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Abstract. A Kuga fiber variety is a family of abelian varieties
parametrized by a locally symmetric space and is constructed by us-
ing an equivariant holomorphic map of Hermitian symmetric domains.
We construct a complex torus bundle T over a Kuga fiber variety Y
parametrized by X and express its cohomology H∗(T , C) in terms of
the cohomology of Y as well as in terms of the cohomology of the locally
symmetric space X.
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1. Introduction

A Kuga fiber variety is a family of abelian varieties parametrized by an arithmetic
variety and can be constructed by using an equivariant holomorphic map of Her-
mitian symmetric domains. The goal of this paper is to construct a complex torus
bundle over a Kuga fiber variety and study its cohomology.

Let G be a semisimple Lie group of Hermitian type defined over Q, and let
D be the associated Hermitian symmetric domain, which can be identified with
the quotient G/K of G by a maximal compact subgroup K. We assume that
there are a homomorphism ρ : G → Sp(V, α) of Lie groups and a holomorphic
map τ : D → Hn that is equivariant with respect to ρ, where Sp(V, α) is the
symplectic group associated to an alternating bilinear form α on a real vector
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space V of dimension 2n and Hn is the Siegel upper half space of degree n. Let Γ
be a torsion-free cocompact arithmetic subgroup of G, so that the corresponding
locally symmetric space X = Γ\D is a compact complex manifold. When it
is regarded as a complex projective variety, X is called an arithmetic variety
or a Shimura variety. Then we can construct a fiber bundle Y , called a Kuga
fiber variety, over X whose fiber is a polarized abelian variety by pulling back
the standard family of abelian varieties associated to Sp(V, α) via the map of X
into the Siegel modular variety Γ0\Hn, induced by τ , for some discrete subgroup
Γ0 ⊂ Sp(V, α) with ρ(Γ) ⊂ Γ0. Kuga fiber varieties can be considered as a special
case of mixed Shimura varieties in modern terms (see [11], [12]), and various
aspects of Kuga fiber varieties have been investigated extensively over the years
in connection with number theory and algebraic geometry (see e.g. [7], [10]).

In this paper we consider a torus bundle T over a Kuga fiber variety Y whose
fiber is isomorphic to a complex torus of the form (C×)d. Torus bundles of this kind
are also mixed Shimura varieties, and they arise naturally in the study of toroidal
compactifications of arithmetic varieties, or more generally, Shimura varieties (see
e.g. [1], [4], [11], [12]). Such torus bundles are also related to certain generalized
Jacobi forms of several variables. Although the construction of such torus bundles
is essentially contained in [1], Satake introduced a systematic method of construct-
ing such bundles in [14] using the notion of generalized Heisenberg groups. Our
construction of T uses a further generalization of Satake’s method.

The cohomology of arithmetic groups, or equivalently, the cohomology of the
associated arithmetic varieties plays an important role in the theory of automor-
phic forms (see e.g. [2], [3]), and the cohomology of a Kuga fiber variety is closely
linked to the cohomology of the associated arithmetic group. The purpose of
this paper is to express the cohomology H∗(T , C) of a torus bundle T over a
Kuga fiber variety Y parametrized by X and express its cohomology H∗(T , C) in
terms of the cohomology of Y as well as in terms of the cohomology of the locally
symmetric space X.

2. Group operations

Let V be a real vector space of dimension 2n defined over Q, and let I0 be a
complex structure on V , that is, a linear endomorphism of V satisfying I2

0 = −1V ,
where 1V denotes the identity map on V . We assume that there is an alternating
bilinear form α : V × V → R such that the bilinear map (v, v′) 7→ A(v, I0v

′) is
symmetric and positive definite. Then the map α defines the symplectic group

Sp(V, α) = {g ∈ GL(V ) | α(gv, gv′) = α(v, v′) for all v, v′ ∈ V }.

Let G be a semisimple Lie group of Hermitian type defined over Q. Thus G =
G(R) for some semisimple linear algebraic group G defined over Q, and, if K is
a maximal compact subgroup of G, the associated Riemannian symmetric space
D = G/K is a Hermitian symmetric domain. Note that the symplectic group
Sp(V, α) is a semisimple Lie group defined over Q, and the associated symmetric
domain H = H(V, A) can be identified with the Siegel upper half space of degree
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n. We assume that there are a homomorphism ρ : G → Sp(V, A) of Lie groups
defined over Q and a holomorphic map τ : D → H such that τ(gz) = ρ(g)τ(z) for
all g ∈ G and z ∈ D, so that τ is equivariant with respect to ρ.

We consider another real vector space U defined over Q and an alternating
bilinear map A : V ×V → U defined over Q. We denote the associated symplectic
group by Sp(V, A) contains the image ρ(G) of the homomorphism ρ, which means
that

A(ρ(g)v, ρ(g)v′) = A(v, v′) (2.1)

for all g ∈ G and v, v′ ∈ V . The following example displays the case considered
by Satake in [14].

Example 2.1. Let α be as above, and let G2 be a semisimple algebraic subgroup
of Sp(V, α) defined over Q. Let D2 be the symmetric domain associated to G2, so
that there is a holomorphic embedding D2 → Hm that is equivariant with respect
to the inclusion map G2 → Sp(V, α). Let Alt(V ) be the space of all alternating
bilinear forms on V × V , and set

U∗ = {α ∈ Alt(V ) | G2 ⊂ Sp(V, α)}.

If U denotes the dual space of U∗, then there is a uniquely defined alternating
bilinear map A : V × V → U such that

α(v, v′) = 〈α, A(v, v′)〉

for all α ∈ U∗ and v, v′ ∈ V . Then this bilinear map A satisfies (2.1) with ρ equal
to the inclusion map G2 → Sp(V, α).

We now introduce a multiplication operation on the set G× V × U defined by

(g, v, u)(g′, v′, u′) = (gg′, v + ρ(g)v′, u + u′ − A(v, ρ(g)v′)/2) (2.2)

for all g, g′ ∈ G, v, v′ ∈ V and u, u′ ∈ U .

Lemma 2.2. The formula in (2.2) defines a group operation on the set G×V ×U .

Proof. Given elements (g1, v1, u1), (g2, v2, u2), and (g3, v3, u3) of G × V × U , we
have (

(g1, v1, u1)(g2, v2, u2)
)
(g3, v3, u3)

= (g1g2, v1 + ρ(g1)v2, u1 + u2−A(v1, ρ(g1)v2)/2)(g3, v3, u3)

= (g1g2g3, v1 + ρ(g1)v2 + ρ(g1g2)v3, ũ)

with

ũ = u1 + u2 − A(v1, ρ(g1)v2)/2 + u3 − A(v1 + ρ(g1)v2, ρ(g1g2)v3)/2

= u1 + u2 + u3 − A(v1, ρ(g1)v2)/2− A(v1, ρ(g1g2)v3)/2

− A(ρ(g1)v2, ρ(g1)ρ(g2)v3)/2

= u1 + u2 + u3 − A(v1, ρ(g1)v2)/2− A(v1, ρ(g1g2)v3)/2− A(v2, ρ(g2)v3)/2,
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where we used (2.1). On the other hand, we have

(g1, v1, u1)
(
(g2, v2, u2)(g3, v3, u3)

)
= (g1, v1, u1)(g2g3, v2 + ρ(g2)v3, u2 + u3 − A(v2, ρ(g2)v3)/2)

= (g1g2g3, v1 + ρ(g1)(v2 + ρ(g2)v3), û)

= (g1g2g3, v1 + ρ(g1)v2 + ρ(g1g2)v3, û)

with

û = u1 + u2 + u3 − A(v2, ρ(g2)v3)/2− A(v1, ρ(g1)(v2 + ρ(g2)v3))/2

= u1 + u2 + u3 − A(v2, ρ(g2)v3)/2− A(v1, ρ(g1)v2))/2− A(v1, ρ(g1)ρ(g2)v3)/2.

Thus we see that ũ = û, and therefore the operation is associative. We see
easily that (1, 0, 0) is the identity element and (g−1,−ρ(g)−1v,−u) is the inverse
of (g, v, u) ∈ G× V × U with respect to the operation in (2.1); hence the lemma
follows. �

Note that the subgroup {1} × V × U of the group G × V × U in Lemma 2.2
can be identified with the Heisenberg group H = V × U associated to A whose
multiplication operation is given by

(v, u) · (v′, u′) = (v + v′, u + u′ − A(v, v′)/2) (2.3)

for all (v, u), (v′, u′) ∈ V × U . We shall denote the group in Lemma 2.2 by G ·H.
We also note that the subgroup G × V = G × V × {0} is the usual semidirect
G n V with respect to the action of G on V via ρ.

We now discuss an action of the group G · H on the space D × V × U . If
(g, v, u) ∈ G× V × U , we set

(g, v, u) · (z, v′, u′) = (gz, v + ρ(g)v′, u + u′ − A(v, ρ(g)v′)/2) (2.4)

for all (z, v′, u′) ∈ D × V × U .

Lemma 2.3. The formula in (2.4) defines an action of the group G · H on the
space D × V × U .

Proof. Given (g, v, u) ∈ G× V ×U = G ·H and (z, v′, u′) ∈ D× V ×U , by using
(2.2) and (2.4) we obtain(

(g1, v1, u1)(g2, v2, u2)
)
· (z, v′, u′)

= (g1g2, v1 + ρ(g1)v2, u1 + u2 − A(v1, ρ(g1)v2)/2) · (z, v′, u′)
= (g1g2z, v1 + ρ(g1)v2 + ρ(g1g2)v

′, ũ′)

with

ũ′ = u1 + u2 − A(v1, ρ(g1)v2)/2 + u′ − A(v1 + ρ(g1)v2, ρ(g1g2)v
′)/2

= u1+u2+u′−A(v1, ρ(g1)v2)/2−A(v1, ρ(g1g2)v
′)/2−A(ρ(g1)v2, ρ(g1)ρ(g2)v

′)/2

= u1 + u2 + u′ − A(v1, ρ(g1)v2)/2− A(v1, ρ(g1g2)v
′)/2− A(v2, ρ(g2)v

′)/2,
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where we used (2.1). On the other hand, we have

(g1, v1, u1) ·
(
(g2, v2, u2) · (z, v′, u′)

)
= (g1, v1, u1) · (g2z, v2 + ρ(g2)v

′, u2 + u′ − A(v2, ρ(g2)v
′)/2)

= (g1g2z, v1 + ρ(g1)v2 + ρ(g1g2)v
′, û′)

with

û′ = u1 + u2 + u′ − A(v2, ρ(g2)v
′)/2− A(v1, ρ(g1)(v2 + ρ(g2)v

′)/2

= u1 + u2 + u′ − A(v2, ρ(g2)v
′)/2− A(v1, ρ(g1)v2)/2− A(v1, ρ(g1g2)v

′)/2.

Thus we have ũ′ = û′, and therefore the lemma follows. �

3. Torus bundles over Kuga fiber varieties

Let the semisimple Lie group G and the associated symmetric domain D = G/K
as well as the group G · H acting on D × V × U be as in Section 2. We extend
this action to an action of G · H on D × V × UC, where UC = U ⊗ C is the
complexification of the real vector space U .

We take an arithmetic subgroup LH of the Heisenberg group H = V ×U , and
set

L = pV (LH), LU = pU(LH ∩ ({0} × U)),

where pV : H → V and pU : H → U are the natural projection maps. Then L and
LU are lattices in V and U , respectively, and we have L = LH/LU . We consider
elements (l, 0), (l′, 0) ∈ LH with l, l′ ∈ L. Then by (2.3) their product is given by

(l, 0) · (l′, 0) = (l + l′,−A(l, l′)/2) ∈ LH.

Since (l + l′, 0)−1 = (−l − l′, 0) ∈ LH, we have

(l + l′,−A(l, l′)/2) · (−l − l′, 0) = (0,−A(l, l′)/2) ∈ LH.

Thus it follows that A(L, L) ⊂ LU .
Let Γ be a torsion-free cocompact arithmetic subgroup of G, so that the

corresponding locally symmetric space Γ\D is a compact complex manifold. The
space Γ\D is also called an arithmetic variety when it is considered as a complex
projective variety. Using the relation L = LH/LU and the fact that the image of
the natural projection map G ·H = G×V ×U → G×V is the semidirect product
G n V , we obtain the identification

Γ · LH/LU = Γ n L;

hence we see that the action of G ·H on D×V ×UC induces actions of the discrete
groups Γ · LH and Γ n L on the spaces D × V × UC and D × V , respectively. We
denote the associated quotient spaces by

T = Γ · LH\D × V × UC, Y = Γ n L\D × V.
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The natural projection map D×V → D induces a surjective map π : Y → X,
which provides Y with a structure of a fiber bundle over X whose fiber is the
quotient space V/L. In fact, by introducing an appropriate complex structure
Ix on V for each x ∈ X the fiber π−1(x) of Y over x can be equipped with a
structure of a polarized abelian variety. Thus Y is a family of abelian varieties
parametrized by the arithmetic variety X and can be embedded into a complex
projective space. The resulting projective variety is known as a Kuga fiber variety,
which has many interesting arithmetic as well as geometric properties (see e.g. [7],
[10], [13]).

On the other hand, the surjective map π′ : T → Y induced by the natural
projection map D×V ×U → D×U enables us to view T as a fiber bundle over the
Kuga fiber variety Y whose fiber is isomorphic to the quotient space UC/LU . By
identifying UC and LU with Cd and Zd, respectively, we obtain the isomorphism

UC/LU
∼= (C/Z)d. (3.1)

If C× denotes the set of nonzero complex numbers, the map z 7→ e2πiz determines a
group homomorphism C → C× from the additive group C onto the multiplicative
group C× whose kernel is Z. Hence we obtain the isomorphism C/Z ∼= C×, and
therefore (3.1) can be written as

UC/LU
∼= (C×)d. (3.2)

Thus T can be regarded as a torus bundle over the Kuga fiber variety Y whose
fiber is the complex torus (C×)d.

Remark 3.1. If U is as in Example 2.1, then the associated torus bundle T is
essentially the same as the one considered by Satake in [14]. Note that our action
of G · H on D × V × UC is different from the one used by Satake. For example,
from (2.2) we see that the operation on the semidirect product GnV in our paper
is given by

(g, v)(g′, v′) = (gg′, v + ρ(g)v′)

for g, g′ ∈ G and v, v′ ∈ V . On the other hand, in order for the action of G×V ×U
on D × V × U used by Satake in [14] to work, the semidirect product operation
should be given by

(g, v)(g′, v′) = (gg′, ρ(g)−1v + v′)

instead.

4. Spectral sequences

In this section we consider the theorem of Hochschild and Serre about spectral
sequences associated to group extensions. We apply this theorem to two short
exact sequences involving the discrete groups that are used in the construction of
the torus bundle over a Kuga fiber variety described in Section 3.
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Theorem 4.1. Let Φ, G and ∆ be groups, and assume that there is a short exact
sequence of the form

1 → Φ → G → ∆ → 1.

If M is a G-module, then there is a spectral sequence {Er =
⊕

p,q≥0 Ep,q
r }∞r=2 that

converges to the cohomology H∗(G,M) such that

Ep,q
2 = Hp(∆, Hq(Φ,M))

for all p, q ≥ 0.

Proof. See [5, Proposition 7] or Theorem 10.1 in [8, Chapter XI]. �

Let the discrete groups LU , Γ ·LH and Γ n L be as in Section 3. By applying the
Hochschild-Serre theorem to the short exact sequence

1 → LU → Γ · LH → Γ n L → 1

and the trivial (Γ ·LH)-module C we see that there is a spectral sequence {Er}∞r=2

such that
Ep,q

2 = Hp(Γ n L, Hq(LU , C)) (4.1)

for all p, q ≥ 0 and

Hr(Γ · LH, C) ∼=
⊕

p+q=r

Ep,q
∞ (4.2)

for each r ≥ 2.

Lemma 4.2. For each nonnegative integer q the cohomology Hq(LU , C) of the
group LU with coefficients in the trivial LU -module C can be written as

Hq(LU , C) = ∧q(Cd), (4.3)

where d = dim U .

Proof. Since UC is contractible, the cohomology group Hq(LU , C) with respect
to the trivial representation of LU on C is isomorphic to the cohomology group
Hq(UC/LU , C) of the quotient space UC/LU . As is indicated in (3.2), the quotient
UC/LU can be identified with the complex torus (C×)d. Using this and the fact
that C× = C− {0} is a deformation retract of the unit circle S1 = {z ∈ C | |z| =
1}, the cohomology of UC/LU is the same as the cohomology of the torus (S1)d.
Therefore we have

Hq(UC/LU , C) = Hq((S1)d, C) = ∧q(Cd)

(see e.g. [6, p. 180]); hence the lemma follows. �

Using (4.3), we see that the spectral sequence {Er}∞r=2 satisfying (4.1) and (4.2)
has the E2-term

Ep,q
2 = Hp(Γ n L, Hq(LU , C)) = Hp(Γ n L,∧q(Cd)) (4.4)
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for p, q ≥ 0. Here the action of Γ n L on ∧q(Cd) is induced by the action of
Γ n L = Γ · LH/LU on the normal subgroup LU of Γ · LH, which is given by
conjugation. Thus the action of an element (γ, `) ∈ Γ n L on LU is given by

u(γ,`) = (γ, `, 0)−1(1, 0, u)(γ, `, 0) = (γ−1,−ρ(γ)`, 0)−1(1, 0, u)(γ, `, 0)

= (γ−1,−ρ(γ)−1`, u)(γ, `, 0) = (1,−ρ(γ)−1` + ρ(γ−1)`, u) = (1, 0, u) = u

for all u ∈ LU , where we identified u and (γ, `) with the elements (1, 0, u) and
(γ, `, 0), respectively, of Γ ·H. This means that the action of ΓnL on LU is trivial,
and therefore ∧q(Cd) in (4.4) is a trivial (Γ n L)-module.

We now apply the Hochschild-Serre theorem to the short exact sequence

1 → L → Γ n L → Γ → 1

and the trivial (Γ n L)-module C to obtain a spectral sequence {Er} with

Ep,q
2 = Hp(Γ, Hq(L, C)), Hr(Γ n L, C) ∼=

⊕
p+q=r

Ep,q
∞ . (4.5)

Note that there is a canonical isomorphism

Hq(L, C) = ∧q(L⊗ C)∗. (4.6)

Indeed, under this isomorphism the q-cocycle c[φ] in Hq(L, C) corresponding to
an element φ ∈ ∧q(L⊗ C)∗ is given by

c[φ](`0, `1, . . . , `q) =

q∑
i=0

(−1)iφ(`0 ∧ · · · ∧ ̂̀
i ∧ · · · ∧ `q) (4.7)

= φ((`1 − `0) ∧ (`2 − `0) ∧ · · · ∧ (`q − `0))

for all `0, `1, . . . , `q ∈ L⊗ C. Hence the E2 term in the spectral sequence in (4.5)
can be written as

Ep,q
2 = Hp(Γ,∧q(L⊗ C)∗),

where the action of Γ = Γ n L/L on ∧q(L⊗ C)∗ is induced by the Γ-action on L
by conjugation. Thus, the action of an element γ ∈ Γ on L is given by

`γ = (γ, 0)−1(1, `)(γ, 0) = (γ−1, 0)(γ, `) = (1, ρ(γ)−1`) = ρ(γ)−1`

for all ` ∈ L, where we identified Γ and L with the subgroups Γ×{0} and {1}×L,
respectively, of Γ n L. Therefore the action of γ ∈ Γ on the cocycle c[φ] in (4.7)
is given by

(γ · c[φ])(`0, `1, . . . , `q) =c[φ](ρ(γ)−1`0, ρ(γ)−1`1, . . . , ρ(γ)−1`q)

=φ(ρ(γ)−1(`1−`0) ∧ ρ(γ)−1(`2−`0) ∧ · · · ∧ ρ(γ)−1(`q−`0))

=c[∧q(ρ(γ))∗φ](`0, `1, . . . , `q);

hence the action of γ on ∧q(L⊗ C)∗ is simply multiplication by the matrix

∧q(ρ(γ))∗ = t
(
∧q(ρ(γ)−1)

)
, (4.8)

where t(·) denotes the transpose of the matrix (·).
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5. Cohomology of torus bundles

Let T = Γ ·LH\D × V ×UC be the torus bundle over the Kuga fiber variety Y =
ΓnL\D×V considered in Section 4. In this section we express the cohomology of
T in terms of cohomology of Y as well as in terms of cohomology of the arithmetic
variety X = Γ\D.

Given a positive integer ν we define a map ην : Γ · LH → Γ · LH by

ην(γ, `, k) = (γ, ν`, ν2k)

for all γ ∈ Γ, ` ∈ L and k ∈ LU .

Lemma 5.1. The map ην : Γ · LH → Γ · LH is a group homomorphism.

Proof. Given elements (γ, `, k) and (γ′, `′, k′) of Γ · LH, by using (2.2) we obtain(
ην(γ, `, k)

)(
ην(γ

′, `′, k′)
)

= (γ, ν`, ν2k)(γ′, ν`′, ν2k′)

=
(
γγ′, ν` + ρ(γ)(ν`′), a2k + ν2k′ − A(ν`, ρ(γ)(ν`′))/2

)
=

(
γγ′, ν(` + ρ(γ)`′), ν2(k + k′ − A(`, ρ(γ)`′)/2)

)
= ην

(
(γ, `, k)(γ′, `′, k′)

)
;

hence the lemma follows. �

Theorem 5.2. For each nonnegative integer r the r-th complex cohomology group
of T has the decomposition

Hr(T , C) =
⊕

p+q=r

Hp(Y, C)⊗ ∧q(Cd) (5.1)

in terms of cohomology of the Kuga fiber variety Y .

Proof. We shall show first that the spectral sequence {Er} satisfying (4.1) and
(4.2) degenerates at E2. The homomorphism ην : Γ · LH → Γ · LH in Lemma 5.1
induces the map

ην,r : Hr(Γ · LH, C) → Hr(Γ · LH, C)

and ηp,q
ν,r : Ep,q

r → Ep,q
r for each r ≥ 0 such that

dr ◦ ηp,q
ν,r = ηp+r,q−r+1

ν,r ◦ dr,

where dr : Ep,q
r → Ep+r,q−r+1

r is the boundary map. Since Ep,q
2 = Hp(ΓnL,∧q(Cd))

and the restriction ην

∣∣
LU

of ην maps m ∈ LU to ν2m, the map ηp,q
ν,2 can be consid-

ered as the multiplication by ν2q. Hence we have

d2(ν
2qv) = ν2q−2(d2(v))

for all v ∈ Ep,q
2 . Since ν is an arbitrary positive integer, it follows that d2 = 0.

Similarly, we obtain ds = 0 for all s ≥ 2. Hence {Er} degenerates at E2. Thus we
obtain

Hr(Γ · LH, C) =
⊕

p+q=r

Ep,q
∞ =

⊕
p+q=r

Ep,q
2 =

⊕
p+q=r

Hp(Γ n L,∧q(Cd)).
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Since the space D × V × U is contractible and the representation of Γ · LH on
D × V × U is trivial, we see that there is a canonical isomorphism

Hr(Γ · LH, C) = Hr(T , C).

On the other hand, as was mentioned in Section 4, the representation of Γ n L on
D × V is also trivial; hence by the universal coefficient theorem we have

Hp(Γ n L,∧q(Cd)) = Hp(Γ n L, C)⊗ ∧q(Cd).

Using this and the fact that D × V is contractible, we obtain

Hp(Γ n L,∧q(Cd)) = Hp(Y, C)⊗ ∧q(Cd),

and therefore the theorem follows. �

Remark 5.3. A result similar to Theorem 5.2 was obtained in [9] for a circle
bundle over a Kuga fiber variety, or a twisted torus bundle over an arithmetic
variety, associated to a group G that is not necessarily a subgroup of a symplectic
group.

We now define an action of Γ on the space D × ∧q(C2n)∗ by

γ · (z, φ) = (γz, t ∧q (ρ(γ)−1)φ)

for all γ ∈ Γ, z ∈ D and φ ∈ ∧q(C2n)∗, and denote the associated quotient space
by

Lq = Γ\D × ∧q(C2n)∗.

Then the natural projection map D × ∧q(C2n)∗ → D induces the map $q : Lq →
X = Γ\D which provides Lq a structure of a vector bundle over X with fiber
∧q(C2n)∗. We denote by Lq the sheaf of sections of the vector bundle Lq over X.

Theorem 5.4. For each nonnegative integer r the r-th complex cohomology group
of T has the decomposition

Hr(T , C) =
⊕

j+k+`=r

Hj(X,Lk)⊗ ∧`(Cd)

in terms of cohomology of the arithmetic variety X.

Proof. Let {Er} be the spectral sequence satisfying (4.5). It is known that
this spectral sequence degenerates at E2 (see [7, Theorem II.3.12]); hence for each
` ≥ 0 we have a decomposition of the form

H`(Γ n L, C) =
⊕

j+k=`

Hj(Γ, Hk(L, C)) =
⊕

j+k=`

Hj(Γ,∧k(L⊗ C)∗),
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where we used (4.6). Since D is contractible and the action of an element γ ∈ Γ
on ∧q(L ⊗ C)∗ is multiplication by the matrix in (4.8), we obtain the canonical
isomorphism

Hj(Γ,∧k(L⊗ C)∗) = Hj(X,Lk)

for each j ≥ 0. Using this and the identification H`(Γ n L, C) = H`(Y, C), we
obtain

H`(Y, C) =
⊕

j+k=`

Hj(Γ,Lk).

Now the theorem follows by combining this with (5.1). �
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(1994), 249–344. Zbl 0860.11030−−−−−−−−−−−−

[5] Hochschild, G.; Serre, J.-P.: Cohomology of group extensions. Trans. Am.
Math. Soc. 74 (1953), 110–134. Zbl 0050.02104−−−−−−−−−−−−

[6] Karoubi, M.; Leruste, C.: Algebraic topology via differential geometry. Cam-
bridge University Press, Cambridge 1987. Zbl 0627.57001−−−−−−−−−−−−

[7] Kuga, M.: Fiber varieties over a symmetric space whose fibers are abelian
varieties I, II, Univ. of Chicago, Chicago 1963/64.

[8] Mac Lane, S.: Homology. Springer-Verlag, Heidelberg 1963. Reprint of the
3rd corr. print. Die Grundlehren der mathematischen Wissenschaften. 114,
Springer-Verlag, Berlin-Heidelberg-New York 1975. Zbl 0328.18009−−−−−−−−−−−−

[9] Lee, M. H.: Twisted torus bundles over arithmetic varieties. Proc. Am. Math.
Soc. 123 (1995), 2251–2259. Zbl 0836.22017−−−−−−−−−−−−

[10] Lee, M. H.: Mixed automorphic forms, torus bundles, and Jacobi forms. Lect.
Notes Math. 1845, Springer-Verlag, Berlin 2004. Zbl 1063.11012−−−−−−−−−−−−

[11] Milne, J. S.: Canonical models of (mixed) Shimura varieties and automor-
phic vector bundles. Automorphic forms, Shimura Varieties and L-functions,
Vol. 1, Academic Press, Boston 1990, 283–414. Zbl 0704.14016−−−−−−−−−−−−

[12] Pink, R.: Arithmetical compactification of mixed Shimura varieties. Bonner
Mathematische Schriften 209, Universität Bonn, Bonn 1989. Zbl 0748.14007−−−−−−−−−−−−

[13] Satake, I.: Algebraic structures of symmetric domains. Princeton University
Press, Princeton 1980. Zbl 0483.32017−−−−−−−−−−−−

http://www.emis.de/MATH-item?0334.14007
http://www.emis.de/MATH-item?0443.22010
http://www.emis.de/MATH-item?0711.14012
http://www.emis.de/MATH-item?0860.11030
http://www.emis.de/MATH-item?0050.02104
http://www.emis.de/MATH-item?0627.57001
http://www.emis.de/MATH-item?0328.18009
http://www.emis.de/MATH-item?0836.22017
http://www.emis.de/MATH-item?1063.11012
http://www.emis.de/MATH-item?0704.14016
http://www.emis.de/MATH-item?0748.14007
http://www.emis.de/MATH-item?0483.32017


440 M. H. Lee: Cohomology of Torus Bundles over Kuga Fiber Varieties

[14] Satake, I.: Toric bundles over abelian schemes. Algebraic cycles and related
topics. Proceedings of the conference held in Kitasakado 1994, World Scien-
tific, Singapore 1995, 43–49. Zbl 0868.14026−−−−−−−−−−−−

Received May 16, 2007

http://www.emis.de/MATH-item?0868.14026

