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Abstract. We give the minimal radius of 8 congruent balls, which cover
the 4-dimensional unit cube.
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1. Introduction

We can read by Brass, Moser, Pach [3] about the problem of covering the d-
dimensional unit cube by n equal minimal balls. In [3], [1] one can find numerous
results in the case d = 2. G. Kuperberg and W. Kuperberg [4] found the op-
timal solution in d = 3, n = 2, 3, 4, 8. In higher-dimensions G. Kuperberg and
W. Kuperberg [4] found the case d ≥ 4, n = 4.

One can read results about covering by n equal balls a d-dimensional larger ball
(Rogers [5], Verger-Gaugray [6]), and the d-dimensional crosspolytope (Börözcky,
Jr., Fábián, Wintsche [2]).

2. Notations

Let Ed be the d-dimensional Euclidean space. Let Cd := [0, 1]d be the d-dimension-
al unit cube. Let Bd(a, r) be the d-dimensional ball with centre a and radius r.
d(p, q) denotes the distance of the points p, q. Let Ra,b be the ray with endpoint a
and containing b. poq∠ denotes the convex angle determined by the three points
p, o, q in this order. Let La,b be the straight line containing the different points
a, b. (E, F )∠ denotes the angle determined by the two rays E, F . Let H(L, p) be
the closed half plane bounded by the line L and containing the point p.
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Theorem. The minimal radius of 8 congruent balls, which cover the 4-dimension-

al unit cube, is
√

5
12

.

3. Lemmas

Lemma 1. The balls B4
(
oi,
√

5
12

)
⊂ E4 (i = 1, 2, . . . , 8) cover the cube C4.

Proof. Let B4
i := B4

(
oi,
√

5
12

)
for i = 1, 2, . . . , 8. Since d(m, oi) =

√
1
3

<
√

5
12

thus the center m of C4 lies in B4
i for i = 1, 2, . . . , 8.

We will show that the balls B4
i for i = 1, 2, . . . , 8 cover every 3-dimensional

face of the cube C4. From this comes that B4
i for i = 1, 2, . . . , 8 cover C4. (See

Figure 1. The thick edges are the edges, which lie entirely in a ball B4
i .)

Figure 1. The four circle problem

We show that the balls B4
i for i = 1, 2, 3, 4, 5 cover the cube [0, 1]3×{0} (the cover

of the other 3-dimensional faces of C4 is similar).
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The intersection of the 4-dimensional balls B4
i for i = 1, 2, 3, 4, 5 and the hyper-

plane x4 = 0 are the 3-dimensional balls B3
i := B3

(
o3

i ,
√

7
18

)
for i = 1, 2, 3 and

B3
i := B3

(
o3

i ,
1√
6

)
for i = 4, 5, resp.

Firstly we show that the cube C3
0 := [0, 1

2
]3 × {0} is covered by the 3-

dimensional balls B3
i for i = 1, 2, 3, 4 (see Figure 2).

Figure 2.

Let p(1
3
, 1

3
, 1

3
, 0). Since d(p, o3

i ) =
√

11
36

<
√

7
18

for i = 1, 2, 3 and d(p, o3
4) = 1√

12
<

1√
6

thus p ∈ B3
i for i = 1, 2, 3, 4. If we show that the 2-dimensional faces of the

cube C3
0 is covered by the balls B3

i for i = 1, 2, 3, 4 then we get that the cube C3
0

is covered by the balls B3
i for i = 1, 2, 3, 4.

Let us see the 2-dimensional face with vertices (0, 0, 0, 0), (1
2
, 0, 0, 0), (1

2
, 1

2
, 0,

0), (0, 1
2
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3
, 0, 0), (1

3
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2
, 0, 0),

(0, 1
2
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4, and the region conv
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2
, 0, 0), (0, 1

2
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)
is covered by B3

3 thus the above 2-dimensional face is covered by the balls B3
3,B

3
4.

Similarly the face with vertices (0, 0, 0, 0), (1
2
, 0, 0, 0), (1

2
, 0, 1

2
, 0), (0, 0, 1

2
, 0) is cov-

ered by the balls B3
1,B

3
4, and the face with vertices (0, 0, 0, 0), (0, 1

2
, 0, 0), (0, 1

2
,

1
2
, 0), (0, 0, 1

2
, 0) is covered by the balls B3

2,B
3
4.

Let us consider the face with vertices (1
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is covered

by B3
3 thus the above face is covered by the balls B3

1,B
3
3. Similarly the face with

vertices (0, 0, 1
2
, 0), (1

2
, 0, 1

2
, 0), (1

2
, 1
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, 1

2
, 0), (0, 1
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, 1
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1,B
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2,

and the face with vertices (0, 1
2
, 0, 0), (1

2
, 1

2
, 0, 0), (1

2
, 1

2
, 1

2
, 0), (0, 1

2
, 1

2
, 0) is covered by

the balls B3
2,B

3
3. Similarly the cube [1

2
, 1]3 × {0} is covered by the 3-dimensional

balls B3
1,B

3
2,B

3
3,B

3
5.

Secondly we show that the cube [1
2
, 1] × [0, 1

2
] × [0, 1

2
] × {0} is covered by the

3-dimensional balls B3
1,B

3
3.
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Since the region conv((1, 0, 0, 0), (1, 1
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is covered by B3
3 thus the

above cube is covered. Similarly the cube [1
2
, 1]2 × [0, 1

2
] × {0} is covered by the

3-dimensional balls B3
1,B

3
3, and the cube [0, 1

2
]× [1

2
, 1]× [0, 1

2
]× {0} is covered by

the 3-dimensional balls B3
2,B

3
3, and the cube [0, 1

2
]× [1

2
, 1]2×{0} is covered by the

3-dimensional balls B3
2,B

3
3, and the cube [0, 1

2
]2 × [1

2
, 1] × {0} is covered by the

3-dimensional balls B3
1,B

3
2, and the cube [1

2
, 1]× [0, 1

2
]× [1

2
, 1]× {0} is covered by

the 3-dimensional balls B3
1,B

3
2. This implies that the cube [0, 1]3×{0} is covered

by the 3-dimensional balls B3
i for i = 1, 2, 3, 4, 5, that is, [0, 1]3 × {0} is covered

by the 4-dimensional balls B4
i for i = 1, 2, 3, 4, 5.

Similarly the cube [0, 1]3×{1} is covered by the 4-dimensional balls B4
4,B

4
5,B

4
6,

B4
7,B

4
8, and the cube {0}× [0, 1]3 is covered by the 4-dimensional balls B4

2,B
4
3,B

4
4,

B4
7,B

4
8, and the cube {1}× [0, 1]3 is covered by the 4-dimensional balls B4

1,B
4
3,B

4
5,

B4
6,B

4
7, and the cube [0, 1] × {0} × [0, 1]2 is covered by the 4-dimensional balls

B4
1,B

4
2,B

4
4,B

4
6,B

4
7, and the cube [0, 1]×{1}×[0, 1]2 is covered by the 4-dimensional

balls B4
2,B

4
3,B

4
5,B

4
6,B

4
8, and the cube [0, 1]2 × {0} × [0, 1] is covered by the 4-

dimensional balls B4
1,B

4
3,B

4
4,B

4
6,B

4
8, and the cube [0, 1]2 × {1} × [0, 1] is covered

by the 4-dimensional balls B4
1,B

4
2,B

4
5,B

4
7,B

4
8. Then the 3-dimensional faces of

the cube C4 are covered by the balls B4
i for i = 1, 2, . . . , 8, that is, the cube C4 is

covered by the balls B4
i for i = 1, 2, . . . , 8. �

Lemma 2. Let a1, a2 ∈ B2(o, r) ⊂ E2,
(

1
2

< r
)
, d(a1, a2) = 1. Let Ra1,b1 , Ra2,b2 be

two rays perpendicular to La1,a2. If d(o, La1,a2), r are fixed numbers then

diam
(
Ra1,b1 ∩B2(o, r)

)
+ diam

(
Ra2,b2 ∩B2(o, r)

)
is the greatest if d(o, a1) = d(o, b1) and Ra1,b1 , Ra2,b2 lie in a closed half plane
bounded by La1,a2 and containing o.

Proof. Let hi be the point on the line Lai,bi
and not contained Rai,bi

for i = 1, 2.
If La1,a2 does not contain o and Ra1,b1 6⊂H(La1,a2 , o) then diam (Ra1,b1 ∩B2(o, r))<
diam (Ra1,h1 ∩B2(o, r)). In this case we change Ra1,b1 for Ra1,h1 and we mark
Ra1,h1 with Ra1,b1 . Similarly if La1,a2 does not contain o and Ra2,b2 6⊂ H(La1,a2 , o)
then we change Ra2,b2 for Ra2,h2 and we mark Ra2,h2 with Ra2,b2 . If La1,a2 con-
tains o and H(La1,a2 , b1) does not contain b2 then we change Ra2,b2 for Ra2,h2

and we mark Ra2,h2 with Ra2,b2 . With these changes diam (Ra1,b1 ∩B2(o, r)) +
diam (Ra2,b2 ∩B2(o, r)) does not decrease.

Let e be the straight line containing o and parallel La1,a2 (Figure 3). Let
c1, c2 be the intersection point of e and Ra1,b1 , Ra2,b2 , resp. If o does not lie on the
segment c1c2 and, say, d(o, c1) > d(o, c2) then let Ra′

1,b′
1
be the image of Ra1,b1 under

the reflection with respect to the line La2,b2 . In this case diam (Ra1,b1 ∩B2(o, r))+
diam (Ra2,b2 ∩B2(o, r)) < diam

(
Ra′

1,b′
1
∩B2(o, r)

)
+ diam (Ra2,b2 ∩B2(o, r)). We

use this method until o lies between the images of the rays. Thus, we can assume
that o lies on the segment c1c2. Let d1, d2 be the intersection point of bdB2(o, r)
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and Ra1,b1 , Ra2,b2 , resp. Let x := d(o, c1) and

f(x) := diam
(
Ra1,b1 ∩B2(o, r)

)
+ diam

(
Ra2,b2 ∩B2(o, r)

)
=

= d(a1, d1) + d(a2, d2) = 2d(o, La1,a2) + d(c1, d1) + d(c2, d2) =

= 2d(o, La1,a2) +
√

r2 − x2 +
√

r2 − (1− x)2.

Figure 3.

By elementary calculus, the maximum value of f(x) between 0 and 1 is achieved
at 1

2
. This completes the proof of the lemma. �

Lemma 3. Let Ra,b1 , Ra,b2 , Ra,b3 ⊂ E3, b1ab2∠ = π
2
, b1ab3∠ = π

2
, b2ab3∠ = π

2
and

B3(o, r) ⊂ E3. Then

∑
i=1,2,3

diam
(
Ra,bi

∩B3(o, r)
)
≤ r

3
√

6

2
.

Proof. Let ci := Ra,bi
∩B3(o, r) for i = 1, 2, 3. Of course,

d(a, c1) + d(a, c2) ≤ d(c1, c2)
√

2,

d(a, c2) + d(a, c3) ≤ d(c2, c3)
√

2,

d(a, c1) + d(a, c3) ≤ d(c1, c3)
√

2.

Thus

d(a, c1) + d(a, c2) + d(a, c3) ≤
√

2

2
(d(c1, c2) + d(c2, c3) + d(c1, c3)) .

Since
d(c1, c2) + d(c2, c3) + d(c1, c3) ≤ r3

√
3
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thus ∑
i=1,2,3

diam
(
Ra,bi

∩B3(o, r)
)

=
∑

i=1,2,3

d(a, ci) ≤ r
3
√

6

2
.

This completes the proof of the lemma. �

Note that if Ra,b1 ∩ B3(o, r) + Ra,b2 ∩ B3(o, r) + Ra,b3 ∩ B3(o, r) = r 3
√

6
2

then
a ∈ intB3(o, r).

Lemma 4. Let a1, a2 ∈ B4(o, r) ⊂ E4,
(

1
2

< r <
√

5
12

)
and d(a1, a2) = 1. Let

Raj ,bj
i
(i = 1, 2, 3; j = 1, 2) such rays that a2a1b

1
i ∠ = π

2
, bj

iajb
j
k∠ = π

2
, b1

i ‖ b2
i and in

the plane determined by the points a1, a2, b
1
i the half plane H(La1,a2 , b

1
i ) contains

the point b2
i for any i, k ∈ {1, 2, 3}(i 6= k), j = 1, 2. Then

d(a1, a2) +
∑

i=1,2,3;j=1,2

diam
(
Raj ,bj

i
∩B4(o, r)

)
< 4.

Proof. The value of

d(a1, a2) +
∑

i=1,2,3;j=1,2

diam
(
Raj ,bj

i
∩B4(o, r)

)
is smaller than

d(a1, a2) +
∑

i=1,2,3;j=1,2

diam

(
Raj ,bj

i
∩B4

(
o,

√
5

12

))
.

Let H be the hyper plane perpendicular to the segment a1a2 containing o. If the
projection of the rays Raj ,bj

i
(i = 1, 2, 3; j = 1, 2) onto the hyper plane H is fixed

then by Lemma 2

∑
i=1,2,3

(
diam

(
Ra1,b1i

∩B4

(
o,

√
5

12

))
+ diam

(
Ra2,b2i

∩B4

(
o,

√
5

12

)))

is the greatest if d(o, a1) = d(o, a2). Thus we can assume d(o, a1) = d(o, a2).
Let H1, H2 be the hyper planes perpendicular to the segment a1a2 containing

a1, a2, resp. In this case diam
(
H1 ∩B4

(
o,
√

5
12

))
=diam

(
H2 ∩B4

(
o,
√

5
12

))
=

2√
6
.

By Lemma 3

d(a1, a2) +
∑

i=1,2,3;j=1,2

diam

(
Raj ,bj

i
∩B4

(
o,

√
5

12

))
≤ 1 + 2

(
1√
6

3
√

6

2

)
=

= 1 + 3 = 4.

This completes the proof of the lemma. �
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4. Proof of the theorem

Theorem. The minimal radius of 8 congruent balls, which cover the 4-dimensio-

nal unit cube, is
√

5
12

.

Proof. By Lemma 1 we have that 8 congruent balls with radius
√

5
12

can cover

the cube C4.
Let us assume that the 4-dimensional cube C4 can cover 8 balls with radius
1
2

< r <
√

5
12

(of course, 8 balls with radius at most 1
2

can not cover C4).

Since in a ball with radius at most
√

5
12

<
√

2
2

can not lie three vertices of C4 thus

in every ball lie exactly two vertices of C4. By Lemma 4 the sum of the length

of the edges of C4 in a ball with radius 1
2

< r <
√

5
12

is smaller than 4, that is,

8 congruent balls with radius smaller than
√

5
12

can not cover the cube C4 (the

sum of the length of the edges of C4 is 32); a contradiction. This completes the
proof of the Theorem. �
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