Covering the Unit Cube by Equal Balls

Antal Joós

College of Dunaújváros, 2400 Dunaújváros Táncsics M. u. 1/a, Hungary e-mail: ajoos@kac.poliod.hu

Abstract. We give the minimal radius of 8 congruent balls, which cover the 4-dimensional unit cube. MSC 2000: 52C17 Keywords: covering by equal balls, finite coverings

1. Introduction

We can read by Brass, Moser, Pach [3] about the problem of covering the *d*dimensional unit cube by *n* equal minimal balls. In [3], [1] one can find numerous results in the case d = 2. G. Kuperberg and W. Kuperberg [4] found the optimal solution in d = 3, n = 2, 3, 4, 8. In higher-dimensions G. Kuperberg and W. Kuperberg [4] found the case $d \ge 4, n = 4$.

One can read results about covering by n equal balls a d-dimensional larger ball (Rogers [5], Verger-Gaugray [6]), and the d-dimensional crosspolytope (Börözcky, Jr., Fábián, Wintsche [2]).

2. Notations

Let \mathbb{E}^d be the *d*-dimensional Euclidean space. Let $C^d := [0, 1]^d$ be the *d*-dimensional unit cube. Let $B^d(a, r)$ be the *d*-dimensional ball with centre *a* and radius *r*. d(p,q) denotes the distance of the points p,q. Let $R_{a,b}$ be the ray with endpoint *a* and containing *b*. $poq \angle$ denotes the convex angle determined by the three points p, o, q in this order. Let $L_{a,b}$ be the straight line containing the different points a, b. $(E, F) \angle$ denotes the angle determined by the two rays E, F. Let H(L, p) be the closed half plane bounded by the line *L* and containing the point *p*.

0138-4821/93 $2.50 \odot 2008$ Heldermann Verlag

Let

$$O_{1}\left(\frac{5}{6},\frac{1}{2},\frac{1}{2},\frac{1}{6}\right), O_{2}\left(\frac{1}{6},\frac{1}{2},\frac{5}{6},\frac{1}{6}\right), O_{3}\left(\frac{1}{2},\frac{5}{6},\frac{1}{6},\frac{1}{6}\right), O_{4}\left(\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{2}\right), O_{5}\left(\frac{5}{6},\frac{5}{6},\frac{5}{6},\frac{1}{2}\right), O_{6}\left(\frac{5}{6},\frac{1}{2},\frac{1}{6},\frac{5}{6}\right), O_{7}\left(\frac{1}{2},\frac{1}{6},\frac{5}{6},\frac{5}{6}\right), O_{8}\left(\frac{1}{6},\frac{5}{6},\frac{1}{2},\frac{5}{6}\right), m\left(\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right), O_{1}^{3}\left(\frac{5}{6},\frac{1}{6},\frac{1}{2},0\right), O_{2}^{3}\left(\frac{1}{6},\frac{1}{2},\frac{5}{6},0\right), O_{3}^{3}\left(\frac{1}{2},\frac{5}{6},\frac{1}{6},0\right), O_{4}^{3}\left(\frac{1}{6},\frac{1}{6},\frac{1}{6},0\right), O_{5}^{3}\left(\frac{5}{6},\frac{5}{6},\frac{5}{6},0\right).$$

Theorem. The minimal radius of 8 congruent balls, which cover the 4-dimensional unit cube, is $\sqrt{\frac{5}{12}}$.

3. Lemmas

Lemma 1. The balls $\mathbf{B}^4\left(o_i, \sqrt{\frac{5}{12}}\right) \subset \mathbb{E}^4$ (i = 1, 2, ..., 8) cover the cube C^4 .

Proof. Let $\mathbf{B}_i^4 := \mathbf{B}^4 \left(o_i, \sqrt{\frac{5}{12}} \right)$ for i = 1, 2, ..., 8. Since $d(m, o_i) = \sqrt{\frac{1}{3}} < \sqrt{\frac{5}{12}}$ thus the center m of C^4 lies in \mathbf{B}_i^4 for i = 1, 2, ..., 8. We will show that the balls \mathbf{B}_i^4 for i = 1, 2, ..., 8 cover every 3-dimensional

We will show that the balls \mathbf{B}_{i}^{4} for i = 1, 2, ..., 8 cover every 3-dimensional face of the cube C^{4} . From this comes that \mathbf{B}_{i}^{4} for i = 1, 2, ..., 8 cover C^{4} . (See Figure 1. The thick edges are the edges, which lie entirely in a ball \mathbf{B}_{i}^{4} .)

Figure 1. The four circle problem

We show that the balls \mathbf{B}_i^4 for i = 1, 2, 3, 4, 5 cover the cube $[0, 1]^3 \times \{0\}$ (the cover of the other 3-dimensional faces of C^4 is similar).

600

The intersection of the 4-dimensional balls \mathbf{B}_i^4 for i = 1, 2, 3, 4, 5 and the hyperplane $x_4 = 0$ are the 3-dimensional balls $\mathbf{B}_i^3 := \mathbf{B}^3 \left(o_i^3, \sqrt{\frac{7}{18}} \right)$ for i = 1, 2, 3 and $\mathbf{B}_i^3 := \mathbf{B}^3 \left(o_i^3, \frac{1}{\sqrt{6}} \right)$ for i = 4, 5, resp.

Firstly we show that the cube $C_0^3 := [0, \frac{1}{2}]^3 \times \{0\}$ is covered by the 3-dimensional balls \mathbf{B}_i^3 for i = 1, 2, 3, 4 (see Figure 2).

Figure 2.

Let $p(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0)$. Since $d(p, o_i^3) = \sqrt{\frac{11}{36}} < \sqrt{\frac{7}{18}}$ for i = 1, 2, 3 and $d(p, o_4^3) = \frac{1}{\sqrt{12}} < \frac{1}{\sqrt{6}}$ thus $p \in \mathbf{B}_i^3$ for i = 1, 2, 3, 4. If we show that the 2-dimensional faces of the cube C_0^3 is covered by the balls \mathbf{B}_i^3 for i = 1, 2, 3, 4 then we get that the cube C_0^3 is covered by the balls \mathbf{B}_i^3 for i = 1, 2, 3, 4.

Let us see the 2-dimensional face with vertices $(0,0,0,0), (\frac{1}{2},0,0,0), (\frac{1}{2},\frac{1}{2},0,0), (0,\frac{1}{2},\frac{1}{2},0,0), (0,\frac{1}{2},0,0), (0,\frac{1}{2},0), (0,0,\frac{1}{2},0), ($

Let us consider the face with vertices $(\frac{1}{2}, 0, 0, 0), (\frac{1}{2}, \frac{1}{2}, 0, 0), (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0), (\frac{1}{2}, 0, \frac{1}{2}, 0), (\frac{1}{2}, 0, \frac{1}{2}, 0), (\frac{1}{2}, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0), (0, 0$

Secondly we show that the cube $[\frac{1}{2}, 1] \times [0, \frac{1}{2}] \times [0, \frac{1}{2}] \times \{0\}$ is covered by the 3-dimensional balls $\mathbf{B}_1^3, \mathbf{B}_3^3$.

Since the region $\operatorname{conv}((1,0,0,0), (1,\frac{1}{2},0,0), (\frac{2}{3},\frac{1}{2},0,0), (\frac{1}{2},\frac{1}{3},0,0), (\frac{1}{2},0,0,0), (\frac{1}{2},\frac{1}{2},\frac{1}{2},0), (\frac{1}{2},0,\frac{1}{2},0), (1,0,\frac{1}{2},0), (1,\frac{1}{2},\frac{1}{2},0))$ is covered by \mathbf{B}_{1}^{3} , and the region $\operatorname{conv}((\frac{1}{2},\frac{1}{3},0,0), (1,\frac{1}{2},0,0), (\frac{1}{2},\frac{1}{2},0,0), (\frac{1}{2},\frac{1}{2},\frac{1}{2},0))$ is covered by \mathbf{B}_{3}^{3} thus the above cube is covered. Similarly the cube $[\frac{1}{2},1]^{2} \times [0,\frac{1}{2}] \times \{0\}$ is covered by the 3-dimensional balls $\mathbf{B}_{1}^{3}, \mathbf{B}_{3}^{3}$, and the cube $[0,\frac{1}{2}] \times [\frac{1}{2},1] \times [0,\frac{1}{2}] \times \{0\}$ is covered by the 3-dimensional balls $\mathbf{B}_{2}^{3}, \mathbf{B}_{3}^{3}$, and the cube $[0,\frac{1}{2}]^{2} \times [\frac{1}{2},1] \times \{0\}$ is covered by the 3-dimensional balls $\mathbf{B}_{1}^{3}, \mathbf{B}_{3}^{2}$, and the cube $[0,\frac{1}{2}]^{2} \times [\frac{1}{2},1] \times \{0\}$ is covered by the 3-dimensional balls $\mathbf{B}_{1}^{3}, \mathbf{B}_{3}^{3}$, and the cube $[0,\frac{1}{2}]^{2} \times [\frac{1}{2},1] \times \{0\}$ is covered by the 3-dimensional balls $\mathbf{B}_{1}^{3}, \mathbf{B}_{3}^{3}$, and the cube $[0,\frac{1}{2}]^{2} \times [\frac{1}{2},1] \times \{0\}$ is covered by the 3-dimensional balls $\mathbf{B}_{1}^{3}, \mathbf{B}_{2}^{3}$. This implies that the cube $[0,1]^{3} \times \{0\}$ is covered by the 3-dimensional balls $\mathbf{B}_{1}^{3}, \mathbf{B}_{2}^{3}$. This implies that the cube $[0,1]^{3} \times \{0\}$ is covered by the 4-dimensional balls \mathbf{B}_{1}^{3} for i = 1, 2, 3, 4, 5, that is, $[0,1]^{3} \times \{0\}$ is covered by the 3-dimensional balls \mathbf{B}_{1}^{3} for i = 1, 2, 3, 4, 5.

Similarly the cube $[0, 1]^3 \times \{1\}$ is covered by the 4-dimensional balls $\mathbf{B}_4^4, \mathbf{B}_5^4, \mathbf{B}_6^4, \mathbf{B}_7^4, \mathbf{B}_8^4$, and the cube $\{0\} \times [0, 1]^3$ is covered by the 4-dimensional balls $\mathbf{B}_2^4, \mathbf{B}_3^4, \mathbf{B}_4^4, \mathbf{B}_7^4, \mathbf{B}_8^4$, and the cube $\{1\} \times [0, 1]^3$ is covered by the 4-dimensional balls $\mathbf{B}_1^4, \mathbf{B}_3^4, \mathbf{B}_5^4, \mathbf{B}_6^4, \mathbf{B}_7^4$, and the cube $\{0, 1] \times \{0\} \times [0, 1]^2$ is covered by the 4-dimensional balls $\mathbf{B}_1^4, \mathbf{B}_3^4, \mathbf{B}_5^4, \mathbf{B}_6^4, \mathbf{B}_7^4, \mathbf{B}_6, \mathbf{B}_7^4, \mathbf{A}_6, \mathbf{B}_7^4, \mathbf{A}_6, \mathbf{B}_7^4, \mathbf{A}_6, \mathbf{B}_7^4, \mathbf{A}_6, \mathbf{B}_7^4, \mathbf{A}_6, \mathbf{B}_8^4, \mathbf{A}_6, \mathbf{A}_8^4, \mathbf{A}_6, \mathbf{B}_8^4, \mathbf{A}_6, \mathbf{A}_8^4, \mathbf{A}_6, \mathbf{A}_8^4, \mathbf{A}_6, \mathbf{A}_8^4, \mathbf{A}_8, \mathbf{A$

Lemma 2. Let $a_1, a_2 \in \mathbf{B}^2(o, r) \subset \mathbb{E}^2$, $(\frac{1}{2} < r)$, $d(a_1, a_2) = 1$. Let $R_{a_1, b_1}, R_{a_2, b_2}$ be two rays perpendicular to L_{a_1, a_2} . If $d(o, L_{a_1, a_2})$, r are fixed numbers then

diam
$$(R_{a_1,b_1} \cap \mathbf{B}^2(o,r))$$
 + diam $(R_{a_2,b_2} \cap \mathbf{B}^2(o,r))$

is the greatest if $d(o, a_1) = d(o, b_1)$ and R_{a_1,b_1}, R_{a_2,b_2} lie in a closed half plane bounded by L_{a_1,a_2} and containing o.

Proof. Let h_i be the point on the line L_{a_i,b_i} and not contained R_{a_i,b_i} for i = 1, 2. If L_{a_1,a_2} does not contain o and $R_{a_1,b_1} \not\subset H(L_{a_1,a_2}, o)$ then diam $(R_{a_1,b_1} \cap \mathbf{B}^2(o, r)) <$ diam $(R_{a_1,h_1} \cap \mathbf{B}^2(o, r))$. In this case we change R_{a_1,b_1} for R_{a_1,h_1} and we mark R_{a_1,h_1} with R_{a_1,b_1} . Similarly if L_{a_1,a_2} does not contain o and $R_{a_2,b_2} \not\subset H(L_{a_1,a_2}, o)$ then we change R_{a_2,b_2} for R_{a_2,h_2} and we mark R_{a_2,h_2} with R_{a_2,b_2} . If L_{a_1,a_2} contains o and $H(L_{a_1,a_2}, b_1)$ does not contain b_2 then we change R_{a_2,b_2} for R_{a_2,h_2} and we mark R_{a_2,h_2} with R_{a_2,b_2} . With these changes diam $(R_{a_1,b_1} \cap \mathbf{B}^2(o,r)) +$ diam $(R_{a_2,b_2} \cap \mathbf{B}^2(o,r))$ does not decrease.

Let *e* be the straight line containing *o* and parallel L_{a_1,a_2} (Figure 3). Let c_1, c_2 be the intersection point of *e* and R_{a_1,b_1}, R_{a_2,b_2} , resp. If *o* does not lie on the segment c_1c_2 and, say, $d(o, c_1) > d(o, c_2)$ then let $R_{a'_1,b'_1}$ be the image of R_{a_1,b_1} under the reflection with respect to the line L_{a_2,b_2} . In this case diam $(R_{a_1,b_1} \cap \mathbf{B}^2(o,r)) + \text{diam} (R_{a_2,b_2} \cap \mathbf{B}^2(o,r)) < \text{diam} (R_{a'_1,b'_1} \cap \mathbf{B}^2(o,r)) + \text{diam} (R_{a_2,b_2} \cap \mathbf{B}^2(o,r))$. We use this method until *o* lies between the images of the rays. Thus, we can assume that *o* lies on the segment c_1c_2 . Let d_1, d_2 be the intersection point of bd $\mathbf{B}^2(o,r)$

and R_{a_1,b_1}, R_{a_2,b_2} , resp. Let $x := d(o, c_1)$ and

$$f(x) := \operatorname{diam} \left(R_{a_1,b_1} \cap \mathbf{B}^2(o,r) \right) + \operatorname{diam} \left(R_{a_2,b_2} \cap \mathbf{B}^2(o,r) \right) =$$
$$= d(a_1,d_1) + d(a_2,d_2) = 2d(o,L_{a_1,a_2}) + d(c_1,d_1) + d(c_2,d_2) =$$
$$= 2d(o,L_{a_1,a_2}) + \sqrt{r^2 - x^2} + \sqrt{r^2 - (1-x)^2}.$$

Figure 3.

By elementary calculus, the maximum value of f(x) between 0 and 1 is achieved at $\frac{1}{2}$. This completes the proof of the lemma.

Lemma 3. Let $R_{a,b_1}, R_{a,b_2}, R_{a,b_3} \subset \mathbb{E}^3$, $b_1 a b_2 \angle = \frac{\pi}{2}, b_1 a b_3 \angle = \frac{\pi}{2}, b_2 a b_3 \angle = \frac{\pi}{2}$ and $\mathbf{B}^3(o,r) \subset \mathbb{E}^3$. Then

$$\sum_{i=1,2,3} \operatorname{diam} \left(R_{a,b_i} \cap \mathbf{B}^3(o,r) \right) \le r \frac{3\sqrt{6}}{2}.$$

Proof. Let $c_i := R_{a,b_i} \cap \mathbf{B}^3(o,r)$ for i = 1, 2, 3. Of course,

$$d(a, c_1) + d(a, c_2) \le d(c_1, c_2)\sqrt{2},$$

$$d(a, c_2) + d(a, c_3) \le d(c_2, c_3)\sqrt{2},$$

$$d(a, c_1) + d(a, c_3) \le d(c_1, c_3)\sqrt{2}.$$

Thus

$$d(a,c_1) + d(a,c_2) + d(a,c_3) \le \frac{\sqrt{2}}{2} \left(d(c_1,c_2) + d(c_2,c_3) + d(c_1,c_3) \right).$$

Since

$$d(c_1, c_2) + d(c_2, c_3) + d(c_1, c_3) \le r_3\sqrt{3}$$

thus

$$\sum_{i=1,2,3} \operatorname{diam} \left(R_{a,b_i} \cap \mathbf{B}^3(o,r) \right) = \sum_{i=1,2,3} d(a,c_i) \le r \frac{3\sqrt{6}}{2}.$$

This completes the proof of the lemma.

Note that if $R_{a,b_1} \cap \mathbf{B}^3(o,r) + R_{a,b_2} \cap \mathbf{B}^3(o,r) + R_{a,b_3} \cap \mathbf{B}^3(o,r) = r \frac{3\sqrt{6}}{2}$ then $a \in \operatorname{int} \mathbf{B}^3(o,r)$.

Lemma 4. Let $a_1, a_2 \in \mathbf{B}^4(o, r) \subset \mathbb{E}^4$, $\left(\frac{1}{2} < r < \sqrt{\frac{5}{12}}\right)$ and $d(a_1, a_2) = 1$. Let $R_{a_j, b_i^j}(i = 1, 2, 3; j = 1, 2)$ such rays that $a_2 a_1 b_i^1 \angle = \frac{\pi}{2}, b_i^j a_j b_k^j \angle = \frac{\pi}{2}, b_i^1 \parallel b_i^2$ and in the plane determined by the points a_1, a_2, b_i^1 the half plane $H(L_{a_1, a_2}, b_i^1)$ contains the point b_i^2 for any $i, k \in \{1, 2, 3\}$ $(i \neq k), j = 1, 2$. Then

$$d(a_1, a_2) + \sum_{i=1,2,3; j=1,2} \operatorname{diam}\left(R_{a_j, b_i^j} \cap \mathbf{B}^4(o, r)\right) < 4.$$

Proof. The value of

$$d(a_1, a_2) + \sum_{i=1,2,3; j=1,2} \operatorname{diam} \left(R_{a_j, b_i^j} \cap \mathbf{B}^4(o, r) \right)$$

is smaller than

$$d(a_1, a_2) + \sum_{i=1,2,3; j=1,2} \operatorname{diam}\left(R_{a_j, b_i^j} \cap \mathbf{B}^4\left(o, \sqrt{\frac{5}{12}}\right)\right).$$

Let H be the hyper plane perpendicular to the segment a_1a_2 containing o. If the projection of the rays $R_{a_j,b_i^j}(i = 1, 2, 3; j = 1, 2)$ onto the hyper plane H is fixed then by Lemma 2

$$\sum_{i=1,2,3} \left(\operatorname{diam} \left(R_{a_1,b_i^1} \cap \mathbf{B}^4 \left(o, \sqrt{\frac{5}{12}} \right) \right) + \operatorname{diam} \left(R_{a_2,b_i^2} \cap \mathbf{B}^4 \left(o, \sqrt{\frac{5}{12}} \right) \right) \right)$$

is the greatest if $d(o, a_1) = d(o, a_2)$. Thus we can assume $d(o, a_1) = d(o, a_2)$. Let H_1, H_2 be the hyper planes perpendicular to the segment a_1a_2 containing a_1, a_2 , resp. In this case diam $\left(H_1 \cap \mathbf{B}^4\left(o, \sqrt{\frac{5}{12}}\right)\right) = \operatorname{diam}\left(H_2 \cap \mathbf{B}^4\left(o, \sqrt{\frac{5}{12}}\right)\right) = \frac{2}{\sqrt{6}}$.

By Lemma
$$3$$

$$d(a_1, a_2) + \sum_{i=1,2,3; j=1,2} \operatorname{diam} \left(R_{a_j, b_i^j} \cap \mathbf{B}^4 \left(o, \sqrt{\frac{5}{12}} \right) \right) \le 1 + 2 \left(\frac{1}{\sqrt{6}} \frac{3\sqrt{6}}{2} \right) = 1 + 3 = 4.$$

This completes the proof of the lemma.

4. Proof of the theorem

Theorem. The minimal radius of 8 congruent balls, which cover the 4-dimensional unit cube, is $\sqrt{\frac{5}{12}}$.

Proof. By Lemma 1 we have that 8 congruent balls with radius $\sqrt{\frac{5}{12}}$ can cover the cube C^4 .

Let us assume that the 4-dimensional cube C^4 can cover 8 balls with radius $\frac{1}{2} < r < \sqrt{\frac{5}{12}}$ (of course, 8 balls with radius at most $\frac{1}{2}$ can not cover C^4).

Since in a ball with radius at most $\sqrt{\frac{5}{12}} < \frac{\sqrt{2}}{2}$ can not lie three vertices of C^4 thus in every ball lie exactly two vertices of C^4 . By Lemma 4 the sum of the length of the edges of C^4 in a ball with radius $\frac{1}{2} < r < \sqrt{\frac{5}{12}}$ is smaller than 4, that is, 8 congruent balls with radius smaller than $\sqrt{\frac{5}{12}}$ can not cover the cube C^4 (the sum of the length of the edges of C^4 is 32); a contradiction. This completes the proof of the Theorem.

References

- Böröczky Jr., K.: *Finite packing and covering*. Cambridge Tracts in Mathematics 154, Cambridge University Press, 2004.
- Börözcky Jr., K.; Fábián, I.; Wintsche, G.: Covering the crosspolytope by equal balls. Period. Math. Hung. 53 (2006) 103–113.
 Zbl 1127.52027
- [3] Brass, P.; Moser, W.; Pach, J.: Research problems in discrete geometry. Springer Verlag, New York 2005. Zbl 1086.52001
- [4] Kuperberg, G.; Kuperberg, W.: Ball packings and coverings with respect to the unit cube. (in preparation).
- [5] Rogers, C. A.: Covering a sphere with spheres. Mathematika 10 (1963) 157– 164. Zbl 0158.19603
- [6] Verger-Gaugray, J.-L.: Covering a ball with smaller equal balls in Rⁿ. Discrete Comput. Geom. 33 (2005), 143–155.
 Zbl 1066.52021

Received October 19, 2007