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Abstract. The set of closed convex cones in Rd (d ≥ 3), with the op-
erations of intersection and closed sum, is a lattice. We determine all
endomorphisms of this lattice. As a consequence, we obtain a charac-
terization of the duality of convex cones.
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1. Introduction

By Rd we denote the d-dimensional real Euclidean vector space, equipped with
its standard scalar product 〈·, ·〉. We assume throughout that d ≥ 3. Let Cd be
the set of closed convex cones in Rd (including {0} and Rd). The set Cd together
with the two operations ∩ (intersection) and ∨, defined by

C ∨D := cl conv (C ∪D) = cl (C +D), C,D ∈ Cd,

is a lattice. The following theorem determines all endomorphisms of this lattice.

Theorem. Let d ≥ 3. Let ϕ : Cd → Cd be a mapping satisfying

ϕ(C ∩D) = ϕ(C) ∩ ϕ(D), (1)

ϕ(C ∨D) = ϕ(C) ∨ ϕ(D) (2)
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for all C,D ∈ Cd. Then either ϕ is constant, or there exists a linear transformation
g ∈ GL(d) such that ϕ(C) = gC for all C ∈ Cd.

This theorem fits into a series of similar results (where the assumptions on the
dimension d may differ). Gruber [6] has determined the endomorphisms of the
lattice (Kd,∩,∨), where Kd is the set of compact convex sets in Rd (including
the empty set) and K ∨ L := conv(K ∪ L). Gruber [7] has further classified the
endomorphisms of the lattice (Bd,∩,∨), where Bd is the set of unit balls of norms
on Rd. This was extended in [4] to a determination of the endomorphisms of
the lattices (Kd

0,∩,∨) and (Kd
(0),∩,∨), where Kd

0 and Kd
(0) denote, respectively,

the set of compact convex sets in Rd containing 0 or containing 0 in the interior.
The latter result was used to answer a question by Vitali Milman, asking for a
characterization of the mapping that associates with every convex body in Kd

(0)

its polar body.
That the theorem does not hold for d = 2, can be seen as follows. Let h : R →

R be a strictly increasing, continuous function satisfying h(α+ π) = h(α) + π for
α ∈ R. Using Cartesian coordinates in R2, let Rα := {λ(cosα, sinα) : λ ≥ 0}.
Define ϕ(R2) := R2 and ϕ({0}) := {0}. Every cone C ∈ C2 \ {R2, {0}} is of the
form C =

⋃
β≤α≤γ Rα with β ≤ γ ≤ β + π, where the angle β is unique mod 2π.

If we define ϕ(C) :=
⋃

h(β)≤α≤h(γ)Rα, then ϕ is an endomorphism of the lattice

(C2,∩,∨).
As in [4], the knowledge of the endomorphisms leads to a characterization of

duality. For C ∈ Cd, the dual cone is defined by

C∗ := {x ∈ Rd : 〈x, y〉 ≤ 0 for all y ∈ C};

it is again in Cd. The mapping C 7→ C∗ is an involution that interchanges the
lattice operations and reverses the order.

In a series of papers, Artstein-Avidan and Milman [1], [2], [3] have distilled the
essential properties of an abstract duality from various classical duality operations
for functions and convex sets. They have established the surprising fact that
the involution property together with the sole condition of order reversion is in
several cases sufficient for the essentially unique characterization of a duality. For
example, the Legendre transform is, up to obvious linear modifications, the only
involution on the set of lower semi-continuous convex functions that reverses the
order. Our condition (4) in the subsequent corollary follows their scheme, and
this provides yet another example of the phenomenon they discovered.

Corollary 1. Let d ≥ 3. Let ψ : Cd → Cd be a mapping satisfying

ψ(ψ(C)) = C, for all C ∈ Cd (3)

and
C ⊂ D ⇒ ψ(C) ⊃ ψ(D) for all C,D ∈ Cd. (4)

Then there exists a selfadjoint linear transformation g ∈ GL(d) such that ψ(C) =
gC∗ for all C ∈ Cd.
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As one of many outcomes of their approach, Artstein-Avidan and Milman [3,
Theorem 13] have also arrived at the following unexpected result. Let Cd

0 denote
the system of closed convex sets in Rd containing 0. If ϕ : Cd

0 → Cd
0 is a bijective

map satisfying K1 ⊂ K2 ⇔ ϕ(K1) ⊂ ϕ(K2) for all K1, K2 ∈ Cd
0 , then there exists a

linear transformation g ∈ GL(d) such that ϕ(K) = gK for K ∈ Cd
0 . Our theorem

implies a similar result for convex cones.

Corollary 2. Let d ≥ 3. Let ϕ : Cd → Cd be a bijective mapping satisfying

C1 ⊂ C2 ⇔ ϕ(C1) ⊂ ϕ(C2) for all C1, C2 ∈ Cd. (5)

Then there exists a linear transformation g ∈ GL(d) such that ϕ(C) = gC for
C ∈ Cd.

In fact, as will be clear from the proof, analogous assertions are true (for d ≥ 2) for
each of the systems Kd, Bd, Kd

0, Kd
(0), since in each case the lattice endomorphisms

are known to be induced either by an affine transformation (in the first case,
according to Gruber [6]) or by a linear transformation (in the other three cases).
Only in the case of Cd

0 treated by Artstein-Avidan and Milman, no corresponding
classification of the lattice endomorphisms is known, so that their proof proceeds
in a different way.

2. Proof of the theorem

The main line of reasoning is similar to that in [4], but there are some characteristic
differences (which is already seen from the fact that the two-dimensional case is
exceptional).

Let ϕ : Cd → Cd satisfy the assumptions (1) and (2). Then ϕ is inclusion
preserving, that is, C ⊂ D for C,D ∈ Cd implies ϕ(C) ⊂ ϕ(D).

We write {0} =: 0̄. A ray is a set Rx := {λx : λ ≥ 0}, where x ∈ Rd \ {0}. By
R we denote the set of all rays in Rd.

Following the procedure in [6], we distinguish several cases.

Case 1: ϕ(R) = ϕ(0̄) for all R ∈ R.

We choose d+ 1 rays R1, . . . , Rd+1 with R1 ∨ · · · ∨Rd+1 = Rd. For any C ∈ Cd we
have 0̄ ⊂ C ⊂ R1 ∨ · · · ∨Rd+1 and hence ϕ(0̄) ⊂ ϕ(C) ⊂ ϕ(R1)∨ · · · ∨ ϕ(Rd+1) =
ϕ(0̄), hence

ϕ(C) = ϕ(0̄) for C ∈ Cd. (6)

Case 2: ϕ(R) = ϕ(0̄) for some R ∈ R, but not for all rays R.
Let A := {R ∈ R : ϕ(R) = ϕ(0̄)}, and let A be the union of all rays in A.

If S, U ∈ A, T ∈ R and T ⊂ S ∨ U , then ϕ(0̄) ⊂ ϕ(T ) ⊂ ϕ(S) ∨ ϕ(U) = ϕ(0̄),
hence T ∈ A; thus A is a convex cone. Since A 6= Rd, the closure of A is
contained in a closed halfspace with 0 in the boundary. We can choose rays
R ∈ A and T, U ∈ R \ A with U ∩ T = 0̄ and T ⊂ R ∨ U . Then ϕ(0̄) ⊂ ϕ(T ) ⊂
[ϕ(R) ∨ ϕ(U)] ∩ ϕ(T ) = ϕ(U) ∩ ϕ(T ) = ϕ(0̄), hence ϕ(T ) = ϕ(0̄), which is a
contradiction.
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Thus, Case 2 cannot occur, and we are left with the situation where ϕ(R) 6=
ϕ(0̄) for all R ∈ R. This implies

dimϕ(R) ≥ 1 for R ∈ R.

In fact, since 0̄ ⊂ R, the equality ϕ(R) = 0̄ would imply ϕ(0̄) ⊂ ϕ(R) = 0̄ and
hence ϕ(R) = ϕ(0̄), a contradiction.

Case 3: ϕ(R) 6= ϕ(0̄) for all R ∈ R, ϕ(0̄) 6= 0̄.

Case 4: ϕ(R) 6= ϕ(0̄) for all R ∈ R, ϕ(0̄) = 0̄; there exists a ray P ∈ R with
dimϕ(P ) ≥ 2.

With the same proof as in [4] we have:

(P1) In an n-dimensional affine space, let M be a fixed closed convex set and
let F be a family of n-dimensional closed convex sets such that K 6= M for all
K ∈ F and K1 ∩ K2 = M whenever K1, K2 ∈ F and K1 6= K2. Then F is at
most countable.

By assumption, d ≥ 3. We show simultaneously that Case 3 and Case 4 both lead
to a contradiction. In Case 3, we put P := 0̄.

Let B := ϕ(P ) and b := dimB, then b ≥ 1 in Case 3 and b ≥ 2 in Case 4.
A ray R is called free if R 6⊂ linP (so every ray is free in Case 3). Let R

be a free ray. Then ϕ(R) ∩ ϕ(P ) = ϕ(R ∩ P ) = ϕ(0̄). If ϕ(R ∨ P ) = B, then
ϕ(R) ∨ ϕ(P ) = ϕ(P ), thus ϕ(R) ⊂ ϕ(P ) and hence ϕ(R) ∩ ϕ(P ) = ϕ(R) 6= ϕ(0̄),
a contradiction. This shows that ϕ(R ∨ P ) 6= B.

By a sheet we understand a set R ∨ linP with a free ray R. A sheet is called
bad if it contains a free ray R with ϕ(P ∨ R) ⊂ linB. If R,S are free rays in
different sheets, then (R ∨ P ) ∩ (S ∨ P ) = P , hence ϕ(R ∨ P ) ∩ ϕ(S ∨ P ) = B.
Now it follows from (P1) (applied in linB) that there are at most countably many
bad sheets. The other sheets are called good.

Suppose that b ≥ d − 1. Let the set S contain precisely one free ray from
every good sheet, and no other elements, and put F := {ϕ(R ∨ P ) : R ∈ S}. If
R ∈ S, then ϕ(R∨P ) 6⊂ linB, hence dimϕ(R∨P ) = d. It follows from (P1) that
the family F is countable. This is a contradiction, since there are uncountably
many good sheets. This proves that b ≤ d− 2.

Let k ∈ {1, . . . , d − b}. A set {x1, . . . , xk} of points in Rd \ linP , briefly a
k-set, is called full if dimϕ(Rx1 ∨ · · · ∨Rxk ∨P ) ≥ b+k. A k-flat E ⊂ Rd is called
general if 0 /∈ E in Case 3, and if dim aff(E ∪ linP ) = k + 2 in Case 4.

If x1 is contained in a good sheet, then B ⊂ ϕ(Rx1 ∨ P ) 6⊂ linB, hence {x1}
is a full 1-set. We assert the following.

(P2) Let k ∈ {2, . . . , d − b}. In every general (k − 1)-flat E ⊂ Rd there is a full
k-set.

The proof of this proposition can be taken verbally from [4], if expressions like
x̄1 ∨ · · · ∨ x̄k ∨ p̄ are replaced by Rx1 ∨ · · · ∨ Rxk ∨ P . It need, therefore, not be
repeated.
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Let k = d− b, and choose a general k-flat F ⊂ Rd. Let E be the family of (k−
1)-flats contained in F and parallel to a fixed (k− 1)-flat. Since E ∈ E is general,
by (P2) there exists a full k-set {x1, . . . , xk} in E; put CE := Rx1 ∨ · · · ∨Rxk ∨P .
Then dimϕ(CE) = d and CE1 ∩ CE2 = P for E1, E2 ∈ E with E1 6= E2, hence
ϕ(CE1) ∩ ϕ(CE2) = B. By (P1), this is a contradiction, since E is uncountable.

Since Cases 3 and 4 cannot occur, we are left with

Case 5: ϕ(0̄) = 0̄, and dimϕ(R) = 1 for all R ∈ R.
In this case, the ϕ-image of a ray is either a ray or a line. We show first that

it is always a ray.
Let x1, . . . , xd+1 ∈ Rd be the vertices of a simplex containing 0 in its interior.

For each i ∈ {1, . . . , d+ 1}, choose a point x′i ∈ ϕ(Rxi) \ {0}. Now the argument
used in [4], at the beginning of the treatment of Case 5 (with x̄i and ā replaced
by Rxi and Ra, respectively) shows that each ϕ(R), R ∈ R, has 0 as an endpoint
and hence is a ray.

Let E ⊂ Rd be a two-dimensional linear subspace. Let R,S ⊂ E be different
rays. If ϕ(S) = −ϕ(R), we choose a ray T ⊂ E different from R and S. Then
ϕ(T ) 6= −ϕ(R), since ϕ(T )∩ϕ(S) = 0̄. Hence, we can assume from the beginning
that ϕ(S) 6= −ϕ(R). Let E ′ be the two-dimensional subspace spanned by ϕ(R)
and ϕ(S). In the following, A,B,Z are rays in E. If Z ⊂ A∨B and ϕ(A), ϕ(B) ⊂
E ′, then ϕ(Z) ⊂ ϕ(A) ∨ ϕ(B) ⊂ E ′. This yields ϕ(Z) ⊂ E ′ for all Z ⊂ R ∨ S.
Let Z ⊂ (R − S) \ (−S). Then R ⊂ Z ∨ S, hence ϕ(R) ⊂ ϕ(Z) ∨ ϕ(S), which
implies ϕ(Z) ⊂ E ′. Similarly, Z ⊂ (S − R) \ (−R) implies ϕ(Z) ⊂ E ′. Finally, if
Z ⊂ −R − S, we can choose rays U ⊂ R − S and V ⊂ S − R with Z ⊂ U ∨ V ,
which gives ϕ(Z) ⊂ E ′. We have proved that ϕ(R) ⊂ E ′ for every ray R ⊂ E.

Let R ∈ R. We assert that ϕ(−R) = −ϕ(R). For the proof, choose
S ∈ R with S 6= ±R. Let A,B,C be any three of the rays R,−R,S,−S.
Then (A ∨ B) ∩ C = 0̄, hence (ϕ(A) ∨ ϕ(B)) ∩ ϕ(C) = 0̄ and thus ϕ(C) 6⊂
ϕ(A) ∨ ϕ(B). Since this holds for all choices of A,B,C from {R,−R,S,−S}
and since ϕ(R), ϕ(−R), ϕ(S), ϕ(−S) lie in a two-dimensional subspace, the set
{ϕ(R), ϕ(−R), ϕ(S), ϕ(−S)} must be of the form {±U,±V } with two rays U, V
satisfying U 6= ±V . Suppose that ϕ(−R) = −ϕ(S). Choose a ray T ⊂ S−R with
T 6= S,−R. Then ϕ(T ) ⊂ ϕ(S) ∨ ϕ(−R) and ϕ(T ) ∩ ϕ(−R) = ϕ(T ) ∩ ϕ(S) = 0̄,
a contradiction. Thus, ϕ(−R) = −ϕ(R) is the only possibility.

Let L be the set of one-dimensional linear subspaces of Rd. For L ∈ L, there
are two rays R,−R with L = R ∨ (−R); we call them the generating rays of
L. Since ϕ(−R) = −ϕ(R), the line f(L) := ϕ(R) − ϕ(R) does not depend on
the choice of R. Thus, we have defined a map f : L → L. Let L1, L2 ∈ L,
L1 6= L2. Let Ri be a generating ray of Li (i = 1, 2). If f(L1) = f(L2), then
either ϕ(R1) = ϕ(R2) or ϕ(R1) = −ϕ(R2). But R1 ∩R2 = R1 ∩ (−R2) = 0̄, hence
ϕ(R1) ∩ ϕ(R2) = ϕ(R1) ∩ (−ϕ(R2)) = 0̄, a contradiction. Thus, the map f is
injective.

Suppose that L1, L2, L3 ∈ L are different and coplanar, that is, contained in a
two-dimensional linear subspace of Rd. Then we can choose generating rays Ri of
Li (i = 1, 2, 3) such that R2 ⊂ R1 ∨R3. Then ϕ(R2) ⊂ ϕ(R1)∨ϕ(R2). Therefore,
the lines f(L1), f(L2), f(L3) are coplanar.
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Since d ≥ 3, then it follows from the Fundamental Theorem of Projective
Geometry (see, e.g., Faure [5] for a proof of a general version), together with
the injectivity of f , that there exists a linear transformation g of Rd such that
f(L) = gL for all L ∈ L.

Let R ∈ R. Then ϕ(R) and ϕ(−R) = −ϕ(R) are rays with gR − gR =
g(R − R) = f(R − R) = ϕ(R) − ϕ(R). It follows that either ϕ(R) = gR or
ϕ(R) = −gR. Let A± := {R ∈ R : ϕ(R) = ±gR}, and let A± be the union of the
rays in A±. Then A+ and A− are convex cones. If both are non-empty, they have
a common boundary ray S and we can choose rays R+ ∈ A+ and R− ∈ A− such
that S ⊂ R+ ∨R−. Then ϕ(S) ⊂ ϕ(R+) ∨ ϕ(R−), hence either gS ⊂ gR+ − gR−
or −gS ⊂ gR+ − gR−, which is a contradiction. It follows that A+ or A− is
empty, and we can assume (replacing g by −g if necessary) that A− = ∅. Then
ϕ(R) = gR for all R ∈ R.

Let C ∈ Cd andR ∈ R. IfR ⊂ C, then gR = ϕ(R) ⊂ ϕ(C), hence gC ⊂ ϕ(C).
Let S be a ray with S 6⊂ gC. Then g−1S 6⊂ C, hence g−1S ∩ C = 0̄. This gives
S ∩ ϕ(C) = g(g−1S) ∩ ϕ(C) = ϕ(g−1S) ∩ ϕ(C) = 0̄ and thus S 6⊂ ϕ(C). We have
obtained gC = ϕ(C), which completes the proof of the theorem.

3. Proof of the corollaries

First we prove Corollary 2. Let ϕ satisfy the assumptions of the corollary. For
the reader’s convenience, we modify (to sets) an argument that is due to Artstein-
Avidan and Milman [2, Lemma 4]. Let C1, C2 ∈ Cd. Then (5) gives ϕ(C1 ∩C2) ⊂
ϕ(C1) ∩ ϕ(C2). If this inclusion is strict, then by the bijectivity of ϕ there exists
B ∈ Cd with ϕ(C1∩C2)

⊂
6=ϕ(B) ⊂ ϕ(C1)∩ϕ(C2), and (5) gives C1∩C2 ⊂ B ⊂ C1∩

C2, a contradiction. In the same way it follows that ϕ(C1 ∨C2) = ϕ(C1)∨ϕ(C2),
thus ϕ is a lattice endomorphism. Now the assertion of Corollary 2 follows from
the theorem.

For the proof of Corollary 1, we note that the duality mapping C 7→ C∗ reverses
inclusions. Therefore, if ψ satisfies the assumptions of Corollary 1, then the map
ϕ defined by ϕ(C) := ψ(C)∗ satisfies the assumptions of Corollary 2. Hence, there
exists a linear transformation g ∈ GL(d) such that ϕ(C) = gC for C ∈ Cd. Then
ψ(C) = (gC)∗ = g−tC∗, and (3) implies gt = g. This proves Corollary 1.
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