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Abstract. Let R be a 2-torsion free semiprime ring and U a nonzero
square closed Lie ideal of R. In this paper it is shown that if f is either
an endomorphism or an antihomomorphism of R such that f(U) = U ,
then f is strong commutativity preserving on U if and only if f is
centralizing on U .
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1. Introduction

Throughout the present paper R will denote a unitary associative ring. As usual,
for x, y in R, we write [x, y] = xy − yx, and we will use the identities [xy, z] =
x[y, z] + [x, z]y, [x, yz] = [x, y]z + y[x, z]. For any a ∈ R, da will denote the
inner-derivation defined by da(x) = [a, x] for all x ∈ R.

A ring R is said to be semiprime if aRa = 0 implies that a=0. An ideal P
of R is prime if aRb ⊆ P implies that a ∈ P or b ∈ P . Recall that a ring R
is semiprime if and only if its zero ideal is the intersection of its prime ideals.
Moreover, if the zero ideal of R is prime, then R is said to be a prime ring. An
additive subgroup U of a ring R is a Lie ideal if [U,R] ⊆ U . Moreover, if u2 ∈ U
for all u ∈ U , then U is called a square closed Lie ideal. Since (u + v)2 ∈ U and
[u, v] ∈ U , we see that 2uv ∈ U for all u, v ∈ U . For a subset S of R, denote
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by annR(S) the two-sided annihilator of S, i.e. {x ∈ R/Sx = xS = {0}}. For
every ideal J of a semiprime ring R, it is known that annR(J) is invariant under
all derivations and J ∩ annR(J) = 0.

A map f : R −→ R is centralizing on S if [f(x), x] ∈ Z(R) for all x ∈ S; in
particular if [f(x), x] = 0 for all x ∈ S, then f is called commuting on S.

A map f : R −→ R is called commutativity preserving on S if [f(x), f(y)] = 0
whenever [x, y] = 0, for all x, y ∈ S. In particular, if [f(x), f(y)] = [x, y] for
all x, y ∈ S, then f is called strong commutativity preserving on S. Recently,
M. S. Samman [4] proved that an epimorphism of a semiprime ring is strong com-
mutativity preserving if and only if it is centralizing on the entire ring. Moreover,
he proved that if R is a 2-torsion free semiprime ring, then a centralizing anti-
homomorphism of R onto itself must be strong commutativity preserving. The
purpose of this paper is to extend the results of [4] to square closed Lie ideals.

2. Preliminaries and results

In order to prove our main theorems, we shall need the following results.

Lemma 1. Let R be a 2-torsion free semiprime ring and U a nonzero Lie ideal
of R. If [U,U ] = 0, then U ⊆ Z(R).

Proof. Let u ∈ U ; since [u, rt] ∈ U for all r, t ∈ R, then [u, [u, rt]] = 0. Hence
u[u, rt] = [u, rt]u. Therefore

ur[u, t] + u[u, r]t = r[u, t]u + [u, r]tu.

As u[u, r] = [u, r]u and [u, t]u = u[u, t], then

ur[u, t] + [u, r]ut = ru[u, t] + [u, r]tu.

It follows that 2[u, r][u, t] = 0 for all u ∈ U and r, t ∈ R. Since R is 2-torsion free,
thus

[u, r][u, t] = 0, for all u ∈ U and r, t ∈ R. (1)

Replace t by sr in (1) to get [u, r]R[u, r] = 0 for all u ∈ U, r, t ∈ R. The fact R is
semiprime implies that U ⊆ Z(R). �

In all that follows U will be a square closed Lie ideal of R and M will denote the
ideal of R generated by [U,U ], that is M = R[U,U ]R.

Lemma 2. Let R be a 2-torsion free semiprime ring and d a derivation of R. If
a in R satisfies ad(U) = 0, then ad(M) = 0.

Proof. Let P be an arbitrary prime ideal of R, and note that R =
R

P
is prime.

If [U,U ] ⊆ P or char(R) = 2, then 2ad(R)M ⊆ P and 2Mad(R) ⊂ P . Assume
now that [U,U ] 6⊂ P and char(R) 6= 2. The fact that R is 2-torsion free and
ad(U) = {0} implies that aUd(v) = {0} for all v ∈ U and thus āUd(U) = 0̄.
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As [U,U ] 6⊂ P , then U 6⊂ Z(R̄). Since [U,U ] 6= 0̄ from [4, Lemma 4] either
d(U) = 0̄ or ā = 0̄, that is d(U) ⊆ P or a ∈ P . If d(U) ⊆ P , then d[r, u] ∈ P
for all r ∈ R and u ∈ U . Replace r by rv, where v ∈ U , to get d(R)[U,U ] ⊆
P . Thus d(R)R[U,U ] ⊆ P which yields d(R) ⊆ P because [U,U ] 6⊂ P . In
conclusion ad(R) ⊆ P . Consequently, ad(R)M ⊆ P and Mad(R) ⊆ P . We
now know that 2ad(R)M ⊆ P and 2Mad(R) ⊆ P for all prime ideals P of
R, hence 2ad(R)M = 2Mad(R) = {0}. By 2-torsion-freeness we conclude that
ad(R)M = Mad(R) = {0}. If we set J = annR(annR(M)), then obviously
ad(R)J = 0. Since R is semiprime, then d(J) ⊆ J so that ad(J) ⊆ J

⋂
annR(J).

Once again using the semiprimeness of R, we conclude that J
⋂

annR(J) = 0 so
that ad(J) = 0. Since M ⊆ J , this leads us to ad(M) = 0. �

Lemma 3. Let R be a 2-torsion free semiprime ring. If z ∈ U is such that
z[U,U ] = 0, then [z, U ] = 0.

Proof. If [U,U ] = 0, then U ⊆ Z(R) by Lemma 1 and therefore [z, U ] = 0. Now
suppose that [U,U ] 6= 0; from z[U,U ] = 0 we get zdu(v) = 0 for all u, v ∈ U .
Using Lemma 2, we find that zdu(x) = 0 for all u ∈ U, x ∈ M = R[U,U ]R. But
zdu(x) = 0 assures that zdx(u) = 0 for all u ∈ U, x ∈ M and once again using
Lemma 2, we get zdx(M) = 0, for all x ∈ M . Hence zdx(y) = 0 for all x, y ∈ M
and thus

z[x, y] = 0 for all x, y ∈ M.

Replace y by yz to get zy[x, z] = 0, so that zM [x, z] = 0. In view of zxM [x, z] = 0,
we then obtain [x, z]M [x, z] = 0. Since an ideal of a semiprime ring is semiprime,
[x, z] = 0 for all x ∈ M . As R[U,U ] ⊆ M , then [z, r[u, v]] = 0 for all r ∈ R, u, v ∈
U . Using [u, v] ∈ M , it then follows that [z, r][u, v] = 0. Replace r by rs in
the least equality, we find that [z, r]s[u, v] = 0 so that [z, r]R[u, v] = 0, for all
u, v ∈ U, r ∈ R. In particular [z, v]R[z, v] = 0, proving [z, v] = 0 for all v ∈ U
and thus [z, U ] = 0. �

Now we are ready for our first theorem.

Theorem 1. Let R be a 2-torsion free semiprime ring and U a nonzero square
closed Lie ideal of R. Suppose that f is an endomorphism of R such that f(U) =
U . Then f is strong commutativity preserving on U if and only if f is centralizing
on U .

Proof. From [x, 2xy] = [f(x), f(2xy)] for all x, y ∈ U , it follows that (x −
f(x))[x, y]= 0 for all x, y ∈ U . Replacing y by 2uy where u, y ∈ U , we get

(x− f(x))U [x, y] = 0 for all x, u ∈ U. (2)

As 2[U,U ]R ⊆ U (because 2[u, v]r = 2[u, vr]− 2v[u, r]), then (2) implies that

(x− f(x))[U,U ]R[x, y] = 0 for all x, y ∈ U. (3)
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Let P be an arbitrary prime ideal of R. It follows from (3) that for each x ∈ U ,
either (x − f(x))[U,U ] ⊆ P or [x, U ] ⊆ P . The two sets of elements of U for
which these conditions hold are additive subgroups of U whose union is U , hence
one must be equal to U . Therefore (x − f(x))[U,U ] ⊆ P for all x ∈ U and all
prime ideals P , i.e., (x − f(x))[U,U ] = {0} for all x ∈ U . Since f(U) ⊆ U , then
u− f(u) ∈ U for all u ∈ U and Lemma 3 yields

[u− f(u), v] = 0 for all u, v ∈ U.

Consequently, [f(u), u] = 0 for all u ∈ U so that f is commuting on U .
Accordingly, f is centralizing on U .

Conversely, suppose that [f(x), x] ∈ Z(R) for all x ∈ U . By linearization
[x, f(y)] + [y, f(x)] ∈ Z(R) for all x, y in U . Using [x, f(x2)] + [x2, f(x)] ∈ Z(R)
together with 2-torsion-freeness, we find that (x + f(x))[x, f(x)] ∈ Z(R), for all
x ∈ U . Hence [(x + f(x))[x, f(x)], x] = 0 and therefore [x, f(x)]2 = 0. Since
[x, f(x)] in Z(R), this yields [x, f(x)]R[x, f(x)] = 0 and the semiprimeness of R
forces

[x, f(x)] = 0 for all x ∈ U.

Thus f is commuting on U and therefore [f(x), y] = [x, f(y)] for all x, y ∈ U . As
R is 2-torsion free, then [f(x), xy] = [x, f(xy)] and thereby (f(x)−x)[f(x), y] = 0
for all x, y ∈ U . Replacing y by 2uy where u ∈ U , we get (f(x)−x)u[f(x), y] = 0,
so that (f(x)− x)U [x, f(y)] = 0. Since f(U) = U , then (f(x)− x)U [x, y] = 0 for
all x, y ∈ U . From 2[U,U ]R ⊆ U , it then follows that

(f(x)− x)[U,U ]R[x, y] = 0 for all x, y ∈ U.

Reasoning as in the first part of the proof, we find that [f(z) − z, u] = 0 for
all z, u ∈ U , and therefore [f(z), u] = [z, u], for all z, u ∈ U . Consequently, for
y, z ∈ U , this leads us to [f(z), f(y)] = [z, f(y)] = [z, y], proving that f is strong
commutativity preserving on U . �

Remark. From the proof of Theorem 1, one can easily see that the condition
f(U) ⊆ U is sufficient to prove that f is strong commutativity preserving implies
that f is commuting on U and therefore centralizing on U .

We easily derive the Proposition 2.1 of [4], for 2-torsion free semiprime rings, as
a corollary to Theorem 1.

Corollary 1. Let f be an epimorphism of a 2-torsion free semiprime ring R.
Then f is strong commutativity preserving if and only if f is centralizing.

In [3] it is proved that if R is a 2-torsion free prime ring and T an automorphism
of R which is centralizing on a Lie ideal U of R and nontrivial on U , then U
is contained in the center of R. Accordingly, in the special case when U = R,
Theorem 2 gives a commutativity criterion as follows.
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Corollary 2. Let f be a nontrivial automorphism of a 2-torsion free prime ring
R. If f is strong commutativity preserving, then R is commutative.

To end this paper, the following theorem gives a condition under which an anti-
homomorphism becomes strong commutativity preserving.

Theorem 2. Let R be a 2-torsion free semiprime ring and U a square closed Lie
ideal of R. If f is an antihomomorphism of R such that f(U) = U , then f is
centralizing on U if and only if f is strong commutativity preserving on U .

Proof. Suppose [U,U ] 6= 0 and then M = R[U,U ]R is a nonzero ideal of R. If f is
centralizing on U , then reasoning as in the proof of Theorem 1 we find that f is
commuting on U , so that [f(x), y] = [x, f(y)] for all x, y ∈ U . Since R is 2-torsion
free, using [f(x), 2xy] = [x, f(2xy)] together with f(U) = U we get

x[x, y] = [x, y]f(x) for all x, y ∈ U. (4)

Replace y by 2uy in (4), where u ∈ U , and once again using 2-torsion-freeness, we
get [x, u][x, y + f(y)] = 0. Write 2uv instead of u in this equality, with v ∈ U , to
find that [x, u]v[x, y + f(y)] = 0. Hence

[x, u]U [x, y + f(y)] = 0 for all x, u, y ∈ U. (5)

Since f(U) ⊆ U , replacing u by y + f(y) in (5), we conclude that

[x, y + f(y)]U [x, y + f(y)] = 0 for all x, y ∈ U. (6)

If we set T (U) = {x ∈ R/[x, R] ⊆ U}, then [T (U), R] ⊆ U ⊆ T (U) and
from ([2], Lemma 1.4, p. 5) it follows that T (U) is a subring of R. More-
over, R[T (U), T (U)]R ⊆ T (U). Indeed, let x, y ∈ T (U) and r ∈ R. From
[x, yr] = [x, y]r + y[x, r] ∈ T (U) and y[x, r] ∈ T (U) it follows that [x, y]r ∈ T (U).
Since [T (U), R] ⊆ T (U), then

[[x, y]r, s] = [x, y]rs− s[x, y]r ∈ T (U) for all r, s ∈ R;

and therefore s[x, y]r ∈ T (U) so that R[T (U), T (U)]R ⊆ T (U). In particular
R[U,U ]R ⊆ T (U), which proves that [M, R] ⊆ U , where M = R[U,U ]R.

In view of (6), if we set [x, y + f(y)] = a then aUa = 0. Let u ∈ U, m ∈ M
and r ∈ R; from [mau, r] ∈ [M, R] ⊆ U it follows that

0 = a[mau, r]a = a[ma, r]ua + ama[u, r]a = a[ma, r]ua = amarua,

so that amaRua=0. Using 2am∈2[U,U ]R⊆U , Lemma 1.4, we get amaRama=
0, hence aMa = 0. Since a ∈ M , we obviously get a = 0, which implies that
[f(x), y] = [y, x], for all x, y ∈ U . Accordingly,

[f(x), f(y)] = [f(y), x] = [x, y] for all x, y ∈ U,
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proving that f is strong commutativity preserving on U .
Conversely, if f is strong commutativity preserving on U , then

[f(x), f(y)] = [x, y], for all x, y ∈ U. (7)

Replace y by 2xy in (7) we obtain

x[x, y] = [x, y]f(x). (8)

Write 2uy instead of y in (8), where u ∈ U , to find that

xu[x, y] + x[x, u]y = u[x, y]f(x) + [x, u]yf(x).

Since x[x, u]y = [x, u]f(x)y and [x, y]f(x) = x[x, y], by (8), then

xu[x, y] + [x, u]f(x)y = ux[x, y] + [x, u]yf(x)

and therefore
[x, u][x + f(x), y] = 0 for all x, y, u ∈ U. (9)

Replacing y by x in (9), we obtain

[x, u][x, f(x)] = 0 for all x, u ∈ U. (10)

As f(U) ⊆ U , write 2f(x)u instead of u in (10) to get [x, f(x)]u[x, f(x)] = 0 and
thus

[x, f(x)]U [x, f(x)] = 0.

If we set a = [x, f(x)], then aUa = 0 and a ∈ M = R[U,U ]R. Reasoning as in the
first part of our proof, we conclude that a = 0 so that [x, f(x)] = 0. Accordingly,
f is commuting on U and therefore f is centralizing on U . �

Remark. In the particular case when U = R, the implication that f is strong
commutativity preserving implying that f is centralizing is still valid without
conditions on characteristic of R.

In [4], Proposition 2.4 M. S. Samman proved that if R is a 2-torsion free semi-
prime ring, then a centralizing antihomomorphism of R onto itself must be strong
commutativity preserving. Applying Theorem 2, we obtain a more general result
as follows:

Corollary 3. Let R be a 2-torsion free semiprime ring. If f is an antihomomor-
phism of R onto itself, then f is centralizing if and only if f is strong commuta-
tivity preserving.
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