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Introduction

In the paper we discuss geometrical properties of the structures which appear
as solutions of two different problems. The first problem is to find and classify
linear completions of some partial Steiner triple systems. The second problem
is to construct linear spaces – Steiner triple systems – which are not projective
spaces but are in many points similar to Fano projective spaces; in particular,
they contain many projective planes.

The partial Steiner triple systems discussed in the paper are
(
154 203

)
-configu-

rations, which generalize the combinatorial Grassmannian G2(6) and the dual
combinatorial Veronesian (V3(4))

◦ (cf. [14], [16]). A detailed classification of
the general construction of some

((
n+2

2

)
n

(
n+2

3

)
3

)
-configurations called multiveblen

configurations can be found in [15]. In particular, for n = 4 the construction
produces our structures of this paper which we extend to some further examples.
The obtained results can be found in Section 2.
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Lindner’s conjecture (cf. e.g. [18], [3], [4], and many others) states that every
partial Steiner triple system A can be embedded into a Steiner triple system, but
following Lindner we can enlarge the point set of A. Given an arbitrary partial
linear space A it is natural to ask if A is a reduct of some linear space. In a more
constructive fashion we ask if for a given

(
νr bκ

)
-configuration A there exists

a
(
νr̃ b̃κ

)
-configuration Ã such that Ã is a linear space and every line of A is

a line of Ã as well. If so, we call Ã a linear completion of A. Thus for κ = 3
constructing linear completions of A is a problem to find a suitable embedding of
a partial Steiner triple system into a Steiner triple system (comp. similar problems
considered in [5]).

A simple though important result (see 3.1) states that every multiveblen config-
uration on 15 points has a unique linear completion.

In general, the question is not so trivial. Indeed, though there are Steiner triple
systems on 21 points, the Grassmannian G2(7) (which is a

(
215 353

)
-configuration)

has not a linear completion (the result will be published in another paper).

The geometry of the obtained Steiner triple systems is studied in Section 4. It
turns out that all these completions can be represented as twisted projective
spaces – projective Fano 3-spaces in which some original lines are deleted and
lacking connections are replaced by another family of 3-subsets so that a new
linear space is obtained (cf. Construction 4.11 and Representation 4.14). At least
three subplanes with a common line remain unchanged along this process.

The classical Fano 3-space appears among these completions, while none of the
remaining completions can be embedded into a Fano projective space.

However, the most regular among our completions contain a point p such that
any two lines through it span a Fano plane so the pencil with vertex p i.e. the
lines and planes through p yield a Fano plane as well (cf. Proposition 4.8).

It is worth to point out that some of our twisted projective spaces appear as
particular instances of the construction introduced in [8, Section 3].

Thus our structures, constructions and investigations touch also another prob-
lem – to find and characterize structures which contain a sufficiently regular family
of Fano subplanes (see [2], [8], and [12]).

1. Generalities, definitions, and basic facts

Let X be a nonempty n-element set. For every nonnegative integer k the symbol
℘

k(X) stands for the set of all k-element subsets of X. Three fundamental types
of graphs (nonoriented, without loops, cf. [19]) defined on X will be used in
the paper. We write Kn for the complete graph 〈X, ℘2(X)〉, Nn for the empty
graph 〈X, ∅〉, and Ln for the linear graph

〈
X,

{
{xi, xi+1} : i = 1, . . . , n − 1

}〉
for

some ordering x1, . . . , xn of the set X. If P is a graph defined on a set X (i.e.
P ⊂ ℘

2(X)) and A ⊂ X, we write PfA for the restriction P ∩℘
2(A) of P to A.

First, let us recall some standard notations from the theory of partial linear spaces.
If M is a partial linear space with constant point degree and line size we write
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νM for the number of its points, bM for the number of its lines, rM for the degree
(rank) of any of its points, and κM for the size (rank) of any of its lines. A
partial linear space M on ν points and b lines with constant point degree r = rM
and line size κ = κM is also called a

(
νr bκ

)
-configuration. A partial Steiner

triple system is a partial linear space whose lines have size 3; consequently, every
(νrb3)-configuration is a partial Steiner triple system.

Next, we recall definitions and constructions of some combinatorial structures,
which will be used in the paper. Let X be an arbitrary (finite) set and |X| = n.

Construction 1.1. (Combinatorial Grassmannian Gk(X) (cf. [16], [14], also [6],
[13])) For any positive integer k such that 1 ≤ k < n we put

Gk(X) := 〈℘k(X), ℘k+1(X),⊂〉.

We write, shortly, Gk(n) ∼= Gk(X), where |X| = n.
A “dual” structure, isomorphic to Gk(X) under the map κ : a 7−→ X \ a is

the structure G∗
n−k(X) = 〈℘n−k(X), ℘n−k−1(X),⊃〉.

Let α ∈ SX i.e. let α be a permutation of X; we write α(m) for the natural action
of α on ℘

m(X). Clearly, α(k) ∈ Aut(Gk(X)) and α(k) ∈ Aut(G∗
k(X)).

Fact 1.2. The structure Gk(n) is an
((

n
k

)
n−k

(
n

k+1

)
k+1

)
-configuration. Conse-

quently, Gk(X) is a partial Steiner triple system iff k = 2.

Example 1.3. G2(3) is a single 3-element line. G2(4) ∼= G∗
2(4) ∼= V2(3) is the

Veblen configuration (cf. [16]). Moreover, Do := G2(5) ∼= G∗
3(5) is simply the

Desargues configuration (a classical (103)-configuration, cf. also [7]).

Construction 1.4. Let H = 〈℘2(X),L〉 be a partial Steiner triple system and
P be a nonoriented graph without loops defined on X. We take any two distinct
elements p1, p2 /∈ X and put p = {p1, p2}, X ′ = X ∪ p. Consider the following
families of blocks:

L1 =
{{
{p1, p2}, {p1, i}, {p2, i}

}
: i ∈ X

}
,

L2 =
{{
{i, j}, {p1, i}, {p2, j}

}
, : i, j ∈ X, i 6= j, {i, j} /∈ P

}
,

L3 =
{{
{i, j}, {p1, i}, {p1, j}

}
,
{
{i, j}, {p2, i}, {p2, j}

}
: i, j ∈ X, {i, j} ∈ P

}
.

Then the structure 〈℘2(X
′),L ∪ L1 ∪ L2 ∪ L3〉 will be denoted by Mp

X.PH.
A particular role is played in the sequel by the structure

B(X) = Mp
X.∅G2(X).

We write B(n) := B(X), where |X| = n, for short.
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Example 1.5. The structure Vo := B(3) is the 103G-configuration of Kantor
(cf. [10]); in the paper this one will be also called the Veronese configuration (as it
is isomorphic with one of the combinatorial Veronese spaces, cf. [16]). It is known
that Do 6∼= Vo. In general, (see [15, Proposition 6]) the incidence structure B(n)
is isomorphic to the dual of a suitable combinatorial Veronese space (cf. [16]).

As an example we present also Figure 1 which illustrates the structure of B(4).

p a1 b1

a2

b2

a3

b3a4

b4

l4

l3

l1

l2

c12

c23

c13

c24

c14

c34

Figure 1. The configuration B(4)

Adopt the notation of 1.4. Let α ∈ Aut(P) be a permutation of X such that
α(2) ∈ Aut(H) and β ∈ Sp. Then, evidently, α∪β ∈ Aut(Mp

X.PH) (cf. [15, Lemma
2]).

Fact 1.6. If H is an
((

n
2

)
n−2

(
n
3

)
3

)
-configuration then Mp

X.PH is an
((

n+2
2

)
n

(
n+2

3

)
3

)
-

configuration.

p a1 b1

a2

b2

a3

b3a4

b4

l4

l3

l1

l2

c12

c23

c13

c24

c14

c34

Figure 2. The configuration M4.∅B(2)
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p a1 b1

a2

b2

a3

b3a4

b4 l4

l3

l1

l2

c12

c23

c13

c24

c14

c34

Figure 3. The configuration M4.∅G
∗
2(4)

Construction 1.7. (Multi Veblen Configuration, [15]) The construction of the
structure Mp

X.PH can be presented in a more geometrical version which will be
frequently used in the following consideration of the obtained configurations. Let
us adopt the notation of 1.4. Next, write

ai = {p1, i}, bi = {p2, i} for i ∈ X

and
cz = z for z ∈ ℘

2(X), C =
{
cz : z ∈ ℘

2(X)
}
.

p a1 b1

a2

b2

a3

b3
a4

b4

l4

l3

l1

l2

c12

c23

c1 3

c24

c14

c34

Figure 4. The configuration M4.
L4

2
G∗

2(4)

Step A. The set p is an arbitrary ”abstract new point”.

Step B. Through p we have the lines Li, and the points ai, bi on Li, for every
i ∈ X.
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p a1
b1

a2

b2

a3

b3

a4

b4 l4

l3

l1

l2

c12

c23

c13

c24

c14

c34

Figure 5. The configuration M4.
L4

2
G2(4)

Step C. We have a subset P of ℘
2(X) distinguished, and after that

if {i, j} ∈ P: we draw lines Ai,j = ai, aj and Bi,j = bi, bj; the point c{i,j}
is common for Ai,j and Bi,j,

if {i, j} ∈ ℘
2(X) \ P: we draw lines Gi,j = ai, bj; the point c{i,j} is com-

mon for Gi,j and Gj,i,

for every {i, j} ∈ ℘
2(X). It is seen that the point p and the points ai, bi

(i ∈ X) have degree n, while (up to now) cz with z ∈ ℘
2(X) has degree

2. Moreover, the number of the points cz is
(

n
2

)
.

Step D. Let H be any
((

n
2

)
n−2

,
(

n
3

)
3

)
-configuration. Finally, we identify the points

cz constructed above with points of H (under some bijection γ) and, con-
sequently, we group the points cz into new

(
n
3

)
lines obtained as coimages

of the lines of H under γ.
The resulting configuration will be written as MX.

γ

PH ∼= Mp
X.PH. If this does not

lead to a misunderstanding we write MX.PH = M|X|.PH.

If a bijection γ is fixed (or evident), we write simply MX.PH. In particular, if
H = G2(X), it is natural to put γ : c{i,j} 7−→ {i, j}. It is immediate from 1.4 that

Mn.
Kn

G2(n) ∼= G2(n + 2).

If δ ∈ SX′ (cf. 1.4) yields an automorphism of Mp
X.PH then we frequently write Fδ

instead of δ(2) for the automorphism in question. In particular, if δ is the trans-
position (p1, p2) then σ := Fδ is the automorphism of MX.

γ

PH which interchanges
ai and bi for every i ∈ X. It is clear that σFα = Fασ for every α ∈ SX .

As a convenient tool for classification of the structures MX.
γ

PH we have in-
troduced in [15] the following classifications of graphs. Let P ′,P ′′ be two graphs
on n vertices x1, . . . , xn. We write P ′ ≈0 P ′′ iff P ′,P ′′ are complementary in ex-
actly one vertex xt; this means xi, xt (i 6= t) are connected in P ′ iff they are not
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connected in P ′′; while the remaining edges of the graphs are common. Let ≈ be
the transitive closure of the relation ≈0. Then (cf. [15, Proposition 9]) P ′ ≈ P ′′

yields MX.
γ

P ′H
∼= MX.

γ

P ′′H. There are exactly 3 pairwise not ≈-equivalent graphs
on 4 vertices (the case analyzed in detail in this paper): K4, N4, and L4, and L4

is equivalent to the graph L4
2 on 4 vertices with a single one edge.

Another auxiliary notion that appears useful in our theory is the antineigh-
borhood N−(u) of a point u: N−(u) consists of the points not collinear with u.
Detailed technical lemmas characterizing when N−(u) is a subspace of MX.

γ

PH

are given in [15, Lemmas 5, 7, 8, Remark 2]. We shall frequently use these char-
acterizations without quoting their technical formulations.

Construction 1.8. (Convolution M ./θ G (cf. [17])) Let M = 〈X,L〉 be a partial
Steiner triple system and G be an abelian group; let θ ∈ G. The points of the
structure M ./θ G are the elements of X ×G, and its lines are all the sets

{(x1, g1), (x2, g2), (x3, g3)}, where {x1, x2, x3} ∈ L and g1 + g2 + g3 = θ.

In fact, only structures M ./0 G were analyzed in detail in [17], but the above
construction yields a partial Steiner triple system for arbitrary θ. And also most
of the results of [17] can be generalized for arbitrary θ.

The choice of θ ∈ G may be (sometimes) inessential.

Proposition 1.9. Adopt the notation of 1.8. Let us fix g0 ∈ G and define the
map

F : X ×G −→ X ×G; (x, g) 7−→ (x, g + g0).

The map F is an isomorphism of M ./θ G on M ./θ+3g0 G. In particular

M ./0 C2
∼= M ./1 C2.

Construction 1.10. Let N = 〈Z,L〉 be an arbitrary Steiner triple system and
θ ∈ C2. Evidently, the pairs ((x, 0), (x, 1)), where x is a point of N are exactly all
the pairs of noncollinear points of N ./θ C2. Let us write Λ(N; θ) for the structure
obtained from N ./θ C2 by adding one new point p and the lines which join pairs
of points noncollinear in N ./θ C2 and pass through the point p.

The construction of the structure Λ(N; θ) has also its own interest. Namely, let
N be a

(
νr b3

)
-configuration. Then νr = 3b and, since N is a linear space,(ν

2

)
= 3b which yields ν − 1 = 2r. On the other hand, the degree of a point in

N ./θ C2 is 2r, and thus its degree in Λ(N; θ) is 2r + 1. The degree of the added
point p is ν, and ν = 2r + 1 as well. Finally, the constructed structure Λ(N; θ) is
again a Steiner triple system and a

(
(2ν + 1)2r+1 (4b + ν)3

)
-configuration.

A considerable contribution to the theory on (νr, bκ)-configurations can be
found in the literature. Let us quote some more important results.

Proposition 1.11. (Kirkmann) A Steiner triple system can be defined on a ν-
element set if and only if ν ≡ 1 mod 6 or ν ≡ 3 mod 6.
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Proposition 1.12. ([1]) If M is a (νr, bκ)-configuration, then νr = bκ. A
(νr, bκ)-configuration is a linear space if and only if

(ν
2

)
= b

(κ
2

)
.

Proposition 1.13. ([9]) There is a (νr, b3)-configuration if and only if ν ≥ 2r+
1 and νr = 3b.

2. Some more examples of multiveblen configurations

Let X = {1, 2, 3, 4} and H be any representation of the Veblen configuration
defined on the set ℘

2(X). Two such representations were already discussed in [15]:
H = G2(4) (very widely) and H = B(2). A third one which is also interesting is
the structure G∗

2(4), whose lines have form {a ∈ ℘
2(X) : i ∈ a} with i ∈ X. First,

since the case H = G∗
2(4) was not analyzed in [15] we shall establish here some

basic features of the structures M4.PG∗
2(X).

Proposition 2.1. Let P be any graph defined on X and B = M4.PG∗
2(X).

(i) The point p of B is elementarily distinguishable in terms of the geometry
of B and, consequently, every automorphism of B fixes p.

(ii) No three lines of B which pass through p yield a Veronese nor a Desargues
configuration.

(iii) B is not isomorphic to any structure of the form M4.P ′G2(X) or

M4.P ′B(2) for any graph P ′ on X.

(iv) Aut(M4.PG∗
2(X)) ∼= (Aut(M4.PG2(X)))(p).

Proof. From the results of [15] we get that the set of points q of B such that
N−(q) is a subspace of B coincides with {p}∪C, and p is the single isolated point
in this set. This proves (i).

Consider three lines Lii , Li2 , Li3 through p. “Diagonal” points of the corre-
sponding Veblen figures are c{i1,i2}, c{i1,i3}, and c{i3,i2}. But these three points
are never collinear in G∗

2(X); the third point on c{i1,i2}, c{i1,i3} is c{i1,i4}, where
X = {i1, i2, i3, i4}. This justifies (ii).

Finally, (iii) is an immediate consequence of (ii).

Let F ∈ Aut(B) be arbitrary. From (i) F (p) = p and thus F leaves the sets C and
{ai, bi : i ∈ X} invariant. Let us write L(cz1 , cz2 , cz3) iff the czj

yield a triangle in
G∗

2(X), cz1 , cz2 , cz3 ∈ C. Then F preserves the relation L. But L defines (together
with the lines through p and “old” lines which join points on lines through p and
points in C) the structure M4.PG2(X), which closes the proof of (iv).

Similarly as it was done in [15] we get that every B of the form considered in 2.1
is isomorphic to one of the following: M4.

N4
G∗

2(X), M4.
K4

G∗
2(X), M4.

L4
G∗

2(X).
The arising structures are visualized in Figures 3, 4, and 7.
As a consequence of 2.1(iv) we get that

Aut(M4.
N4

G∗
2(X)) ∼= C2 ⊕ S4

∼= Aut(M4.
K4

G∗
2(X)),

Aut(M4.
L4

G∗
2(X)) ∼= C3

2 .
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p

a1

a2

a3

a4
b1

b2

b3

b4

c14 c12

c13

c23

c34

c24

L1

L2

L3

L4

Figure 6. The configuration M4.
K4

G2(4)

p

a1

a2

a3

a4
b

1

b2

b3

b4

c14 c12

c13

c23

c34

c24

L1

L2

L3

L4

Figure 7. The configuration M4.
K4

G∗
2(4)
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Finally, the case where the Veblen configuration H is represented in the form
H = B(2) = M2.

N2
G2(2) on a 4-element set X was only mentioned in [15]. Let

B = M4.PB(2). From [15] we get that when P = K4, then B ∼= M4.
L4

G2(4).

When P = N4 then Aut(B) = C3
2 , but B 6∼= M4.

L4
G2(4). The case when P ≈ L4

was completely left.
Let us recall that if P ≈ L4 then there is y ∈ ℘

2(X) such that P ≈ {y}
and, consequently, MX.PH ∼= MX.{y}H for every representation H of the Veblen

configuration.

Lemma 2.2. Let P be a graph defined on the set X = {1, 2, 3, 4} such that P ≈
{y′} for some y′ ∈ ℘

2(X). Set q = {3, 4}, r = {1, 2}, s = {1, 3}, Y = {q, r, s},
and H = Mq

r.{∅}G2(r) = B(r). Then MX.PH ∼= MX.{y}H for some y ∈ Y.

Proof. Let P ≈ {y} for some y ∈ ℘
2(X). If y 6= q, r then there is a permutation

α ∈ SX which maps y onto s such that α(2) ∈ Aut(H) and then α yields an
isomorphism Fα of MX.{y}H onto MX.{s}H.

Proposition 2.3. Let P be a graph defined on the set X = {1, . . . , 4} such that
P ≈ ∅ or P ≈ L4. We adopt notation of 2.2 and then, without loss of generality
we can assume that

P = ∅ or P = {y} with y ∈ Y . (1)

Set cp = p = {5, 6}, X ′ = X ∪ p, and B = MX.PB(2).

(i) Let u be a point of B. Then N−(u) is a subspace of B iff u = cy, where
y ∈ {p, q, r} =: Z.

(ii) Let z ∈ Z.

a) Let z = r. Then there are two lines through cz which do not yield in
B a Veblen figure.

b) Let z = p. Then every two lines through cz yield in B a Veblen
figure.

c) Let z = q. If q /∈ P then there are two lines through cz which do not
yield in B a Veblen figure.

(iii) Let P = {q}. There is an involutory automorphism ξ of B which fixes cr

and interchanges cp and cq.

(iv) Three lines Li1 , Li2 , Li3 through p yield a Desargues configuration Do or
a Vo-configuration iff q ⊂ {i1, i2, i3}. Consequently, there are two such
triples of lines, and the lines in one triple are numbered with the elements
of the set q ∪ {i} where i ∈ r.
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(v) Let P 6= ∅, so, in view of (1) P = {y} where y ∈ Y.

d) Assume that y = r, then the two triples of lines mentioned in (iv)
yield two Vo-configurations and Aut(B) = C3

2 .

e) If y = q then these two triples of lines yield two Desargues configu-
rations and Aut(B) = C2 ⊕D4.

f) Assume that y 6= q, r. Then the two triples of lines mentioned in (iv)
yield one Desargues configuration and one Veronese configuration
and Aut(B) = C2

2 .

(vi) The three structures M4.{{1, 2}}B(2), M4.{{3, 4}}B(2), and M4.{{1, 3}}B(2) are

nonisomorphic, and not isomorphic to any of the structures of the form
M4.P ′G2(4) or M4.P ′G

∗
2(4).

(vii) Moreover, none of them is isomorphic to M4.
N4

B(2).

Proof. From [15, Lemma 7(ii)] it follows that N−(cz) is a subspace of B iff z ∈ Z.
In every of the cases of (1) from [15, Lemma 8(ii)] we infer that N−(ai) or N−(bi)
may be a subspace of B only for i ∈ r, and from [15, Lemma 8(i)] it follows that
neither N−(ai) nor N−(bi) is a subspace of B for some i ∈ r. This closes the
proof of (i).

Condition (ii) is justified by direct examples. Note, first, that in every case {2, 3},
{2, 4}, and {1, 4} are not in P . If r ∈ P then required two lines through cr are
{c{1,4}, c{2,3}, c{1,2}} and {b1, b2, c{1,2}}; if r /∈ P then the lines {c{1,4}, c{2,3}, c{1,2}}
and {b1, b2, c{1,2}} are as required.

If q /∈ P then the two lines {c{2,3}, c{2,4}, c{3,4}} and {b3, a4, c{3,4}} through cq do
no yield a Veblen Figure.

To prove (iii) it suffices to note that the following involutory bijection ξ
c{3,4} c{2,4} c{2,3} c{1,4} c{1,3} a3 a4 b4 c{1,2}

p a1 b1 a2 b2 a3 b3 b4 c{1,2}

is a required automorphism of B.

Condition (iv) is evident.

(v): Recall that the map σ (interchanging every ai with bi) is an automorphism
of B.

Let F ∈ Aut(B). From (i) and (ii), we get that F leaves the set {cz : z ∈ Z}
invariant and either F (cp) = cp or F interchanges cp and cq.

Assume that F (p) = p, so F determines a permutation α of X corresponding to
the permutation of the lines through p. Clearly, α maps a triple of lines which
yields a Desargues or Veronese configuration onto a triple with the same property.
From (iv), α(2)(q) = q and thus α(2)(r) = r. Let P = {y} and y ∈ Y .

In the case (f) y = s = {1, 3} and then the triple {L1, L3, L4} yields a Desargues
configuration, while {L2, L3, L4} yields a Veronese configuration so, corresponding
triples of lines through q cannot be interchanged. Consequently, F (cy) = cy or
F (cy) = c{1,4} and thus α(2)(y) = y or α(2)(y) = {1, 4}, which gives that either
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α(3) = 3 or α(3) = 4, and α fixes 1 and 2. This yields α ∈ Sq. Thus F = Fασ or
F = Fα, where α ∈ Sq.

In the cases (d) and (e) for arbitrary permutations α1 ∈ Sq, α2 ∈ Sr the map
α = α1 ∪ α2 determines the automorphism Fα of B, and F = Fασ or F = Fα,
where α ∈ Sq ◦ Sr. If y = r then F (cp) = cp follows from (ii) so the proof of (d)
is completed.

To close the proof in the case (e) we note that if F is an arbitrary automorphism
of B and F (p) 6= p then ξ(F (p)) = p for ξ defined in (iii). Direct computation
proves that ξFβ = Fβξ for β ∈ Sr. Let α be the transposition (3, 4). Analogous
computation gives ξσξ = Fα. Consequently,

{
ξ, Fα, σ

}
generates the D4 group,

which gives our claim.

Clearly, (vi) is an immediate consequence of (v), (iv), and 2.1(ii).

In view of (v), the only one suspected isomorphism is M4.{{1, 2}}B(2) ?∼= M4.
N4

B(2),

as these two structures have the same automorphism group. Suppose that F is
such an isomorphism. From the above and [15, Example 2], F (cp) = cp, F (C) = C,
F (cq) = cq, and F (cr) = cr. Let us replace the lines through cr contained in C by
the following triples:

{cr, cu, cv}, where cr is collinear with cu, cv and cu, cv are not collinear;

then the structure G2(X) emerges on C and F appears to be an isomorphism of
M4.{{1, 2}}G2(4) and M4.

N4
G2(4), which is impossible.

The structures discussed in 2.3 are drawn in Figures 2, 8, 9, and 10.

p a1 b1

a2

b2

a3

b3a4

b4

l4

l3

l1

l2

c12

c23

c13

c24

c14

c34

Figure 8. The configuration M4.{{3, 4}}B(2)

Clearly, the three structures G2(4), G∗
2(4), and B(2) do not exhaust all the possi-

ble labelings of the points of a Veblen configurations by elements of ℘
2(X), where
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|X| = 4. For the other ways, however, we could not find any natural “construc-
tive” interpretation.

p a1 b1

a2

b2

a3

b3

a4

b4 l4

l3

l1

l2

c12

c23

c13

c24

c14

c34

Figure 9. The configuration M4.{{1, 3}}B(2)

Example 2.4. Let us define on the set ℘
2(X), where X = {1, 2, 3, 4} the follow-

ing system of lines:{
{1, 2}, {1, 4}, {2, 3}

}
,

{
{1, 2}, {2, 4}, {3, 4}

}
,{

{1, 3}, {3, 4}, {2, 3}
}
,

{
{1, 3}, {1, 4}, {2, 4}

}
.

One can note that a Veblen configuration V arises, in which for every pair u, y of
noncollinear points we have u ∩ y 6= ∅. Consequently, no point cu of B = M4.PV

yields a subspace of the form N−(cu). Similarly, no point ai nor bi yields a sub-
space. No triple a ∈ ℘

3(X) may yield a Desargues configuration or a Veronese
configuration with center p. Slightly less irregular labeling of the Veblen configu-
ration is given by the following:{

{1, 2}, {1, 4}, {2, 4}
}
,

{
{1, 2}, {2, 3}, {3, 4}

}
,{

{1, 3}, {1, 4}, {2, 3}
}
,

{
{1, 3}, {3, 4}, {2, 4}

}
.

In this case B has one Desargues or Veronese configuration on lines with numbers
1, 2, 4.
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p a1 b1

a2

b2

a3

b3a4

b4 l4

l3

l1

l2

c12

c23

c13

c24

c14

c34

Figure 10. The configuration M4.{{1, 2}}B(2)

3. Linear completions, problems on existence

3.1. General theory

Let A be a partial Steiner triple system. A linear completion of A is a Steiner
triple system Ã defined on the point universe of A such that every line of A is a
line of Ã as well. Moreover, if A has a constant point degree we assume that Ã

also has constant point degree.
Let A be a (νr, b3)-configuration and let Ã be a configuration defined on

the point set of A such that its line set extends the line set of A. Thus Ã is a
(νr̃, b̃3)-configuration whose parameters satisfy νr̃ = 3b̃.

Ã is a linear space if and only if
(ν

2

)
= b̃

(
3
2

)
(cf. [1]) i.e. iff ν(ν − 1) = 6b̃.

Since νr̃ = 3b̃, Ã is a linear space if and only if ν = 2r̃ + 1 and thus ν must be
even. Given ν this determines r̃ = ν−1

2
.

Let Ã be a linear completion of A. Then Ã is a Steiner triple system, so
ν = 6k + t for some k and t ∈ {1, 3}. Substituting r̃ = 3k and r̃ = 3k + 1

resp. we determine b̃ = k(6k + 1) and b̃ = (2k + 1)(3k + 1). In any case, if ν is
admissible (cf. 1.11) then there exists a Steiner triple system on the universe of
points of A with constant point degree. The question is whether there exists one
which completes A.
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3.2. Completing the Veblen and related configurations

Let H = 〈Z,L〉 be the Veblen configuration. For every point a ∈ Z there is the
unique point η(a) ∈ Z such that a, η(a) are not collinear in H. It is known that,
if we add one “abstract” point p /∈ Z and define the family L0 consisting of three
new lines {p, a, η(a)} with a ∈ Z, then the structure P = 〈Z ∪ {p},L ∪ L0〉 is
the Fano plane. Recall (cf. [17]) that the Veblen configuration can be presented
as T ./0 C2, where T is a single 3-element line. Thus the above remark and 1.10
yield that Λ(T; 0) ∼= P is simply the Fano plane.

On the other hand recall that the Veblen configuration can be also presented
as

– Veronese space V2(X), where X is a 3-element set (cf. [16]),

– G2(X) and G∗
2(X), where X is a 4-element set,

– B(q) = Mp
q.∅

℘
2(q), where p and q are disjoint 2-element sets.

Some more frequently used labelings of the points of the Veblen configuration by
the elements of ℘

2(X), where X = {1, 2, 3, 4} is a 4-element set are shown in
Table 1.
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I
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G2({1, 2, 3, 4}) G∗
2({1, 2, 3, 4})
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f2; 4g

cf. 2.4 cf. 2.4

Table 1. Various labeling of the points of the Veblen figure by the elements of
℘

2({1, 2, 3, 4})
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3.3. Completing
(
154 203

)
multiveblen configurations

In [16, Proposition 4.13] we proved for some
(
154 203

)
-configuration that it has

the unique completion to a Steiner triple system. In the sequel we shall construct
such completions of multiveblen configurations.

Proposition 3.1. Let P be an arbitrary graph on vertices X = {1, 2, 3, 4}. The
structure B = M4.PH has the unique completion to a Steiner triple system.

Proof. From assumptions, the structure H must be a
(
62 43

)
-configuration and

thus H is simply the Veblen configuration defined on the set ℘
2(X). We are going

to construct the system of new lines on the universe of points of B so as the
resulting incidence structure Bc will be a partial linear space. The first three
lines of Bc are given by the following formula:

{p, cz1 , cz2}, z1, z2 ∈ ℘
2(X), z1 = η(z2).

Indeed, if z ∈ ℘
2(X) then the only point noncollinear with both p and cz is cη(z).

For any two distinct i, j ∈ X we have the following pair of lines of Bc:

{ai, aj, cX\{i,j}},
{bi, bj, cX\{i,j}}

if {i, j} /∈ P , or
{ai, bj, cX\{i,j}},
{bi, aj, cX\{i,j}}

if {i, j} ∈ P . (2)

With the above we have obtained 15 new lines which join points noncollinear in
B, thus (cf. [16], [1]) the resulting system of lines is a linear space. It is seen that
the above completion is unique.

4. Twisted projective spaces and the geometry of completions

One can directly verify that G̃2(6) is simply the Fano 3-space PG(3, 2). Let
us analyze in some detail the remaining (157, 353)-configurations which arise as
the completions of the structures of the form M4.PH, where H = G2(4) or

H = G∗
2(4). In particular, let us examine the completions Ã, where A = B(4)

and A = M4.
L4

G2(4), as they are constructed in 3.1. Note the following simple
observations, which give an insight into the geometry of our completions. Let
X = {1, . . . , 4}.

Analysis 4.1.

(I) The set C ∪ {p} yields in Ã a subspace isomorphic to the the Fano plane
PG(2, 2) (the natural completion of the Veblen figure, cf. Subsection 3.2).

(II) For every distinct i, j ∈ X the set {p, ai, aj, bi, bj, c{i,j}, cX\{i,j}} yields in

Ã a subspace D{i,j} isomorphic to the Fano plane. Consequently, every

two lines through p yield in Ã a Fano plane; the D{i,j} together with the

one defined in (I) gives us 7 Fano planes through p contained in Ã, which

pairwise intersect in a line and, clearly, cover the point set of Ã.
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(III) The structure A contains the configuration Vo. Therefore, in accordance
with [16], A can not be embedded into a Fano projective space and thus

Ã cannot be a projective space.

(IV) Let us consider the lines through p and the Fano planes through p, as
they are constructed above. It is seen that we obtain a (73)-configuration
i.e. a Fano plane. Old lines, those of A are labeled as Li with i ∈ X.
Let us label the new three lines through p by elements of ℘

2({1, 2, 3}) in
such a way that L{i,j} lies in the plane spanned by Li, Lj. Every line Lx

contains two points distinct from p; to construct Ã we must characterize
the way in which they are joined in corresponding planes.

(V) Let A = B(4). Let us take two lines K1 = ai, bj1 and K2 = ai, bj2 , where
i, j1, j2 are pairwise distinct; without loss of generality we can assume that
i = 1, j1 = 2, j2 = 3. Consider the following “generating” sequence:

c{1,2} a1, b2, c{1,3} a1, b3, c{2,3} c{1,2}, c{1,3},

c{1,4} b2, b3, p c{2,3}, c{1,4}, a4 a1, c{2,3},

b1 p, a1, a2 p, b2, a3 p, b3, b4 p, a4,

c{2,4} a2, b4, c{3,4} a3, b4.

Consequently, the smallest subspace of Ã which contains K1 ∪K2 is the
whole point set of Ã. Analogous reasoning shows that the following two
pair of lines: a1, a2, a1, a3 and a1, a2, a1, b3 also span the space.
Let us write down all the lines through a4; these are L0 = p, a4, Mi =
ai, a4, Ni = bi, a4 with i = 1, 2, 3. Every pair (L0, Mi), (L0, Ni), and
(Mi, Ni) yields (the same) Fano plane – there are 3 such planes and 9 such
pairs. Every pair (Mi, Mj), (Mi, Nj), (Ni, Nj) spans the whole space, then
number of pairs of lines through a4 which span the whole space is 12.
From the above we get also that for every z ∈ ℘

2(X) there are two lines
through cz which span the whole space (e.g. the lines a1, b2 and a4, a3

through c{1,2}).

(VI) Analogous computation can be provided for A = M4.
L4

G2(4) (which is a

quite expected result, cf. 4.7).

Proposition 4.2. Let F be a Fano plane, θ ∈ C2, and X = {1, . . . , 4}. Set

M = Λ(F; θ). Then M ∼= G̃2(6) for θ = 0 and M ∼= ˜M4.∅G
∗
2(X) for θ = 1.

Proof. The case θ = 0 is evident; from [17] it follows that F ./0 C2 is a suit-
able projective slit space, and its completion is the Fano 3-space. However, the
construction presented below works well also in this case.
Let θ = 1 and let us label points of F in such a way that

– its points are: p1, p2, p3, p4, q1,2, q1,3, q2,3;
– collinear triples are: (pi, pj, qi,j) with 1 ≤ i < j ≤ 3, (pi, p4, qj,k), where
{i, j, k} = {1, 2, 3}, and (q1,2, q1,3, q2,3).
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We embed M4.∅G
∗
2(X) into F ./θ C2 putting

ai 7−→ (pi, 0),
bi 7−→ (pi, 1),

c{i,j} 7−→
{

(qi,j, 0) when i, j ≤ 3,
(qi′,j′ , 1) where {i′, j′} = X \ {i, j} otherwise.

(3)

Direct verification shows that the above map (together with p 7−→ p) is a required
isomorphism. Besides, for the line T = {q1,2, q1,3, q2,3} we obtain T ./1 C2

∼=
G∗

2(X).

In view of 4.2 and 1.9, the linear completion of M4.∅G
∗
2(4) is also the projective

space PG(3, 2).
To determine, which of the completing configurations are really distinct, we

can apply the following lemma

Lemma 4.3. Let P be any graph on the vertices X = {1, . . . , 4}, and H be a
Veblen configuration represented on the set ℘

2(X). Let η be a bijection of the
points of H such that a, η(a) are not collinear in H for every a ∈ ℘

2(X). Finally,
let B be the unique linear completion of A = M4.PH (cf. 3.1 and the construction
presented there).

Let H′ be the image of H under the map κ (more precisely, let it be the rep-
resentation of the Veblen configuration, with lines defined as images of lines of H

under the map κ). Then A′ = M4.
µ(P)

H′ is contained in B and therefore, Ã = Ã′.

Proof. Consider the points p, ai, bi of A. For every a = {i, j} ∈ ℘
2(X), if a ∈ P

then we choose in B the lines ai, bj and aj, bi, and if a /∈ P we choose the lines
ai, aj and bj, bi. Their intersection point in B is cκ(a), which, in accordance with
the construction of the A′ should be written as c′{i,j}. To recover the original
collinearity of points in H we must put in H′: c′a1

, c′a2
, c′a3

form a line of H′ iff
cκ(a1), cκ(a2), cκ(a3) form a line in H. This closes the proof.

It is seen that the map κ transforms G2(X) onto G∗
|X|−2(X); in particular the

image of G2(4) under κ is G∗
2(4). Thus, as an immediate consequence of 4.3 we

infer, e.g.

Corollary 4.4. ˜M4.
L4

G2(4) = ˜M4.
L4

G∗
2(4), B̃(4) = ˜M4.

K4
G∗

2(4), and G̃2(6) =

˜M4.
N4

G∗
2(4).

Lemma 4.5. Let H = G2(X), where X = {1, . . . , 4}, let P be a graph defined on
the set X, and let B be the linear completion of the structure A = M4.PH. Let us
adopt notation of 4.1(IV) and consider any three noncoplanar lines L′, L′′, L′′′ of
B which pass through p and the family S(L′, L′′, L′′′) of all the possible Desargues
or Veronesian subconfigurations of B for which the given lines are the rays.

Let us number elements of X by i1, i2, i3, i4 and let y = {i1, i2, i3} ∈ ℘
3(X).
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(i) Consider the lines Li1 , Li2 , Li3. If Pf y ≈ K3, then S(Li1 , Li2 , Li3) con-
sists of 4 Desargues configurations; otherwise it consists of 4 Veronese
configurations.

(ii) Consider the lines Li1 , Li1,i2 , Li1,i3. If Pf y ≈ K3, then the family
S(Li1 , Li1,i2 , Li1,i3) consists of 4 Desargues configurations; otherwise it
consists of 4 Veronese configurations.

(iii) Consider the lines Li1 , Li2 , Li2,i3. Let C be the graph (i1, i2), (i2, i3),
(i3, i4), (i4, i1). If P contains C or odd number of edges of C then the
family S(Li1 , Li2 , Li2,i3) consists of 4 Desargues configurations; otherwise
it consists of 4 Veronese configurations.

Proof. (i) Note that the pair of points on the Veblen figure inscribed into a pair of
the given lines is cu, cκ(u), where u ∈ ℘

2(y). The three points cui
with ui = y \ {i}

are collinear in G2(X). If κ is applied to one of the ui or to three of the ui,
then the resulting points are not collinear in G2(X) (though they are collinear in
G∗

2(X)). If κ is applied to two of the ui, then we obtain a line of G2(X). Directly
we verify that the corresponding triples of collinear points cui

or cκ(ui) yield the
same type of configuration as the original line ℘

2(y).

(ii) In this case the pairs of points of corresponding Veblen figures inscribed
into the given lines are: (ai2 , bi2), (ai3 , bi3), and c{i2,i3}, c{i1,i4}. If (i2, i3) ∈ P
then the collinear triples are: (ai2 , ai3 , c{i2,i3}), (bi2 , bi3 , c{i2,i3}), (ai2 , bi3 , c{i1,i4}),
(bi2 , ai3 , c{i1,i4}). The rest of the proof goes as in the case (i).

(iii) Now, pairs of points of suitable Veblen figures are: (bi3 , ai3), (bi4 , ai4), and
(c{i3,i4}, c{i1,i2}). If (i3, i4) ∈ P , then the collinear triples are: (ai3 , ai4 , c{i3,i4}),
(bi3 , bi4 , c{i3,i4}), (ai3 , bi4 , c{i1,i2}), and (ai4 , bi3 , c{i1,i2}).

Now we are in a position to determine the automorphism group of B̃(4). Let us
recall some elementary facts from group theory. Let G ∼= C3

2 be the subgroup of
C4

2 consisting of the elements σ = (σ1, . . . , σ4) ∈ C4
2 such that σ1 + · · · + σ4 = θ

(i.e. let G be the kernel of the homomorphism σ 7→
∑4

i=1 σi). The group S4 acts
on C4

2 via the map S4 3 α 7−→ α∗ :
(
(σ1, . . . , σ4) 7→ (σα(1), . . . , σα(4))

)
and G is

invariant under this action (i.e. α∗(G) = G for every α ∈ S4). Consequently, S4

acts via ∗ on G, which means that S4 acts on C3
2 and this enables us to define

S4 n C3
2 .

Proposition 4.6. Aut(B̃(4)) ∼= S4 n C3
2 .

Proof. Let X = {1, 2, 3, 4}, P = {a, b}, and B = B̃(4). Finally, let F ∈ Aut(B).
From 4.1(V) we infer that F (p) = p, so F determines a permutation of the lines
through p and, at the same time, an automorphism of the corresponding Fano
plane F (cf. 4.1(IV)). Let us adopt notation of 4.1(I)–(IV); from 4.5 we obtain
that F maps the triples of lines of the form Li1 , Li2 , Li2,i3 where i1, i2, i3 ∈ X
onto triples of the same form (P contains 0 edges of C in notation of 4.5(iii)).
From this we deduce that F permutes the lines Li with i ∈ X and leaves the
family of the lines Li1,i2 invariant (this family is a line of F). Thus F determines



360 M. Prażmowska: Twisted Projective Spaces and . . .

the permutation αF ∈ SX such that F (Li) = LαF (i). Evidently, every α ∈ SX

determines an automorphism fα ∈ Aut(B) which extends the permutation xi 7→
xα(i) (x ∈ P , i ∈ X) (cf. [15, Lemma 2]). To close the proof it remains to
determine the subgroup of Aut(B) consisting of the maps F such that αF = id.
Every such F is associated with a quadruple σ = (σ1, . . . , σ4) ∈ (SP )4 such that
F (xi) = σi(x)i for every symbol x ∈ P and i ∈ X. Clearly, every σ as above
determines the permutation F ′

σ of the points ai, bj; direct verification shows that
F ′

σ can be extended to an automorphism Fσ of B iff σ1 ◦ · · ·◦σ4 = id so, the group
of admissible quadruples is isomorphic to C3

2 . It is clear that fαFσ = Fα∗(σ)fα for
α ∈ SX .

Proposition 4.7. The completions of B(4) and of M4.
L4

G2(4) are isomorphic.

Proof. Let X = {1, 2, 3, 4} and let B be the linear completion of B(X), as defined
in 3.1. Next, let P = L4 be the suitable linear graph on X. Direct verification
shows that the following function

p a1 b1 a2 b2 a3 b3 a4 b4

p b1 a1 c{2,4} c{1,3} c{1,2} c{3,4} a4 b4

c{1,2} c{2,3} c{3,4} c{1,4} c{1,3} c{2,4}
b3 c{1,4} a3 c{2,3} b2 a2

embeds M4.
L4

G2(X) into B, which yields our claim.

The two possible completions of the multiveblen configurations MX.PH where
|X| = 4 and H = G2(X) or H = G∗

2(X), i.e. (cf. 4.4 and 4.7) the Fano 3-space

and the structure B̃(4), have an interesting geometrical characterization, which is
in fact a converse of the analysis 4.1.

Theorem 4.8. Let B be a
(
157 353

)
-configuration such that for some point p of

B any two lines through p yield a Fano subplane of B. Then either B is a Fano

3-space PG(3, 2) or B ∼= B̃(4).

Proof. From assumptions, the lines and planes through p yield a
(
73 73

)
-configu-

ration i.e. a Fano plane. Set X = {1, 2, 3, 4}.
Let L1, L2, L3 be three noncoplanar lines through p; for every 1 ≤ i < j ≤ 3

we have a Fano plane Πi,j spanned by Li, Lj, and in every of these planes we have
the third line Li,j through p. Let L4 be the last, seventh line through p.

Let ai, bi be points of B such that Li = {p, ai, bi} for i ∈ X. Let 1 ≤ i < j ≤ 3;
without loss of generality we can label the points on Li,j by the elements of
℘

2(X) in such a way that {ai, aj, c{i,j}}, {bi, bj, c{i,j}}, {ai, bj, cu}, and {aj, bi, cu}
(u = X \ {i, j}) are lines of Πi,j.

Next, for k such that {i, j, k} = {1, 2, 3} we have the plane which contains the
lines L4, Lk, Li,j and thus either

a4, ak, b4, bk pass through c{4,k} and a4, bk, b4, ak pass through c{i,j}

or
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a4, ak, b4, bk pass through c{i,j} and a4, bk, b4, ak pass through c{4,k}.

We define the graph P on X putting: {i, j} ∈ P for all 1 ≤ i < j ≤ 3 and for
k ∈ {1, 2, 3} we have {k, 4} ∈ P iff a4, ak passes through c{4,k}.

The last plane through p contains the lines L1,2, L1,3, and L2,3. Consider the
line c{1,2}, c{1,3}; its third point is c{2,3} or c{1,4}. Direct verification shows that in
the first case the points cx yield the structure G2(X), and in the second case they

yield G∗
2(X). In any case we see that B ∼= ˜MX.PG2(X) or B ∼= ˜MX.PG∗

2(X),
which closes the proof.

Next, we pass to the completions of some less regular and “less projective” mul-
tiveblen configurations.

Proposition 4.9. The completions of two configurations M4.{{1, 2}}B(2) and

M4.{{3, 4}}B(2) are isomorphic.

Proof. Let X = {1, 2, 3, 4}. It suffices to observe that the map

p a1 b1 a2 b2 a3 b3 a4 b4 cx, x ∈ ℘
2(X)

p a3 b3 b4 a4 a1 b1 b2 a2 cx

embeds MX.{{1, 2}}B({1, 2}) into ˜MX.{{3, 4}}B({1, 2}).

Let us analyze in some details the geometry of the completions of the structures
in the family M4.PB(2).

Analysis 4.10. Let X = {1, 2, 3, 4}, r = {1, 2}, and P be a graph defined on X
of the form (1). Write A = MX.PB(r) and let B be the completion of A.

(I) Let us number the new lines through p as follows: L7 = c{1,2}, c{3,4},
L8 = c{1,3}, c{2,3}, L9 = c{1,4}, c{2,4}. Then the three triples (L7, L8, L9),
(L7, L1, L2), and (L7, L3, L4) span in B three Fano planes, which have the
line L7 in common. The corresponding Fano planes will be denoted by
ΠC, Π1,2, and Π3,4 respectively. The union of the above three planes is the
point set of B.

(II) No two other lines through p span in B a Fano plane, and (besides the
above) only pairs (Li, Lj) with i, j ≤ 4 yield in B Veblen figures (each
pair yields two Veblen figures).

(III) Every line through a point ai crosses the plane ΠC. Let M1, M2 be two lines
through a point ai (or through a point bi) and let Γ be the Fano plane
which contains ai and L7 (Γ = Πi,i′ , where {i, i′} = {1, 2} or {i, i′} =
{3, 4}). Assume that P = ∅. Then

– either M1, M2 ⊂ Γ and then M1, M2 span in B the Fano plane Γ, or

– Mj∩Γ = {ai} for j = 1, 2 and then there is no Veblen figure inscribed
into M1, M2, or

– Mj1 ⊂ Γ, Mj2 ∩ Γ = {ai}, where {j1, j2} = {1, 2}. Then there is
exactly one Veblen figure inscribed into the Mj.
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Analogous analysis repeated for the cases P = {1, 2} and P = {1, 3} proves that
in every of the above cases there is no Fano figure spanned by a pair of lines
through ai such that at least one of these lines is not contained in Γ. We write
shortly Π1 = Π1,2 and Π2 = Π3,4.

(IV) Let q be a point of B not on L7. Then B contains exactly one Fano
subplane through q. Indeed, for q = ai the claim follows from (III). If
q = cu and Π is a Fano plane through q distinct from ΠC, then there is in
Π a point of the form ai (or bi resp.), so Π would be a Fano plane through
ai distinct from the three listed in (I), which contradicts (III).

(V) Clearly, in view of 3.1 every f ∈ Aut(A) has the unique extension f̃ to
an automorphism of B. From (IV) we infer immediately that an arbi-
trary automorphism f of B leaves the line L7 invariant. Consequently,
f permutes the planes in

{
Π1, Π2, ΠC

}
and it permutes the points on L7.

Moreover, if f(p) = q then there are two planes Γ1, Γ2 in
{
Π1, Π2, ΠC

}
with the following property (cf. (I), (II)):

Let Mi, M3+i ⊂ Γi be two lines through q distinct from L7 for i = 1, 2.

For every 1 ≤ j1 < j2 ≤ 4 there are in B two Veblen figures

inscribed into Mj1 , Mj2 . (∗)

(i) Let P = ∅. Direct verification shows that the following permuta-
tion is an automorphism of B:

p

c{3,4}

a1

a3

b1

b4

a2

a4

b2

b3

a3

b1

b3

b2

a4

a1

b4

a2

c{1,2}

p

c{1,3}

c{2,3}

c{1,4}

c{1,4}

c{2,3}

c{2,4}

c{2,4}

c{1,3}

c{3,4}

c{1,2}
.

Consequently, no point on L7 is distinguished in terms of the geometry of
B.

(ii) Let P =
{
{1, 2}

}
. From 2.3(iii) and 4.7 it follows that B has

an automorphism f which interchanges p and c{3,4} and thus (∗) holds
for q = c{3,4}. But (∗) does not hold for q = c{1,2}. Indeed, a3, a4 ⊂
Π2, b1, b2 ⊂ Π1 both pass through q and do not yield a Veblen figure,
a1, a2 ⊂ Π1, c{1,3}, c{2,4} ⊂ ΠC do not yield a Veblen figure, and b3, b4 ⊂ Π2,
c{1,3}, c{1,3} ⊂ ΠC do not yield a Veblen figure. Thus every f ∈ Aut(B)
fixes c{1,2}.

(iii) Let P =
{
{1, 3}

}
. Then (∗) does not hold for q = c{1,2} and

q = c{3,4}. Namely, the following pairs of lines through c{1,2} falsify (∗):(
b3, b4 ⊂ Π2, a2, b1 ⊂ Π1

)
,
(
b3, b4 ⊂ Π2, c{1,3}, c{2,4} ⊂ ΠC

)
, and

(
a2, b1 ⊂

Π1, c{1,3}, c{2,4} ⊂ ΠC
)
. And the pairs

(
a1, a2 ⊂ Π1, a4, b3 ⊂ Π2

)
,
(
a4, b3 ⊂

Π2, c{1,3}, c{1,4} ⊂ ΠC
)
, and

(
b1, b2 ⊂ Π1, c{1,3}, c{1,4} ⊂ ΠC

)
of lines through

c{3,4} falsify (∗). Thus every f ∈ Aut(B) fixes the point p.

From (i)–(iii) we learn that the three Steiner triple systems – completions
of multiveblen configurations – M4.

N4
B({1, 2}), M4.{{1, 2}}B({1, 2}), and

M4.{{1, 3}}B({1, 2}) are pairwise nonisomorphic.



M. Prażmowska: Twisted Projective Spaces and . . . 363

It is also worth to mention another general construction, which yields, in some
particular cases, representations of our linear completions.

Construction 4.11. Let M = 〈S,L〉 be a Steiner triple system, and let M be
its subspace. We write D := S \M , S ′ := D × {0, 1, 2}, Si := M ∪ D × {i} for
i = 0, 1, 2, and S∗ := M ∪ S ′.

Finally, let } be a binary operation defined on D with left and right subtraction
(the equations a}x = b and x}a = b are uniquely solvable for any given a, b ∈ D).

We define the family L∗ consisting of the following 3-subsets of S∗.

– A line L ∈ L contained in M belongs to L∗.

– If L ∈ L and L ∩M = ∅ then L× {i} ∈ L∗ for every i = 0, 1, 2.

– If L ∈ L and L ∩M = {p} then {p} ∪ (L ∩D)× {i} ∈ L∗ for i = 0, 1, 2.

– If a, b ∈ D then the set {(a, 1), (b, 2), (a } b, 0)} belongs to L∗.

The obtained structure
Ξ(M, M, }) := 〈S∗,L∗〉

is a Steiner triple system. The above construction is motivated by the following
observations. The three subsets Si of S∗ yield three subspaces of Ξ(M, M, })
which intersect in the subspace M ; for fixed i, j ∈ C3 the operation (x, i) 7→ (x, j)
with x ∈ D is a (restriction of a) collineation of Si onto Sj which fixes M ; for
every x ∈ D and {i, j, k} = {0, 1, 2}, the lines through (x, i) yield a “perspective”
from Sj onto Sk.

More precisely, we can compute the following

Proposition 4.12. Let a Steiner triple system M be a
(
νr b3

)
-configuration. Let

its subspace M yield a
(
(ν0)r0

(b0)3

)
-configuration, and let } be a binary operation

as required in 4.11. Then the structure Ξ(M, M, }) is a(
(ν0 + 3(ν − ν0))(r0+3(r−r0)) (b∗)3

)
-configuration, where b∗ = 9b+4b0−2(r0ν +

rν0) = b0 + 3(b− b0) + (ν − ν0)
2.

Proof. Adopt the notation of 4.11. Let a ∈ M ; every line through a not contained
in M is triplicated and thus the degree of a in Ξ(M, M, }) is r0 + 3(r− r0). Let
a ∈ D and q = (a, i) (i = 1 or i = 2). The lines of Ξ(M, M, }) through q fall
into the two classes: those which are determined by the lines through a and those
which join q with the points of the form (b, 3 − i), b ∈ D. There are r lines in
the first class and ν − ν0 lines in the second class and thus the degree of q is
r+(ν−ν0). Analogously we compute the degree of (a, 0). From the assumptions
we have 2r0 = ν0−1 and 2r = ν−1, which gives r0+3(r−r0) = r+(ν−ν0).

A structure of the form Ξ(F, L, }), where F is the Fano plane, L is a line of F,
and } is a suitable binary operation will be called a twisted Fano space.

The construction of Ξ(M, M, }) will be applied to represent the linear com-

pletion B = Ã of a structure of the form A = M4.PH as a twisted Fano space. Let
us consider, first, three Fano planes ΠC , ΠA, and ΠB of B with a common line L,
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which is always possible in view of 4.1(IV) and 4.10(I) (the symbols A, B, C play
the role of the elements of {0, 1, 2}, A ∼ 1, B ∼ 2, and C ∼ 0). Say L = L7 = L1,2

and let the points on L be

p1 = p, p2 = c{1,2}, and p3 = c{3,4}.

We choose a point X0 ∈ ΠX \L for every X ∈ {A, B, C} such that A0, B0, C0 are
collinear; without loss of generality we can take

A0 = a1, B0 = b3.

After that we label the remaining points in ΠX \L by the symbols Xi (i = 1, 2, 3)
in such a way that the maps Ai 7→ Bi and Ai 7→ Ci are collineations constant on L
(thus the elements of Z4 can be identified with the elements of ΠA \ L). Without
loss of generality we can assume that the following triples are collinear

(X0, X2, p1), (X0, X1, p3), (X0, X3, p2), (X2, X1, p2), (X2, X3, p3), (X1, X3, p1).

For every i, j ≤ 3 we have the unique k ≤ 3 such that Ck ∈ Ai, Bj so we have the
binary operation } defined on Z4 by the condition Ci}j ∈ Ai, Bj. Finally, we see
that

B ∼= Ξ(ΠA, L, }). (4)

Let us analyze some particular cases. In accordance with the above rules we
relabel the points on the three Fano planes of B = Ã spanned by L1∪L2, L3∪L4,
and the set C, respectively, as follows:

(i) A = M4.
N4

B(2): C0 = c{1,3}, A1 = a2, A2 = b1, A3 = b2, B1 = a4, B2 = a3,
B3 = b4, C1 = c{1,4}, C2 = c{2,3}, and C3 = c{2,4}.

(ii) A = M4.
N4

G2(4): C0 = c{1,3}, the Ai and Bi are as in (i), C1 = c{1,4},
C2 = c{2,4}, C3 = c{2,3}.

(iii) A = M4.
K4

G2(4): C0 = c{2,4}, A1 = b2, A2 = b1, A3 = a2, B1 = b4, B2 = a3,
B3 = a4, C1 = c{2,3}, C2 = c{1,3}, C3 = c{1,4}.

(iv) A = M4.{{1, 2}}B(2): C0 = c{1,3}, A1 = a2, A2 = b1, A3 = b2, B1 = b4,

B2 = a3, B3 = a4, C1 = c{2,4}, C2 = c{2,3}, C3 = c{1,4} (here the labeling of
the points c{1,2}, c{3,4} by the symbols p2, p3 was interchanged).

(v) A = M4.{{1, 3}}B(2): C0 = c{2,4}, A1 = a2, A2 = b1, A3 = b2, B1 = a4,

B2 = a3, B3 = b4, C1 = c{2,3}, C2 = c{1,4}, C3 = c{1,3}.

The corresponding operation } such that Ã = Ξ(ΠA, L7, }) is defined by one of
the following tables:

} 0 1 2 3
0 0 2 3 1
1 2 0 1 3
2 3 1 0 2
3 1 3 2 0

} 0 1 2 3
0 0 3 2 1
1 3 0 1 2
2 2 1 0 3
3 1 2 3 0

} 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

Table 2. Table 3. Table 4.
} in M4.

N4
B(2) } in M4.

N4
G2(4) } in M4.

K4
G2(4)
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} 0 1 2 3
0 0 2 1 3
1 3 1 2 0
2 1 3 0 2
3 2 0 3 1

} 0 1 2 3
0 0 1 3 2
1 1 3 2 0
2 3 2 0 1
3 2 0 1 3

Table 5. Table 6.
} in M4.{{1, 2}}B(2) } in M4.{{1, 3}}B(2)

The structure B does not determine uniquely a multiplication } such that B ∼=
Ξ(ΠA, L, }). Firstly, the labeling of the planes through L by the symbols A, B, C
is arbitrary. Secondly, the numbering of the points Ai in ΠA \ L is arbitrary.
Thirdly, the choice of the point B0 ∈ ΠB \L is arbitrary. Once B0 was chosen, the
numbering of the other points in ΠB \L and of the points in ΠC \L is determined.
Every such numbering defines other multiplication table. The obtained operations
are not necessarily isomorphic, and every one of these operations defines the same
structure M.

It is worth to note that the considered multiplication tables are latin squares
of the size 4 × 4. Consequently, our procedure can be performed with an arbi-
trary latin square defining }, possibly generalizing our investigations, and our
configurations can be studied in this language as well.

The multiplication table (Table 4) which defines the structure PG(3, 2) =

G̃2(6) is isomorphic to the addition table of the group C2 ⊕C2. It is an expected
general result:

Proposition 4.13. Let V be a k-dimensional vector space over the field GF (2)
with the zero vector 0, and Y be a (k − 1)-dimensional subspace of V . Recall
that points of the projective space PG(k − 1, 2) are simply nonzero vectors of
V and then Y \ {0} is a hyperplane of this space. The additive group of Y is
isomorphic to Ck−1

2 . Let e be a fixed vector in V \ Y . Every vector of V \ Y can
be written in the form e + y with y ∈ Y so we can define on V \ Y the operation
}: (e + y1) } (e + y2) = (e + (y1 + y2)). Clearly, 〈V \ Y,}〉 ∼= Ck−1

2 . Then
Ξ(PG(k − 1, 2), Y \ {0}, }) ∼= PG(k, 2).

Proof. It suffices to note that the points of PG(k, 2) are nonzero vectors of a
(k +1)-dimensional vector space W over GF (2); without loss of generality we can
assume that W = Y ⊕ 〈e1, e2〉 for some vectors e1, e2. Every vector u ∈ W \ Y
can be written in the form u = y + α1e1 + α2e2 with y ∈ Y and α1, α2 ∈ {0, 1}.
Let us put for a = y + e ∈ V \ Y

(a, 1) := y + e1, (a, 2) := y + e2, and (a, 0) := y + e1 + e2.

Direct verification shows that the above identification establishes an isomorphism
of Ξ(PG(k − 1, 2), Y \ {0}, }) on PG(k, 2).

The trick used above enables us to introduce into our completions some analytical
methods. The most “similar to the projective” structure obtained as the linear
completion of B(4) has an interesting analytical characterization.
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Representation 4.14. Let us consider the 4-dimensional vector space Z4
2 and

let Y be its subspace spanned by the vectors [1, 0, 0, 0] and [0, 0, 0, 1]. Let us take
the points A0 = [0, 1, 0, 0], B0 = [0, 0, 1, 0], C0 = [0, 1, 1, 0] and the corresponding
projective planes spanned by Y and the above points. The remaining projective
points that are not on Y are then labeled as follows:

on ΠA: A1 = [1, 1, 0, 1] A2 = [1, 1, 0, 0] A3 = [0, 1, 0, 1]
on ΠB: B1 = [1, 0, 1, 1] B2 = [1, 0, 1, 0] B3 = [0, 0, 1, 1]
on ΠC : C1 = [1, 1, 1, 1] C2 = [1, 1, 1, 0] C3 = [0, 1, 1, 1].

Clearly, the operation } defined by Table 4 characteristic for M4.
K4

G2(4) yields

the original projective structure in Z4
2 .

Let } be defined by Table 3; then Ξ(ΠA, Y, }) = B̃(4) =: B. Evidently, the
projective lines over Z4

2 contained in ΠX with X ∈ {A, B, C} remain lines of B.
In particular, since every projective line which crosses Y is contained in one of
these planes, every such a line is a line of B. One can directly verify that projective
lines through C0 and through C2 remain lines of B as well. The only distinction
concerns the lines through C1 and C3: if L is a projective line through Ci not
contained in ΠC (i ∈ {1, 3}) then B contains as a line the set (L \ {Ci})∪{C4−i}.
Finally, let us apply to the above points the multiplication defined in Table 2; then

B := Ξ(Π, Y, }) = ˜M4.
N4

B(2). As above, the projective lines over Z4
2 contained

in ΠX with X ∈ {A, B, C} remain lines of B. The projective lines through C0

also remain lines of B. If L is a projective line through Ci not contained in ΠC

(i 6= 0) then the set (L\{Ci})∪{Cα(i)} is a line of B, where α is the cycle (1, 2, 3).

In any case, the structure B results from the Fano space PG(3, 2) by replacing
original lines missing a fixed line L by some new family of 3-subsets of the point
set of PG(3, 2). This justifies the term “twisted” that is used for structures of
this form.

The obtained information concerning structures discussed in the paper, their au-
tomorphisms, and completions are summarized in Table 7.

5. Remarks on closing configurations

Let A be a
(
154 203

)
-multiveblen configuration and Ã be its linear completion.

The
(
153 153

)
-configuration consisting of the points of A and of the lines of Ã

not in A will be called the closing configuration of A and will be denoted by A∞.
Without going into details concerning the geometry of closing configurations of
the multiveblen configurations considered in the paper we note only the following
remarks

(i) M4.
K4

G2(4)
∞ ∼= M4.

K4
G∗

2(4)
∞

, but ˜M4.
K4

G2(4) 6∼= ˜M4.
K4

G∗
2(4);

(ii) M4.
N4

G2(4)
∞ ∼= M4.

N4
G∗

2(4)
∞

, but ˜M4.
N4

G2(4) 6∼= ˜M4.
N4

G∗
2(4);
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structure Aut completion other
representations

M4.
K4

G2(4) S6 PG(3, 2) G2(6)

Λ(PG(2, 2), 0)

M4.
N4

G2(4) C2 ⊕ S4 B̃(4) B(4), V3(4)
◦

M4.
L4

G2(4) C3
2 B̃(4) M4.

K4

B(2)

M4.
K4

G∗
2(4) C2 ⊕ S4 B̃(4)

M4.
N4

G∗
2(4) C2 ⊕ S4 PG(3, 2)

Λ(PG(2, 2), 1)

M4.
L4

G∗
2(4) C2 ⊕ C2

2 B̃(4)

M4.
N4

B(2) C2 ⊕ C2
2 B1

M4.
{{1, 2}}

B(2) C3
2 B2

M4.
{{3, 4}}

B(2) C2 ⊕D4 B2

M4.
{{1, 3}}

B(2) C2
2 B3

Table 7. A review of the properties of the considered structures (the symbols Bi

merely indicate the isomorphism type).

(iii) ˜M4.
K4

G2(4) ∼= ˜M4.
N4

G∗
2(4), but M4.

K4
G2(4)

∞ 6∼= M4.
N4

G∗
2(4)

∞
;

(iv) ˜M4.
N4

G2(4) ∼= ˜M4.
K4

G∗
2(4), but M4.

N4
G2(4)

∞ 6∼= M4.
K4

G∗
2(4)

∞
;

(v) M4.
L4

G2(4)
∞ ∼= M4.

L4
G∗

2(4)
∞

and ˜M4.
L4

G2(4) ∼= ˜M4.
L4

G∗
2(4), but

M4.
L4

G2(4) 6∼= M4.
L4

G∗
2(4).
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