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Introduction

In the geometry of contact metric manifolds, a vector Y orthogonal to the charac-
teristic (Reeb) vector field ξ is called a special direction if the covariant derivative
of ξ in the direction Y is collinear with Y . If Y is a vector field with this prop-
erty, then one can think of ξ as falling forward or backward as one moves along
integral curves of Y and when one such direction exists exhibiting one direction
of fall, another direction exists exhibiting the opposite direction of fall. If the
sectional curvatures of plane sections containing ξ are negative, such directions
always exist. If ξ generates an Anosov flow on a 3-dimensional contact manifold,
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one can investigate the situation in which special directions agree with the stable
and unstable directions of the Anosov flow. In particular the Lie group SL(2,R)
admits a family of contact metric structures exhibiting these properties. This
theory was developed in [1], [2].

In the present paper we develop the ideas of holomorphic and real special
directions on a complex contact metric manifold. We first prove some existence
results for special directions and then discuss a 2-parameter family of complex
contact metric structures on the Lie group SL(2,C). The notion of a holomorphic
Anosov flow in general and on SL(2,C) was introduced by E. Ghys in [5]. We show
that for our 2-parameter family of structures, the holomorphic special directions
determine subbundles that agree with the stable and unstable subbundles of the
corresponding holomorphic Anosov flow. Reducing to a 1-parameter family of
complex contact metric structures, we also show that SL(2,C) admits a real vector
field generating a partially hyperbolic flow whose central bundle has dimension 2.

1. Preliminaries

A complex contact manifold is a complex manifold M of odd complex dimension
2n+1 together with an open covering {O} of coordinate neighborhoods such that:

1) On each O there is a holomorphic 1-form ω such that ω ∧ (dω)n 6= 0.

2) On O ∩ O′ 6= ∅ there is a non-vanishing holomorphic function f such that
ω′ = fω.

The complex contact structure determines a non-integrable subbundle H by the
equation ω = 0; H is called the complex contact subbundle or the horizontal
subbundle.

On the other hand if M is an Hermitian manifold with almost complex struc-
ture J , Hermitian metric g and open covering by coordinate neighborhoods {O},
it is called a complex almost contact metric manifold if it satisfies the following
two conditions:

1) In each O there exist 1-forms u and v = u ◦ J with dual vector fields U and
V = −JU and (1,1) tensor fields G and H = GJ such that

G2 = H2 = −I + u⊗ U + v ⊗ V,

GJ = −JG, GU = 0, g(X,GY ) = −g(GX, Y ).

2) On O ∩O′ 6= ∅,
u′ = Au−Bv, v′ = Bu+ Av,

G′ = AG−BH, H ′ = BG+ AH

where A and B are functions with A2 +B2 = 1.

A complex contact manifold admits a complex almost contact metric structure for
which the local contact form ω is u− iv to within a non-vanishing complex-valued
function multiple and the local tensor fields G and H are related to du and dv by

du(X,Y ) = g(X,GY ) + (σ ∧ v)(X, Y ),
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dv(X, Y ) = g(X,HY )− (σ ∧ u)(X, Y )

where σ(X) = g(∇XU, V ), ∇ being the Levi-Civita connection of g (see [2], [3]
and [7]). Moreover on O ∩O′ it is easy to check that U ′ ∧ V ′ = U ∧ V and hence
we have a global vertical bundle V orthogonal to H which is typically assumed
to be integrable. We refer to a complex contact manifold with a complex almost
contact metric structure satisfying these conditions as a complex contact metric
manifold.

The definition of a complex contact manifold is analogous to that of a contact
structure in the wider sense. This is natural in view of the result [8] that for
a compact complex manifold with H1(M,Zn+1) = 0, i.e. no (n + 1)-torsion, a
complex contact structure is given by a global 1-form if and only if its first Chern
class vanishes. On the other hand there are a number of interesting cases of
complex contact manifolds with global contact form including a complex Boothby-
Wang fibration as developed by Foreman [4]. When the form is global the structure
tensors may be chosen so that σ = 0. We will retain the generality of σ being
non-zero for some of our discussion, but then specialize to σ = 0 when appropriate.

There are two other local structure tensors that will be important for us,
namely hU = 1

2
symLUG◦p and hV = 1

2
symLVH ◦p where L denotes Lie differenti-

ation, “sym” denotes the symmetric part and p denotes the projection TM −→ H.
These operators enjoy the following properties [2], [9]:

hUG = −GhU , hVH = −HhV

hUU = hUV = hVU = hV V = 0

∇XU = −GX −GhUX + σ(X)V (1)

∇XV = −HX −HhVX − σ(X)U.

Defining an operator lU in terms of the curvature tensor R by lUX = RX UU we
have the following formula ([9])

GlUG− lU = 2(G2 + h2
U + dσ(U, V )v ⊗ V ). (2)

Next we will review some ideas related to hyperbolicity. A diffeomorphism f of
a (usually compact) Riemannian manifold M is said to be partially hyperbolic in
the narrow sense (see e.g. [10, pp. 13–14]) if there exist numbers C > 0 and

0 < λ1 ≤ µ1 < λ2 ≤ µ2 < λ3 ≤ µ3, µ1 < 1, λ3 > 1,

independent of p ∈M , and an invariant splitting

TM = Es ⊕ Ec ⊕ Eu

such that for n > 0

C−1λn1 ||v|| ≤ ||fn∗ v|| ≤ Cµn1 ||v||, v ∈ Es
p,
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C−1λn2 ||v|| ≤ ||fn∗ v|| ≤ Cµn2 ||v||, v ∈ Ec
p,

C−1λn3 ||v|| ≤ ||fn∗ v|| ≤ Cµn3 ||v||, v ∈ Eu
p .

When M is compact the notion is independent of the choice of metric, but when
M is non-compact, the notion is in general metric dependent. The subbundles
Es, Ec and Eu are called the stable, central and unstable subbundles respectively.

For example let ψt be an Anosov flow corresponding to a vector field ξ. For
fixed t the diffeomorphism ψt is partially hyperbolic with 1-dimensional central
direction generated by ξ. Later in this paper we will encounter a real vector
field whose corresponding 1-parameter group is a group of partially hyperbolic
diffeomorphisms for which the central subbundle has dimension 2.

In [5, p. 586] E. Ghys defines the notion of a holomorphic Anosov flow as
a particular C∗-action on a complex manifold which gives rise to an invariant
splitting of the real tangent bundle together with natural growth conditions on
the subbundles. Lemma 2.1 of [5] shows that the resulting stable and unstable
subbundles extend to complex subbundles in the complexified tangent bundle. In
remarks on p. 600 of [5] Ghys discusses the possible consideration of starting with
a holomorphic vector field and the flow it generates. This is described in terms of
a splitting of the complexified tangent bundle, but one could equally well begin
with a splitting of the holomorphic tangent bundle and we take this point of view
here.

Let ξ be a holomorphic vector field on a Hermitian manifold M ; strictly speak-
ing ξ does not determine a flow due to the lack of a natural ordering of the complex
numbers. However for a holomorphic vector field, the theory of complex differen-
tial equations goes through as in the real case. Let w1, . . . , wn be local complex
coordinates on M and f j(w1, . . . , wn) the holomorphic component functions of ξ
with respect to the basis { ∂

∂w1
, . . . , ∂

∂wn
}. Then the system of complex differential

equations
dwj
dz

= f j(w1, . . . , wn)

satisfies existence and uniqueness theorems similar to those in the real case (see e.g.
[6, Theorem 2.2.2]).Thus for a given point w0 ∈M one can construct a unique local
holomorphic curve through the point by the solution w(z) = (w1(z), . . . , wn(z)),
w(0) = w0. Therefore given ξ one can define a “flow”ψz mapping a point w0 to the
point w(z). We say that ξ (and the flow) is a holomorphic Anosov flow if there
exists an invariant splitting of the holomorphic tangent bundle τM as a direct
sum of type (1,0) subbundles Es, Eu and the 2-dimensional bundle tangent to the
orbits of ψz together with numbers C > 0, λ > 0 such that

||ψz∗v|| ≤ Ce−λR(z)||v||, v ∈ Es
p,

||ψz∗v|| ≥ CeλR(z)||v||, v ∈ Eu
p

where R denotes the real part.
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2. Holomorphic special directions

In this section, we will work with complex contact metric manifolds of complex
dimension 3 with the property hU 6= hV . Let k = hU − hV .

Lemma. kJ + Jk = 0.

Proof. We can compute (∇XJ)V directly using (1) to get

(∇XJ)V = −GkX

and applying G to both sides, we obtain

kX = G(∇XJ)V.

Therefore

kJX = G(∇JXJ)V

= −G(∇JXJ)JU

= −G(∇XJ)U

since (M,J, g) is a Hermitian manifold. We can continue the computation as
follows:

kJX = −JH(−∇XV − J∇XU)

= −JH(HX +HhVX + σ(X)U + J(GX +GhUX − σ(X)V ))

= −JH(HX +HhVX + σ(X)U −HX −HhUX − σ(X)U)

= −JH(−HkX)

= −JkX.

Therefore kJX + JkX = 0.

As a result, k anti-commutes with the complex structure J , and it vanishes on
the vertical subbundle generated by U and V . Let κ > 0 be an eigenvalue of k
with unit eigenvector X. Then, X is a horizontal vector field and −κ is also an
eigenvector of k with eigenvector JX. Since the real dimension of M is 6, there
is another eigenvector W of k with non-negative eigenvalue ν. Then again, W is
a horizontal vector field and −ν is also an eigenvalue of k with eigenvector JW .

Definition. A vector Y −iJY of type (1, 0) on a complex contact metric manifold
M where Y is horizontal, is called a holomorphic special direction if

∇Y−iJY (U + iV ) = (γ + iδ)(Y − iJY )

for some non-zero complex number γ + iδ.
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Since
∇Y−iJY (U + iV ) = ∇YU +∇JY V + i(∇Y V −∇JYU),

for Y − iJY to be a holomorphic special direction we must have

∇YU +∇JY V = γY + δJY and ∇Y V −∇JYU = δY − γJY. (3)

We know that

∇YU +∇JY V = −GY −GhUY + σ(Y )V −HJY −HhV JY − σ(JY )U

= hUGY + hVHJY − σ(JY )U + σ(Y )V

= (hU − hV )GY − σ(JY )U + σ(Y )V

= kGY − σ(JY )U + σ(Y )V

and

∇Y V −∇JYU = −HY −HhV Y − σ(Y )U +GJY +GhUJY − σ(JY )V

= hVHY − hUGJY − σ(Y )U − σ(JY )V

= −kHY − σ(Y )U − σ(JY )V.

(We see that if hU = hV , and hence k = 0, then there are no holomorphic special
directions.) Since Y is horizontal and k anti-commutes with J , the conditions for
a special direction are

kGY = γY + δJY (4)

and σ(Y ) = σ(JY ) = 0. Since the eigenspace of k relative to the eigenvalue
ν (resp. κ) is perpendicular to {X, JX} (resp. {W,JW}), W ∈ {GX,HX} and
X ∈ {GW,HW} and hence there are constants α and β with α2+β2 = 1 such that
W = αGX +βHX, GW = −αX −βJX, HW = αJX −βX, GX = αW +βJW
and HX = −αJW + βW .

Again since Y is horizontal, there are constants a, b, c and e with a2 + b2 +
c2 + e2 = 1 such that

Y = aX + bJX + cW + eJW.

Then

GY = a(αW + βJW ) + b(−αJW + βW )

+c(−αX − βJX) + e(αJX − βX)

= −(cα + eβ)X + (eα− cβ)JX + (aα+ bβ)W + (aβ − bα)JW,

kGY = −(cα + eβ)κX − (eα− cβ)κJX

+(aα+ bβ)νW − (aβ − bα)νJW,

JY = aJX − bX + cJW − eW

and

γY + δJY = (aγ − bδ)X + (bγ + aδ)JX + (cγ − eδ)W + (eγ + cδ)JW.
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Thus, for (4) to be satisfied, the following four equations must hold:

aγ − bδ = −(cα + eβ)κ (5)

bγ + aδ = (−eα+ cβ)κ (6)

cγ − eδ = (aα+ bβ)ν (7)

eγ + cδ = (bα− aβ)ν. (8)

If ν = 0, (7) and (8) gives c = e = 0 and then (5) and (6) gives a = b = 0. This
is a contradiction since a2 + b2 + c2 + e2 = 1. Therefore ν 6= 0.

Multiplying (5) by −eα+ cβ, (6) by cα + eβ and adding we get

[a(−eα+ cβ) + b(cα + eβ)]γ + [−b(−eα+ cβ) + a(cα + eβ)]δ = 0.

Similarly, multiplying (7) by −bα + aβ, (8) by aα+ bβ, and adding we have

[−c(bα− aβ) + e(aα+ bβ)]γ + [e(bα− aβ) + c(aα+ bβ)]δ = 0.

We can rewrite the above two equations as follows:

[(bc− ae)α+ (ac+ be)β]γ + [(be+ ac)α+ (ae− bc)β]δ = 0 (9)

[−(bc− ae)α+ (ac+ be)β]γ + [(be+ ac)α− (ae− bc)β]δ = 0. (10)

Since not both of γ and δ are 0, the determinant of the above system must be 0.
Using the fact that α2 + β2 = 1, we get

(bc− ae)(be+ ac) = 0,

so either bc− ae = 0 or be+ ac = 0 (but not both).
Suppose bc− ae = 0. Then, equations (9) and (10) give

βγ + αδ = 0. (11)

Multiply (5) by c, (6) by e, add them together and use our assumption that
bc− ae = 0 to get

(ac+ be)γ = −(c2 + e2)ακ. (12)

On the other hand, a times (7) plus b times (8) gives

(ac+ be)γ = (a2 + b2)αν. (13)

Subtract (12) from (13) to get

α((a2 + b2)ν + (c2 + e2)κ) = 0. (14)

Suppose (a2 + b2)ν + (c2 + e2)κ = 0. Since a2 + b2 + c2 + e2 = 1, we can take
c2 + e2 = 1 − a2 − b2 and write the above equation as (a2 + b2)(ν − κ) + κ = 0
which implies κ > ν since a2 + b2 > 0 and κ > 0. On the other hand, we can take
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a2 + b2 = 1 − c2 − e2 to get (c2 + e2)(κ − ν) + ν = 0 which implies κ < ν since
c2 + e2 > 0 and ν > 0. This is a contradiction. Hence α = 0.

Similarly, −e times (5) plus c times (6) and b times (7) plus −a times (8) give
β = 0. Since α2 + β2 = 1, we get a contradiction. Therefore

bc− ae 6= 0 and be+ ac = 0. (15)

Working now with be+ ac = 0, (9) and (10) give

αγ − βδ = 0. (16)

Multiplying (5) by c, (6) by e and adding gives

(bc− ae)δ = (c2 + e2)ακ.

Similarly, a times (7) plus b times (8) gives

(bc− ae)δ = (a2 + b2)αν.

Comparing the above two equations we get

α((a2 + b2)ν − (c2 + e2)κ) = 0.

Similarly, −e times (5) plus c times (6) and −b times (7) plus a times (8) give

β((a2 + b2)ν − (c2 + e2)κ) = 0.

Since not both of α and β are 0, we get

a2 + b2 =
κ

κ+ ν
and c2 + e2 =

ν

κ+ ν
. (17)

Now multiply (5) by aγ and use (8) and (16) to get

a2γ2 − abγδ = (a2β − abα)βνκ. (18)

Similarly, multiply (6) by bγ and then use (7) and (16) to get

b2γ2 + abγδ = (b2β + abα)βνκ. (19)

Now adding (18) and (19) gives

γ2 = β2νκ. (20)

Then, (16) gives

δ2 = α2νκ. (21)

We can use (16) in γ times (5) plus δ times (6) to get

e = − ν

βγ + αδ
a. (22)

Similarly, we can use (16) again, this time in γ times (7) plus δ times (8), to get

c =
βγ + αδ

κ
b. (23)

Therefore we have the following result.
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Theorem 2.1. Let M be a complex contact metric manifold of complex dimension
3 with hU 6= hv. If σ = 0 and if k is non-singular on the horizontal subbundle,
then there exist holomorphic special directions on M .

Note that, when σ = 0, we have two choices for γ and δ. We can choose them to
have the same signs as β and α, or we can choose them to have opposite signs as
β and α.

For γ = β
√
νκ and δ = α

√
νκ, let

Y = aX + bJX +

√
ν

κ
bW −

√
ν

κ
aJW

where a and b are two numbers satisfying a2 + b2 = κ
κ+ν

. Then Y − iJY is a
holomorphic special direction. If Z is a linear combination of Y and JY , then
Z − iJZ is also a holomorphic special direction with the same factor, γ + iδ.
Therefore Y determines a J-invariant plane section of special directions.

If γ = −β
√
νκ and δ = −α

√
νκ, then Y = aX + bJX −

√
ν
κ
bW +

√
ν
κ
aJW

gives a special direction independent of the preceding one.
When σ 6= 0 we may still get special directions. If we take γ = β

√
νκ and

δ = α
√
νκ, then βγ + αδ =

√
νκ, and c =

√
ν
κ
b and e = −

√
ν
κ
a as before. In

order to have σ(Y ) = σ(JY ) = 0, we must have

aσ(X) + bσ(JX) +

√
ν

κ
bσ(W )−

√
ν

κ
aσ(JW ) = 0

and

−bσ(X) + aσ(JX) +

√
ν

κ
aσ(W ) +

√
ν

κ
bσ(JW ) = 0.

We can rewrite the above two equations as follows:

(σ(X)−
√
ν

κ
σ(JW ))a+ (σ(JX) +

√
ν

κ
σ(W ))b = 0

(σ(JX) +

√
ν

κ
σ(W ))a− (σ(X)−

√
ν

κ
σ(JW ))b = 0.

Since not both of a and b are not 0, we must have

(σ(X)−
√
ν

κ
σ(JW ))2 + (σ(JX) +

√
ν

κ
σ(W ))2 = 0

which is equivalent to

σ(X) =

√
ν

κ
σ(JW ) and σ(JX) = −

√
ν

κ
σ(W ).

The other choice, γ = −β
√
νκ and δ = −α

√
νκ, gives the conditions

σ(X) = −
√
ν

κ
σ(JW ) and σ(JX) =

√
ν

κ
σ(W ).
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Also note that, any choice of the pair of numbers a and b satisfying the condition
a2 + b2 = κ

κ+ν
gives us a pair of vectors Y and JY which satisfy (4) but they all

lie in the same plane.
Now, let us go back to the case σ = 0. Everything we have been doing so far

is pointwise. Now we will show that the plane section given by the vector fields
Y and JY is global. To do this, we have to show that the local sections agree on
the overlaps. On the intersection O ∩ O′ of two coordinate neighborhoods with
structure tensors (u, v, U, V,G,H) on O and (u′, v′, U ′, V ′, G′, H ′) on O′, there are
two functions A, B with A2 +B2 = 1 such that

U ′ = AU −BV, V ′ = BU + AV, G′ = AG−BH, H ′ = BG+ AH.

We want to evaluate k′X and k′JX for the eigenvector X of k corresponding to
the eigenvalue κ. First, we evaluate hU ′X:

hU ′X = G′∇XU
′ +G′2X

= (AG−BH)∇X(AU −BV )−X

= A2G∇XU − ABG∇XV − ABH∇XU

+B2H∇V V − (A2 +B2)X

= A2hUX +B2hVX

−AB(G(−HX −HhVX) +H(−GX −GhUX))

= A2hUX +B2hVX − AB(JX + JhVX − JX − JhUX)

= A(AhUX +BJhUX) +B(BhVX − AJhVX).

Similarly,

hV ′X = A(AhVX +BJhVX) +B(BhUX − AJhUX).

Therefore

k′X = hU ′X − hV ′X

= (A2 −B2)hUX + 2ABJhUX + (B2 − A2)hVX − 2ABJhVX

= (A2 −B2)kX + 2ABJkX

= (A2 −B2)κX + 2ABκJX

and similarly
k′JX = −(A2 −B2)κJX + 2ABκX.

Hence we see that
k′(AX +BJX) = κ(AX +BJX).

This says that κ is also an eigenvalue of k′ with eigenvector AX + BJX. Then,
ν is also an eigenvalue of k′ with eigenvector AW + BJW . The plane section on
O is generated by

Y = aX + bJX +

√
ν

κ
bW −

√
ν

κ
aJW
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for some a, b with a2 + b2 = κ
κ+ν

, and the plane section on O′ is generated by

Y ′ = a′X ′ + b′JX ′ +

√
ν

κ
b′W ′ −

√
ν

κ
a′JW ′

for some a′, b′ with a′2 + b′2 = κ
κ+ν

. On the intersection O ∩O′ we have

Y ′ = a′X ′ + b′JX ′ +

√
ν

κ
b′W ′ −

√
ν

κ
a′JW ′

= a′(AX +BJX) + b′(−BX + AJX)

+

√
ν

κ
b′(AW +BJW )−

√
ν

κ
a′(−BW + AJW )

= (a′A− b′B)X + (a′B + b′A)JX

+

√
ν

κ
(a′B + b′A)W +

√
ν

κ
(b′B − a′A)JW

and
(a′A− b′B)2 + (a′B + b′A)2 =

κ

κ+ ν
.

Therefore, the plane sections agree on the overlaps.

3. Real special directions

In this section we consider the existence problem of real special directions.

Definition. A horizontal real vector Y on a complex contact metric manifold M
is called a real special direction for U (resp. for V ) if

∇YU = γY

(resp. ∇Y V = γY ) for a non-zero number γ.

Since
∇YU = −GY −GhUY + σ(Y )V,

to find real special directions of U , we will consider eigenvalues of hU . If the
complex dimension of M is 2n + 1, hU has 2n non-negative eigenvalues λi, i =
1, . . . , 2n with eigenvectors orthogonal to V . Suppose Xi is a unit eigenvector of
hU corresponding to the eigenvalue λi. Then, since hU anti-commutes with G,
GXi is also an eigenvector of hU with eigenvalue −λi. A unit horizontal vector
field Y can be written in the form

Y =
2n∑
i=1

(aiXi + biGXi)



320 D. E. Blair, B. Korkmaz: Special Directions in Complex Contact Manifolds

where
∑

(a2
i + b2i ) = 1. Then

∇YU = −GY −GhUY + σ(Y )V

= −
2n∑
i=1

(bi(λi − 1)Xi + ai(λi + 1)GXi) + σ(Y )V.

For ∇YU = γY , we must have σ(Y ) = 0, γai = −bi(λi−1) and γbi = −ai(λi+1).
Then we get γ2ai = ai(λ

2 − 1) and γ2bi = bi(λ
2 − 1). So, if not both of ai and bi

are 0, then the corresponding λi’s are equal, say to λ, and γ2 = λ2 − 1 implying
that λ > 1.

Theorem 3.1. Let M be a complex contact metric manifold with σ = 0. If hU
has an eigenvalue λ > 1, then there are real special directions of U . In particular,
if all plane sections generated by U and a horizontal vector field have negative
sectional curvatures, real special directions of U exist.

Proof. Suppose hU has an eigenvalue λ > 1 with unit eigenvector X. Let

Y =

√
λ− 1

2λ
X +

√
λ+ 1

2λ
GX.

Then it can be seen by a direct computation that

∇YU = −
√
λ2 − 1Y.

If all plane sections generated by U and a horizontal vector field have negative
sectional curvature, then K(U,X)+K(U,GX) < 0 where X is a unit eigenvector
of hU with eigenvalue λ. Then K(U,X) +K(U,GX) = 2(1 − λ2). So λ > 1 and
we have real special directions of U as above.

Note that, when λ > 1 if we take Z = −
√

λ−1
2λ
X +

√
λ+1
2λ
GX then ∇ZU =

√
λ2 − 1Z. The special directions Y and Z are independent and since g(Y, Z) = 1

λ

they are not orthogonal.
We can apply the same procedure to ∇Y V to get the following result.

Theorem 3.2. Let M be a complex contact metric manifold with σ = 0. If hV
has an eigenvalue µ > 1, then there are real special directions of V . In particular,
if all plane sections generated by V and a horizontal vector field have negative
sectional curvatures, real special directions of V exist.

Note that the special directions in this case are given by

Y =

√
µ− 1

2µ
W +

√
µ+ 1

2µ
HW

and

Z = −
√
µ− 1

2µ
W +

√
µ+ 1

2µ
HW

where W is a unit eigenvector of hV corresponding to the eigenvalue µ.
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4. The Lie group SL(2, C)

We now study the Lie group

SL(2,C) =
{( z1 z2

z3 z4

)
|z1z4 − z2z3 = 1

}
.

We form a 2-parameter family of complex contact metric structures on SL(2,C)
as follows. Take λ > µ > 0 and consider the matrices

1

2

√
λ2 − µ2

(
1 0
0 −1

)
,

√
λ+ µ

2

(
0 −1
1 0

)
,

√
λ− µ

2

(
0 −1
−1 0

)
in the Lie algebra sl(2,C) which we regard as the tangent space of SL(2,C) at
the identity. Applying the differential of left translation to these matrices gives
the vector fields

ξ1 =
1

2

√
λ2 − µ2

(
z1

∂

∂z1

− z2
∂

∂z2

+ z3
∂

∂z3

− z4
∂

∂z4

)
,

ξ2 =

√
λ+ µ

2

(
z2

∂

∂z1

− z1
∂

∂z2

+ z4
∂

∂z3

− z3
∂

∂z4

)
,

ξ3 = −
√
λ− µ

2

(
z2

∂

∂z1

+ z1
∂

∂z2

+ z4
∂

∂z3

+ z3
∂

∂z4

)
.

The complex contact form on SL(2,C) is

ω =
2√

λ2 − µ2
(z4dz1 − z2dz3) = u− iv.

Set ξ1 = 1
2
(U + iV ), ξ2 = 1

2
(E2 − iJE2), ξ3 = 1

2
(E3 − iJE3). The metric is deter-

mined by left translation of the basis {U, V,E2, JE2, E3, JE3}, as an orthonormal
basis at the identity, and the structure tensors G and H = GJ are determined by
GE2 = E3 and GJE2 = −JE3. Computing the Lie brackets we have

[U, V ] = 0,

[U,E2] = (λ+ µ)E3, [U, JE2] = (λ+ µ)JE3,

[U,E3] = (λ− µ)E2, [U, JE3] = (λ− µ)JE2,

[V,E2] = −(λ+ µ)E3, [V, JE2] = (λ+ µ)JE3,

[V,E3] = −(λ− µ)E2, [V, JE3] = (λ− µ)JE2,

[E2, JE2] = 0, [E3, JE3] = 0,

[E2, E3] = 2U, [E2, JE3] = −2V,

[JE2, E3] = −2V, [JE2, JE3] = −2U.
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The basis {U, V,E2, JE2, E3, JE3} is an eigenvector basis of the operators hU and
hV . In particular

hUE2 = λE2, hUJE2 = −λJE2, hVE2 = µE2, hV JE2 = −µJE2.

Using the anti-commutivities hUG+GhU = 0 and hVH +HhV = 0, we get

hUE3 = −λE3, hUJE3 = λJE3, hVE3 = µE3, hV JE3 = −µJE3.

Also from this Lie algebra of vector fields, it is straightforward to compute covari-
ant derivatives and, in particular, to easily show that σ = 0.

We now turn to the question of holomorphic special directions in SL(2,C).
Using the eigenvalues and the eigenvectors of hU and hV , we see that E2 and JE3

are eigenvectors of k = hU − hV corresponding to the eigenvalues λ−µ and λ+µ
respectively. From the solutions obtained in Section 2, if a and b are two numbers
satisfying a2 + b2 = λ−µ

2λ
, then

Y = aE2 + bJE2 +

√
λ+ µ

λ− µ
bJE3 +

√
λ+ µ

λ− µ
aE3 (24)

is a holomorphic special direction with

∇Y−iJY (U + iV ) = −
√
λ2 − µ2(Y − iJY ),

and

Z = aE2 + bJE2 −

√
λ+ µ

λ− µ
bJE3 −

√
λ+ µ

λ− µ
aE3 (25)

is an independent holomorphic special direction with

∇Z−iJZ(U + iV ) =
√
λ2 − µ2(Z − iJZ).

Theorem 4.1. On SL(2,C) the vector field ξ1 is a holomorphic Anosov flow
and the stable and unstable subbundles, Es and Eu, agree with the subbundles
determined by the special directions corresponding to solutions (24) and (25) re-
spectively.

Proof. The complex flow associated to the holomorphic vector field

2ξ1 = U + iV =
√
λ2 − µ2

(
z1

∂

∂z1

− z2
∂

∂z2

+ z3
∂

∂z3

− z4
∂

∂z4

)
is

ψz =

(
z1e
√
λ2−µ2 z z2e

−
√
λ2−µ2 z

z3e
√
λ2−µ2 z z4e

−
√
λ2−µ2 z

)
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and its differential with respect to { ∂
∂z1
, ∂
∂z2
, ∂
∂z3
, ∂
∂z4
} is given by

ψz∗ =


e
√
λ2−µ2 z 0 0 0

0 e−
√
λ2−µ2 z 0 0

0 0 e
√
λ2−µ2 z 0

0 0 0 e−
√
λ2−µ2 z

 .

Now for the solution (24)

Y − iJY = (a+ ib)(E2 − iJE2) +

√
λ+ µ

λ− µ
(a+ ib)(E3 − iJE3)

= 2(a+ ib)ξ2 + 2

√
λ+ µ

λ− µ
(a+ ib)ξ3

= −4

√
λ+ µ

2
(a+ ib)

(
z1

∂

∂z2

+ z3
∂

∂z4

)
.

Applying ψz∗ to Y − iJY at the point p, we have

ψz∗(Y − iJY )p = e−
√
λ2−µ2z(Y − iJY )p = e−2

√
λ2−µ2z(Y − iJY )ψz(p)

and
||ψz∗(Y − iJY )p|| = e−

√
λ2−µ2R(z)||(Y − iJY )p||.

Therefore the special direction of solution (24) determines the stable subbundle.
Similarly solution (25) yields the holomorphic special direction

Z − iJZ = 2(a+ ib)ξ2 − 2

√
λ+ µ

λ− µ
(a+ ib)ξ3

= 4

√
λ+ µ

2
(a+ ib)

(
z2

∂

∂z1

+ z4
∂

∂z3

)
.

Therefore
ψz∗(Z − iJZ)p = e2

√
λ2−µ2z(Z − iJZ)ψz(p)

and
||ψz∗(Z − iJZ)p|| = e

√
λ2−µ2R(z)||(Z − iJZ)p||

giving the unstable subbundle.

We now study the real special directions associated to the vector field U .

Theorem 4.2. If λ > 1, then there exist real special directions associated to the
vector field U on SL(2,C). Moreover when µ = 1, U determines a partially
hyperbolic flow with 2-dimensional central subbundle Ec spanned by U and V .
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Proof. The first statement is clear from Theorem 4.1. In terms of the coordinates
zj = xj + iyj, when µ = 1,

U =
1

2

√
λ2 − 1

4∑
j=1

(−1)j+1
(
xj

∂

∂xj
+ yj

∂

∂yj

)
.

The corresponding flow ψt maps a point (x1, y1, x2, y2, x3, y3, x4, y4) to the point

e

√
λ2−1
2

t(x1, y1, 0, 0, x3, y3, 0, 0) + e−
√

λ2−1
2

t(0, 0, x2, y2, 0, 0, x4, y4).

Consider the particular eigenvector E2 of hU , eigenvalue λ, and the solution in
the proof of Theorem 3.1. Then

Y = aE2 + bE3 =

√
λ2 − 1

λ

(
− x1

∂

∂x2

− y1
∂

∂y2

− x3
∂

∂x4

− y3
∂

∂y4

)
.

Applying ψt∗ at a point p we have

ψt∗Yp = e−
√

λ2−1
2

tYp = e−
√
λ2−1tYψt(p)

and

||ψt∗Yp|| = e−
√

λ2−1
2

t||Yp||.

Now consider the vector

JY = aJE2 + bJE3 =

√
λ2 − 1

λ

(
y1

∂

∂x2

− x1
∂

∂y2

+ y3
∂

∂x4

− x3
∂

∂y4

)
.

Applying ψt∗ to this vector we have

ψt∗JYp = e−
√

λ2−1
2

tJYp = e−
√
λ2−1tJYψt(p)

and

||ψt∗JYp|| = e−
√

λ2−1
2

t||JYp||.

Thus Y and JY give a subbundle, Es, which ψt∗ leaves invariant and for which ψt∗
shortens lengths exponentially. We remark that since JE3 is also an eigenvector
of hU with eigenvalue λ, aJE3 + bJE2 is a special direction but the corresponding
vector field is not invariant under ψt∗.

Turning to the solution in the paragraph following the proof of Theorem 3.1,
we have the special direction

Z = aE2 + bE3 = −
√
λ2 − 1

λ

(
x2

∂

∂x1

+ y2
∂

∂y1

+ x4
∂

∂x3

+ y4
∂

∂y3

)
which satisfies

ψt∗Zp = e
√
λ2−1tZψt(p)

and together with JZ defines an unstable bundle Eu.
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Finally consider the vector field

V =
1

2

√
λ2 − 1

4∑
j=1

(−1)j+1
(
yj

∂

∂xj
− xj

∂

∂yj

)
.

Applying ψt∗ we have
ψt∗Vp = Vψt(p).

Thus U defines a partially hyperbolic flow whose central bundle is 2-dimensional
and spanned by U and V ; Es and Eu are the stable and unstable bundles.
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