Covering the Unit Cube by Equal Balls

Antal Joós
College of Dunaújváros, 2400 Dunaújváros
Táncsics M. u. 1/a, Hungary
e-mail: ajoos@kac.poliod.hu

Abstract

We give the minimal radius of 8 congruent balls, which cover the 4-dimensional unit cube.

MSC 2000: 52C17
Keywords: covering by equal balls, finite coverings

1. Introduction

We can read by Brass, Moser, Pach [3] about the problem of covering the d dimensional unit cube by n equal minimal balls. In [3], [1] one can find numerous results in the case $d=2$. G. Kuperberg and W. Kuperberg [4] found the optimal solution in $d=3, n=2,3,4,8$. In higher-dimensions G. Kuperberg and W. Kuperberg [4] found the case $d \geq 4, n=4$.

One can read results about covering by n equal balls a d-dimensional larger ball (Rogers [5], Verger-Gaugray [6]), and the d-dimensional crosspolytope (Börözcky, Jr., Fábián, Wintsche [2]).

2. Notations

Let \mathbb{E}^{d} be the d-dimensional Euclidean space. Let $C^{d}:=[0,1]^{d}$ be the d-dimensional unit cube. Let $B^{d}(a, r)$ be the d-dimensional ball with centre a and radius r. $d(p, q)$ denotes the distance of the points p, q. Let $R_{a, b}$ be the ray with endpoint a and containing b. poq \angle denotes the convex angle determined by the three points p, o, q in this order. Let $L_{a, b}$ be the straight line containing the different points $a, b .(E, F) \angle$ denotes the angle determined by the two rays E, F. Let $H(L, p)$ be the closed half plane bounded by the line L and containing the point p.

0138-4821/93 \$ 2.50 © 2008 Heldermann Verlag

Let

$$
\begin{gathered}
o_{1}\left(\frac{5}{6}, \frac{1}{6}, \frac{1}{2}, \frac{1}{6}\right), o_{2}\left(\frac{1}{6}, \frac{1}{2}, \frac{5}{6}, \frac{1}{6}\right), o_{3}\left(\frac{1}{2}, \frac{5}{6}, \frac{1}{6}, \frac{1}{6}\right), o_{4}\left(\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{2}\right), o_{5}\left(\frac{5}{6}, \frac{5}{6}, \frac{5}{6}, \frac{1}{2}\right), \\
o_{6}\left(\frac{5}{6}, \frac{1}{2}, \frac{1}{6}, \frac{5}{6}\right), o_{7}\left(\frac{1}{2}, \frac{1}{6}, \frac{5}{6}, \frac{5}{6}\right), o_{8}\left(\frac{1}{6}, \frac{5}{6}, \frac{1}{2}, \frac{5}{6}\right), m\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right), o_{1}^{3}\left(\frac{5}{6}, \frac{1}{6}, \frac{1}{2}, 0\right), \\
o_{2}^{3}\left(\frac{1}{6}, \frac{1}{2}, \frac{5}{6}, 0\right), o_{3}^{3}\left(\frac{1}{2}, \frac{5}{6}, \frac{1}{6}, 0\right), o_{4}^{3}\left(\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, 0\right), o_{5}^{3}\left(\frac{5}{6}, \frac{5}{6}, \frac{5}{6}, 0\right) .
\end{gathered}
$$

Theorem. The minimal radius of 8 congruent balls, which cover the 4 -dimensional unit cube, is $\sqrt{\frac{5}{12}}$.

3. Lemmas

Lemma 1. The balls $\mathbf{B}^{4}\left(o_{i}, \sqrt{\frac{5}{12}}\right) \subset \mathbb{E}^{4}(i=1,2, \ldots, 8)$ cover the cube C^{4}.
Proof. Let $\mathbf{B}_{i}^{4}:=\mathbf{B}^{4}\left(o_{i}, \sqrt{\frac{5}{12}}\right)$ for $i=1,2, \ldots, 8$. Since $d\left(m, o_{i}\right)=\sqrt{\frac{1}{3}}<\sqrt{\frac{5}{12}}$ thus the center m of C^{4} lies in \mathbf{B}_{i}^{4} for $i=1,2, \ldots, 8$.

We will show that the balls \mathbf{B}_{i}^{4} for $i=1,2, \ldots, 8$ cover every 3 -dimensional face of the cube C^{4}. From this comes that \mathbf{B}_{i}^{4} for $i=1,2, \ldots, 8$ cover C^{4}. (See Figure 1. The thick edges are the edges, which lie entirely in a ball \mathbf{B}_{i}^{4}.)

Figure 1. The four circle problem

We show that the balls \mathbf{B}_{i}^{4} for $i=1,2,3,4,5$ cover the cube $[0,1]^{3} \times\{0\}$ (the cover of the other 3 -dimensional faces of C^{4} is similar).

The intersection of the 4-dimensional balls \mathbf{B}_{i}^{4} for $i=1,2,3,4,5$ and the hyperplane $x_{4}=0$ are the 3-dimensional balls $\mathbf{B}_{i}^{3}:=\mathbf{B}^{3}\left(o_{i}^{3}, \sqrt{\frac{7}{18}}\right)$ for $i=1,2,3$ and $\mathbf{B}_{i}^{3}:=\mathbf{B}^{3}\left(o_{i}^{3}, \frac{1}{\sqrt{6}}\right)$ for $i=4,5$, resp.

Firstly we show that the cube $C_{0}^{3}:=\left[0, \frac{1}{2}\right]^{3} \times\{0\}$ is covered by the 3 dimensional balls \mathbf{B}_{i}^{3} for $i=1,2,3,4$ (see Figure 2).

Figure 2.
Let $p\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0\right)$. Since $d\left(p, o_{i}^{3}\right)=\sqrt{\frac{11}{36}}<\sqrt{\frac{7}{18}}$ for $i=1,2,3$ and $d\left(p, o_{4}^{3}\right)=\frac{1}{\sqrt{12}}<$ $\frac{1}{\sqrt{6}}$ thus $p \in \mathbf{B}_{i}^{3}$ for $i=1,2,3,4$. If we show that the 2-dimensional faces of the cube C_{0}^{3} is covered by the balls \mathbf{B}_{i}^{3} for $i=1,2,3,4$ then we get that the cube C_{0}^{3} is covered by the balls \mathbf{B}_{i}^{3} for $i=1,2,3,4$.
Let us see the 2-dimensional face with vertices $(0,0,0,0),\left(\frac{1}{2}, 0,0,0\right),\left(\frac{1}{2}, \frac{1}{2}, 0\right.$, $0),\left(0, \frac{1}{2}, 0,0\right)$. Since the region $\operatorname{conv}\left((0,0,0,0),\left(\frac{1}{2}, 0,0,0\right),\left(\frac{1}{2}, \frac{1}{3}, 0,0\right),\left(\frac{1}{3}, \frac{1}{2}, 0,0\right)\right.$, $\left.\left(0, \frac{1}{2}, 0,0\right)\right)$ is covered by \mathbf{B}_{4}^{3}, and the region conv $\left(\left(\frac{1}{2}, \frac{1}{3}, 0,0\right),\left(\frac{1}{2}, \frac{1}{2}, 0,0\right),\left(0, \frac{1}{2}, 0,0\right)\right)$ is covered by \mathbf{B}_{3}^{3} thus the above 2-dimensional face is covered by the balls $\mathbf{B}_{3}^{3}, \mathbf{B}_{4}^{3}$. Similarly the face with vertices $(0,0,0,0),\left(\frac{1}{2}, 0,0,0\right),\left(\frac{1}{2}, 0, \frac{1}{2}, 0\right),\left(0,0, \frac{1}{2}, 0\right)$ is covered by the balls $\mathbf{B}_{1}^{3}, \mathbf{B}_{4}^{3}$, and the face with vertices $(0,0,0,0),\left(0, \frac{1}{2}, 0,0\right),\left(0, \frac{1}{2}\right.$, $\left.\frac{1}{2}, 0\right),\left(0,0, \frac{1}{2}, 0\right)$ is covered by the balls $\mathbf{B}_{2}^{3}, \mathbf{B}_{4}^{3}$.
Let us consider the face with vertices $\left(\frac{1}{2}, 0,0,0\right),\left(\frac{1}{2}, \frac{1}{2}, 0,0\right),\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0\right),\left(\frac{1}{2}, 0, \frac{1}{2}, 0\right)$. Since the region conv $\left(\left(\frac{1}{2}, 0,0,0\right),\left(\frac{1}{2}, 0, \frac{1}{2}, 0\right),\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0\right),\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{3}, 0\right),\left(\frac{1}{2}, \frac{1}{3}, 0,0\right)\right)$ is covered by \mathbf{B}_{1}^{3}, and the region conv $\left(\left(\frac{1}{2}, \frac{1}{3}, 0,0\right),\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0\right),\left(\frac{1}{2}, \frac{1}{2}, 0,0\right)\right)$ is covered by \mathbf{B}_{3}^{3} thus the above face is covered by the balls $\mathbf{B}_{1}^{3}, \mathbf{B}_{3}^{3}$. Similarly the face with vertices $\left(0,0, \frac{1}{2}, 0\right),\left(\frac{1}{2}, 0, \frac{1}{2}, 0\right),\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0\right),\left(0, \frac{1}{2}, \frac{1}{2}, 0\right)$ is covered by the balls $\mathbf{B}_{1}^{3}, \mathbf{B}_{2}^{3}$, and the face with vertices $\left(0, \frac{1}{2}, 0,0\right),\left(\frac{1}{2}, \frac{1}{2}, 0,0\right),\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0\right),\left(0, \frac{1}{2}, \frac{1}{2}, 0\right)$ is covered by the balls $\mathbf{B}_{2}^{3}, \mathbf{B}_{3}^{3}$. Similarly the cube $\left[\frac{1}{2}, 1\right]^{3} \times\{0\}$ is covered by the 3 -dimensional balls $\mathbf{B}_{1}^{3}, \mathbf{B}_{2}^{3}, \mathbf{B}_{3}^{3}, \mathbf{B}_{5}^{3}$.
Secondly we show that the cube $\left[\frac{1}{2}, 1\right] \times\left[0, \frac{1}{2}\right] \times\left[0, \frac{1}{2}\right] \times\{0\}$ is covered by the 3 -dimensional balls $\mathbf{B}_{1}^{3}, \mathbf{B}_{3}^{3}$.

Since the region $\operatorname{conv}\left((1,0,0,0),\left(1, \frac{1}{2}, 0,0\right),\left(\frac{2}{3}, \frac{1}{2}, 0,0\right),\left(\frac{1}{2}, \frac{1}{3}, 0,0\right),\left(\frac{1}{2}, 0,0,0\right)\right.$, $\left.\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{3}, 0\right),\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0\right),\left(\frac{1}{2}, 0, \frac{1}{2}, 0\right),\left(1,0, \frac{1}{2}, 0\right),\left(1, \frac{1}{2}, \frac{1}{2}, 0\right)\right)$ is covered by \mathbf{B}_{1}^{3}, and the region conv $\left(\left(\frac{1}{2}, \frac{1}{3}, 0,0\right),\left(1, \frac{1}{2}, 0,0\right),\left(\frac{1}{2}, \frac{1}{2}, 0,0\right),\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0\right)\right)$ is covered by \mathbf{B}_{3}^{3} thus the above cube is covered. Similarly the cube $\left[\frac{1}{2}, 1\right]^{2} \times\left[0, \frac{1}{2}\right] \times\{0\}$ is covered by the 3 -dimensional balls $\mathbf{B}_{1}^{3}, \mathbf{B}_{3}^{3}$, and the cube $\left[0, \frac{1}{2}\right] \times\left[\frac{1}{2}, 1\right] \times\left[0, \frac{1}{2}\right] \times\{0\}$ is covered by the 3-dimensional balls $\mathbf{B}_{2}^{3}, \mathbf{B}_{3}^{3}$, and the cube $\left[0, \frac{1}{2}\right] \times\left[\frac{1}{2}, 1\right]^{2} \times\{0\}$ is covered by the 3 -dimensional balls $\mathbf{B}_{2}^{3}, \mathbf{B}_{3}^{3}$, and the cube $\left[0, \frac{1}{2}\right]^{2} \times\left[\frac{1}{2}, 1\right] \times\{0\}$ is covered by the 3 -dimensional balls $\mathbf{B}_{1}^{3}, \mathbf{B}_{2}^{3}$, and the cube $\left[\frac{1}{2}, 1\right] \times\left[0, \frac{1}{2}\right] \times\left[\frac{1}{2}, 1\right] \times\{0\}$ is covered by the 3-dimensional balls $\mathbf{B}_{1}^{3}, \mathbf{B}_{2}^{3}$. This implies that the cube $[0,1]^{3} \times\{0\}$ is covered by the 3 -dimensional balls \mathbf{B}_{i}^{3} for $i=1,2,3,4,5$, that is, $[0,1]^{3} \times\{0\}$ is covered by the 4 -dimensional balls \mathbf{B}_{i}^{4} for $i=1,2,3,4,5$.

Similarly the cube $[0,1]^{3} \times\{1\}$ is covered by the 4 -dimensional balls $\mathbf{B}_{4}^{4}, \mathbf{B}_{5}^{4}, \mathbf{B}_{6}^{4}$, $\mathbf{B}_{7}^{4}, \mathbf{B}_{8}^{4}$, and the cube $\{0\} \times[0,1]^{3}$ is covered by the 4 -dimensional balls $\mathbf{B}_{2}^{4}, \mathbf{B}_{3}^{4}, \mathbf{B}_{4}^{4}$, $\mathbf{B}_{7}^{4}, \mathbf{B}_{8}^{4}$, and the cube $\{1\} \times[0,1]^{3}$ is covered by the 4 -dimensional balls $\mathbf{B}_{1}^{4}, \mathbf{B}_{3}^{4}, \mathbf{B}_{5}^{4}$, $\mathbf{B}_{6}^{4}, \mathbf{B}_{7}^{4}$, and the cube $[0,1] \times\{0\} \times[0,1]^{2}$ is covered by the 4 -dimensional balls $\mathbf{B}_{1}^{4}, \mathbf{B}_{2}^{4}, \mathbf{B}_{4}^{4}, \mathbf{B}_{6}^{4}, \mathbf{B}_{7}^{4}$, and the cube $[0,1] \times\{1\} \times[0,1]^{2}$ is covered by the 4 -dimensional balls $\mathbf{B}_{2}^{4}, \mathbf{B}_{3}^{4}, \mathbf{B}_{5}^{4}, \mathbf{B}_{6}^{4}, \mathbf{B}_{8}^{4}$, and the cube $[0,1]^{2} \times\{0\} \times[0,1]$ is covered by the 4 dimensional balls $\mathbf{B}_{1}^{4}, \mathbf{B}_{3}^{4}, \mathbf{B}_{4}^{4}, \mathbf{B}_{6}^{4}, \mathbf{B}_{8}^{4}$, and the cube $[0,1]^{2} \times\{1\} \times[0,1]$ is covered by the 4 -dimensional balls $\mathbf{B}_{1}^{4}, \mathbf{B}_{2}^{4}, \mathbf{B}_{5}^{4}, \mathbf{B}_{7}^{4}, \mathbf{B}_{8}^{4}$. Then the 3 -dimensional faces of the cube C^{4} are covered by the balls \mathbf{B}_{i}^{4} for $i=1,2, \ldots, 8$, that is, the cube C^{4} is covered by the balls \mathbf{B}_{i}^{4} for $i=1,2, \ldots, 8$.

Lemma 2. Let $a_{1}, a_{2} \in \mathbf{B}^{2}(o, r) \subset \mathbb{E}^{2},\left(\frac{1}{2}<r\right), d\left(a_{1}, a_{2}\right)=1$. Let $R_{a_{1}, b_{1}}, R_{a_{2}, b_{2}}$ be two rays perpendicular to $L_{a_{1}, a_{2}}$. If $d\left(o, L_{a_{1}, a_{2}}\right), r$ are fixed numbers then

$$
\operatorname{diam}\left(R_{a_{1}, b_{1}} \cap \mathbf{B}^{2}(o, r)\right)+\operatorname{diam}\left(R_{a_{2}, b_{2}} \cap \mathbf{B}^{2}(o, r)\right)
$$

is the greatest if $d\left(o, a_{1}\right)=d\left(o, b_{1}\right)$ and $R_{a_{1}, b_{1}}, R_{a_{2}, b_{2}}$ lie in a closed half plane bounded by $L_{a_{1}, a_{2}}$ and containing o.

Proof. Let h_{i} be the point on the line $L_{a_{i}, b_{i}}$ and not contained $R_{a_{i}, b_{i}}$ for $i=1,2$. If $L_{a_{1}, a_{2}}$ does not contain o and $R_{a_{1}, b_{1}} \not \subset H\left(L_{a_{1}, a_{2}}, o\right)$ then $\operatorname{diam}\left(R_{a_{1}, b_{1}} \cap \mathbf{B}^{2}(o, r)\right)<$ $\operatorname{diam}\left(R_{a_{1}, h_{1}} \cap \mathbf{B}^{2}(o, r)\right)$. In this case we change $R_{a_{1}, b_{1}}$ for $R_{a_{1}, h_{1}}$ and we mark $R_{a_{1}, h_{1}}$ with $R_{a_{1}, b_{1}}$. Similarly if $L_{a_{1}, a_{2}}$ does not contain o and $R_{a_{2}, b_{2}} \not \subset H\left(L_{a_{1}, a_{2}}, o\right)$ then we change $R_{a_{2}, b_{2}}$ for $R_{a_{2}, h_{2}}$ and we mark $R_{a_{2}, h_{2}}$ with $R_{a_{2}, b_{2}}$. If $L_{a_{1}, a_{2}}$ contains o and $H\left(L_{a_{1}, a_{2}}, b_{1}\right)$ does not contain b_{2} then we change $R_{a_{2}, b_{2}}$ for $R_{a_{2}, h_{2}}$ and we mark $R_{a_{2}, h_{2}}$ with $R_{a_{2}, b_{2}}$. With these changes $\operatorname{diam}\left(R_{a_{1}, b_{1}} \cap \mathbf{B}^{2}(o, r)\right)+$ $\operatorname{diam}\left(R_{a_{2}, b_{2}} \cap \mathbf{B}^{2}(o, r)\right)$ does not decrease.

Let e be the straight line containing o and parallel $L_{a_{1}, a_{2}}$ (Figure 3). Let c_{1}, c_{2} be the intersection point of e and $R_{a_{1}, b_{1}}, R_{a_{2}, b_{2}}$, resp. If o does not lie on the segment $c_{1} c_{2}$ and, say, $d\left(o, c_{1}\right)>d\left(o, c_{2}\right)$ then let $R_{a_{1}^{\prime}, b_{1}^{\prime}}$ be the image of $R_{a_{1}, b_{1}}$ under the reflection with respect to the line $L_{a_{2}, b_{2}}$. In this case diam $\left(R_{a_{1}, b_{1}} \cap \mathbf{B}^{2}(o, r)\right)+$ $\operatorname{diam}\left(R_{a_{2}, b_{2}} \cap \mathbf{B}^{2}(o, r)\right)<\operatorname{diam}\left(R_{a_{1}^{\prime}, b_{1}^{\prime}} \cap \mathbf{B}^{2}(o, r)\right)+\operatorname{diam}\left(R_{a_{2}, b_{2}} \cap \mathbf{B}^{2}(o, r)\right)$. We use this method until o lies between the images of the rays. Thus, we can assume that o lies on the segment $c_{1} c_{2}$. Let d_{1}, d_{2} be the intersection point of $\operatorname{bd} \mathbf{B}^{2}(o, r)$
and $R_{a_{1}, b_{1}}, R_{a_{2}, b_{2}}$, resp. Let $x:=d\left(o, c_{1}\right)$ and

$$
\begin{gathered}
f(x):=\operatorname{diam}\left(R_{a_{1}, b_{1}} \cap \mathbf{B}^{2}(o, r)\right)+\operatorname{diam}\left(R_{a_{2}, b_{2}} \cap \mathbf{B}^{2}(o, r)\right)= \\
=d\left(a_{1}, d_{1}\right)+d\left(a_{2}, d_{2}\right)=2 d\left(o, L_{a_{1}, a_{2}}\right)+d\left(c_{1}, d_{1}\right)+d\left(c_{2}, d_{2}\right)= \\
=2 d\left(o, L_{a_{1}, a_{2}}\right)+\sqrt{r^{2}-x^{2}}+\sqrt{r^{2}-(1-x)^{2}} .
\end{gathered}
$$

Figure 3.

By elementary calculus, the maximum value of $f(x)$ between 0 and 1 is achieved at $\frac{1}{2}$. This completes the proof of the lemma.

Lemma 3. Let $R_{a, b_{1}}, R_{a, b_{2}}, R_{a, b_{3}} \subset \mathbb{E}^{3}, b_{1} a b_{2} L=\frac{\pi}{2}, b_{1} a b_{3} \angle=\frac{\pi}{2}, b_{2} a b_{3} \angle=\frac{\pi}{2}$ and $\mathbf{B}^{3}(o, r) \subset \mathbb{E}^{3}$. Then

$$
\sum_{i=1,2,3} \operatorname{diam}\left(R_{a, b_{i}} \cap \mathbf{B}^{3}(o, r)\right) \leq r \frac{3 \sqrt{6}}{2}
$$

Proof. Let $c_{i}:=R_{a, b_{i}} \cap \mathbf{B}^{3}(o, r)$ for $i=1,2,3$. Of course,

$$
\begin{aligned}
& d\left(a, c_{1}\right)+d\left(a, c_{2}\right) \leq d\left(c_{1}, c_{2}\right) \sqrt{2}, \\
& d\left(a, c_{2}\right)+d\left(a, c_{3}\right) \leq d\left(c_{2}, c_{3}\right) \sqrt{2}, \\
& d\left(a, c_{1}\right)+d\left(a, c_{3}\right) \leq d\left(c_{1}, c_{3}\right) \sqrt{2} .
\end{aligned}
$$

Thus

$$
d\left(a, c_{1}\right)+d\left(a, c_{2}\right)+d\left(a, c_{3}\right) \leq \frac{\sqrt{2}}{2}\left(d\left(c_{1}, c_{2}\right)+d\left(c_{2}, c_{3}\right)+d\left(c_{1}, c_{3}\right)\right) .
$$

Since

$$
d\left(c_{1}, c_{2}\right)+d\left(c_{2}, c_{3}\right)+d\left(c_{1}, c_{3}\right) \leq r 3 \sqrt{3}
$$

thus

$$
\sum_{i=1,2,3} \operatorname{diam}\left(R_{a, b_{i}} \cap \mathbf{B}^{3}(o, r)\right)=\sum_{i=1,2,3} d\left(a, c_{i}\right) \leq r \frac{3 \sqrt{6}}{2} .
$$

This completes the proof of the lemma.
Note that if $R_{a, b_{1}} \cap \mathbf{B}^{3}(o, r)+R_{a, b_{2}} \cap \mathbf{B}^{3}(o, r)+R_{a, b_{3}} \cap \mathbf{B}^{3}(o, r)=r \frac{3 \sqrt{6}}{2}$ then $a \in \operatorname{int} \mathbf{B}^{3}(o, r)$.

Lemma 4. Let $a_{1}, a_{2} \in \mathbf{B}^{4}(o, r) \subset \mathbb{E}^{4},\left(\frac{1}{2}<r<\sqrt{\frac{5}{12}}\right)$ and $d\left(a_{1}, a_{2}\right)=1$. Let $R_{a_{j}, b_{i}^{j}}(i=1,2,3 ; j=1,2)$ such rays that $a_{2} a_{1} b_{i}^{1} \angle=\frac{\pi}{2}, b_{i}^{j} a_{j} b_{k}^{j} \angle=\frac{\pi}{2}, b_{i}^{1} \| b_{i}^{2}$ and in the plane determined by the points a_{1}, a_{2}, b_{i}^{1} the half plane $H\left(L_{a_{1}, a_{2}}, b_{i}^{1}\right)$ contains the point b_{i}^{2} for any $i, k \in\{1,2,3\}(i \neq k), j=1,2$. Then

$$
d\left(a_{1}, a_{2}\right)+\sum_{i=1,2,3 ; j=1,2} \operatorname{diam}\left(R_{a_{j}, b_{i}^{j}} \cap \mathbf{B}^{4}(o, r)\right)<4 .
$$

Proof. The value of

$$
d\left(a_{1}, a_{2}\right)+\sum_{i=1,2,3 ; j=1,2} \operatorname{diam}\left(R_{a_{j}, b_{i}^{j}} \cap \mathbf{B}^{4}(o, r)\right)
$$

is smaller than

$$
d\left(a_{1}, a_{2}\right)+\sum_{i=1,2,3 ; j=1,2} \operatorname{diam}\left(R_{a_{j}, b_{i}^{j}} \cap \mathbf{B}^{4}\left(o, \sqrt{\frac{5}{12}}\right)\right) .
$$

Let H be the hyper plane perpendicular to the segment $a_{1} a_{2}$ containing o. If the projection of the rays $R_{a_{j}, b_{i}^{j}}(i=1,2,3 ; j=1,2)$ onto the hyper plane H is fixed then by Lemma 2

$$
\sum_{i=1,2,3}\left(\operatorname{diam}\left(R_{a_{1}, b_{i}^{1}} \cap \mathbf{B}^{4}\left(o, \sqrt{\frac{5}{12}}\right)\right)+\operatorname{diam}\left(R_{a_{2}, b_{i}^{2}} \cap \mathbf{B}^{4}\left(o, \sqrt{\frac{5}{12}}\right)\right)\right)
$$

is the greatest if $d\left(o, a_{1}\right)=d\left(o, a_{2}\right)$. Thus we can assume $d\left(o, a_{1}\right)=d\left(o, a_{2}\right)$.
Let H_{1}, H_{2} be the hyper planes perpendicular to the segment $a_{1} a_{2}$ containing a_{1}, a_{2}, resp. In this case diam $\left(H_{1} \cap \mathbf{B}^{4}\left(o, \sqrt{\frac{5}{12}}\right)\right)=\operatorname{diam}\left(H_{2} \cap \mathbf{B}^{4}\left(o, \sqrt{\frac{5}{12}}\right)\right)=$ $\frac{2}{\sqrt{6}}$.
By Lemma 3

$$
\begin{gathered}
d\left(a_{1}, a_{2}\right)+\sum_{i=1,2,3 ; j=1,2} \operatorname{diam}\left(R_{a_{j}, b_{i}^{j}} \cap \mathbf{B}^{4}\left(o, \sqrt{\frac{5}{12}}\right)\right) \leq 1+2\left(\frac{1}{\sqrt{6}} \frac{3 \sqrt{6}}{2}\right)= \\
=1+3=4 .
\end{gathered}
$$

This completes the proof of the lemma.

4. Proof of the theorem

Theorem. The minimal radius of 8 congruent balls, which cover the 4 -dimensional unit cube, is $\sqrt{\frac{5}{12}}$.
Proof. By Lemma 1 we have that 8 congruent balls with radius $\sqrt{\frac{5}{12}}$ can cover the cube C^{4}.
Let us assume that the 4 -dimensional cube C^{4} can cover 8 balls with radius $\frac{1}{2}<r<\sqrt{\frac{5}{12}}$ (of course, 8 balls with radius at most $\frac{1}{2}$ can not cover C^{4}).
Since in a ball with radius at most $\sqrt{\frac{5}{12}}<\frac{\sqrt{2}}{2}$ can not lie three vertices of C^{4} thus in every ball lie exactly two vertices of C^{4}. By Lemma 4 the sum of the length of the edges of C^{4} in a ball with radius $\frac{1}{2}<r<\sqrt{\frac{5}{12}}$ is smaller than 4 , that is, 8 congruent balls with radius smaller than $\sqrt{\frac{5}{12}}$ can not cover the cube C^{4} (the sum of the length of the edges of C^{4} is 32); a contradiction. This completes the proof of the Theorem.

References

[1] Böröczky Jr., K.: Finite packing and covering. Cambridge Tracts in Mathematics 154, Cambridge University Press, 2004.

Zbl 1061.52011
[2] Börözcky Jr., K.; Fábián, I.; Wintsche, G.: Covering the crosspolytope by equal balls. Period. Math. Hung. 53 (2006) 103-113. Zbl 1127.52027
[3] Brass, P.; Moser, W.; Pach, J.: Research problems in discrete geometry. Springer Verlag, New York 2005.

Zbl 1086.52001
[4] Kuperberg, G.; Kuperberg, W.: Ball packings and coverings with respect to the unit cube. (in preparation).
[5] Rogers, C. A.: Covering a sphere with spheres. Mathematika 10 (1963) 157 164.

Zbl 0158.19603
[6] Verger-Gaugray, J.-L.: Covering a ball with smaller equal balls in R^{n}. Discrete Comput. Geom. 33 (2005), 143-155.

Zbl 1066.52021

