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Abstract. We give the minimal radius of 8 congruent balls, which cover
the 4-dimensional unit cube.
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1. Introduction

We can read by Brass, Moser, Pach [3] about the problem of covering the d-
dimensional unit cube by n equal minimal balls. In [3], [1] one can find numerous
results in the case d = 2. G. Kuperberg and W. Kuperberg [4] found the op-
timal solution in d = 3,n = 2,3,4,8. In higher-dimensions G. Kuperberg and
W. Kuperberg [4] found the case d > 4,n = 4.

One can read results about covering by n equal balls a d-dimensional larger ball
(Rogers [5], Verger-Gaugray [6]), and the d-dimensional crosspolytope (Borozcky,
Jr., Fabian, Wintsche [2]).

2. Notations

Let E? be the d-dimensional Euclidean space. Let C? := [0, 1]¢ be the d-dimension-
al unit cube. Let B%(a,r) be the d-dimensional ball with centre a and radius 7.
d(p, q) denotes the distance of the points p, q. Let R,; be the ray with endpoint a
and containing b. pog/ denotes the convex angle determined by the three points
p,0,q in this order. Let L,; be the straight line containing the different points
a,b. (E, F)Z denotes the angle determined by the two rays E, F'. Let H(L,p) be
the closed half plane bounded by the line L and containing the point p.
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Theorem. The minimal radius of 8 congruent balls, which cover the 4-dimension-
al unit cube, is %

3. Lemmas

Lemma 1. The balls B* (01-, ./%) CE'(i=1,2,...,8) cover the cube C*.

Proof. Let B} := B (01»,,/%) for i =1,2,...,8. Since d(m,0;) = \/g < ,/%
thus the center m of C* lies in B} for i = 1,2,...,8.

We will show that the balls B} for i = 1,2,...,8 cover every 3-dimensional
face of the cube C*. From this comes that Bf for i = 1,2,...,8 cover C*. (See
Figure 1. The thick edges are the edges, which lie entirely in a ball Bf.)

@ ®
®
(0,0,1,0
®
®
0,0,0,
(0,1,0,0 ©
@ /
(0,0,0,0 (1,0,0,0

Figure 1. The four circle problem

We show that the balls B for i = 1,2,3,4,5 cover the cube [0, 1]> x {0} (the cover
of the other 3-dimensional faces of C* is similar).
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The intersection of the 4-dimensional balls B} for i = 1,2,3,4,5 and the hyper-
plane 2, = 0 are the 3-dimensional balls B? := B? (O?, \/ 1—78> for i = 1,2,3 and

B} B3<1,f>forz—45 resp.

Flrstly we show that the cube Cf := [0,1]* x {0} is covered by the 3-

dimensional balls B? for i = 1,2,3,4 (see Figure 2).
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Figure 2.
Let p(3, %, 3,0). Since d(p,0}) = \/5 < /15 for i = 1,2,3 and d(p, 0}) = m

\/Lé thus p € B} for i = 1,2, 3 4. If we show that the 2-dimensional faces of the

cube C} is covered by the balls B? for i = 1,2, 3,4 then we get that the cube Cj
is covered by the balls B? for i = 1,2,3,4.

Let us see the 2-dimensional face with vertices (0,0,0,0), (%,0,0,0),(%,%,0,
0), (O, £,0,0). Since the region conv((0,0,0,0),(3,0,0,0),(3,%,0,0),(3,3,0,0),
(0,1,0,0)) is covered by B, and the region conv ((2, 1,0,0),(3,1,0,0),(0,4,0,0)

is covered by B3 thus the above 2-dimensional face is covered by the balls B3, B3.
Similarly the face with vertices (0,0, 0,0), (%, 0,0,0), (%, 0, %, 0), (0,0, 5,0) is cov-
ered by the balls B B?, and the face with vertices (0,0,0,0), (0 % 0 0), (0,1,
£,0),(0,0, 3,0) is covered by the balls B3, B.

) 9

Let us consider the face with vertices (3,0,0,0),(3,1,0,0),(3,1,1,0),(3,0,1,0).
Since the region conv ((3,0,0,0),(35,0,3,0),(3,3.3.0),(5,3.35.0),(5,3,0,0)) is
covered by B2, and the region conv ((é, é,O 0), (%, %, ;,0) (;, ;,0 0)) is covered

by B3 thus the above face is covered by the balls B}, Bj. Similarly the face with
vertices (0,0, 3,0),(3,0,3,0),(3,3,3.0),(0,1,1,0) is covered by the balls B}, B3,

)92 ) 9 279219 ) 99 9

and the face with vertices (0, ,0,0),(%,2,0,0), (3,2, %,0),(0,%,1,0) is covered by

)9 2799 27959 199 9
the balls B3, B3. Similarly the cube [3,1]* x {0} is covered by the 3-dimensional
balls B?, BY, B2, B.

1] x [0,2] x [0,%] x {0} is covered by the

Secondly we show that the cube [2 ' 5 5

3-dimensional balls B, B3.

29
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,0,0),(3,4,0,0),(3,0,0,0),

273
is covered by B3, and the

Since the region conv((1,0,0,0),(1,3,0,0), (2,
33:0))
O) is covered by B3 thus the

(;,;,é,O) (2727;70) ( 07§70) (1 07270)7(]— 7%7 )

region conv ((3,3,0,0),(1,3,0,0),(3,3,0,0), (3,3, 3,
above cube is covered. Similarly the cube [1,1]? x [0, 3] x {0} is covered by the

3-dimensional balls B, B, and the cube [0, 1] X | ] x [0, 3] x {0} is covered by
the 3-dimensional balls B, B3, and the cube [0, 5] x [5, 1] x {0} is covered by the
3-dimensional balls B, B3, and the cube [0, 3]? x [3,1] x {0} is covered by the
3-dimensional balls Bf, B3, and the cube [1, 1] x [0, 3] x [3, 1] x {0} is covered by
the 3-dimensional balls B3, B3. This implies that the cube [0, 1]* x {0} is covered
by the 3-dimensional balls B? for i = 1,2,3,4,5, that is, [0,1]* x {0} is covered
by the 4-dimensional balls B for i = 1,2,3,4, 5.

Similarly the cube [0, 1]3x {1} is covered by the 4-dimensional balls B}, B}, B,
B, B3, and the cube {0} x [0, 1]3 is covered by the 4-dimensional balls B}, B, B,
B, B¢, and the cube {1} x [0, 1]3 is covered by the 4-dimensional balls B}, B, B2,
B¢, B2, and the cube [0,1] x {0} x [0,1]* is covered by the 4-dimensional balls
Bi,Bj, B, B, Bi, and the cube [0, 1] x {1} x[0, 1]? is covered by the 4-dimensional
balls B3, B3, B2, B, Bi, and the cube [0, 1]* x {0} x [0, 1] is covered by the 4-
dimensional balls B, B3, B}, Bi, Bi, and the cube [0, 1]> x {1} x [0, 1] is covered
by the 4-dimensional balls Bf, B, B B Bi. Then the 3-dimensional faces of
the cube C* are covered by the balls B for i = 1,2,...,8, that is, the cube C* is
covered by the balls B} fori =1,2,....8. O

Lemma 2. Let aj,as € B%(o,7) CE? (3 <7),d(a1,a2) = 1. Let Ry, p,, Ray b, be
two rays perpendicular to L, q,. If d(0, Lo, a,), 7 are fivzed numbers then

diam (R, 4, N B*(0,7)) 4 diam (Rq, 4, N B*(0,7))

is the greatest if d(o,a1) = d(0,b1) and R, b, Rayp, lie in a closed half plane
bounded by Lq, 4, and containing o.

Proof. Let h; be the point on the line L,, ;, and not contained R,, ;, for i = 1,2.
If Lq, 4, does not contain o and Ry, 4, & H(La, 4y, 0) then diam (R, 5, N B%(0,7)) <
diam (R, n, N B?(0,7)). In this case we change R, 4, for R, n, and we mark
R, ny, with Ry, p,. Similarly if L,, ,, does not contain o and R, p, ¢ H(La, a9,0)
then we change R, 4, for Ry, 5, and we mark R, p, with Re,p,. If L4, 4, con-
tains o and H(Lg,, 4,,01) does not contain by then we change R,,p, for R, p,
and we mark Ry, ;, with R,,5,. With these changes diam (R,, 5, N B?*(o, 7)) +
diam (R, 5, N B?(0,7)) does not decrease.

Let e be the straight line containing o and parallel L,, o, (Figure 3). Let
c1, c2 be the intersection point of e and Ry, ,, Ra, by, resp. If o does not lie on the
segment c;cy and, say, d(o0,c1) > d(o, cz) then let R,y be the image of Ry, 5, under
the reflection with respect to the line Ly, 4,. In this case diam (R,, 5, N B?(o, 7))+
diam (R, 4, N B?(0, 7)) < diam (R, 5 N B2(0,7)) + diam (R4, s, N B*(0,7)). We
use this method until o lies between the images of the rays. Thus, we can assume
that o lies on the segment cicy. Let dy, dy be the intersection point of bd B(o,r)
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and Ry, p,, Ray by, resp. Let x :=d(o,¢1) and

f(z) := diam (Rq, 5, N B*(0,7)) + diam (R, ., N B*(0,7))

= d<a1’ dl) + d(a2> d2) = 2d(07 Lal,az) + d(cla dl) + d(c% dZ) =
= 2d(0, Loy ay) + V12 — 22 4+ /12 — (1 — 2)2.

Figure 3.

By elementary calculus, the maximum value of f(z) between 0 and 1 is achieved
at % This completes the proof of the lemma. O

Lemma 3. Let Ra,waa,waa,b?, - ]ng biaby/ = %7bla634 = g7b2ab34 = % and
B3(0,7) C E3. Then

Z diam (R, N B?(0,7)) < r%.
i=1,2,3

Proof. Let ¢; := Ry, NB3(0,7) for i = 1,2,3. Of course,

d(a,c1) + d(a, c3) < d(cy, c2)V2,

d(a, c3) + d(a, c3) < d(cq, c3)V2,
d(a,c1) + d(a, c3) < d(cy, e3)V2.
Thus
d(a,c1) +d(a,co) +d(a,c3) < \/75 (d(eq,c2) 4+ d(cgye3) + d(cr,e3)) -
Since

d(eq, ) +d(ea,e3) +d(eq,e3) < r3v'3
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thus /B
. 3v6
Z diam (R,p, NB?(0,7)) = Z d(a,c;) < rey
i=1,2,3 i=1,2,3
This completes the proof of the lemma. U

Note that if Rap, N B3(0,7) + Rap, N B3(0,7) + Rap, N B3(0,7) = 7248 then
a € int B3(o, 7).
Lemma 4. Let aj,a; € B*(o,r) C EY, <% <r< ,/%) and d(ay,ay) = 1. Let
R, (i =1,2,3j=1,2) such rays that aza\b; £ = T bla;bl L = Z,b} || b2 and in
the plane determined by the points ay,as, b} the half plane H(Lqy, ay,b}) contains
the point b? for any i,k € {1,2,3}(i # k),j = 1,2. Then
d(ay,as) + Z diam (Raj’b,; N B*(o, r)) < 4.
i=1,2,3j=1,2 '
Proof. 'The value of
d(ay,as) + Z diam (Raj , N B (o, r))
i=1,2,3;j=1,2 '

is smaller than

d(CLl, CZQ) =+ Z diam (Raj,bz N B4 (07 %)) .

i=1,2,3;j=1,2

Let H be the hyper plane perpendicular to the segment a;as containing o. If the
projection of the rays Raj w1 =1,2,3;7 = 1,2) onto the hyper plane H is fixed
then by Lemma 2

/5 5
Z diam | R, 4 N B* (0, —)) + diam (Ra p2 N B* (0, —>) )
i=1,2,3< ( 120 12 2% 12

is the greatest if d(o0,a;,) = d(0, az). Thus we can assume d(o,a;) = d(o, az).
Let Hy, Hy be the hyper planes perpendicular to the segment ajyas containing
a1, as, resp. In this case diam (Hl N B* (0, \/ %)) =diam <H2 N B* <o, %)) =

2

76.
By Lemma 3

/5 1 3v6
E : ‘ N B* — <142 =22 =
d(al’ CL?) " i=1,2,3;j=1 2dlam (Raj,bg : (0’ 12)) = <\/6 2 )

=1+3=4.
This completes the proof of the lemma. O
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4. Proof of the theorem

Theorem. The minimal radius of 8 congruent balls, which cover the 4-dimensio-

nal unit cube, s %

Proof. By Lemma 1 we have that 8 congruent balls with radius /- can cover

12
the cube C*.
Let us assume that the 4-dimensional cube C* can cover 8 balls with radius

2 <r < y/2 (of course, 8 balls with radius at most 3 can not cover C*).

Since in a ball with radius at most 4/ % < ‘/75 can not lie three vertices of C* thus

in every ball lie exactly two vertices of C*. By Lemma 4 the sum of the length
of the edges of C* in a ball with radius % <r< ,/15—2 is smaller than 4, that is,

5
12

sum of the length of the edges of C* is 32); a contradiction. This completes the
proof of the Theorem. O

8 congruent balls with radius smaller than can not cover the cube C* (the
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