s0, s0s1, and s1s2 are the only ones that do not join well, and that each
product equals b. From this the claim follows by noticing that each product
can be changed into any other by a Hurwitz move: s2s0 = s0(s

−1
0 s2s0) = s0s1,

s0s1 = s1(s
−1
1 s0s1) = s1s2, and s1s2 = s2(s

−1
2 s1s2) = s2s0.

Now let l > 2. If the first pair does not join well, the same argument as before
could be applied. Hence, we may assume that there is a consecutive pair in the
product si2 · · · sil which does not join well. Then, by induction we can change
this product by a new product sj2 · · · sjl

, where sj2 can be made to be any short
conjugate. Consequently, if si1 is s0 (resp. s1, s2) then we may choose sj2 to be s1

(resp. s2, s0) so that the first pair does not join well and therefore can be changed
again by a pair whose first term can be chosen arbitrarily.

The proof of the second part is analogous. �

Proof of Proposition 16. Among all products g′1 · · · g′r obtained by Hurwitz moves
from the product g1 · · · gr we may choose one such that the sum

∑r
i=1 l(g

′
i) is as

small as possible. If all g′i are short we are done. If not, any g′i which is long has
to join well with any term (if any) before or after it, for otherwise, by Lemma 15,
the corresponding pair could be transformed by a Hurwitz move into another one
making the sum

∑r
i=1 l(g

′
i) smaller.

On the other hand, let si1 · · · sil be a product of consecutive short conjugates
that appears in g′1 · · · g′r. If this product precedes a long conjugate g′k, i.e., if
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si1 · · · silg
′
k is a segment of the product g′1 · · · g′r, then, by the previous lemma,

either any pair of consecutive elements of si1 · · · sil joins well or we can transform
this product via Hurwitz moves into sj1sj2 · · · sjl

, where sjl
can be chosen arbi-

trarily. If the reduced expression of g′k is of the form wbet3 · · · tm, e = 1 or 2, we
may choose sjl

= s2 so that sjl
and g′k do not join well. In this situation Lemma

15 guarantees that by applying one Hurwitz move we would obtain a new product
whose length sum is smaller than that of g′1 · · · g′r. But this is a contradiction.
Similarly, if the reduced expression of g′k is of the form bewt3 · · · tm, with e = 1
or 2, then if e = 1 (resp. e = 2), we could choose sjl

to be s2 (resp. s1) so that
sjl

and g′k do not join well. As before, this leads to a contradiction. We conclude
that any pair of consecutive elements of si1 · · · sil must join well. The argument
is essentially the same in case g′ksi1 · · · sil is a segment of the product g′1 · · · g′r.
Thus, we see that if a product g′1 · · · g′r obtained from g1 · · · gr via Hurwitz moves
and minimizing the sum

∑r
i=1 l(g

′
i) among such products, contains at least one

long conjugate then all consecutive pairs in it must join well. This proves the
proposition. �

Let us define the left end of a conjugate g of s1, denoted by left(g), as follows: If
g is long of the form g = q−1s1q, define left(g) = q−1s1. If g is s0 = wb2, s1 = bwb,
or s2 = b2w, we define its left end as w, b, b2, respectively.

Lemma 18. If in a product p = g1 · · · gr of conjugates of s1 all pairs of consecutive
factors join well, then the reduced expression of p is of the form left(g1)t1 · · · tl,
where each ti is one of b, b2 or w.

Proof. We prove this by induction on r, the assertion being trivial for r = 1. We
distinguish several cases.

1. g1 = s0. Since g1 and g2 join well, Lemma 14 implies that either g2 is
short or no cancellation occurs when the product g1g2 is calculated. If g2 is
short, then it should be equal to s0 or to s2. If g2 = s0, by the induction
hypothesis, we must have that the reduced expression for g2 · · · gr is of the
form wt1 · · · tk, and consequently g1 · · · gr = wb2wt1 · · · tk = left(s0)t

′
1 · · · t′l.

On the other hand, if g2 = s2 then g2 · · · gr = b2t1 · · · tk and the result also
holds, since g1 · · · gr = wbt1 · · · tk = left(s0)t

′
1 · · · t′l. It only rests to consider

the case in which no cancellation occurs when g1g2 is calculated. By the
induction hypothesis, we know that the reduced expression of g2 · · · gr has
the form left(g2)t1 · · · tk. On the other hand, when g1left(g2) is calculated
no cancellation occurs. We conclude that the reduced expression of g1 · · · gr

is of the form left(g1)t
′
1 · · · t′l, and the results holds.

2. If g1 = s2 or g1 = s1. In these cases the argument is exactly the same as in
the previous case.

3. g1 is long. By Lemma 14, either g2 is short and no cancellation occurs when
g1g2 is calculated, or g2 is long. In the first case, by the induction hypothesis,
g2 · · · gr = left(g2)t1 · · · tk. On the other hand, since no cancellation occurs
when g1g2 is calculated we have that no cancellation occurs when g1left(g2)
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is calculated. We conclude that the reduced expression of g1 · · · gr is of
the form left(g1)t

′
1 · · · t′l and the result holds. Let us assume now that g2

is long. If g1 = q−1
1 s1q1 and g2 = q−1

2 s1q2 then, by Lemma 14, either no
cancellation occurs, or the number of terms that cancel out in the product
g1g2 is ≤ min(l(q1), l(q2)). By induction g2 · · · gr = q−1

2 s1t1 · · · tk, and in
either case the reduced expression of g1 · · · gr starts with q−1

1 s1. �

4.2. Uniqueness of factorization results

Let us set

W =

[
0 1

−1 0

]
,

and

V = W−1UW = −WUW =

[
1 0

−1 1

]
.

The last column of Table 1 contains a particular factorization of the correspond-
ing monodromy matrix in terms of conjugates of U (V is a conjugate of U). This
factorization will be called the minimal normal factorization (which we will ab-
breviate as m.n.f.) of the corresponding matrix. In this section we intend to prove
the following theorem.

Theorem 19. Let M be one of the matrices in Table 1. If M = G1 · · ·Gr is
a factorization of M in terms of conjugates of U in SL(2,Z), then r is greater
than or equal to the number of factors in the m.n.f. of M . Moreover, if n is
such number then after a finite number of Hurwitz moves the product G1 · · ·Gr

transforms into a product C1 · · ·CnDn+1 · · ·Dr where

• in cases wIn − IV, C1 · · ·Cn is the m.n.f. of M and Dn+1 · · ·Dr is equal to
the identity matrix Id2×2, and

• in cases I∗n − IV∗, C1 · · ·Cn is the m.n.f. of −M and Dn+1 · · ·Dr is equal to
−Id2×2.

For instance, for

M =

[
0 −1
1 0

]
, (case III∗)

any factorization M = G1 · · ·Gr can be transformed using Hurwitz moves into
M = V UV D4 · · ·Dr where D4 · · ·Dr = −Id2×2. By a well known theorem of
Moishezon [7] we also know that any factorization of the identity in terms of
conjugates of U , can be transformed using Hurwitz moves into a product of the
form (V U)6s with s ≥ 0, from which we can strengthen the theorem above as
follows.

Theorem 20. Let M be a matrix that corresponds to the monodromy of a singular
fiber in an elliptic fibration. If M = G1 · · ·Gr is a factorization of M in terms
of conjugates of U , then r is greater than or equal to the number of factors in
the m.n.f. of M . Moreover, if n is such number, then after a finite number of
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Hurwitz moves the product G1 · · ·Gr becomes the product C1 · · ·Cn(V U)6s, where
C1 · · ·Cn is the m.n.f. of M and s = (r − n)/12, in cases wIn − IV, and into
C1 · · ·Cn(V U)6s+3, where C1 · · ·Cn is the m.n.f. of −M and s = (r − n − 6)/12,
in cases I∗n − IV∗.

We now present the proof of Theorem 19.

Proof. We deal with cases wIn–IV first, and once we have established these, a
rather trivial argument takes care of the remaining cases I∗n–IV∗. In what follows,
π : SL(2,Z) → PSL(2,Z) will be the canonical homomorphism.

Claim: Let M be one of the matrices in cases wIn − IV . Suppose that m :=
π(M) = g1 · · · gr is a factorization in terms of conjugates of π(U) = u. Then
after a finite number of Hurwitz moves the product g1 · · · gr transforms into a new
one of the form (g′1 · · · g′n)(g′n+1 · · · g′r) where if G′

1 · · ·G′
n is the m.n.f. of M , then

g′i = π(G′
i) for i = 1, . . . , n, and g′n+1 · · · g′r = π(Id2×2).

Assuming this claim we can prove cases wIn–IV of the theorem as follows. A
product H1 · · ·Hs in SL(2,Z) will be said to be a lift of a product k1 · · · ks in
PSL(2,Z) if π(Hi) = ki for each i = 1, . . . , s. It can be immediately verified that
if a product H1 · · ·Hs is a lift of a product k1 · · · ks, then the product H ′

1 · · ·H ′
s

obtained by applying a Hurwitz move to H1 · · ·Hs, is a lift of the product k′1 · · · k′s
obtained by applying the same Hurwitz move to the product k1 · · · ks. Let M now
be one of the matrices in cases wIn–IV, and let G1 · · ·Gr be a factorization of M
in terms of conjugates of U . Let m = g1 · · · gr where m = π(M) and gi = π(Gi)
for each i = 1, . . . , r. Since each Gi is a conjugate of U , then each gi is a conjugate
of π(U). Also by definition the product G1 · · ·Gr is a lift of the product g1 · · · gr.
The claim guarantees the existence of a finite sequence of Hurwitz moves which
transforms g1 · · · gr into a new product (g′1 · · · g′n)(g′n+1 · · · g′r). It follows that if
G′

1 · · ·G′
r is the product obtained from G1 · · ·Gr by applying the same sequence

of Hurwitz moves, then G′
1 · · ·G′

r is a lift of (g′1 · · · g′n)(g′n+1 · · · g′r) where each Gi

is a conjugate of U . Now, by observing that U and −U have different traces and
therefore do not belong to the same conjugacy class, we conclude that G′

1 · · ·G′
n

has to be the m.n.f. of M , and therefore that G′
n+1 · · ·G′

r = Id2×2.
Cases I∗n–IV∗ can be dealt with as follows. Let M be one of the matrices in

cases I∗n–IV∗. Suppose that G1 · · ·Gr is a factorization of M in terms of conjugates
of U . By applying the homomorphism π we obtain a factorization g1 · · · gr of π(M)
in terms of conjugates of u = π(U). Since π(M) = π(−M) and −M is one of
the matrices in cases wIn–IV, we can apply the claim to π(M) = g1 · · · gr. We
conclude that there exists a sequence of Hurwitz moves which transforms the
product g1 · · · gr into a product (g′1 · · · g′n)(g′n+1 · · · g′r) where the m.n.f. of −M
is a lift of g′1 · · · g′n and g′n+1 · · · g′r = π(Id2×2). Let (G′

1 · · ·G′
n)(G′

n+1 · · ·G′
r) be

the product obtained from G1 · · ·Gr by applying the same sequence of Hurwitz
moves. By the observations made immediately after the claim we know that the
facts that G′

1 · · ·G′
n is a lift of g′1 · · · g′n and that each G′

i is a conjugate of U imply
that G′

1 · · ·G′
n has to be the m.n.f. of −M , and therefore that G′

n+1 · · ·G′
r =

−Id2×2 since M = G′
1 · · ·G′

r = (−M)(G′
n+1 · · ·G′

r). This finishes the proof of the
theorem. �
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In order to prove the claim we may first apply the automorphism ρ (defined in
Remark 4.1) and then prove the equivalent claim for ρ(m). Notice that after doing
this the image of the canonical factorization of M becomes a factorization of ρ(m)
in terms of the elements ρ(u) = s1 and ρ(v) = s0. Now we prove the claim by
analyzing each of the four possible cases.

Case 1: m = un hence ρ(m) = ρ(u)n = sn
1 . It suffices to prove that for each

n ≥ 0, if sn
1 = g1 · · · gr where each gi is a conjugate of s1, then r ≥ n and there

exists a sequence of Hurwitz moves which transforms the product g1 · · · gr into
a product (g′1 · · · g′n)(g′n+1 · · · g′r) where the m.n.f. of M is a lift of g′1 · · · g′n and
g′n+1 · · · g′r = π(Id2×2). In the case n = 0 the m.n.f. of Id2×2 is taken to an empty
product. We proceed by induction on n. The result is immediate when n = 0. Let
us suppose that sn

1 = g1 · · · gr. By Proposition 16, after applying a finite number
of Hurwitz moves one arrives at a new product sn

1 = g′1 · · · g′r in which either any
pair of consecutive gi’s in this product join well or all factors are short conjugates
of s1.

In the first case, by Lemma 18 we know that the reduced expression of this
product must be of the form left(g′1)t1 · · · tl. On the other hand, g′1 cannot be a
long conjugate q−1s1q. This is because the reduced expression of sn

1 is b(wb2)n−1wb,
the reduced expression of left(q−1s1q) = q−1s1 has the form l1 · · · lsbwb and the
sequence bwb does not appear in the reduced expression of sn

1 . In a similar way, g′1
cannot be s0 or s2 since left(s0) = w and left(s2) = b2 but the reduced expression
of sn

1 starts with the element b. Hence g′1 = s1, and we can cancel out this element
on both sides of sn

1 = g′1 · · · g′r and apply the induction hypothesis to obtain the
result.

In the second case, i.e. when all the g′i’s are short, we may assume that there
is at least one pair of consecutive elements that do not join well, for otherwise we
would be in the previous case. By Proposition 17, after a finite number of Hurwitz
moves one arrives at a product g′′1 · · · g′′r with g′′1 = s1. Cancelling out this element
in equation sn

1 = g′′1 · · · g′′r and applying the induction hypothesis one obtains the
result.

Case 2: m = vu, hence ρ(m) = s0s1. Let us suppose that s0s1 = g1 · · · gr. Again,
by Proposition 16, after a finite number of Hurwitz moves we arrive at a new
product s0s1 = g′1 · · · g′r (e.1) in which either any pair of consecutive g′i’s join well
or all factors are short conjugates of s1. In the first case, since s0s1 = b, g′1 can
neither be long nor equal to s0 or s2, for exactly the same reason as in the previous
case. We conclude that g′1 = s1. Since s0s1 = s1s2, we can cancel out s1 on both
sides of (e.1) in order to obtain s2 = g′2 · · · g′r. Again, by Lemma 18 we know that
the reduced expression of this product must be of the form left(g′2)t1 · · · tk and this
must be equal to left(s2) = b2. This rules out the possibility of g′2 being a long
conjugate or equal to s1 or s0. Thus, g′2 = s2 and after applying a finite sequence
of Hurwitz moves (e.1) can be written in the form s0s1 = s1s2g

′′
3 · · · g′′r . As in the

proof of Proposition 17, one extra Hurwitz move allows us to write s1s2 as s0s1

and the claim follows.
In the second case, i.e. when all the g′i’s are short we may assume that at

least one pair of consecutive elements does not join well. By Proposition 17 after
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applying a finite sequence of Hurwitz moves one arrives at a product s0s1 =
g′′1 · · · g′′r (e.2) with g′′1 = s0. Cancelling out s0 on both sides of (e.2) we obtain
s1 = g′′2 · · · g′′r . But Case 1 (with n = 1) implies that this product can be changed
using Hurwitz moves into a new one g′′′2 · · · g′′′r with g′′′2 = s1. The claim follows.

The strategy of the proof for the remaining cases will be the same. In order
to make it shorter, we will abbreviate by Case ∗i, the case where all pairs of
consecutive elements in a product join well, and by Case ∗ii, the case where all
elements in a product are short and at least one pair of consecutive elements does
not join well. We will also abbreviate the expression “after a finite number of
Hurwitz moves” by “after H.m.”.

Case 3: m = vuv, hence ρ(m) = s0s1s0. Suppose that s0s1s0 = g1 · · · gr. After
H.m. we arrive at the product s0s1s0 = g′1 · · · g′r (e.3) falling in one of the following
cases.

Case 3i: Since s0s1s0 = bwb2, the comparison of the left sides of the reduced
expressions of both sides of (e.3) implies that g′1 = s1. Since s0s1s0 = s1s2s0

we have s1s2s0 = g′1 · · · g′r and we can cancel out s1 in this equation to obtain
s2s0 = g′2 · · · g′r. Now, s2s0 = s0s1 implies that s0s1 = g′2 · · · g′r and we are in the
previous case. We know that after H.m. the product g′2 · · · g′r can be changed to
a new one of the form s0s1g

′′
4 · · · g′′r with g′′4 · · · g′′r = π(Id2×2), and consequently

s0s1s0 = s1s0s1g
′′
4 · · · g′′r . After H.m. the right hand side can be transformed into

s1s2s0g
′′
4 · · · g′′r and this into s0s1s0g

′′
4 · · · g′′r . The claim follows.

Case 3ii: Proposition 17 allows us to assume that g′r = s0 and if we cancel
it out in (e.3) we obtain s0s1 = g′1 · · · g′r−1 and ending up again in the previous
case. After H.m. the product g′1 · · · g′r−1 transforms into a new product of the form
s0s1g

′′
3 · · · g′′r−1 with g′′3 · · · g′′r−1 = π(Id2×2). Thus s0s1s0 = s0s1g

′′
3 · · · g′′r−1s0 which

after H.m. becomes s0s1(gs0g
−1)g′′3 · · · g′′r−1 where g = g′′3 · · · gr−1 = π(Id2×2). The

latter product is therefore s0s1s0g
′′
3 · · · g′′r−1 and the claim follows.

Case 4: m = (vu)2 hence ρ(m) = (s0s1)
2. Suppose (s0s1)

2 = g1 · · · gr. After
H.m. we arrive at the product s0s1s0 = g′1 · · · g′r (e.4) falling in one of the following
cases.

Case 4i: Since (s0s1)
2 = b2, the comparison of the left sides of the reduced

expressions of both sides of (e.4) implies that g′1 = s2. Since (s0s1)
2 = s2s0s0s1

we have that s2s0s0s1 = g′1 · · · g′r. Cancelling out s2 on both sides of this equa-
tion gives s0s0s1 = g′2 · · · g′r (e.5). Now s0s0s1 = w and therefore left(g′2) = w.
This implies that g′2 = s0 and by cancelling this term out in equation (e.5)
we obtain s0s1 = g′3 · · · g′r. Since this is Case 2, we know that after H.m. the
product g′3 · · · g′r transforms into a product of the form s0s1g

′′
5 · · · g′′r and we have

(s0s1)
2 = s2s0s0s1g

′′
5 · · · g′′r with g′′5 · · · g′′r = π(Id2×2). But s2s0s0s1 can be changed

with one extra Hurwitz move into s0s1s0s1 and the claim follows.
Case 4ii: In this case, by Proposition 17, after H.m. the product g′1 · · · g′r

transforms into a product product (s0s1)
2 = g′′1 · · · g′′r (e.6) with g′′r = s1. Can-

celling this element in equation (e.6) gives s0s1s0 = g′′1 · · · g′′r−1. Since this is Case
3, we know that after H.m. the product g′′1 · · · g′′r−1 transforms into a product of
the form s0s1s0g

′′′
4 · · · g′′′r−1 with g′′′4 · · · g′′′r−1 = π(Id2×2). We have therefore that
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s0s1s0s1 = s0s1s0g
′′′
4 · · · g′′′r−1s1, and after H.m. this product transform into the

product s0s1s0(gs1g
−1)g′′′4 · · · g′′′r−1 with g = g′′′4 · · · g′′′r−1 = π(Id2×2). The claim

follows. �

5. Confluence of singular fibers in elliptic fibrations

In this section we apply Proposition 10 and Theorem 19 to the question of giving
necessary and sufficient conditions under which the set of singular fibers in an
elliptic fibration can be fused into a unique singular fiber.

Theorem 21. Let φ : S → D be a relatively minimal singular elliptic fibration
without multiple fibers. Then φ is weakly deformation equivalent to the elliptic
fibration φT : ST → D, if and only if the total monodromy λr,q0,j([Cr]) of φ is
conjugate with the matrix MT in Table 1 and χ(S) equals χ(ST ).

Proof. Necessity. Let us assume that φ : S → D is weakly deformation
equivalent to a φT : ST → D as described in the statement. Remark 4 implies
that the total monodromies λr,q0,j([Cr]) of φ, and λr′,q′

0,j′([Cr′ ]) of φT are conjugate
of each other, but the latter is conjugate with MT . Remark 8 implies that χ(S) =
χ(ST ).

Sufficiency. By Theorem 6 there exist morsifications (Φ,S, D×Dε) and (Ψ, T , D×
Dδ) of φ : S → D and φT : ST → D, respectively. According to that theorem we
may assume that none of the members of either morsification contains a multiple
fiber. Let us fix t 6= 0 in Dε and t′ 6= 0 in Dδ and let us consider the elliptic
fibrations (Φt,St, D) and (Ψt′ , Tt′ , D). We claim that these elliptic fibrations are
topologically equivalent. Let us denote by q1, . . . , qk (resp. q′1, . . . , q

′
l) the critical

values of Φt (resp. Ψt′). We begin to prove the claim by pointing out that k must
be equal to l, since k =

∑k
i=1 χ(Φ−1

t (qi)) = χ(St) = χ(S) = χ(ST ) = χ(Tt′) =∑l
i=1 χ(Ψ−1

t (q′i)) = l where the first and last equalities are justified by the fact that
all singular fibers of Φt and Ψt′ are of type I1 and therefore each one of these fibers
has Euler characteristic 1, and the third and fifth equalities are justified by Remark
4. Since χ(ST ) always equals the number of factors nT in the m.n.f. of MT , we con-
clude that k = nT . Let λ = λr,q0,j and λ′ = λr′,q′

0,j′ be monodromy representations
of Φt and Ψt′ , respectively, and let γ1, . . . , γk and γ′1, . . . , γ

′
k be special bases for

π1(D−{q1, . . . , qnT
}, q0) and π1(D−{q′1, . . . , q′nT

}, q′0), respectively. Now, the total
monodromy λ([Cr]) of Φt is conjugate of a total monodromy of φ and the total
monodromy λ′([Cr′ ]) of Ψt′ is conjugate of a total monodromy of φT , we have that
λ([Cr]) and λ′([Cr′ ]) are conjugates of each other, say λ([Cr]) = A−1λ′([Cr′ ])A for
some A ∈ SL(2,Z). On the other hand, λ([Cr]) = λ(γ1) · · ·λ(γnT

) and λ′([Cr′ ]) =
λ′(γ′1) · · ·λ′(γ′nT

) are factorizations of the corresponding total monodromies in
terms of conjugates of U . It is clear that there exist B,C ∈ SL(2,Z) such
that MT = (B−1λ(γ1)B) · · · (B−1λ(γnT

)B) = (C−1λ′(γ′1)C) · · · (C−1λ′(γ′nT
)C).

By Theorem 19 the product (B−1λ(γ1)B) · · · (B−1λ(γnT
)B) can be transformed

into the product (C−1λ′(γ′1)C) · · · (C−1λ′(γ′nT
)C) by applying performing a finite

number of Hurwitz moves. By using the immediate fact that if in a group a
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product g1 · · · gr can be transformed by applying Hurwitz moves to another prod-
uct h1 · · ·hr, then for any element g ∈ G, the product (g−1g1g) · · · (g−1grg) can be
transformed into the product (g−1h1g) · · · (g−1hrg) by applying Hurwitz moves, we
obtain that λ(γ1) · · ·λ(γnT

) can be transformed into the product (BC−1λ′(γ′1)(B
C−1)−1) · · · (BC−1λ′(γ′nT

)(BC−1)−1)). We conclude that the product λ(γ1) · · ·
λ(γnT

) transforms into the product λ′(γ′1) · · ·λ′(γ′nT
) by a finite sequence of Hur-

witz moves followed by a conjugation of all factors in the product by the same
element is SL(2,Z). But Proposition 10 implies that under these circumstances,
the elliptic fibrations Φt and Ψt′ are topologically equivalent. In conclusion,
(Φ,S, D×Dε) and (Ψ, T , D×Dδ) are deformations of (φ, S,D) and (φM , SM , D),
respectively, such that (Φt,St, D) and (Ψt′ , Tt′ , D) are topologically equivalent,
and therefore (φ, S,D) and (φM , SM , D) are weakly deformation equivalent. �
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