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Abstract. This paper describes a complete classification of 2-distance
sets in 2-dimensional normed real linear spaces, also called Minkowski
planes. 2-distance sets are point sets characterized by a property of
the induced metric of the points in the surrounding metric space: at
most two different distances are allowed between different points of a
2-distance set. Considering the problem from this metric point of view,
it is a special embedding problem of finite metric spaces into suitable
Minkowski spaces. The solution of the problem has both an algebraic
part (analytical geometry) as well as an discrete part. The reason for
this is that for each one of finitely many combinatorial candidates, char-
acterized by the relative position of the points and the distinction be-
tween large and small distances, the problem can be transformed into
a system of polynomial equations and inequalities whose unknown vari-
ables are geometric coordinates and the occurring distance. Both parts
together were handled with the use of a computer program, using some
evolved external mathematical libraries and systems (polymake, nauty,
Core Library, CoCoA) and following the modern trend that numerical
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1. Introduction

Minkowski spaces Md, which are in this paper finite-dimensional Banach spaces,
provide a geometric model which generalizes Euclidean geometry. As in the Eu-
clidean space, the distance between two points, which belong to some d-dimension-
al real linear space with origin 0, e.g., to Rd, only depends on their difference
vector. But the function assigning a length to each vector, called the norm
‖·‖ : Rd → R, can be arbitrary as long as the following three axioms are sat-
isfied:
• the norm is positive definite: ‖0‖ = 0 and ‖x‖ > 0 for all x 6= 0,

• the norm is homogeneous: ‖λx‖ = |λ| ‖x‖ for all x ∈ Rd and all λ ∈ R, and

• the triangle inequality is satisfied: ‖x + y‖ ≤ ‖x‖ + ‖y‖, where x,y ∈ Rd.
Geometrically, we can represent the space Md by its unit ball

B = B(Md) = {x ∈ Rd : ‖x‖ ≤ 1 } . (1)

It turns out that B can be an arbitrary convex body with B = −B, i.e., B is
convex and compact, has 0 in its interior and is symmetric with respect to 0. For
the theory of Minkowski spaces see also the book of Thompson [5]. The norm is
determined by B in the following way:

‖x‖ = ‖x‖B = min{λ ≥ 0 : x ∈ λB } . (2)

Minkowski spaces are affine spaces. If we have some geometric configuration in
a Minkowski space Md with unit ball B, then the metric properties, which can
be expressed only using the distances function, do not change if we apply an
invertible affinely linear map α to the whole configuration and Md. The unit ball
of α(Md) is α(B)− α(0), i.e., B is transformed by the linear component of α.

In this paper we are mostly interested in 2-dimensional Minkowski spaces M2,
called Minkowski planes, and in 2-distance sets S ofM2. This means that between
all pairs of different points in S there occur at most two distinct distances. We do
not fix the Minkowski planes in advance, but are looking for suitable Minkowski
planes where some special kind of 2-distance sets S are possible. Because of that,
we define the pair (M2, S) to be a 2-distance set if the set

dist(M2, S) := { ‖s1 − s2‖M2 : s1, s2 ∈ S, s1 6= s2 } (3)

contains at most two elements and if S contains at least two elements. Nevertheless
we still call S a 2-distance set if no confusion arises.

To obtain a classification of all possible 2-distance sets, we define some equiv-
alence relations to identify 2-distance sets with identical position of the points
and identical metric structure, see Section 4. The resulting equivalence classes
are called 2-distance configuration.

For a fixed metric structure, we arrive on a special kind of an embedding
problem of finite metric spaces into suitable Minkowski spaces. A metric space
is a pair (X, ρ) of a set X and the distance function (also called metric) ρ :
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X × X → R satisfying the well known conditions symmetry (ρ(x, y) = ρ(y, x)
for all x, y ∈ X), positive definiteness (ρ(x, y) > 0 ∀x 6= y) and the triangle
inequality (ρ(x, z) ≤ ρ(x, y) + ρ(y, z) ∀x, y, z ∈ X). We consider every Minkowski
space Md as the metric space (Rd, ρMd) with ρMd(x,y) := ‖x− y‖B(Md). Some
general theory about such embedding problems is provided in Section 2. These
results motivate our notion of relative position of the points, see Section 3.

Having fixed the metric structure and the relative position of the points, we
can obtain the answer to classification questions from the solution of a system
of polynomial equations and inequalities. Since the conditions are expressed by
polynomials, the systems can be solved exactly by some algorithms, at least theo-
retically. The author wrote some computer programs which generated and solved
all these systems, using the special structure of the systems. Further, a lot of
pictures representing the classification graphically are obtained from the compu-
tational results, presented in Section 5.

The proof of correctness of the classification is very important but difficult
to realize on just a couple of pages. The obvious approach is to show that the
algorithms are correct, to show that they are correctly implemented, and provide
the output as well as the program sources. But such a proof is not easy to realize,
nor is its verification.

In analogy to classical proofs, our solution process – which is here an electronic
computation done by a computer program – will not only produce the required
answer to the question, but also a certificate. This certificate can be used by
another, much simpler, computer program to verify that the answer is indeed
correct.

With this approach, the main dilemma to trust the output of a computer
program remains. But on the other hand, the critical part of the source code to
be checked for correctness is much smaller. Additionally, it is possible to check at
least parts of the proof without the help of a computer. This idea is followed in
Section 6.

Some material presented in this article is already published in the authors
PhD thesis [6].

2. Embedding metric spaces in Minkowski spaces

We say that a function φ : X → Y is an embedding of the metric space (X, ρ) into
the metric space (Y, %), if for all a, b ∈ X we have %(φ(a), φ(b)) = ρ(a, b). Without
loss of generality we can restrict our considerations to X = [n] := {1, 2, . . . , n}.
In this paper we will focus on the first of the following two decision problems.

Task 1. (General Decision Problem on Embedding ([n], ρ) in Md)
Decide whether or not there is an embedding of a given metric space ([n], ρ),
n ≥ 2, into a suitable Minkowski space Md of given dimension d ≥ 1.

Task 2. (Special Decision Problem on Embedding ([n], ρ) in Md)
Decide whether or not there is an embedding of a given metric space ([n], ρ),
n ≥ 2, into the given Minkowski space Md with d ≥ 1.



552 N. Düvelmeyer: General Embedding Problems and . . .

In connection to Task 1 we also consider the algorithmic task to determine all
possible embeddings. The chosen description will be made more precise later on
and is technically more involved.

Task 3. (General Description of d-Embeddings of ρ)
Describe all possible embeddings of a given metric space ([n], ρ), n ≥ 2, into a
suitable Minkowski space Md of given dimension d ≥ 1.

We will transform Task 1 and Task 3 into the more analytic task of determining
admissibility and the task of describing the solution set – which is in the sequel
denoted as “solving” the systems – respectively, of a finite number of finite systems
of equations and inequalities in Rm, with m = m(d, n) =

(
n−1
d

)
. A finite system of

equations and inequalities in X, is a triple S = (E,W, S) of finite sets of functions
f : X → R. All functions f ∈ E ∪ W ∪ S are called restrictions of S. The
union of two systems (E,W, S) and (E ′,W ′, S ′) is (E,W, S) ∪ (E ′,W ′, S ′) :=
(E ∪ E ′,W ∪W ′, S ∪W ′).

We will only consider systems in Rm, possibly after identifying the set of
functions f : Y → R with Rm in case of |Y | = m.

We say that x ∈ Rm is a solution vector of S if f(x) = 0 for all f ∈ E,
f(x) ≥ 0 for all f ∈ W , and f(x) > 0 for all f ∈ S. The solution set L = L(S)
is the set of all solution vectors of S, m = dimS is called the dimension of S. S
is called admissible if L(S) 6= ∅. Two systems in X are called equivalent if they
have the same solution set.
S is called a linear (polynomial; homogeneous) system if each restriction f

is an affinely linear (a polynomial, or a homogeneous – i.e., f(λx) = λpf(x) for
some p = p(f) ∈ N) function from Rm to R, respectively.

We will transform Task 1 and Task 3 to homogeneous polynomial systems
(E,W, S) such that W and S only contain linear functions and the polynomials
in E have total degree at most 2, see Theorem 17.

For the special case of polytopal Minkowski spaces, Task 2 and its classification
form can both be transformed to the task of solving one linear system in Rd(n−1)

and combinatorial evaluation of the solution set. The interested reader can find
this transformation in [6].

2.1. Transformation of the embedding task to analytical systems

Definition 4. We say that a set U ⊂ Rd is in weak convex position if U is a
subset of the relative boundary of its convex hull:

U ⊂ rel bd(convU) .

Theorem 5. The map e : X → Rd is an embedding of a given metric space (X, ρ)
into a suitable Minkowski space Md (depending on e) if and only if the set

U :=
{
ρ(x, y)−1(e(x)− e(y)) : x 6= y, {x, y} ⊂ X

}
(4)

is bounded and in weak convex position.
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Note that for finite sets X the set U in (4) is, of course, bounded.

Proof of Theorem 5. We can assume that U linearly spans Rd, otherwise we
consider e as function into an affinely linear subspace of lower dimension. This
does neither change the property of weak convex position, nor of the existence of a
suitable Minkowski space. We can easily embed a (d− 1)-dimensional Minkowski
space into a hyperplane of a suitable d-dimensional Minkowski space by choosing
a bipyramid as unit ball.

By definition, e is an embedding into some Minkowski space Md with unit ball
B if and only if

‖e(x)− e(y)‖B = ρ(x,y) for all x,y ∈ X. (5)

Now ‖e(x)− e(x)‖B = ρ(x,x) = 0 holds for all x ∈ X. For x 6= y we get that
ρ(x,y) > 0. The system (5) is equivalent to ‖ρ(x,y)−1(e(x)− e(y))‖B = 1 for all
x,y ∈ X with x 6= y. This is equivalent to U ⊂ ∂B.

If U is bounded and in weak convex position, i.e., U ⊂ ∂(conv U), we consider
the set B := cl convU . B is a centered (since U is centrally symmetric), compact
convex body with ∂(conv U) = ∂B. Thus B is the unit ball of a Minkowski space
Md(B) so that e is an embedding of (X, ρ) into Md(B).

If now e is an embedding into the Minkowski space Md with unit ball B, we
have U ⊂ ∂B. Thus U is bounded. Every vector x ∈ U belongs to the boundary of
B ⊃ convU and to convU , too. Thus we also have x ∈ ∂(conv U). Consequently,
U is in weak convex position. �

Theorem 6. Let U ⊂ Rd be a k-dimensional centered set, i.e., k = dim linU ,
and let V (x1, . . . ,xk) denote the k-dimensional volume of the parallelepiped P =
0x1 + 0x2 + · · · + 0xk spanned by x1, . . . ,xk ∈ Rd. Then U is in weak convex
position if and only if the following inequalities hold for all x1, . . . ,xk+1 ∈ U :

V (x1, . . . ,xk) ≤ V (x1, . . . ,xk−2,xk−1,xk+1) + V (x1, . . . ,xk−2,xk,xk+1)

+ · · · + V (x2, . . . ,xk+1) . (6)

For any family of objects oi, i ∈ M ⊂ N, and a set {i1, . . . , im} = I ⊂ M with
i1 < i2 < · · · < im we use the notation (oi)i∈I for the m-tuple (oi1, oi2 , . . . , oim).
Such m-tuples can be used to denote the m arguments to a function: V ((xi)i∈I) =
V (xi1, . . . ,xim). We write (6) more precisely as

V ((xi)i∈[k]) ≤
∑

j∈[k]

V ((xi)i∈[k+1]\{j}).

If in particular k = d, then we have that V (x1, . . . ,xd) = |det(x1, . . . ,xd)| is the
absolute value of the determinant of the matrix whose columns are x1, . . . , xd−1

and xd. For k = d = 2 (6) becomes

|det(a,b)| ≤ |det(a, c)|+ |det(b, c)| , (7)
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which must hold for all a,b, c ∈ U .
For the simple case k = 1 the system (6) becomes ‖0a‖ = ‖0b‖ for all

a,b ∈ U , where ‖·‖ is an arbitrary norm in Rd.

Proof of Theorem 6. We can assume that U linearly spans Rd, i.e., that k = d.
First assume that U is in weak convex position. We verify the inequalities

(6). Take arbitrary x1,x2, . . . ,xk,xk+1 ∈ U . If V (x1, . . . ,xk) = 0 then (6) holds
trivially. Otherwise, the vectors x1, . . . ,xk span Rd, thus there are λ1, . . . , λk ∈ R
with xk+1 = λ1x1 + · · ·+λkxk. Since U is centered, we can achieve that all λi ≥ 0
(i = 1, . . . , k) by possibly interchanging xi with−xi ∈ U . This does not modify (6)
since the volumes V (a, . . . ,b,x, c, . . . ,d) = V (a, . . . ,b,−x, c, . . . ,d) are invariant
under inversion of a spanning vector. Consequently, xk+1 belongs to the convex
cone spanned by x1, . . . ,xk with apex 0. Since U is in weak convex position,
xk+1 cannot belong to the interior of the simplex with vertices 0,x1, . . . ,xk. Thus
λ1 + · · ·+λk ≥ 1, since xk+1 would belong to the hyperplane containing x1, . . . ,xk
if λ1 + · · ·+ λk = 1. We get that

λ1V (x1, . . . ,xk) + · · ·+ λkV (x1, . . . ,xk) ≥ V (x1, . . . ,xk) ,

which turns out to be (6), since λ1V (x1, . . . ,xk) = V (λ1x1,x2, . . . ,xk) = V (λ1x1+
λ2x2 + · · ·+ λkxk,x2, . . . ,xk) = V (xk+1,x2, . . . ,xk) = V (x2, . . . ,xk+1) and anal-
ogously λ2V (x1, . . . ,xk) = V (x1,xk+1,x3, . . . ,xk) = V (x1,x3, . . . ,xk+1), . . . , and
λkV (x1, . . . ,xk) = V (x1, . . . ,xk−1,xk+1).

For the other direction we assume that (6) holds for all x1,x2, . . . ,xk,xk+1 ∈ U
and prove by contradiction that U is in weak convex position. If U were not in
weak convex position, U 6⊂ ∂(conv U), there must be some u ∈ U with u /∈
∂(conv U), thus u ∈ int(convU).

If u = 0, then we have the following contradiction to inequality (6): set
xk+1 := u = 0 and take x1, . . . ,xk as k linearly independent vectors of U (note
that dimU = d). Then V (x1, . . . ,xk) > 0 but V (x1, . . . ,xk−2,xk−1,xk+1) +
V (x1, . . . ,xk−2,xk,xk+1) + · · ·+ V (x2, . . . ,xk+1) = 0. Thus we have u 6= 0.

We can additionally assume that U is a finite set, otherwise replace U by some
centered subset U ′ ⊂ U such that still u ∈ int(convU ′) and u ∈ U ′, which exists
by Caratheodory’s Theorem.

Consider the ray [0,u〉 which intersects ∂(conv U) in some point u′ = µu for
µ > 1. Again by Caratheodory’s Theorem there are affinely independent points
x1, . . . ,xk ∈ U with u′ ∈ conv{x1, . . . ,xk}, since u′ is contained in some facet of
∂(conv U) which is of dimension k−1. Thus there are real numbers λ′1, . . . , λ

′
k ≥ 0

with u′ = λ′1x1 + · · ·+ λ′kxk and λ′1 + · · ·+ λ′k = 1. So we have with λi := λ′i/µ
that u = λ1x1 + · · ·+ λkxk and λ1, . . . , λk ≥ 0 and λ1 + · · ·+ λk < 1. Multiplying
by V (x1, . . . ,xk) > 0 yields

λ1V (x1, . . . ,xk) + · · ·+ λkV (x1, . . . ,xk) < V (x1, . . . ,xk) ,

which contradicts (since again λ1V (x1, . . . ,xk) = V (x2, . . . ,xk,u), . . . , and
λkV (x1, . . . ,xk) = V (x1, . . . ,xk−1,u), see above) the inequality (6) for xk+1 = u.
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This contradiction completes our proof. �

Furthermore we mention that the condition k = dim linU is important in Theo-
rem 5. For k > dimU the inequalities (6) are trivially satisfied as 0 ≤ 0, since
dimU = dim(U ∪{0}), but U is in general not in weak convex position! Thus the
inequalities (6) are necessary for U to be in weak convex position if k ≥ dimU .
The inequalities (6) are sufficient for U to be in weak convex position if k = dimU .

Since an affinely linear bijection preserves the property to be in weak convex
position, to decide whether U ⊂ Rd is in weak convex position or not for instances
with dimU < d we can transform it to another instance U ′ ⊂ Rk of full dimension
dimU ′ = k.

Before we combine the results of Theorem 5 and Theorem 6 to get systems
of equations and inequalities representing the general embedding problem, we
summarize our results in an algorithm.

Algorithm 7. Input: A function e : [n]→ Rd, and a metric space ([n], ρ)
Output: Yes/No, whether or not e is an embedding of ([n], ρ) into a suitable

Minkowski space Md

1. We first construct the set U ∈ Rd by (4).

2. Then we determine the dimension k = dimU = dim(lin(e([n]))) as the rank
of the matrix [e(1)e(2) · · · e(n)].

3. To calculate all the values of the volumes in (6) we construct some linear
function a which projects linU injectively onto RdimU . For some constant
c > 0 we then have

V ((xi)i∈[k]) = c
∣∣det((a(xi))i∈[k])

∣∣ (8)

for all x1, . . . ,xk ∈ linU . It is not necessary to compute c.

4. So we can check whether or not (6) holds for all (k+1)-tuples (x1, . . . ,xk+1)
of vectors from U by using (8).

This algorithm is the starting point to transform the general embedding task
into the admissibility or solution task of an analytical system of equations and
inequalities. For each k = 1, 2, . . . , d we get a system SysEm(ρ, k) of equations
and inequalities in Rnk for the case that there is a k-dimensional embedding e of
([n], ρ) into Rk. Note that we identify the set of functions e : [n]→ Rk, with Rnk.
All restrictions f of these systems are positively homogeneous functions of degree
k, i.e., f(λx) = |λ|k f(x), as they are linear combinations of absolute values of
homogeneous polynomials. Using the notation Pn := [n]2 \ { (i, i) : i ∈ [n]}, and
I = (I1, . . . , Ik+1) = ((Ii,1, Ii,2))i∈[k+1] ∈ (Pn)k+1, e : [n]→ Rk we get the following:
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wIρ,k(e) := −
∣∣det((e(Ii,1)− e(Ii,2))i∈[k])

∣∣
Πi∈[k]ρ(Ii)

+
∑

j∈[k]

∣∣det((e(Ii,1)− e(Ii,2))i∈[k+1]\{j})
∣∣

Πi∈[k+1]\{j}ρ(Ii)
≥ 0 , (9)

sn,k(e) :=
∑

J∈(Pn)k

∣∣det((e(Ji,1)− e(Ji,2))i∈[k])
∣∣ > 0 , (10)

SysEm(ρ, k) :=
(
∅, {wIρ,k : I ∈ (Pn)k+1 }, {sn,k}

)
. (11)

Note that (9) is equivalent to (6) for U defined by (4) in view of (8). (10) is just
one possibility to ensure that dimU = k.

Corollary 8. The metric space ([n], ρ), n ≥ 2, can be embedded into a suitable
Minkowski space Md of fixed dimension d ≥ 1 if and only if for at least one k ∈ [d]
the system SysEm(ρ, k) is admissible. The set of all d-dimensional embeddings
e : [n] → Rd, i.e., satisfying dim aff e([n]) = d, is exactly the solution set of
SysEm(ρ, d).

The first part of Corollary 8 can be strengthened a little bit since we can ignore
lower-dimensional embeddings.

Proposition 9. The metric space ([n], ρ), n ≥ d+1, can be embedded into a suit-
able Minkowski space Md of dimension d ≥ 1 if and only if the system SysEm(ρ, d)
is admissible.

Proof of Proposition 9. We show that if there is a lower dimensional embedding,
then also a full dimensional embedding can be constructed. Assume that e :
([n], ρ) → Md

o, i 7→ si is an embedding where L := aff{s1, . . . , sn} has dimension
dimL < d. Without loss of generality we can assume that L is a linear subspace,
i.e., 0 ∈ L. Otherwise we can consider the translation e′ := e − e(1) instead of
e, which is an embedding of ([n], ρ) into Md

o, too. Next we consider an inclusion
maximal affinely independent set S ⊂ {s1, . . . , sn}. S has exactly dimL + 1 < n
elements. Thus there is some k ∈ [n] with sk /∈ S. Note that si 6= sj for all i 6= j
since ρ(i, j) > 0.

We will extend the unit ball B̃ := B(Md
o) ∩ L of the linear subspace L of Md

o

to a unit ball in some linear subspace L′ of Rd with dimension dimL′ = dimL+1.
For this we fix any direction x ∈ Rd\L and define B := B̃+(−x)x as prism over B̃,
and L′ := linB. Now we shift sk a little bit in direction x to s′k := sk+εx. If ε > 0
is small enough, all lengths stay the same, ‖sk − sj‖B̃ = ‖sk − sj‖B = ‖s′k − sj‖B
for all j ∈ [n] \ {k}, but dim aff{s1, . . . , s

′
k, . . . , sn} = dimL + 1.

If dimL′ = dimL + 1 < d, then we repeat this procedure d − 1 − dimL
times. We obtain an embedding with full dimension d, and thus a solution of
SysEm(ρ, d). �
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2.2. Transformation to polynomial systems

We will transform the system SysEm(ρ, d) into other systems
• which have only homogeneous polynomial restrictions of maximal degree

two,

• which have only linear inequality restrictions, i.e., non-linear restrictions are
only allowed as equations, and

• whose solutions represent equivalence classes of affinely equivalent embed-
dings up to scaling. More precisely, if we apply a reversible affine transfor-
mation to e, then both embeddings correspond to the same solution of the
analytical system up to scalar multiplication by a nonzero real number.

2.2.1. Omitting absolute values of sub-expressions

For the first point, we replace all terms |T | by the term fsignT ·T . If we can assure
that fsignT = signT , then |T | = fsignT T and the restrictions stay the same.
The corresponding numbers fsignT ∈ {−1, 0, 1} are introduced as parameter. The
condition fsignT = sign T is equivalent to fsignT T > 0 if fsignT 6= 0, and to
T = 0 if fsignT = 0. For the function set F we denote by FA→B the set of
functions defined by expressions which are modified expressions1 of functions in
F by replacing each occurrence of A by B.

Lemma 10. The system S = (E,W, S) is admissible if and only if at least one
of the three systems ST+ := (E|T |→T ,W|T |→T , S|T |→T ∪ {T}), ST− := (E|T |→−T ,
W|T |→−T , S|T |→−T∪{−T}), and ST0 := (E|T |→0∪{T},W|T |→0, S|T |→0) is admissible.
Note that we identify the expression T with the function evaluating this expression.
The solution set is the union of the three pairwise disjoint solution sets of the
replaced systems, L(S) = L(ST+)∪̇L(ST−)∪̇L(ST0).

For SysEm(ρ, d) we have to apply Lemma 10 several times where T = det((e(Ji,1)−
e(Ji,2))i∈[d]) for J ∈ (Pn)d. This yields finitely many systems with only homoge-
neous polynomial restrictions.

2.2.2. Using Plücker coordinates

Now we introduce new variables to get systems which are linear in its inequality
restrictions. The new variables bI are indexed by I := (I1, . . . , Id) ∈ Nd, satisfying
1 ≤ I1 < I2 < · · · < Id < n, with the intended meaning bI = beI for some
e : [n]→ Rd, where

beI := det((e(Ii)− e(n))i∈[d]) = det(e(I1)− e(n), . . . , e(Id)− e(n)) . (12)

So the set of indices is Seqd,n := { (I1, . . . , Id) ∈ Nd : 1 ≤ I1 < I2 < · · · < Id < n }
and we can consider b ∈ RSeqd,n which is identified with Rm(d,n) since

∣∣Seqd,n
∣∣ =(

n−1
d

)
=: m(d, n).

1The considered expression for a function must be fixed and will be clear from the context.
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The vector be is invariant under bijective affine transformations of e up to a
scalar multiple c ∈ R \ {0}: for the affine map a : Rd → Rd we have ba◦e = cbe.

The variables bI can be considered as the Plücker coordinates of an appropri-
ately chosen element h of the Grassmann variety Gd(Rn−1). The d-dimensional lin-
ear subspace h of Rn−1 can be identified with an equivalence class of all labeled n-
point sets in Rd with respect to affine transformations. For e and {e(1), . . . , e(n)}
we first consider a translation by −e(n), form column-wise the matrix M of all
non-trivial obtained vectors

[
e(1)− e(n)| . . . |e(n− 1)− e(n)

]
. The linear span of

all rows of M is h ∈ Gd(Rn−1). The usual way to parameterize Gd(Rn−1) in the
(
(
n−1
d

)
− 1)-dimensional real projective space is by using all d × d-minors of an

(n− 1)× d-matrix whose columns form a basis of h, such as the matrix M .
From the structure of SysEm(ρ, d) it follows that we can express all its re-

striction by using beI, I ∈ Seqd,n, only instead of e itself.
To see this, we define in two steps for each J ∈ ([n]2)d a linear functional

b(J) : RSeqd,n → R mapping b to the value of the corresponding determinant, i.e.,
with

b(J)(be) = det((e(Ji,1)− e(Ji,2))i∈[d]) . (13)

This generalizes the variables via b(I1,...,Id) = b((I1, n), (I2, n), . . . , (Id, n))(b).

Definition 11. For I = (I1, . . . , Id) ∈ [n]d and J := (Ii, n)i∈[d] ∈ ([n]2)d we define
1. b(J) := 0 if |{I1, I2, . . . , Id, n}| < d + 1, i.e., if Ii = n for some 1 ≤ i ≤ d,

or if Ii = Ij for some 1 ≤ i < j ≤ n, and otherwise

2. b(J)(b) := sign δ · bδ(I) if δ : [d] → [d] denotes the unique permutation
which sorts I strictly monotone increasing, i.e., with δ(Ii) < δ(Ii+1) for all
1 ≤ i < d. Thus δ(I) := (δ(Ii))i∈[d] ∈ Seqd,n. As usual, the sign sign δ of δ
is +1 (−1) if there is an even (odd, respectively) number of transpositions
(permutation interchanging exactly two elements) whose composition is δ.

Note that case 2 trivially includes b(J)(b) := bI if I ∈ Seqd,n using the identity for
δ.

Now we have defined b(J) for all J ∈ ([n] × {n})d as linear functionals on
RSeqd,n, which we already identified with Rm(d,n).

Now for arbitrary J = ((J1,1, J1,2), (J2,1, J2,2), . . . , (Jd,1, Jd,2)) ∈ ([n]2)d we de-
fine

b(J) :=
∑

K∈{1,2}d
(−1)d+

�
Kb(((Ji,Ki, n))i∈[d]) , (14)

where
∑
K =

∑d
i=1 Ki stands for the sum of the components of K ∈ {1, 2}d.

Note that (14) “redefines” b(J) for J1,2 = J2,2 = · · · = Jd,2 = n as the sum of
b(J) itself (for K = (1, . . . , 1)) and of 2d − 1 zeros for all other K.

Proposition 12. For all J ∈ ([n]2)d the linear functional b(J) defined by Defi-
nition 11 and by (14) has the property (13) regarding its value for be which was
constructed from n labeled points in Rd, e : [n]→ Rd.
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Additionally, b(J) is antisymmetric and “linear” in each pair Ji of J :

b(δ(J)) = sign δ · b(J) ∀J ∈ ([n]2)d, δ : [d]→ [d] bijective (15)

b((j, i), I) = −b((i, j), I) ∀i, j ∈ [n], I ∈ ([n]2)d−1 (16)

b((i, k), I) = b((i, j), I) + b((j, k), I) ∀i, j, k ∈ [n], I ∈ ([n]2)d−1. (17)

Conversely, for every vector b ∈ RSeqd,n ≡ Rm(d,n) there is a function e : [n] → Rd
with b = be provided b satisfies the well known Grassmann-Plücker relations, see
e.g. [7]. For I ∈ ([n]2)d+1, J ∈ ([n]2)d−1 we obtain

0 = GPRI,J(b) :=
d+1∑

j=1

(−1)j · b((Ii)i∈[d+1]\{j})(b) · b(Ij, J)(b) , (18)

Edet(n, d) := {GPRI,J : I ∈ ([n]2)d+1, J ∈ ([n]2)d−1 } , (19)

SysDet(n, d) := (Edet(n, d), ∅, ∅) . (20)

Lemma 13. The solution set of SysDet(n, d) is exactly the set of all determinants

L(SysDet(n, d)) = { be|e : [n]→ Rd } .

Remark 14. Instead of a complete proof we will only construct a function e :
[n] → Rd from a given b ∈ L(SysDet(n, d)), b 6= 0, such that b = be. For our
construction we choose some o ∈ [n] with e(o) = 0 and for i = 1, . . . , d some
ai ∈ [n] which is mapped to the i-th unit vector scaled by c 6= 0.

Since b 6= 0 we can find o, a1, . . . , ad ∈ [n] with c := b(C)(b) 6= 0 for C :=
(ai, o)i∈[d].

We first construct ẽC,b : [n]→ Rd via

ẽC,b(x) := (b((x, o), (a2, o), . . . , (ad, o))(b),

b((a1, o), (x, o), (a3, o), . . . , (ad, o))(b),

...

b((a1, o), . . . , (ad−1, o), (x, d))(b)) .

The i-th coordinate of ẽC,b(x) is b(C(x,o),i)(b), where the sequence C (x,y),i ∈ ([n]2)d

is almost C, except for the i-th pair which is (x, y), C
(x,y),i
i := (x, y) and C

(x,y),i
l :=

Cl = (al, o) for l ∈ [d] \ {i}. This results in bẽ
C,b

= cd−1b.
To correct this scalar factor we define the function e for x ∈ [n] as

e(x) :=

(
ẽC,b(x)1,

ẽC,b(x)2

c
, . . . ,

ẽC,b(x)d
c

)
. (21)

The first coordinate of e(x) is the same as of ẽC,b(x), and the remaining coordinates
of e(x) are the ones of ẽC,b(x) divided by c. This gives be = b.
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Remark 15. Note that due to our definition the condition 0 = GPRI,J(b) in
(18) is invariant under permutations of the pairs I1, I2, . . . , Id+1 and also under
permutations of the pairs J1, J2, . . . , Jd−1. More precisely, for two permutations
α : [d+ 1]→ [d+ 1], β : [d− 1]→ [d− 1] and I ∈ ([n]2)d+1, J ∈ ([n]2)d−1 we have

GPR(Iα(i))i∈[d+1],(Jβ(i))i∈[d−1]
= signα · sign β ·GPRI,J .

Additionally, replacing a pair (i, j) by (j, i) of I or of J again yields the same
condition since GPR((I1,2,I1,1),I2,...,Id+1),J = GPRI,((J1,2,I1,1),J2,...,Jd−1) = −GPRI,J .

For the particular case of d = 2 the pairs in I may also be exchanged with
the pair in J :

GPR(I1,I2,I3),(J1) = −GPR(J1,I2,I3),(I1) (I1, I2, I3, J1 ∈ [n]2) .

For d ≥ 3 such a statement is not true in general.

From Remark 15 and the linearity of the Grassmann-Plücker relations with respect
to the components of I and J we obtain the following simplification.

Corollary 16. SysDet(n, d) is equivalent to SysDetRed(n, d) := (Edet,red(n, d), ∅,
∅) with

Edet,red(n, d) :=
{

GPRI,J : I ∈ ([n− 1]× {n})d+1, J ∈ ([n− 1]× {n})d−1,

I1,1 < I2,1 < · · · < Id+1,1, J1,1 < J2,1 < · · · < Jd−1,1

}
if d ≥ 3, (22)

Edet,red(n, 2) := {GPR((a,n),(b,n),(c,n)),(d,n) : 1 ≤ a < b < c < d < n } . (23)

Note that we can further reduce the number of equations in Edet,red(n, d) provided
that b(1, 2, . . . , d) 6= 0, e.g., L(Edet(n, 2), ∅, {b(1, 2)})=L({GPR((1,n),(2,n),(c,n)),(d,n) :
3 ≤ c < d < n }, ∅, {b(1, 2)}).

2.2.3. Equivalent embedding system

Following the ideas of 2.2.1, we use the notation fsign(J) := fsignb(J) for J ∈
([n]2)d. So fsign is a function ([n]2)d → {−1, 0, 1}. Together with the transforma-
tion and restrictions obtained in 2.2.2 and the standard way to eliminate fractions
we obtain from the system SysEm(ρ, d) the following family of equations and in-
equalities in Rm(d,n) whose restrictions are polynomials of degree at most two for
equations and at most one for the inequalities. For I ∈ (Pn)d+1 and J ∈ (Pn)d we
get and define the following:

0 ≤ wIρ,d,fsign(b) := −ρ(Id+1) · fsign((Ii)i∈[d]) · b((Ii)i∈[d])(b) +

+
∑

j∈[d]

ρ(Ij) · fsign((Ii)i∈[d+1]\{j}) · b((Ii)i∈[d+1]\{j})(b), (24)

0 < sJn,d,fsign(b) := fsign(J) · b(J)(b) if fsign(J) 6= 0, (25)



N. Düvelmeyer: General Embedding Problems and . . . 561

0 = eJn,d := b(J) if fsign(J) = 0, (26)

Esign(d, fsign) := {eJn,d : J ∈ (Pn)d, fsign(J) = 0}, (27)

Wconv(ρ, d, fsign) := {wI
ρ,d,fsign : I ∈ (Pn)d+1}, (28)

Ssign(d, fsign) := { sJn,d,fsign : J ∈ (Pn)d, fsign(J) 6= 0}, (29)

SysEmD(ρ, d, fsign) := (Esign(d, fsign) ∪ Edet,red(n, d),

Wconv(d, fsign, ρ), Ssign(d, fsign)) . (30)

Note that wIρ,d(e) =
wI
ρ,d,fsign∗(be)

Πi∈[d+1]ρ(Ii)
if we choose fsign∗ : J 7→ sign(b(J)(be)). The

condition sn,d(e) > 0 is implicitly represented by 0 < sJn,d,fsign∗(b
e) if for at least

one J ∈ (Pn)d we have that fsign∗(J) 6= 0, i.e., if we assure that fsign∗ 6≡ 0.
So we get that

b·(L(SysEm(ρ, d))) =
⋃

fsign:(Pn)d→{−1,0,1},fsign6≡0

L(SysEmD(ρ, d, fsign)) (31)

where b· : Rnd → Rm(d,n), e 7→ be denoted the mapping of labeled points to its
Plücker coordinates.

Two functions f, g : [n] → Rd are called affinely equivalent if there is some
affinely linear bijection a : Rd → Rd with f = a ◦ g, i.e., f(i) = a(g(i)) for all

i ∈ [n]. This describes an equivalence relation in the set
(
Rd
)[n]

. We identify(
Rd
)[n]

with Rdn.
Two vectors x,y ∈ Rm are called positive equivalent (direction equivalent)

if there is some λ > 0 (λ 6= 0, respectively) with x = λy. This describes two
equivalence relations in the set Rm. We summarize our results with the following
theorem.

Theorem 17. The metric space ([n], ρ) with n ≥ d + 1 can be embedded into a
suitable Minkowski space Md if and only if there is a nontrivial (i.e., not equal to
zero) function fsign : (Pn)d → {−1, 0, 1} (called formal sign function) such that the
homogeneous polynomial system SysEmD(ρ, d, fsign) of equations and inequalities
in Rm(d,n), m(d, n) =

(
n−1
d

)
, is admissible.

Then equation (31) holds true and there is a one-to-one correspondence be-
tween

1. all affine equivalence classes (i.e., equivalence classes with respect to affine
equivalence) of embeddings e : [n]→ Rd of ([n], ρ) into a suitable Minkowski
space Md which are full dimensional (i.e., dim aff e([n]) = d), and

2. all direction equivalence classes (i.e., equivalence classes with respect to di-
rection equivalence) in the union of L(SysEmD(ρ, d, fsign)) for all fsign ∈
{−1, 0, 1}(Pn)d with fsign 6≡ 0.

We note that a direction equivalence class C in the union of L(SysEmD(ρ, d, fsign)),
fsign 6≡ 0, has the form C = [b]> ∪ [−b]>. Here [b]> denotes the equivalence class
of b ∈ Rm(d,n) with respect to positive equivalence. So C is connected with two
systems SysEmD(ρ, d, fsign) and SysEmD(ρ, d,− fsign), where fsign = sign b and
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b is a solution of SysEmD(ρ, d, fsign). Thus, the affine equivalence classes of
full dimensional embeddings are in one-to-one relation to all positive equivalence
classes of the union of L(SysEmD(ρ, d, fsign)), where fsign traverses a subset of
all non-trivial formal sign functions fsign : (Pn)d → {0,±1} which contains of all
pairs fsign,− fsign exactly one representative.

Using standard combinatorial calculations we obtain the following corollary.

Corollary 18. The m = m(d, n)=
(
n−1
d

)
-dimensional system SysEmD(ρ, d, fsign)

has |Esign(d, fsign)|+|Ssign(d, fsign)|+|Wconv(d, fsign, ρ)|≤
(
n
2

)d
+
(
n
2

)d+1 ∈ O(n2d+2)
linear restrictions and additional at most

|Edet,red(n, d)| ≤
(
n− 1

d+ 1

)(
n− 1

d− 1

)
∈ O(n2d)

polynomial restrictions of degree at most 2 as equations. For d = 2 we get the
stronger bound

|Edet,red(n, 2)| ≤
(
n− 1

4

)
.

Especially for n < d+ 3, the system SysEmD(ρ, d, fsign) is in fact a homogeneous
linear system.

Remark 19. Note that by Wolfe [8] for each metric ρ with n ≤ d + 2, there is
at least one fsign such that the system SysEmD(ρ, d, fsign) is admissible since all
metric spaces with d+2 points can be embedded into the d-dimensional `∞-space.

For d = 2 and n = 5 we get that |Edet,red(5, 2)| ≤ 1. This allows to decide ad-
missibility of SysEmD(ρ, d, fsign) using the well developed technique of quadratic
programming.

Remark 20. We call (E ′,W ′, S ′) a subsystem of the system (E,W, S) if E ′ ⊂ E,
W ′ ⊂ W and S ′ ⊂ S. Obviously, for the solution set L′ and L the converse
relation L ⊂ L′ holds.

For the embedding systems SysEmD(ρ, d, fsign) there are “natural” subsys-
tems, namely the embedding systems SysEmD(ρ|X , d, fsign |X) of metric subspaces
(X, ρ|X) of ([n], ρ), X ( [n]. These subsystems are smaller in both the number of
restrictions and also the dimension.

For the classification of 2-distance configurations it was very important to
use the information obtained from the solution of the subsystem to simplify the
system SysEmD(ρ, d, fsign) and also to reduce the number of formal sign functions
fsign to be considered. From admissible systems SysEmD(ρ|X , d, fsign |X) we can
obtain information about redundant restrictions, reducing the total number of
restrictions, and about implicit equations, reducing the dimension of the system
to be solved.

2.3. Algorithmic solvability

From Theorem 17 and the theory of real closed fields, see e.g. [9], we get
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Corollary 21. The general decision problem on embedding ([n], ρ) in Md (Task 1)
is algorithmically decidable if ρ is given by rational functions on some parameters
belonging to a given semi-algebraic set P . This includes the case where ρ is ex-
plicitly given by

(
n
2

)
algebraic numbers which can be achieved with |P | = 1. If ρ is

given by
(
n
2

)
rational numbers than this is of course possible without any parame-

ters. For |P | > 1 the answer to the decision problem is in general the partition of
P = P1∪̇P2 into two semi-algebraic sets P1 and P2 such that for p ∈ P1 there is
an embedding of ([n], ρ(p)) into a suitable Minkowski space and for p ∈ P2 there
are no such embeddings.

Note that for arbitrary instances of this embedding problem we cannot expect
to get an answer to this decision problem by computers from today, due to the
enormous costs (time and memory) of this approach.

Corollary 22. The general description problem on embedding ([n], ρ) inMd (Task
3) is algorithmically solvable if ρ is given by rational functions on a k-dimension
real parameter vector (p1, . . . , pk) belonging to a given semi-algebraic set P ⊂ Rk.
In general, the description is based on a finite set C of semi-algebraic cells (i.e.,
semi-algebraic subsets) of RK+k = RK×Rk for some integer K ≥ 0. For example,
it could be given as a subset of all cells of a cylindrical decomposition (CAD) of
RK+k with K = m(d, n). Then each point (x, p) within a cell c of C corresponds
to an affine equivalence class [e] of embeddings e of ([n], ρ(p)) into a suitable
Minkowski space Md. A suitable e = e(c, x, p) can be constructed from (x, p)
using polynomials over Z as coordinates. The unit ball of a corresponding suitable
Md = Md(c, x, p) can be constructed from (x, p) as the convex hull of finitely many
points whose coordinates are polynomials over Z in (x, p). All these polynomials
depend only on the cell c but not on (x, p) itself.

For each p ∈ P , each affine equivalence class of embeddings e of ([n], ρ(p))
into a suitable Minkowski space Md is represented exactly once by some c ∈ C and
x ∈ Rk with (x, p) ∈ c as [e(c, x, p)].

Note that similar statements also hold for the special decision problem on embed-
ding ([n], ρ) in Md(B), Task 2, and its description version. For these problems
the corresponding Minkowski space must be given by a semi-algebraic descrip-
tion of the boundary of its unit ball. Note that for rational ρ and polytopal unit
balls B with rational description these problems can be solved without quantifier
elimination methods.

3. Relative position of points

There are two important needs to formalize the concept of the “relative position”
which a configuration of n labeled points can have.

Our first motivation is to obtain a classification of 2-distance sets for which
the relative position of the points is beneath the induced metric of the points one
criterion to distinguish “different” 2-distance configurations.



564 N. Düvelmeyer: General Embedding Problems and . . .

The second motivation originates from Section 2.2.1 resulting in Theorem 17.
It turns out that the formal sign function fsign : (Pn)d → {−1, 0, 1} there is in fact
an analytical description of the relative position of the points e(1), . . . , e(n) ∈ Rd.
Thus the general embedding problem can be transformed into one polynomial
system for each fixed relative position.

Definition 23. The oriented relative position of the n labeled points e(1), . . . , e(n)
with e : [n] → Rd is the function fsign : (Pn)d → {0,±1}, J 7→ sign(b(J)(be)),
see (13). The relative position of the n labeled points is the unordered pair {fsign,
− fsign} of oriented relative position e and the reorientation − fsign of fsign.

Remark 24. Note that the previous definition implicitly assumes that the points
e(1), . . . , e(n) affinely span Rd, i.e., that the oriented relative position is not iden-
tical to zero. If k := dim aff e([n]) < d, then there is no natural definition of an
oriented relative position. But the relative position can be easily defined using an
arbitrary bijective affinely linear transformation from aff e([n]) to Rk.

Remark 25. For d = 2 and the full-dimensional case we have that fsign((x, y),
(z, w)) = +1 if and only if there are no parallel lines containing e(x), e(y) and
e(z), e(w), respectively, and the oriented angle between the vectors e(x) − e(y)
and e(z)− e(w) is between 0 and π.

Remark 26. There is another basic concepts for the relative position of n points
in Rd: the acyclic oriented matroid of affine dependencies of a point configu-
ration. The chirotope, also called basis orientation, of the point configuration
(e(1), . . . , e(n)) in Rd is the antisymmetric function

χ(i1, i2, . . . , id+1) := sign det

(
1 1 · · · 1

e(i1) e(i2) · · · e(id+1)

)
∈ {0,±1},

i1, i2, . . . , id+1 ∈ [n] .

Then we can represent the oriented matroid of the point configuration (e(1), . . . ,
e(n)) by the pair {χ,−χ}, see also [7]. Definition 23 introduces a concept of
relative position which allows a finer distinction between labeled sets of points
since χ(i1, i2, . . . , id+1) = fsign((i2, i1), (i3, i1), . . . , (id+1, i1)). Roughly speaking,
for d = 2 this concept adds to the chirotope the information whether or not two
lines – each defined by containing two points of the configuration – intersect. If
they intersect, this concept also describes the ordering of the intersection point
and the two defining points along each of the two lines. But also the relative
position by Definition 23 can be described by another oriented matroid: the “big
oriented matroid” of the points as described in [7].

3.1. Relative position in the plane

The oriented relative position of n distinct labeled points in the plane can also be
represented by a circular sequence of permutations, also called allowable sequence,
see [10]. We will use a modification of this idea by omitting the requirement that
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there is one linear projection φ : R2 → R such that φ(e(1)) < φ(e(2)) < · · · <
φ(e(n)). The advantages over the function e are the amount of stored data, a
simple human-readable representation (of course, pictures are even better) and
a natural way to represented partially known relative positions. Note that we
assume for this representation that e is injective, which was not necessary for the
representation by ± fsign.

Definition 27. The direction set of e : [n] → R2 with respect to the direction
0 6= v ∈ R2 is

dirs(e,v) := { (i, j) ∈ Pn : ∃λ > 0 : e(i)− e(j) = λv } .

The oriented position sequence of e : [n] → R2 is the cyclic sequence of non-
empty direction sets dirs(e,v) as v is rotated anti-clockwise around the origin.
An oriented position list of e : [n]→ R2 is any complete sub-sequence (dirs(e,v1),
dirs(e,v2), . . . , dirs(e,vk)) of the oriented position sequence where the direction
vectors v1, . . . ,vk “cover” a linear half-plane of R2, i.e., if dirs(e,v1), dirs(e,v2),
. . . , dirs(e,vk), dirs(e,−v1), dirs(e,−v2), . . . , dirs(e,−vk) is one complete cycle of
the oriented position sequence.

We generalize these notion without knowing the points.

Definition 28. An abstract direction set of order n is any subset of Pn. An (ab-
stract) oriented position sequence of order n is a cyclic sequence of non-empty
abstract direction sets of order n with finite cycle length. An (abstract) ori-
ented position list l of order n is a finite sequence of non-empty abstract direction
sets of order n. The oriented position sequence of l = (l1, . . . , lk) is the cyclic
sequence CycSeq(l) := . . . , l1, l2, . . . , lk, opp(l1), opp(l2), . . . , opp(lk), l1, . . ., where
opp : N2 → N2 is defined by opp(i, j) := (j, i). l and CycSeq l are called com-
plete oriented position list, or sequence, respectively, of order n, if each (i, j) ∈ Pn
occurs exactly once in the sets l1, l2, . . . , lk, opp(l1), opp(l2), . . . , opp(lk).

Definition 29. To define for s ∈ Z the shifting-operation on abstract oriented
position lists l = (l1, . . . , lk) we first introduce indices into CycSeq(l) = . . . , l−1, l0,
l1, . . . with l2kz+i := li and l2kz+i+k := opp(li) for all z ∈ Z and i ∈ [k]. Then

Shift(l, s) := (l1+s, l2+s, . . . , lk+s) . (32)

The reorientation operation on abstract oriented positions lists is defined as

Mirror((l1, . . . , lk)) := (lk, lk−1, . . . , l1) . (33)

Proposition 30. Assume that we are given two labeled sets ei : [n] → R2 of
distinct points in the plane affinely spanning R2, i = 1, 2, and that li are oriented
position lists of ei.

1. e1, e2 have the same oriented relative position if and only if they have the
same oriented position sequence.
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2. l1, l2 are complete oriented position lists of order n, each one consisting of
more than one direction set.

3. e1, e2 have the same oriented relative position if and only if there is some
s ∈ Z with l1 = Shift(l2, s).

4. e1, e2 have the same relative position if and only if there is some s ∈ Z with
l1 = Shift(l2, s) or l1 = Shift(Mirror(l2), s).

Note that the description of relative position by equivalence classes of oriented
position lists also works for collinear points in R2 and for R1 as well but in this
case we loose the distinction of the two orientations.

Proposition 31. Assume that we are given two labeled sets ei : [n] → Rd of
distinct collinear points, i = 1, 2, d ∈ {1, 2}, n > 1. Assume that for i = 1, 2 the
relative position of ei is {± fsigni}, and that li are oriented position lists of ei. In
case d = 1 this means that li = (dirs(ei, 1)) or that li = (dirs(ei,−1)).

1. e1, e2 have the same relative position if and only if they have the same ori-
ented position sequence.

2. l1, l2 are complete oriented position lists of order n, each one consisting of
exactly one direction set.

3. e1, e2 have the same relative position if and only if there is some s ∈ {0, 1}
with l1 = Shift(l2, s).

4. li = Mirror(li) for i = 1, 2.

Proposition 32. The oriented relative position of e : [n] → R2, n > 1, can be
computed as fsignl from any oriented position list l = (l1, . . . , lk) of e. Denote
CycSeq(l) = . . . , l−1, l0, l1, . . . . Then if k > 1 the points are not all collinear, the
affine dimension of e(1), . . . , e(n) equals d(l) := 2, and for each J ∈ (Pn)2 there
are integers i, j with 0 ≤ j < 2k and I1 ∈ li and I2 ∈ li+j. Then it holds

sign(b(J)(be)) = fsignl(J) :=





0 if j ∈ {0, k} ,
1 if 0 < j < k ,

−1 if k < j < 2k .

If k = 1, then the affine dimension of e(1), . . . , e(n) equals d(l) := 1. We define
fsignl : Pn → {0,±1} by fsignl(J) := 1 if J ∈ l1 and fsignl(J) := −1 for all other
J ∈ Pn. Then {± fsignl} is the relative position of e.

Thus the embedding system corresponding to a metric ρ on [n] together with a
complete oriented position list l of order n is SysEmD(ρ, d(l), fsignl).

Lemma 33. The system SysEmD(ρ, d(l), fsignl) for d(l) = 2, where again l =
(l1, . . . , lk) with li ⊂ Pn for all i ∈ [k], has the following implicit linear equations
for i ∈ [k], A,B ∈ li, C ∈ Pn; b ∈ L(SysEmD(ρ, d(l), fsignl)):

0 = eA,B,Cρ,l (b) := ρ(A) · fsignl(B,C) · b(B,C)(b)

−ρ(B) · fsignl(A,C) · b(A,C)(b) (34)

= w
(A,C,B)

ρ,2,fsignl
(b) = −w(B,C,A)

ρ,2,fsignl
(b) . (35)
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In case of d(l) = 1, all triangle inequalities are in fact implicit equations: (A,B ∈
Pn)

0 = ρ(A) · fsignl(B) · b(B)(b)− ρ(B) · fsignl(A) · b(A)(b) = w
(A,B)

ρ,1,fsignl
(b)

= −w(B,A)

ρ,1,fsignl
(b) .

Besides the consequences of Lemma 33 there is one geometrically intuitive way to
reduce the number of restrictions in SysEmD(ρ, 2 = d(l), fsignl): a planar n-gon
is convex if and only if all the inner angles on vertices are at most π, i.e., if it is
locally convex at every vertex.

Assume that we have fixed for a given l = (l1, . . . , lk) one Li ∈ li for each
i ∈ [k], and set Li+k := Li for i = 1, 2.

ESameDir(2, l) := { eLi,B,Cρ,l : i ∈ [k], B ∈ li \ {Li}, C ∈ Pn, C1 < C2 } ,
ESameDir(1, l) := {w(A,B)

ρ,1,fsignl
: A,B ∈ L1 } ,

Wconv,red(ρ, 2, l) := {w(Li,Li+2,Li+1)

ρ,2,fsignl
: i ∈ [k] } ,

Wconv,red(ρ, 1, l) := ∅ ,
SysEmPredLin(ρ, l) :=

(
Esign(d(l), l) ∪ ESameDir(d(l), fsignl),

Wconv,red(ρ, d(l), l), Ssign(d(l), fsignl)
)
,

SysEmPred(ρ, l) := SysEmPredLin(ρ, l) ∪ SysDetRed(n, d(l))

SysEmPLin(ρ, l) := SysEmPredLin(ρ, l) ∪
(
∅,Wconv(ρ, d(l), fsignl), ∅

)
,

SysEmP(ρ, l) := SysEmPLin(ρ, l) ∪ SysDetRed(n, d(l)),

= SysEmD(ρ, d(l), fsignl) ∪ (ESameDir(d(l), l), ∅, ∅) .

Lemma 34. For every complete position list l of order n and any metric ρ on [n]
the three systems SysEmD(ρ, d(l), fsignl), SysEmP(ρ, l) and SysEmPred(ρ, l) are
equivalent.

Having in mind the main strategy for the classification of 2-distance sets, solv-
ing the linear part of the embedding systems, i.e., the subsystems of restrictions
which were known to be linear in advance, the system SysEmPred(ρ, l) is not
as useful as SysEmP(ρ, l) since in general the solution set of its linearization
SysEmPredLin(ρ, l) is larger than the solution set of the linearization SysEmPLin
(ρ, l) of SysEmP(ρ, l).

4. Equivalent 2-distance sets in Minkowski planes

Recall from the introduction that we call the pair (M2, S) consisting of a Minkows-
ki plane M2 and a subset S ⊂ R2 a 2-distance set if S contains at least two
elements and the set dist(M2, S) of distances within S, see (3), contains at most
two elements. We denote the set of all 2-distance sets by C2. If even |dist(M2, S)| =
1 then (M2, S) is usually called an equilateral set.
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It is known that every 2-distance set S contains at most 9 points, see [11,
Theorem 3] for more general k-distance sets in Minkowski spaces. Thus each
2-distance set S is finite, and the set dist(M2, S) contains a positive minimum.

Example 35. In the Euclidean plane E2 there are the following 2-distance sets:

This list is complete in the sense of maximal E2-2-distance configurations, and
of course already known, see [12]. We have dist(E2, S) = {1,

√
2}, {1,

√
3},

{1,
√

2 +
√

3}, {1,
√

3}, {1,
√

2 +
√

3}, and {1, 1
2
(1 +

√
5)}, respectively.

There are many 2-distance sets which are almost the same concerning geometric
intuition.

Note that we do not regard the points in S as labeled points for the purpose
of classification. Thus permuting the points in some representation which uses a
numbering of points will result in an representation of the same 2-distance set or
equivalence class for any of the following equivalence relations in C2.

4.1. Strong equivalence

We will silently identify two 2-distance sets, if one is the image of the other with
respect to some isometry and scaling. Any bijective embedding of the metric
spaces (X, ρ) into the metric spaces (X̃, ρ̃) is called an isometry.

Definition 36. We call two 2-distance sets (M2, S) and (M̃2, S̃) strongly equiva-
lent, (M2, S) ≡s (M̃2, S̃), if and only if there is an isometry φ : M2 → M̃2 and a
positive real number λ such that φ(S) = λS̃.

Note that by the Mazur-Ulam theorem, φ can only be an affinely linear function,
see Thompson [5].

Obviously, the relation ≡s of strong equivalence is an equivalence relation in
the set C2.

4.2. Affine equivalence

Definition 37. We call two 2-distance sets (M2, S) and (M̃2, S̃) affinely equiv-
alent, (M2, S) ≡a (M̃2, S̃), if and only if there is an affinely linear function A :
M2 → M̃2 and a positive real number λ such that A(S) = λS̃ and ‖Ax− Ay‖M̃2 =
‖x− y‖M2 for all x,y ∈ S.

Thus, (M2, S) ≡a (M̃2, S̃) if there is an affinely linear function A whose re-
stricting to S is an isometry between the metric spaces (S, ρM2 |S×S) and (A(S),
ρM̃2 |A(S)×A(S)), and if A(S) is a homothetic copy of S̃.

The relation ≡a of affine equivalence is an equivalence relation in C2, too.
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4.3. Full equivalence

Since we consider homothetic 2-distance sets S as equivalent, we introduce the
following notion for the metric induced by S in M2.

Definition 38. The normalized metric induced by a labeled set e : [n] → X
in a metric space (X, ρ) is the function ρ|e : [n]2 → R, defined by (a, b) 7→

1
min{ ρ(e(i),e(j)):(i,j)∈Pn,e(i)6=e(j) }ρ(e(a), e(b)).

Definition 39. We call two 2-distance sets (M2, S) and (M̃2, S̃) fully equivalent,
(M2, S) ≡f (M̃2, S̃), if and only if there is a bijection ϕ : S → S̃ and a labeling
e : [n]→ S such that the labeling ẽ := φ◦e : [n]→ S̃ has the same relative position
(see Definition 23) as e and if the normalized metric (see Definition 38) induced
by ẽ in M̃2 coincides with the normalized metric induced by e in M2.

Thus we can describe every equivalence class of full equivalence in C2, called full 2-
distance configuration, with representative (M2, {e(1), . . . , e(n)}) by an complete
abstract oriented position list l of order n, together with a metric ρ on [n] with
ρ(Pn) = {1, r}, r ≥ 1.

Remark 40. Two such representations (li, ρi) with d(li) = 2 represent the same
full 2-distance configuration (provided each of them represents one), if and only
if there is a permutation φ of [n] and some s ∈ Z with φ(l1) = Shift(l2, s) or
φ(l1) = Shift(Mirror(l2), s) and φ(ρ1) = ρ2. Note that we write for (i, j) ∈ [n]2:
φ((i, j)) := (φ(i), φ(j)), φ({p1, . . . , pm}) := {φ(p1), . . . , φ(pm)} for p1, . . . , pm ∈ Pn
and for l1, . . . , lk ⊂ Pn finally φ((l1, . . . , lk)) := (φ(l1), φ(l2), . . . , φ(lk)). Ad-
ditionally, φ(ρ1) : [n]2 → R with (φ(a), φ(b)) 7→ ρ1(a, b), i.e., φ(ρ1)(x, y) :=
ρ1(φ−1(x), φ−1(y)).

We can describe the metric ρ on [n] with ρ(Pn) = {1, r}, by the value r ∈ [1,∞)
(the continuous part of ρ) together with the undirected simple graph ([n], L) of
“large” distances, L := { {i, j} ⊂ [n] : ρ(i, j) > 1 } (the combinatorial part of ρ).

Recall the structure of an complete abstract oriented position list as a sequence
of abstract directions sets. For each pair (i, j) ∈ Pn exactly one of (i, j) and (j, i)
is contained in (exactly) one of these direction sets. Now we can append the
symbolic information whether or not {i, j} ∈ L, i.e., a symbolic representation of
the distance ρ(i, j) to be embedded, to all the pairs (i, j), and obtain a new data
structure called position-metric-list. So let G := {S,B} denote the set of symbolic
distances, where S represents 1 and B stands for r. Triples (i, j, %) with (i, j) ∈ Pn
and % ∈ G are called abstract direction. A position-metric-list of order n is a finite
sequence of nonempty sets of abstract directions. Its associated oriented position
list l(w) is obtained in the obvious way be omitting its distance components. A
complete position-metric-list of order n is a position-metric-list w such that l(w)
is a complete oriented position list of order n.

Summarizing we can represent any full 2-distance configuration by the pair
(w, r) consisting of a complete position-metric-list w of order n and the real num-
ber r which is the ratio of maximal and minimal positive distances among the
considered points.
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4.4. Similar 2-distance sets

Having the representation (w, r) of full 2-distance configurations in mind, we get
another equivalence relation by ignoring the value of r.

Definition 41. We call two 2-distance sets (M2, S) and (M̃2, S̃) similar, (M2, S)
∼ (M̃2, S̃), if and only if there is a bijection ϕ : S → S̃ and a labeling e : [n]→ S
such that the labeling ẽ := φ ◦ e : [n] → S̃ has the same relative position (see
Definition 23) as e and if the sets of large distances coincide: L := { {i, j} ⊂ [n] :
ρB(M2)(e(i), e(j)) > min ρB(M2)(e(Pn)) } = L̃ := { {i, j} ⊂ [n] : ρB(M̃2)(ẽ(i), ẽ(j)) >
min ρB(M̃2)(ẽ(Pn)) }.

Thus, (M2, S) ∼ (M̃2, S̃), if and only if they both can produce the same represen-
tation as a position-metric-list w as described above.

4.5. Summary of the equivalence relations

We have introduced four different equivalence relations in C2: strong equivalence
≡s, affine equivalence ≡a, full equivalence ≡f , and similarity ∼. Of course, more
are possible and maybe useful, for example consider the mentioned graph of large
distances or the concept of relative position using the oriented matroid of the
point configuration.

Definition 42. We call each equivalence class T = [C] := {C ′ ∈ C2 : C ′ ∼ C }
of similarity of a 2-distance set C ∈ C2 a 2-distance configuration. In the same
way we call the equivalence class [C]s of strong equivalence of C strong 2-distance
configuration, the equivalence class [C]a of affine equivalence of C affine 2-distance
configuration, and the equivalence class [C]f of full equivalence of C (as already
mentioned) full 2-distance configuration.

Proposition 43. In the sequence ≡s, ≡a, ≡f , ∼, of the introduced relations, each
following relation is more general than the preceding one: for all C ∈ C2 we have

[C]s ⊂ [C]a ⊂ [C]f ⊂ [C] .

Assume that w is a position-metric-list of C = (M2, S) ∈ C2 for a labeling e : [n]→
S ⊂ R2 and dist(M2, S) = {1, r}. Then we define T (w) := [C], D([C], r) := [C]f
and A(w, r, be) := [C]a.

Note that there are 2-distance sets C with [C]s 6= [C]a 6= [C]f 6= [C], for
example we can take any C ∈ D(T 5

30, 1.73), see the following section. But also
[C]s = [C]a = [C]f = [C] is possible for some 2-distance sets C.

5. Classification results

We will present five enumerations to classify all 2-distance configurations, all full
2-distance configurations, all affine 2-distance configurations and some further
information regarding the quantity of strong 2-distance configurations belonging
to each of the affine 2-distance configurations.
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The first enumeration in Section 5.1 is a complete list of pictures of all 94
different 2-distance configurations in Minkowski planes. It also contains all infor-
mation about the uncountably many full 2-distance configurations.

In Section 5.2 we summarize the classification of 2-distance configurations
by enumerating all 11 maximal 2-distance configurations. Their combinatorial
representations are not contained as sub structures in other ones. We show a
enumeration of the pictures and another one of corresponding position-metric-
lists.

The forth enumeration shown in Section 5.3 gives in conjunction with the first
enumeration an overview of all affine 2-distance configurations. For each full 2-
distance configuration consisting of more than one affine 2-distance configuration
there is a picture illustrating all corresponding affine 2-distance configurations us-
ing a parameter which is a point belonging to, e.g., a triangle without its boundary.
In general, one such picture can represent some class of full 2-distance configura-
tions with corresponding affine 2-distance configurations with different values of
r at once.

Finally, the last enumeration in Section 5.4 is a partition of all affine 2-distance
configurations into three categories. Each category represents some information
about the quantity of corresponding strong 2-distance configurations. There are
pictures representing classes of affine 2-distance configurations as in the forth
enumeration, possibly split into several classes with smaller parameter set.

For formal descriptions of the represented data please see [13].

5.1. Full 2-distance configurations

Now we present a list of all 94 different 2-distance configurations T = T n
k . Here n

is again the number of points and k is some number to yield unique symbols for
the equivalence classes. T nk can be described by a complete position-metric-list w
of order n, see Section 5.2.

We will visualize T =[(M2, S)] by drawing all points of the set S = {s1, . . . , sn}
as small “double”-balls . (M2, S) was chosen so that dist(M2, S) = {1, r} for
some r ≥ 1, including the case r = 1 for equilateral sets. We connect si, sj by
a straight line if ‖si − sj‖ = 1. Otherwise, i.e., if ‖si − sj‖ = r > 1, we connect
them by a dashed line. We do not visualize the corresponding Minkowski plane
M2, because one suitable M2 can always be constructed from this picture together
with the value of r. The relative position should be clear from the first glance
at these pictures for all but two exceptions, T 4

8 and T 4
10. But since all 2-distance

configurations which are not maximal are drawn as they occur in the picture of
a larger 2-distance configuration, the relative position becomes clear from the
picture of T 5

28 and T 9
1 , respectively, in Section 5.2.

All different full 2-distance configurations are obtained as D = D(T, r∗), where
T is a 2-distance configuration and r∗ ∈ R(T ). The sets R(T nk ) ⊂ [1,∞) are shown
in this list as well, giving a complete classification of full 2-distance configurations.
For this we denote by τ the real root of the polynomial x3 − 2x2 + x − 1, τ =
RootOf(1, X3 − 2X2 +X − 1) ≈ 1.754877.
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T 2
1

R(T 2
1 ) = {1}

T 3
1

R(T 3
1 ) = {1}

T 3
2

R(T 3
2 ) = (1, 2]

T 3
3

R(T 3
3 ) = {2}

T 3
4

R(T 3
4 ) = (1,∞)

T 4
1

R(T 4
1 ) = {2}

T 4
2

R(T 4
2 ) = (1, 2]

T 4
3

R(T 4
3 ) = {2}

T 4
4

R(T 4
4 ) = (1,∞)

T 4
5

R(T 4
5 ) = [1 +

√
2

2 , 2]

T 4
6

R(T 4
6 ) = {2}

T 4
7

R(T 4
7 ) = (1, 2]

T 4
8

R(T 4
8 ) = (1, 2]

T 4
9

R(T 4
9 ) = {1}

T 4
10

R(T 4
10) = (1, 2]

T 4
11

R(T 4
11) = (1, 2]

T 4
12

R(T 4
12) = (1, 2)

T 4
13

R(T 4
13) = [3

2 , 2]

T 4
14

R(T 4
14) = {2}

T 4
15

R(T 4
15) = (1, 2]

T 4
16

R(T 4
16) = {2}

T 4
17

R(T 4
17) = (1, 2]

T 4
18

R(T 4
18) = (1,∞)

T 4
19

R(T 4
19) = (1,∞)

T 5
1

R(T 5
1 ) = {2}

T 5
2

R(T 5
2 ) = {2}

T 5
3

R(T 5
3 ) = {2}

T 5
4

R(T 5
4 ) = {2}

T 5
5

R(T 5
5 ) = {2}

T 5
6

R(T 5
6 ) = {2}

T 5
7

R(T 5
7 ) = {2}

T 5
8

R(T 5
8 ) = {2}

T 5
9

R(T 5
9 ) = {2}

T 5
10

R(T 5
10) = {2}

T 5
11

R(T 5
11) = [τ, 2]
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T 5
12

R(T 5
12) = {2}

T 5
13

R(T 5
13) = {2}

T 5
14

R(T 5
14) = {2}

T 5
15

R(T 5
15) = {2}

T 5
16

R(T 5
16) = {2}

T 5
17

R(T 5
17) = {2}

T 5
18

R(T 5
18) = {2}

T 5
19

R(T 5
19) = {2}

T 5
20

R(T 5
20) = {2}

T 5
21

R(T 5
21) = {2}

T 5
22

R(T 5
22) = {2}

T 5
23

R(T 5
23) = {2}

T 5
24

R(T 5
24) = [1 +

√
2

2 , 2]

T 5
25

R(T 5
25) = {2}

T 5
26

R(T 5
26) = {1+

√
5

2 }

T 5
27

R(T 5
27) = {2}

T 5
28

R(T 5
28) = [1 +

√
2

2 , 2)

T 5
29

R(T 5
29) = {2}

T 5
30

R(T 5
30) = [1 +

√
2

2 , 2]

T 5
31

R(T 5
31) = {2}

T 5
32

R(T 5
32) = {2}

T 5
33

R(T 5
33) = {2}

T 5
34

R(T 5
34) = {2}

T 5
35

R(T 5
35) = {2}

T 6
1

R(T 6
1 ) = {2}

T 6
2

R(T 6
2 ) = {2}

T 6
3

R(T 6
3 ) = {2}

T 6
4

R(T 6
4 ) = {2}

T 6
5

R(T 6
5 ) = {2}

T 6
6

R(T 6
6 ) = {2}

T 6
7

R(T 6
7 ) = {2}

T 6
8

R(T 6
8 ) = {2}

T 6
9

R(T 6
9 ) = {2}
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T 6
10

R(T 6
10) = {2}

T 6
11

R(T 6
11) = {2}

T 6
12

R(T 6
12) = {2}

T 6
13

R(T 6
13) = {2}

T 6
14

R(T 6
14) = {2}

T 6
15

R(T 6
15) = {2}

T 6
16

R(T 6
16) = {2}

T 6
17

R(T 6
17) = {2}

T 6
18

R(T 6
18) = {2}

T 6
19

R(T 6
19) = {2}

T 6
20

R(T 6
20) = {2}

T 6
21

R(T 6
21) = {2}

T 6
22

R(T 6
22) = {2}

T 7
1

R(T 7
1 ) = {2}

T 7
2

R(T 7
2 ) = {2}

T 7
3

R(T 7
3 ) = {2}

T 7
4

R(T 7
4 ) = {2}

T 7
5

R(T 7
5 ) = {2}

T 7
6

R(T 7
6 ) = {2}

T 7
7

R(T 7
7 ) = {2}

T 7
8

R(T 7
8 ) = {2}

T 7
9

R(T 7
9 ) = {2}

T 8
1

R(T 8
1 ) = {2}

T 8
2

R(T 8
2 ) = {2}

T 8
3

R(T 8
3 ) = {2}

T 9
1

R(T 9
1 ) = {2}

5.2. Maximal 2-distance configurations

We can compress the classification of 2-distance configurations by listing the 11
maximal 2-distance configurations. Then each of the 83 remaining 2-distance
configurations is contained as sub-configuration in at least one of the following.
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T 4
12 T 5

10 T 5
13 T 5

26 T 5
28

T 6
2 T 6

5 T 6
9 T 6

17 T 7
7

T 9
1

The maximal 2-distance configurations can be represented by the following positi-
on-metric-lists. We omitted redundant parentheses, thus instead of (1, 2, B) we
only write 12B:

T 4
12 : {12S}, {13B}, {23S}, {14B}, {24S}, {34B}
T 5

10 : {12S}, {34S}, {14B}, {13S}, {24S}, {54B}, {23S}, {53B}, {52S},
{51B}

T 5
13 : {12S}, {34S}, {14B}, {13S}, {24S}, {54B}, {23S, 52S, 53B}, {51B}
T 5

26 : {12S, 34B}, {35S, 14B}, {24S, 15B}, {13S, 25B}, {45S, 23B}
T 5

28 : {12S}, {13B}, {23S, 45S}, {15B}, {14S}, {25B}, {24S, 35S}, {34B}
T 6

2 : {12S}, {13S, 34S, 52S, 14B}, {54B}, {24S, 53S}, {64B}, {62S},
{63B}, {23S, 51S}, {61B}, {65S}

T 6
5 : {12S}, {13S, 34S, 56S, 14B}, {24S}, {54B}, {52S}, {53B, 64B},

{23S}, {51B, 63B}, {62S}, {61B}
T 6

9 : {12S}, {13B}, {23S, 45S}, {43B}, {16S, 42S, 53S}, {46B},
{26S, 41S}, {56B}, {52S}, {36B, 51B}

T 6
17 : {12S, 23S, 45S, 13B}, {15B}, {14S, 25S, 46S, 16B}, {26B},

{24S, 35S, 56S, 36B}, {34B}
T 7

7 : {12S, 23S, 45S, 67S, 13B}, {15B, 63B}, {14S, 25S, 62S, 73S, 65B},
{64B, 75B}, {24S, 35S, 61S, 72S, 74B}, {34B, 71B}

T 9
1 : {12S, 23S, 45S, 56S, 78S, 89S, 13B, 46B, 79B},

{16B, 49B}, {15S, 26S, 48S, 59S, 19B}, {18B, 29B},
{14S, 25S, 36S, 47S, 58S, 69S, 17B, 28B, 39B}, {27B, 38B},
{24S, 35S, 57S, 68S, 37B}, {34B, 67B}

We will skip similar lists of maximal full or maximal affine 2-distance configura-
tions because they do not represent the information much easier. The position-
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metric-lists of the remaining 2-distance configurations can be easily extracted from
the above information.

5.3. Affine 2-distance configurations

Each affine 2-distance configuration A is represented exactly once in the following
way. Take a full 2-distance configuration D = D(T, r), where r ∈ R(T ) and T =
T nk . Sometimes, D is itself an affine 2-distance configuration; in this case A = D.
To simplify notations, we introduce in this case a purely formal parameter 0 =
p ∈ R0 =: P (T, r) in the d(T, r) := 0-dimensional real vector space. Otherwise,
we introduce a real parameter vector p to describe affine 2-distance configurations
contained in D(T nk , r). The parameter p must belong to some set P (T nk , r) ⊂ Rd
of a simple geometric shape and d(T, r) := d ≤ 2. Then each affine 2-distance
configuration A is represented exactly once as A = [(M2(T nk , r, p), S(T nk , r, p))]a
with r ∈ R(T nk ) and p ∈ P (T nk , r). Again, the suitable Minkowski planeM2(T, r, p)
can be constructed from S and the metric in a canonical way and is not visualized.

The coordinates of the points in S(T, r, p) are piecewise polynomials in Z[r].
More precisely, the set R(T ) will occasionally be split into a few number of subsets,

R(T ) =
⋃̇
i=1,...,k(T )R(T, i).

For some i the case A = D may occur. In this case there are 2n mono-variate
polynomials, ST,i ∈ (Z[X]2)n, which define S(T, r, p) := {s1, . . . , sn} by evaluating
the polynomials at X = r ∈ R(T, i): (s1, . . . , sn) := ST,i(r).

Otherwise one or more points of S may be allowed to move within some
bounds, so that [(M2, S)]f stays the same but [(M2, S)]a changes, for suitable
M2. It turned out that there are at most two degrees of freedom, and that the
influence of the parameter can be chosen to be affinely linear. The 2n coordinates
of S(T, r, p) are polynomials in d+ 1 real variables r and p1, . . . , pd, summarized
as ST,i ∈ (Z[X, p1, . . . , pd]

2)n. Fixing the first parameter X = r in ST,i, we get
an affinely linear function ST,i(r) : Rd → (R2)n. In addition, the parameters
p ∈ Rd are restricted to belong to a polyhedron, or, more precisely, to the union
P (T, i, r) ⊂ Rd of interiors of some well defined faces of a polyhedron P ′(T, i, r).
Note that we have chosen each parameter pj so that at least one coordinate of
one of the points of S coincides with pj, possibly after multiplication with a real
factor in Z[r]. Note that in almost all cases with d = 2 we could take both
coordinates of just one point s from S as parameters. In all these cases the
parameter range P (T, i, r) coincides, up to scaling, with the range where s can
move. The vertices of P ′(T, i, r) are again defined by mono-variate polynomial
coordinates. The combinatorial structure of P ′(T, i, r) is identical for all r ∈
R(T, i), and P always consists of the same faces of P ′ with respect to the labeled
vertices.

Summarizing, we have for each 2-distance configuration T a refinement of
R(T ), R(T ) =

⋃̇
i=1,...,k(T )R(T, i). For each i ∈ [k(T )] there is a construction

S = S(T, i, r, p) of n points in the plane which is polynomial in r ∈ R(T, i) and
linear in some additional parameter p ∈ Rd, with d ∈ {0, 1, 2}. The parameter
p can be chosen from a well defined parameter range P (T, i, r) ⊂ Rd. Now each
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affine 2-distance configuration A is uniquely determined by one T , i ∈ [kT ], r ∈
R(T, i) and p ∈ P (T, i, r) as A = [(M2, S(T, i, r, p))]a, where M2 is constructed
appropriately from S and the metric.

We will show nothing for each T and i ∈ [k(T )] where the full 2-distance
configuration is affinely unique. Otherwise, we will produce a picture to represent
all affine 2-distance configurations belonging to one of D(T, r) for r ∈ R(T, i).
Below the picture we write R(T, i) exactly and a floating point approximation of
some fixed r∗ ∈ R(T, i). For the parameter p∗ ∈ P (T, i, r∗), which is the mean
of all vertices of P ′(T, i, r∗), the picture contains S(T, i, r∗, p∗) drawn as in the
previous pictures. Additionally, we illustrate for each point of S(T, i, r∗, p) its
domain as p ∈ P (T, i, r∗) varies in the same picture. Note that for some examples
this illustration is to small to show any details. Because of that, another picture
illustrating P (T, i, r∗) is shown in case of d = 2 to the right hand side. Each
face (vertex, edge or the interior area) of P ′ is drawn in a way indicating whether
or not it belongs to P . Vertices belong to P if they are shown as small dark
filled balls, otherwise a little larger circle line is drawn around the point. Edges
belong to P if they are drawn as black line and not as dotted gray line. Polygons
belong to P if they are crosswise shaded. The domain of the individual points in
S(T, i, r∗, p) on the left hand side are shown analogously.

In fact, the pictures are a little bit more complicated. Instead of just drawing
P and P ′ we have drawn sometimes a larger area Pa, but in a style showing
that it does not belong to P . This area is the set of all parameters p such that
S(T, i, r∗, p) is a 2-distance set belonging to the same full 2-distance configuration.
But due to symmetry within the combinatorial structure of T , for all p ∈ Pa \ P
there is some p′ ∈ P such that S(T, i, r∗, p) is an affine image of S(T, i, r∗, p′), or
more precisely, (M2(T, i, r∗, p), S(T, i, r∗, p)) ≡a (M2(T, i, r∗, p′), S(T, i, r∗, p′)).

The list of all full 2-distance configurations which contain more than one affine
2-distance configuration follows.

T 4
1 , d = 1

P ′ is a segment

r∗ = 2
R(T 4

1 , 1) = {2}

T 4
5 , d = 2

P ′ is a 3-gon

r∗ = 1.854

R(T 4
5 , 2) = (1 +

√
2

2 , 2)

T 4
5 , d = 2

P ′ is a 3-gon

r∗ = 2
R(T 4

5 , 3) = {2}

T 4
8 , d = 1

P ′ is a segment

r∗ = 1.5
R(T 4

8 , 1) = (1, 2)

T 4
8 , d = 1

P ′ is a segment

r∗ = 2
R(T 4

8 , 2) = {2}

T 4
10, d = 2

P ′ is 3-gon

r∗ = 1.354

R(T 4
10, 1) ∪R(T 4

10, 2) = (1, 1 +
√

2
2 ]

T 4
10, d = 2

P ′ is a 4-gon

r∗ = 1.854

R(T 4
10, 3) = (1 +

√
2

2 , 2)
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T 4
10, d = 1

P ′ is a segment

r∗ = 2
R(T 4

10, 4) = {2}

T 4
13, d = 2

P ′ is a 3-gon

r∗ = 1.75
R(T 4

13, 2) = (3
2 , 2)

T 4
13, d = 2

P ′ is a 3-gon

r∗ = 2
R(T 4

13, 3) = {2}

T 4
15, d = 2

P ′ is a 3-gon

r∗ = 1.5
R(T 4

15, 1) = (1, 2)

T 4
15, d = 2

P ′ is a 3-gon

r∗ = 2
R(T 4

15, 2) = {2}

T 5
2 , d = 1

P ′ is a segment

r∗ = 2
R(T 5

2 , 1) = {2}

T 5
5 , d = 1

P ′ is a segment

r∗ = 2
R(T 5

5 , 1) = {2}

T 5
6 , d = 1

P ′ is a segment

r∗ = 2
R(T 5

6 , 1) = {2}

T 5
9 , d = 1

P ′ is a segment

r∗ = 2
R(T 5

9 , 1) = {2}

T 5
10, d = 2

P ′ is a 4-gon

r∗ = 2
R(T 5

10, 1) = {2}

T 5
11, d = 1

P ′ is a segment

r∗ = 1.878
R(T 5

11, 2) = (τ, 2)

T 5
11, d = 1

P ′ is a segment

r∗ = 2
R(T 5

11, 3) = {2}

T 5
13, d = 1

P ′ is a segment

r∗ = 2
R(T 5

13, 1) = {2}

T 5
16, d = 1

P ′ is a segment

r∗ = 2
R(T 5

16, 1) = {2}

T 5
21, d = 1

P ′ is a segment

r∗ = 2
R(T 5

21, 1) = {2}

T 5
24, d = 1

P ′ is a segment

r∗ = 1.854

R(T 5
24, 2) = (1 +

√
2

2 , 2)

T 5
24, d = 1

P ′ is a segment

r∗ = 2
R(T 5

24, 3) = {2}

T 5
30, d = 2

P ′ is 3-gon

r∗ = 1.731

R(T 5
30, 2) ∪R(T 5

30, 3) = (1 +
√

2
2 , τ ]

T 5
30, d = 2

P ′ is a 4-gon

r∗ = 1.878
R(T 5

30, 4) = (τ, 2)

T 5
30, d = 1

P ′ is a segment

r∗ = 2
R(T 5

30, 5) = {2}

T 6
2 , d = 1

P ′ is a segment

r∗ = 2
R(T 6

2 , 1) = {2}

T 6
5 , d = 1

P ′ is a segment

r∗ = 2
R(T 6

5 , 1) = {2}

T 6
9 , d = 1

P ′ is a segment

r∗ = 2
R(T 6

9 , 1) = {2}
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5.4. Strong 2-distance configurations

For strong 2-distance configurations there is no such classification using just finite
dimensional parameters. But for each affine 2-distance configuration A we can
give precise conditions for the unit ball of M2 such that (M2, S(T, r, p)) ∈ A:
there must be a scaled copy of some set F := F (T, r, p) contained in the unit
circle.

We will not discover a complete classification of strong 2-distance configura-
tions. It is not possible to parameterize all strong 2-distance configurations by
parameters p ∈ Rd of a finite dimensional real vector space, i.e., with d < ∞.
On the other hand, some affine 2-distance configurations A = [(M2(T, i, r∗, p),
S(T, i, r∗, p))]a are in fact also strong 2-distance configurations! In these cases,
the unit ball B of M2(T, i, r∗, p) is a polygon which is uniquely determined by
S(T, i, r∗, p). In general, each 2-distance set S = S(T, i, r∗, p) (together with the
metric determined by L and r) determines a set F = F (T, r∗, p) which must be
part of the unit circle F (T, r∗, p) ⊂ ∂B of M2. This condition F (T, r∗, p) ⊂ ∂B is
necessary and also sufficient for M2 such that S induces the correct metric in M2

with distance values {1, r∗}.
If F is in strong convex position, i.e., if each point of F is a vertex of conv F ,

then there is a smooth and strictly convex unit ball B with (M2(B), S) ∈ A.
Otherwise there are three collinear points a,b, c ∈ F with b ∈ rel int ac. By
convexity we get ac ⊂ ∂B. Consequently, there is no strictly convex unit ball B
with (M2(B), S) ∈ A. If there is another such segment ce in ∂B, due to d, e ∈ F
and d ∈ rel int ce, and if e is not collinear with ac, then c must be a vertex of B,
and ∂B cannot be smooth. Finally, if every point of F is a vertex of B or belongs
to the interior of a segment in ∂B due to the stated reasons, then B is uniquely
determined by F .

For fixed T and i this combinatorial structure of F (T, r, p) is not the same
for all r ∈ R(T, i) and all p ∈ P (T, i, r). But this structure is the same for all
r ∈ R(T, i) and all p belonging to the same relatively open face of the polytope
P ′(T, i, r). So we know the combinatorial structure of the set F (T, r, p) as well
as the isometry group of S(T, i, r, p) for each face of each set P ′(T, i, r), which is
independent from r ∈ R(T, i).

Instead of presenting the complete combinatorial structure of F , we restrict
ourselves to distinguish three types of affine 2-distance configurations A.

1. There is some strictly convex Minkowski plane M2 with (M2, S) ∈ A.

2. There is no strictly convex Minkowski plane M2 with (M2, S) ∈ A, but there
are planes M2 whose unit ball is not a polygon with (M2, S) ∈ A, i.e., M2

can be “partially” strictly convex.

3. There is (up to scaling) a uniquely defined plane M2 with (M2, S) ∈ A. This
plane M2 has a unit ball which is a 2k-gon (k ∈ {2, 3, 4}).

The following pictures are similar to the visualization of affine 2-distance con-
figurations. For each affine 2-distance configuration A, there is exactly one pic-
ture in the corresponding section, representing for some T = T n

k , i ∈ [kT ], all
A = [(M2(T, i, r, p), S(T, i, r, p))]a with r ∈ R(T, i) and p ∈ P ′′ ⊂ P (T, i, r). Thus
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P ′′ contains the new information provided with this classification. P ′′ is the union
of some faces of P ′, drawn with the same conventions as previously used to define
P .

5.4.1. Strictly convex planes possible

T 2
1 , d = 0

r∗ = 1
R(T 2

1 , 1) = {1}

T 3
1 , d = 0

r∗ = 1
R(T 3

1 , 1) = {1}

T 3
2 , d = 0

r∗ = 1.5
R(T 3

2 , 1) = (1, 2)

T 3
3 , d = 0

r∗ = 2
R(T 3

3 , 1) = {2}

T 3
4 , d = 0

r∗ = 2
R(T 3

4 , 1) = (1,∞)

T 4
2 , d = 0

r∗ = 1.5
R(T 4

2 , 1) = (1, 2)

T 4
5 , d = 2

r∗ = 1.854

R(T 4
5 , 2) = (1 +

√
2

2 , 2)

T 4
10, d = 2

r∗ = 1.354

R(T 4
10, 1) ∪R(T 4

10, 2) = (1, 1 +
√

2
2 ]

T 4
10, d = 2

r∗ = 1.854

R(T 4
10, 3) = (1 +

√
2

2 , 2)

T 4
11, d = 0

r∗ = 1.5
R(T 4

11, 1) = (1, 2)

T 4
13, d = 2

r∗ = 1.75
R(T 4

13, 2) = (3
2 , 2)

T 4
15, d = 2

r∗ = 1.5
R(T 4

15, 1) = (1, 2)

T 4
17, d = 0

r∗ = 1.5
R(T 4

17, 1) = (1, 2)

T 5
26, d = 0

r∗ = 1.619

R(T 5
26, 1) = {1+

√
5

2 }

5.4.2. “Partially” strictly convex planes possible

T 3
2 , d = 0

r∗ = 2
R(T 3

2 , 2) = {2}

T 4
1 , d = 1

r∗ = 2
R(T 4

1 , 1) = {2}

T 4
2 , d = 0

r∗ = 2
R(T 4

2 , 2) = {2}

T 4
5 , d = 2

r∗ = 1.854

R(T 4
5 , 2) = (1 +

√
2

2 , 2)



N. Düvelmeyer: General Embedding Problems and . . . 581

T 4
5 , d = 2

r∗ = 2
R(T 4

5 , 3) = {2}

T 4
6 , d = 0

r∗ = 2
R(T 4

6 , 1) = {2}

T 4
7 , d = 0

r∗ = 1.5
R(T 4

7 , 1) = (1, 2)

T 4
8 , d = 1

r∗ = 1.5
R(T 4

8 , 1) = (1, 2)

T 4
8 , d = 1

r∗ = 2
R(T 4

8 , 2) = {2}

T 4
10, d = 2

r∗ = 1.354

R(T 4
10, 1) ∪R(T 4

10, 2) = (1, 1 +
√

2
2 ]

T 4
10, d = 2

r∗ = 1.854

R(T 4
10, 3) = (1 +

√
2

2 , 2)

T 4
10, d = 1

r∗ = 2
R(T 4

10, 4) = {2}

T 4
11, d = 0

r∗ = 2
R(T 4

11, 2) = {2}

T 4
13, d = 2

r∗ = 1.75
R(T 4

13, 2) = (3
2 , 2)

T 4
15, d = 2

r∗ = 1.5
R(T 4

15, 1) = (1, 2)

T 4
15, d = 2

r∗ = 2
R(T 4

15, 2) = {2}

T 4
16, d = 0

r∗ = 2
R(T 4

16, 1) = {2}

T 4
18, d = 0

r∗ = 2
R(T 4

18, 1) = (1,∞)

T 4
19, d = 0

r∗ = 2
R(T 4

19, 1) = (1,∞)

T 5
2 , d = 1

r∗ = 2
R(T 5

2 , 1) = {2}

T 5
3 , d = 0

r∗ = 2
R(T 5

3 , 1) = {2}

T 5
11, d = 0

r∗ = 1.755
R(T 5

11, 1) = {τ}

T 5
11, d = 1

r∗ = 1.878
R(T 5

11, 2) = (τ, 2)

T 5
16, d = 1

r∗ = 2
R(T 5

16, 1) = {2}

T 5
18, d = 0

r∗ = 2
R(T 5

18, 1) = {2}

T 5
21, d = 1

r∗ = 2
R(T 5

21, 1) = {2}

T 5
22, d = 0

r∗ = 2
R(T 5

22, 1) = {2}

T 5
24, d = 1

r∗ = 1.854

R(T 5
24, 2) = (1 +

√
2

2 , 2)

T 5
28, d = 0

r∗ = 1.854

R(T 5
28, 2) = (1 +

√
2

2 , 2)

T 5
30, d = 2

r∗ = 1.731

R(T 5
30, 2) ∪R(T 5

30, 3) = (1 +
√

2
2 , τ ]
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T 5
30, d = 2

r∗ = 1.878
R(T 5

30, 4) = (τ, 2)

T 5
32, d = 0

r∗ = 2
R(T 5

32, 1) = {2}

T 5
33, d = 0

r∗ = 2
R(T 5

33, 1) = {2}

5.4.3. Unique polygonal unit ball

T 4
3 , d = 0

r∗ = 2
R(T 4

3 , 1) = {2}

T 4
4 , d = 0

r∗ = 2
R(T 4

4 , 1) = (1,∞)

T 4
5 , d = 0

r∗ = 1.708

R(T 4
5 , 1) = {1 +

√
2

2 }

T 4
5 , d = 2

r∗ = 2
R(T 4

5 , 3) = {2}

T 4
7 , d = 0

r∗ = 2
R(T 4

7 , 2) = {2}

T 4
9 , d = 0

r∗ = 1
R(T 4

9 , 1) = {1}

T 4
10, d = 1

r∗ = 2
R(T 4

10, 4) = {2}

T 4
12, d = 0

r∗ = 1.5
R(T 4

12, 1) = (1, 2)

T 4
13, d = 0

r∗ = 1.5
R(T 4

13, 1) = {3
2}

T 4
13, d = 2

r∗ = 2
R(T 4

13, 3) = {2}

T 4
14, d = 0

r∗ = 2
R(T 4

14, 1) = {2}

T 4
15, d = 2

r∗ = 2
R(T 4

15, 2) = {2}

T 4
17, d = 0

r∗ = 2
R(T 4

17, 2) = {2}

T 5
1 , d = 0

r∗ = 2
R(T 5

1 , 1) = {2}

T 5
4 , d = 0

r∗ = 2
R(T 5

4 , 1) = {2}

T 5
5 , d = 1

r∗ = 2
R(T 5

5 , 1) = {2}

T 5
6 , d = 1

r∗ = 2
R(T 5

6 , 1) = {2}

T 5
7 , d = 0

r∗ = 2
R(T 5

7 , 1) = {2}

T 5
8 , d = 0

r∗ = 2
R(T 5

8 , 1) = {2}

T 5
9 , d = 1

r∗ = 2
R(T 5

9 , 1) = {2}
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T 5
10, d = 2

r∗ = 2
R(T 5

10, 1) = {2}

T 5
11, d = 1

r∗ = 2
R(T 5

11, 3) = {2}

T 5
12, d = 0

r∗ = 2
R(T 5

12, 1) = {2}

T 5
13, d = 1

r∗ = 2
R(T 5

13, 1) = {2}

T 5
14, d = 0

r∗ = 2
R(T 5

14, 1) = {2}

T 5
15, d = 0

r∗ = 2
R(T 5

15, 1) = {2}

T 5
17, d = 0

r∗ = 2
R(T 5

17, 1) = {2}

T 5
19, d = 0

r∗ = 2
R(T 5

19, 1) = {2}

T 5
20, d = 0

r∗ = 2
R(T 5

20, 1) = {2}

T 5
23, d = 0

r∗ = 2
R(T 5

23, 1) = {2}

T 5
24, d = 0

r∗ = 1.708

R(T 5
24, 1) = {1 +

√
2

2 }

T 5
24, d = 1

r∗ = 2
R(T 5

24, 3) = {2}

T 5
25, d = 0

r∗ = 2
R(T 5

25, 1) = {2}

T 5
27, d = 0

r∗ = 2
R(T 5

27, 1) = {2}

T 5
28, d = 0

r∗ = 1.708

R(T 5
28, 1) = {1 +

√
2

2 }

T 5
29, d = 0

r∗ = 2
R(T 5

29, 1) = {2}

T 5
30, d = 0

r∗ = 1.708

R(T 5
30, 1) = {1 +

√
2

2 }

T 5
30, d = 1

r∗ = 2
R(T 5

30, 5) = {2}

T 5
31, d = 0

r∗ = 2
R(T 5

31, 1) = {2}

T 5
34, d = 0

r∗ = 2
R(T 5

34, 1) = {2}

T 5
35, d = 0

r∗ = 2
R(T 5

35, 1) = {2}

T 6
1 , d = 0

r∗ = 2
R(T 6

1 , 1) = {2}

T 6
2 , d = 1

r∗ = 2
R(T 6

2 , 1) = {2}

T 6
3 , d = 0

r∗ = 2
R(T 6

3 , 1) = {2}

T 6
4 , d = 0

r∗ = 2
R(T 6

4 , 1) = {2}

T 6
5 , d = 1

r∗ = 2
R(T 6

5 , 1) = {2}

T 6
6 , d = 0

r∗ = 2
R(T 6

6 , 1) = {2}

T 6
7 , d = 0

r∗ = 2
R(T 6

7 , 1) = {2}
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T 6
8 , d = 0

r∗ = 2
R(T 6

8 , 1) = {2}

T 6
9 , d = 1

r∗ = 2
R(T 6

9 , 1) = {2}

T 6
10, d = 0

r∗ = 2
R(T 6

10, 1) = {2}

T 6
11, d = 0

r∗ = 2
R(T 6

11, 1) = {2}

T 6
12, d = 0

r∗ = 2
R(T 6

12, 1) = {2}

T 6
13, d = 0

r∗ = 2
R(T 6

13, 1) = {2}

T 6
14, d = 0

r∗ = 2
R(T 6

14, 1) = {2}

T 6
15, d = 0

r∗ = 2
R(T 6

15, 1) = {2}

T 6
16, d = 0

r∗ = 2
R(T 6

16, 1) = {2}

T 6
17, d = 0

r∗ = 2
R(T 6

17, 1) = {2}

T 6
18, d = 0

r∗ = 2
R(T 6

18, 1) = {2}

T 6
19, d = 0

r∗ = 2
R(T 6

19, 1) = {2}

T 6
20, d = 0

r∗ = 2
R(T 6

20, 1) = {2}

T 6
21, d = 0

r∗ = 2
R(T 6

21, 1) = {2}

T 6
22, d = 0

r∗ = 2
R(T 6

22, 1) = {2}

T 7
1 , d = 0

r∗ = 2
R(T 7

1 , 1) = {2}

T 7
2 , d = 0

r∗ = 2
R(T 7

2 , 1) = {2}

T 7
3 , d = 0

r∗ = 2
R(T 7

3 , 1) = {2}

T 7
4 , d = 0

r∗ = 2
R(T 7

4 , 1) = {2}

T 7
5 , d = 0

r∗ = 2
R(T 7

5 , 1) = {2}

T 7
6 , d = 0

r∗ = 2
R(T 7

6 , 1) = {2}

T 7
7 , d = 0

r∗ = 2
R(T 7

7 , 1) = {2}

T 7
8 , d = 0

r∗ = 2
R(T 7

8 , 1) = {2}

T 7
9 , d = 0

r∗ = 2
R(T 7

9 , 1) = {2}

T 8
1 , d = 0

r∗ = 2
R(T 8

1 , 1) = {2}

T 8
2 , d = 0

r∗ = 2
R(T 8

2 , 1) = {2}

T 8
3 , d = 0

r∗ = 2
R(T 8

3 , 1) = {2}

T 9
1 , d = 0

r∗ = 2
R(T 9

1 , 1) = {2}
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6. Verification of the classification

Obviously, the stated classification of 2-distance configurations is correct if this
holds for the classification of full 2-distance configurations.

The main challenge is to prove that this classification is complete, see Sec-
tions 6.3 and 6.5. It is not difficult to see that all the stated descriptions in fact
represent some 2-distance sets, and that their equivalence classes are really dis-
tinct. The first part was assured additionally by concrete examples which were
checked automatically. The second part can be certified with suitable invariants.

We will also discuss how the classification of affine 2-distance configuration
can be verified in Section 6.6. Of course, this process operates on the analyt-
ical descriptions which were not shown. The presented pictures were produced
automatically from this data.

The presented categories regarding strong 2-distance configurations, as well
as complete descriptions of the combinatorics of the sets F (T, r, p) which were
omitted, were directly constructed from the classification of affine 2-distance con-
figurations and its certificates, see Section 6.8.

6.1. General proof methods and certificates

Instead of publishing the complete software for generating the classification and
proving its correctness, we generated additional information, called certificates.
Certificates can be considered as some specific information to obtain from a general
proof method for some generic assertion a specific proof for a concrete assertion.

To verify that the certificate fits the general proof method for the given asser-
tion, a lot of mathematical conditions have to be checked. These tests can either
be checked by simple calculations or there are further certificates contained which
must be checked recursively by another general proof method.

Although theoretically this verification can be done by a human being, the
large number of required steps for the classification of 2-distance configurations
makes a complete manual verification impossible. But nevertheless we can check
manually some samples.

Because of that, we have to use a computer program to verify our assertions
by some general proof methods using the given certificates. Note that the require-
ments of the formal representation of statements and certificates are different for
usage by a human or by a computer program which is designed to be easily under-
stood by other mathematicians. We have chosen to use a representation suitable
for a computer program. Some conversion tools are provided to get a human
readable representation as well.

In the following we introduce generic assertions, the corresponding certifi-
cates and sketch general proof methods. The concrete assertions and certificates
are provided by the author on his web page [13], together with source code and
documentation for the implemented verification computer programs. For more
details, the chosen representation and how to use these programs please see there.
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6.2. Number representation and basic certificates

As usual, we represent integer numbers by the optional sign “-” and a sequence of
decimal digits. Rational numbers r ∈ Q can be represented as pair (p, q) ∈ Z×N,
r = p

q
. This representation is unique if p, q are relatively prime. Mono-variate

polynomials p ∈ R[X] over some ring R (e.g., R = Z) can be represented by the
finite sequence (p0, . . . , pd) in R for p(X) = p0 + p1X + · · · + pdX

d. Intervals
in R whose boundary belongs to the set R ⊂ R can easily be represented by
symbolic classification of the lower and upper boundaries as “open” or “closed”
and the corresponding bounds in R with added symbolic representation of ±∞.
All algebraic numbers a can be represented by (i, p) ∈ N × Z[X] if a ∈ A is the
i-th smallest root of p, a = RootOf(i, p). This representation is unique if p is
irreducible and has a positive leading coefficient.

Now the relations a < b, a = b as well as simple arithmetic a = b+ c, a = b · c
is easily checked for a, b ∈ Q given in the above representations without a need for
certificates. What about algebraic numbers a, b ∈ A? Using the Core Library [3],
we can check these relations without certificates, too. Without using the Core
Library we can verify the assertion a < b for a := RootOf(i, p) and b ∈ Q
or vice versa by Sturm sequences, see [9], without certificates. Thus to prove
a := RootOf(ia, pa) < b := RootOf(ib, pb) we can use any r ∈ Q with a < r < b
as certificate. a := RootOf(ia, pa) = b := RootOf(ib, pb) is for irreducible pa, pb
and positive leading coefficients only possible for (ia, pa) = (ib, pb). Otherwise we
can prove the equation using a factorization of pa and pb together with a rational
interval isolating a = b from all remaining roots of pa or pb as certificate.

These comparisons are sufficient to verify the element relation a ∈ S, where
a := RootOf(i, p) ∈ A and S is a semi-algebraic subset of R, represented as finite
sequence of intervals with boundaries in A.

Finally, for a semi-algebraic subset S of R in the above representation and
any p ∈ Z[X] we can construct certificates to verify that p(s) = 0, p(s) > 0, or
p(s) ≥ 0, respectively, for all s ∈ S.

6.3. Complete list of candidates of full 2-distance configurations

In a first combinatorial step, we generated a list of complete position-metric-
lists w which might be representations of 2-distance configurations. We call them
candidates of 2-distance configurations. For r ∈ R, the pair (w, r) is a candidate of
a full 2-distance configuration. More precisely we generated a list of pairs (wi, Pi)
which has the property, that every full 2-distance configuration can be represented
as (wi, r) with r ∈ Pi for some (wi, Pi) occurring in the produced list. We call
any pair (w, P ) consisting of a (not necessarily complete) position-metric-list w
of order n together with a set P ⊂ R a parameter-position-metric-list of order n.

In Section 6.5 we will distinguish in the second, more analytical step, these
candidates (wi, r) which really represent a full 2-distance configuration – called
realizable candidate – from the unrealizable candidates.

Note that we repeated these two steps several times for different numbers n,
since the complete list without unrealizable candidates for n − 1 points provide
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the input for producing the list of candidates with n points.
We call any position-metric-list w′ a sublist of the position-metric-list w =

(w1, . . . , wk), if there is a sequence (w′1, . . . , w
′
k) of sets of abstract directions which

is derived from w′ by inserting some empty sets, and with w′i ⊂ wi for all i ∈ [k].
Two position-metric-list w,w′ of order n are called isomorphic, if there is

a permutation φ of [n] and some s ∈ Z with φ(w) = Shift(w ′, s) or φ(w) =
Shift(Mirror(w′), s), where the operations of permutation, Shift and Mirror are
defined for position-metric-lists the same way as for abstract oriented position lists
in Remark 40, by (32) and by (33). There is one exception concerning equilateral
sets, since these can be represented twice with all symbolic distances equal to S or
all equal to B. So w and w′ are isomorphic if we can transform w′ in a sequence
of possibly reorientation, possibly switching all distances of an equilateral set,
and a shift to w. Provided that at least one of w and w ′ represents a 2-distance
configuration, w and w′ are isomorphic if and only if they represent the same
2-distance configuration.

Assume that I is a finite sequences of parameter-position-metric-lists. We say
that the candidate (w, r) is isomorphically contained in I if there is some (w∗, P ∗)
in I with r ∈ P ∗ and some sublist of w is isomorphic to w∗.

6.3.1. Generic assertions

Definition 44. For two finite sequences Q and I of parameter-position-metric-
lists of order n the assertion AssFTDCCompleteN(n,Q, I) means the following:
For each complete position-metric-list w of order n′ ≥ n, and r ∈ R, such that
(w, r) is isomorphically contained in Q, then (w, r) is also isomorphically con-
tained in I.

We will use for each n = 3, . . . , 9 one main instance of AssFTDCCompleteN(n,Q,
I). Q represents exactly all full 2-distance configurations with n − 1 points.
I = (U,C) contains all candidates Ui of at most n − 1 points which turned out
(via step 2) to be unrealizable together with all candidates Ci of full 2-distance
configurations with exactly n points not containing isomorphic copies of the un-
realizable candidates with less than n points, but without isomorphic duplicates.
This second part C is exactly the result of the current first step, while U and Q
represent results of both steps for smaller n.

Additionally, a lot (about 32,000,000) of instances AssFTDCCompleteN(n,Q′,
I) where Q′ contains just one parameter-position-metric-list will serve as lemmas
to verify recursively AssFTDCCompleteN(n,Q, I).

Definition 45. For a finite sequences I of parameter-position-metric-lists the as-
sertion AssFTDCComplete(I) means that any full 2-distance configuration in a
Minkowski plane has a representation as (w, r) such that there is some P ⊂ R
with r ∈ P and (w, P ) is contained in I. For r = 1 (equilateral sets) this holds
true with P = [1,∞).

Please note that also the converse will be true but is not claimed by AssCom-
pleteFTDC(I): each (w, P ) in I represents either equilateral sets with P = [1,∞)
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or w is not equilateral and for all r ∈ P the candidate (w, r) is realizable by a full
2-distance configuration, which is represented this way only once.

In Section 6.5 we will see how to verify the following assertions.

Definition 46. For a parameter-position-metric-lists (w, P ) the assertion
AssNonRealizableFTDC(w, P ) means that for all r ∈ P the candidate (w, r) does
not represent a full 2-distance configuration in any Minkowski plane.

6.3.2. General proof methods and generic certificates

We will prove AssFTDCComplete(I) by a sequence of verified statements AssFTD
CCompleteN(3, Q2, I3), AssFTDCCompleteN(4, Q3, I4), . . . , AssFTDCComplete
N(9, Q8, I9) with I3 = C3, I4 = (U3, C4), I5 = (U3, U4, C5), . . . , I9 = (U3, U4, . . . ,
U8, C9), Q9 := C9 and I = (Q2, Q3, . . . , Q9). Additionally we need for all Ui from
the sequence U = (U 3, U4, . . . , U 8) verified statements AssFTDCUnrealizable(Ui),
and some mappings of integers representing the relations between the components
of I, Q2, . . . , Q8, I3, . . . , I9. By induction on n we can show that Qn is a list
containing representations for all full 2-distance configurations of exactly n points,
provided that for all (w, P ) in Cn the position-metrics-lists w are complete of
order n, and all these (w, P ) occur in Un or Qn or there are (w, PU) = Un

i and
(w, PQ) = Qn

j with P = PU ∪ PQ.
Please note that U 6, . . . , U 8 (and U9) were in fact empty since all candidates

in C6, . . . , C9 were realizable as full 2-distance configurations.
We can prove AssFTDCCompleteN(n,Q, I) by a sequence of verified asser-

tions AssFTDCCompleteN(n, (Qi), I). For one-element lists Q′ we use five differ-
ent certificates for AssFTDCCompleteN(n,Q′, I). The simplest certificate only
contains the index i if (w′, P ′) := Q′1 = Ii =: (wi, Pi), or at least w′ = wi
and P ′ ⊂ Pi. Another two certificates represent the transformation necessary
to get w′′ from w′ which is isomorphic to a sublist of w′ and a reference to
AssFTDCCompleteN(n, ((w′′, P ′)), I) with certificate. Also the verified assertions
AssFTDCCompleteN(n, ((w′, P1)), I) and AssFTDCCompleteN(n, ((w′, P2)), I)
yield a certificate for AssFTDCCompleteN(n, ((w′, P ′)), I) if P ′ ⊂ P1 ∪ P2.

But the main idea behind the generation of the list Cn is represented by a
certificate which considers for fixed (i, j) ∈ Pn all possibilities for (i, j, %) to be
added into w or a similar position-metric-list, with % ∈ G. If w ′ = (w′1, . . . , w

′
k)

is not equilateral, then there are 4k possibilities for both variants % = S and
% = B, namely (w′1 ∪ {(i, j, %)}, w′2, . . . , w′k), (w′1, {(i, j, %)}, w′2, . . . , w′k), (w′1, w

′
2 ∪

{(i, j, %)}, w′3, . . . , w′k), (w′1, w
′
2, {(i, j, %)}, w′3, . . . , w′k), . . . , (w′1, . . . , w

′
k−1, w

′
k ∪

{(i, j, %)}) and (w′1, . . . , w
′
k, {(i, j, %)}), and the same again with (j, i, %) instead

of (i, j, %). For each of these 8k new position-metric-lists wx we need a statement
AssFTDCCompleteN(n, ((wx, P ′)), I) with certificates. Again, the situation is a
little more complicated for equilateral w′. Then there are another 4k possibilities
by first switching all distances in w′ and afterwards inserting (i, j, %) and (j, i, %),
where % is the distance occurring in w′.

We achieved the following numbers of realizable and unrealizable parameter-
metric-position-lists representing candidates of full 2-distance configurations:
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n 2 3 4 5 6 7 8 9
|Cn| 26 121 132 22 9 3 1
|Un| 24 106 108 0 0 0 0
|Qn| 1 4 19 35 22 9 3 1

6.4. Embedding systems for candidates of full 2-distance configurations

Sections 2 and 3 described the main tools and techniques for embedding problems
in Minkowski planes.

Using Theorem 17 together with Lemma 34 we can build for each candidate
(w∗, P ∗) in our list In the parameterized system SysEmP(ρ(w∗, X), l(w∗)) where

ρ(w,X) : (i, j) 7→





0 if i = j,

X if {i, j} ∈ L(w) := { {x, y} | ∃k : (x, y, B) ∈ wk } ,
1 otherwise .

Then (w∗, r) is realizable if and only if SysEmP(ρ(w∗, r), l(w∗)) is admissible. We
need certificates for all r ∈ P ∗ for which this system is not admissible.

To obtain the classification of affine 2-distance configurations we have to
solve these systems completely. After identifying solutions in L(SysEmP(ρ(w∗, r),
l(w∗))) which represent affinely equivalent 2-distance sets due to symmetry, this
corresponds directly to the set of all affine 2-distance configurations contained in
the full 2-distance configuration represented by (w∗, r).

SysEmP(ρ(w∗, X), l(w∗)) has homogeneous polynomial restrictions in the un-
known variables b with coefficients in Z[X], i.e., the coefficients depend polyno-
mially on the real parameter r.

Instead of solving these systems directly, we solved first the linear subsystems
SysEmPLin(ρ(w∗, X), l(w∗)). Due to the very special metrics the solution sets
of SysEmPLin(ρ(w∗, X), l(w∗)) turned out to be really nice. First, with only
one exception the dimension of the solution set is at most 3. Second, with
the same exception this solution set was also the solution set of the original
system: L(SysEmPLin(ρ(w∗, X), l(w∗))) = L(SysEmP(ρ(w∗, X), l(w∗))). This
was a big surprise for n ≥ 5, while for n ≤ 4 both systems have the same
restrictions! This result was obtained by checking each quadratic restriction
GPRI,J in SysEmP(ρ(w∗, X), l(w∗)) for common validity in the polyhedral cone
L(SysEmPLin(ρ(w∗, X), l(w∗))), see Section 6.6.2.

6.5. Realizability of candidates of full 2-distance configurations

Now we take a closer look on how to decide whether or not a candidate (w, r) of
a full 2-distance configuration is realizable. Since realizable candidates can easily
be verified with an example 2-distance set with polynomial coordinates, our main
focus is on certificates for the assertion AssFTDCUnrealizable(w, P ) for P ⊂ R.

Luckily, SysEmPLin(ρ(w, r), l(w)) is not admissible for all r ∈ P for all (w, P )
which occurred in Un.



590 N. Düvelmeyer: General Embedding Problems and . . .

But for linear systems of equations and inequalities it is easy to find certificates
using Farkas’ Lemma and dual linear systems.

Note that the real parameter X = r in SysEmPLin(ρ(w,X), l(w)) needs some
extra thoughts to adapt the well developed techniques to solve linear systems to
parameterized linear systems. Using Cramer’s rule we can express the solutions
of linear equations with polynomial coefficients by rational functions in the pa-
rameter. For homogeneous linear systems we even get polynomial solutions. The
second basic operation to solve linear systems of equations and inequalities is to
determine the sign of coefficients of the restriction functions and of the evaluated
restrictions at solutions like above. In our setting, this means to determine the
sign of f(X) or of f(r) for f ∈ Z[X]. This yields at most three semi-algebraic
subsets of R such that if r is within these sets sign f(r) is constants and known.
Finally, we get a partitioning of P into intervals (including singletons) such that
within each interval a classical algorithm to solve the systems can use polyno-
mial arithmetic and determine uniquely the sign of all expressions where this is
necessary.

Remark 47. One possibility to obtain this partitioning and the corresponding
polynomial solutions is to repeatedly

1. evaluate the parameterized system at (rational) values r for which the solu-
tion is still unknown,

2. then solve the evaluated system using rational or algebraic arithmetic and
comparison,

3. then generalize the solution using polynomial arithmetic, and finally

4. determine the largest parameter set within which the polynomial solution is
still valid.

Definition 48. A certificate Z impl,u,(E,W,S) for the assertion that u ∈ W ∪S is an
implicit equation of the system (E,W, S) in X is a vector Z impl,u,(E,W,S) ∈ RE∪W∪S.

Z impl,u,(E,W,S) ensures that u : X → R is an implicit equation of (E,W, S), i.e.,

that u(x) = 0 for all x ∈ L(E,W, S), if
∑

i∈E∪W∪S Z
impl,u,(E,W,S)
i · i(x) = 0 for

all x ∈ X, Z
impl,u,(E,W,S)
i ≥ 0 for all i ∈ W ∪ S, and finally Z

impl,u,(E,W,S)
u >

0. For parameterized system such as SysEmPLin(ρ(w,X), l(w)) this becomes
Z impl,u(X),(E(X),W (X),S(X)) ∈ Z[X]E(X)∪W (X)∪S(X) with the obvious meaning that
its evaluation at X = r is a certificate that u(r) is an implicit equation of the
evaluated system (E(r),W (r), S(r)) for all r belonging to an explicitly given set
P . In our implementation we represent this vector by its nonzero components
and we use integer indices, thus Z impl,u(X),(E(X),W (X),S(X)) ∈ Z[X]k with attached
combinatorial descriptions of the k involved restrictions of the system.

Definition 49. A certificate for the assertion that (E,W, S) is not admissible is
any s ∈ S together with a certificate Z impl,s,(E,W,S) that s is an implicit equation
of (E,W, S).
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If the certificate Z impl,s,(E,W,S) is valid then in fact (E,W, S) is not admissible,
since s(x) > 0 and s(x) = 0 for all x ∈ L(E,W, S).

Note that for all homogeneous linear systems which are not admissible such a
certificate exists and can be calculated.

Now a certificate for AssFTDCUnrealizable(w, P ) consists of one or more
certificates for the assertion that SysEmPLin(ρ(w, r), l(w)) is not admissible for
all r ∈ Pi, with P ⊂ ⋃i Pi, possibly together with basic certificates for the correct
sign of polynomials in some intervals, see Section 6.2.

6.6. Affine 2-distance configurations

There are four steps to obtain the classification of affine 2-distance configurations.
First, we determine and verify a complete description of H := L(SysEmPLin

(ρ(w, r), l(w))) 6= ∅, see 6.6.1.
Second, we will investigate the solution set X := L(SysEmP(ρ(w, r), l(w)))

from H, see 6.6.2 and 6.6.3.
Then we have to reduce symmetrical copies of the same affine 2-distance con-

figuration from X. For the symmetries in connection with permutations of the
points see 6.6.4.

And last, we will transform the reduced solution set Y ⊂ Rm(d(l(w)),n) into a set
Z ⊂ (R2)n consisting of all coordinates of exactly one (labeled) 2-distance set for
every affine 2-distance configuration, see Section 6.7. These sets were illustrated
in Section 5.3.

6.6.1. Complete solution set of linear systems

Let us denote SysEmPLin(ρ(w, r), l(w)) =: (E,W, S). Then H = L(E,W, S)
corresponds to a subset of the face lattice of the polyhedral cone L∗ := L(E,W ∪
S, ∅) = clH.

We can described L(E,W, S) as the disjoint union of relative interiors C of
polyhedral cones C ′. For C = rel intC ′ we know two representations, as C =
L(E ′, ∅, S ′), C ′ = L(E ′, S ′, ∅) with E ′ ⊂ E ∪W ∪ S and S ′ ⊂ W ∪ S, as well as
via a finite list of generators spanning C ′. The restrictions uj ∈ E ∪W ∪ S and
generators gi are combinatorially connected via the incidence relation, whether
uj(gi) = 0 or otherwise uj(gi) > 0.

The description of L(E,W, S) can easily be obtained from the description of
L∗ via generators and the incidence relation by traversing the face-lattice of L∗.

Definition 50. As certificate for the exactness of the description of L∗ = cone(g1,
. . . , gk) := {∑k

i=1 λigi : λi ≥ 0} we use the dimension d := dimL∗ and a certificate
Zdim≤d for the assertion that dimL∗ ≤ d.

The description of L∗ = cone(g1, . . . , gk) is correct provided that
• dimL∗ ≤ d holds true (see below),

• e(gi) = 0 for all e ∈ E,

• u(gi) ≥ 0 for all u ∈ W ∪ S,
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• the boolean incidence matrix I = (uj(gi) = 0)i∈[l],j∈[k], where W ∪ S =
{u1, . . . , ul}, has a property which is special to incidence matrices of d-
dimensional polyhedral cones, see [6, Definition 5.17: recursive d-incidence
property].

Definition 51. A certificate for the assertion that the solution set of the linear
system (E,W, S) in Rm is at most d-dimensional is a set Zdim≤d ⊂ E ∪W ∪ S of
cardinality m− d, together with certificates Z impl,u for all u ∈ Zdim≤d \E that u is
an implicit equation of (E,W, S).

Zdim≤d ensures that dimL(E,W, S) ≤ d if all restrictions in Zdim≤d are linearly
independent, and the certificates Z impl,u, u ∈ Zdim≤d \ E, are all valid.

Please note that these certificates play an important role already in our al-
gorithm to find the solution of a parametrized linear system. They were used to
determine the parameter set where a generalization of a solution of an evaluated
system is still valid.

6.6.2. Nonlinear restrictions

Lemma 52. For a symmetric bilinear form q we have that q(x,x) = 0 for all
x ∈ cone{g1, . . . , gk} if and only if q(x,y) = 0 for all x,y ∈ {g1, . . . , gk}.

Proof. The sufficiency of the last condition is clear by q(
∑
λigi,

∑
µjgj) =∑

i,j λiµjq(gi, gj), the necessity follows from q(gi, gi) = 0 = q(gi + gj, gi + gj)
using the formula

q(gi, gj) =
1

2
(q(gi + gj, gi + gj)− q(gi, gi)− q(gj, gj)) . (36)

�

Using (36) we can calculate symmetric bilinear forms q1, . . . , qt, each representing
one quadratic form in Edet,red(n, 2) as qi(x,x) = GPRI,J(x). Remember that
SysEmP(ρ(w, r), l(w)) = SysEmPLin(ρ(w, r), l(w))∪ (Edet,red(n, d(l(w))), ∅, ∅). If
d(l(w)) = 1, then obviously X = H. So we assume that d(l(w)) = 2 for now. With
Lemma 52 we can verify whether or not all quadratic restrictions qi(x, x) = 0 are
satisfied by all vectors x ∈ L∗ = cone(g1, . . . , gk) = clH. Since rel intL∗ ⊂ H ⊂
L∗ and quadratic forms are continuous, this test also yields the answer whether
or not all solution vectors in H also belong to X, i.e., if H = X holds true.

Investigation 53. For all full 2-distance configurations D(T, r), r ∈ R(T ), with
T 6= T 5

10 with representation (w, r) we have that

L(SysEmPLin(ρ(w, r), l(w))) = L(SysEmP(ρ(w, r), l(w))) .

Thus, up to one exception we have that X = H. In this case we define d(T, r) :=
dim lin(L(SysEmPLin(ρ(w, r), l(w))))− 1.
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6.6.3. The exception which is not polyhedral

Investigation 54. The only exception with X 6= H happens for the full 2-
distance configuration D(T 5

10, 2) = T 5
10. The solution set H of the linear sys-

tem is 4-dimensional, the corresponding cone C = cone{g1, g2, g3, g4} has 4 lin-
early independent generators. Their convex hull is a 3-dimensional tetrahedron
∆ := conv{g1, g2, g3, g4}. Since n = 5, exactly one quadratic restriction has to be
considered. The solution set X = L(SysEmP(ρ(w, 2), l(w))) ⊂ H is not convex.
But the closure clX contains all generators g1, . . . , g4 of C and 4 of the 6 faces
generated by the following edges of ∆: g1g2, g2g3, g3g4 and g4g1.

T 5
10

D(C) = {2}
In the following section about symmetry we can assume T (w) 6= T 5

10, the next one
we will consider T 5

10 separately, see Section 6.7.1.

6.6.4. Reducing the symmetry

Proposition 55. Assume that (w, r) represents a full 2-distance configuration
D = D(T, r) with d(l(w)) = 2 and that we have two solutions x1,x2 ∈ L(SysEmP
(ρ(w, r), l(w))) = X. Then there are two embeddings e1, e2 : [n]→ R2 of ([n], ρ(w,

r)) into suitable Minkowski planes with x1 = be
1

and x2 = be
2

, see (12). The corre-
sponding affine 2-distance configurations A1 and A2, containing the 2-distance sets
{e1(1), . . . , e1(n)} and {e2(1), . . . , e2(n)} (in suitable planes each), respectively, are
well defined by x1 and x2.

Then A1 = A2 holds if and only if there is a permutation σ : [n] → [n] and
a scalar λ 6= 0 with b((i, j), (k, l))(x1) = λb((σ(i), σ(j)), (σ(k), σ(l)))(x2) for all
i, j, k, l ∈ [n]. In this case we have necessarily for some s ∈ Z that σ(w) =
Shift(w, s) if λ > 0, or σ(w) = Shift(Mirror(w), s) if λ < 0.

Also the converse is true: assume that the permutation σ : [n] → [n] and a
scalar λ 6= 0 satisfy σ(w) = Shift(w, s) if λ > 0, or σ(w) = Shift(Mirror(w), s)
if λ < 0 for some s ∈ Z. Then for each b ∈ X the corresponding b′ = λ · σ(b) ∈
RSeq2,n with σ(b)(i, j) := b((σ(i), σ(n)), (σ(j), σ(n)))(b) belongs to X as well and
determines the same affine 2-distance configuration as b does.

Note that for d(l(w)) = 1 there are analogous statements, but actually these two
2-distance configurations, T 2

1 and T 3
3 , are itself affine 2-distance configurations.

Corollary 56. For each realizable candidate w, d(l(w)) = 2, there is a finite
group G = {a1, . . . , ag} of linear transformations ai in Rm(2,n) such that (using the
notation of Proposition 55) A1 = A2 holds if and only if there is some i ∈ [g] and
λ > 0 with x1 = λai(x2). All ai are orthogonal transformations for the following
symmetric and positive definite scalar product 〈x,y〉 :=

∑
I∈([n]2)2 b(I)(x) ·b(I)(y),

i.e., it is 〈x,x〉 = 〈ai(x), ai(x)〉 for all x ∈ Rm(2,n).
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Proof. We can use G := { b 7→ σ(b) : σ is permutation of [n], σ(w) = Shift(w, s),
s ∈ Z } ∪ { b 7→ −σ(b) : σ is permutation of [n], σ(w) = Shift(Mirror(w), s), s ∈
Z }. The orthogonality follows since the sums 〈x,x〉 and 〈ai(x), ai(x)〉 have exactly
the same summands but in permuted summation order, possibly multiplied by
(−1)2. �

If the group G corresponding to T (w) is trivial, i.e., if G only contains the identity,
then the set of corresponding affine 2-distance configurations coincides with all
positive equivalence classes of Y := X = L(SysEmP(ρ(w, r), l(w))). Especially G
is trivial for T 5

10, the exceptional 2-distance configuration discussed in 6.6.3.
Otherwise, if |G| > 1, we have to find a subset Y of X such that each positive

equivalence class of Y corresponds to exactly one equivalence class in X with
respect to the relation x ≡ x′ ⇔ x′ = λai(x) for some λ > 0 and i ∈ [g]. We will
sketch a general method for this task for polyhedral sets

X =
⋃̇

i∈[k]
rel int coneQi ,

where all Qi are finite sets in Rm(2,n) and 0 /∈ X. We assume that the representa-
tion of X is closed under G: for all g ∈ G and i ∈ [k] there is some j ∈ [k] with
g(coneQi) = coneQj.

This induces an equivalence relation in [k]: i ≡ j if there is some g ∈ G
with g(coneQi) = coneQj. For given X and G we can compute these equivalence
classes. Special care must be taken for g ∈ G and i ∈ [k] with g(coneQi) =
coneQi. Assume first that g(coneQi) = coneQi only happens if g(x) = x for
all x ∈ coneQi. Choosing exactly one cone rel int coneQi from every equivalence
class yields the desired subset Y of X. Note that for aesthetic reasons we did
not choose the representatives of the equivalence classes independent from each
other at random. Instead, we sorted the classes by decreasing dimension. For
each class we have chosen randomly one representative with a maximal number
of generators which coincide with generators of formerly chosen representatives.

Now assume contrarily to the above assumption that for some g ∈ G and
i ∈ [k] we have g(coneQi) = coneQi but g restricted to coneQi is not the identity.
Then there is some q ∈ Qi with g(q) 6= q. Note that q and g(q) are linearly
independent since g is orthogonal. Otherwise g(q) = λq for some λ ∈ R, thus
〈g(q), g(q)〉 = 〈q, q〉 = λ2 〈q, q〉, and λ = ±1, contradicting g(q) 6= q or 0 /∈
rel int coneQi. Thus we have to split rel int coneQi into more polyhedral pieces,
see for example the affine 2-distance configurations for T 4

5 and T 4
13. We will divide

rel int coneQi by a hyperplane h = {x : 〈n,x〉 = 0 } having q and g(q) on opposite
sides. As normal vector with respect to 〈·, ·〉 we choose the difference n := q−g(q).
Since g is an orthogonal transformation, we get that 〈n, (q + g(q))〉 = 〈q, q〉 −
〈g(q), g(q)〉 = 0, thus we really have 〈n, q〉 = −〈n, g(q)〉 = 1

2
〈n,n〉 6= 0. Now we

replace every cone C = rel int coneQj which is intersected by h but not contained
in h by three relatively open cones C ∩ {x : 〈n,x〉 < 0 }, C ∩ {x : 〈n,x〉 =
0 }, and C ∩ {x : 〈n,x〉 > 0 }. The same procedure has to be repeated for all
hyperplanes which are symmetric to h, i.e., we refine our representation of X by
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splitting all cones by hyperplanes {x : 〈n, g ′(x)〉 = 0 }, with g′ ∈ G. We obtain

X =
⋃̇
i∈[k′] rel int coneQ′i for which we start the above procedure again. It is

possible that further refinement steps are necessary to reduce the symmetry of
basic cones, but only finitely many times.

Proposition 57. Any set Y which was constructed by the above procedure con-
tains exactly one representative of the equivalence relation x ≡ x′ ⇐⇒ ∃g ∈ G :
x′ = g(x) in the set X. For X = L(SysEmP(ρ(w, r), l(w))) and the corresponding
G from Corollary 56 the positive equivalence classes [y] of Y correspond exactly
with all affine 2-distance configurations A(w, r, y) belonging to D(T (w), r).

To verify the correctness of Y we have to verify that after our refinement the rep-
resentation L(SysEmP(ρ(w, r), l(w))) =

⋃̇
i∈[k] rel int coneQi is still correct. This

can be achieved by verifying each single replacement of C = (C ∩ {x : f(x) <
0 })∪̇(C ∩ {x : f(x) = 0 })∪̇(C ∩ {x : f(x) > 0 }) in the disjoint union. Us-
ing a representation of the cones by linear restrictions – the H-representation –
this can be done combinatorially. The correctness of a parallel representation
as C = rel int coneQi, the V-representation, can be verified as described in Sec-
tion 6.6.1. Additionally we have to identify combinatorially the equivalence classes
in the cones due to symmetry.

6.7. Construction of polynomial representatives of affine 2-distance con-
figurations

Assume again that d(l(w)) = 2, the case d(l(w)) = 1 being easy.
Starting from Proposition 57 and the following representation of Y we are

looking for a set Z with description and certificates representing all corresponding
affine 2-distance configurations exactly once using explicit coordinates.

Y =
⋃̇

i∈[k]
rel int coneQi

with k ∈ N, where for all i ∈ [k]

Qi = {gi,1(r), gi,2(r), . . . , gi,l(i)(r)}

for l(i) ∈ N generators gi,j ∈ Z[X]m(2,n) (j ∈ [l(i)]) and r ∈ R.
In Remark 14 we constructed for each C = ((a1, o), (a2, o)) ∈ ([n]2)2 with

fsignl(w)(C) 6= 0 an embedding ẽC,b : [n] → R2 for b ∈ Y which belongs to

A(w, r, b) due to bẽ
C,b

= b(C)(b) · b. In contrast to the construction e in this
remark with be = b, the coordinates of ẽC,b are affinely linear functions in b.

Still we have some choices to define Z using b 7→ ẽC,b. First, we have to choose
a suitable C = ((a1, o), (a2, o)) ∈ ([n]2)2, which geometrically describes the origin
o and the two coordinate axes of a coordinate system. Second, we have to choose
for each positive equivalence class of Y only one representative y with ẽC,y ∈ Z.

Let us first consider the second problem, and assume that C has been chosen
with fsignl(w)(C) 6= 0. After scaling all generators gi,j by suitable polynomials



596 N. Düvelmeyer: General Embedding Problems and . . .

which are not zero in R, we can assume that b(C)(gi,j) =: u ∈ Z[X] is constant
for all i ∈ [k] and j ∈ [l(i)]. We define

Z := { ẽC,b : b ∈ Y, b(C)(b) = u(r) } . (37)

Geometrically this means to choose y ∈ Y belonging to the convex hull of the
generators. Since b 7→ ẽC,b is affinely linear, coneQi will be mapped to the convex
hull of {ẽC,gi,1 , . . . , ẽC,gi,l(i)}.

If we choose carefully C, then in most cases only d := d(T (w), r) ∈ {0, 1, 2}
of the 2n coordinates were not constant for all generators. Only for T = T 6

9 with
d(T, r) = 1 there are two points which can “move” together along a horizontal
line segment, always admitting a fixed difference of x-coordinates.

So we have chosen some C with a minimal number of non-constant coordinates
of ẽC,g·,· (with individual scalings for each C). Then we can take any d different
coordinates as parameters pa = b(Ca)(b), and express the coordinates of ẽC,gi,j

identically as affinely linear functions in p := (p1, . . . , pd) whose coefficients are
polynomials in r over Z, which yields ST (w),i∗ ∈ (Z[r, p1, . . . , pd]

2)n. We define the
parameter set P (T, i∗, r) as the projection of Z =

⋃
i∈[k] rel int conv{ ẽC,gi,j : j ∈

[l(i)] } to the coordinates which were used to define the parameters.
Obviously, Z defined by (37) represents each affine 2-distance configuration

exactly once if fsignl(w)(C) 6= 0. To verify the correctness of its representation

Z = {ST (w),i∗(r, p) : p ∈ P (T, i∗, r) } =: Z ′(w, r)

where P (T, i∗, r) =
⋃̇
i∈[k] rel int conv{pi,1(r), pi,2(r), . . . , pi,l(i)(r)} we will use the

correspondence ẽC,gi,j = ST (w),i∗(r, pi,j), b(C)(gi,j) = u and that the map p 7→
ST (w),i∗(r, p) is affinely linear and injective. If we have verified that X = H, then
this representation is correct.

6.7.1. The exception T 5
10 with non-polyhedral H

It remains to consider T 5
10, with n = 5 and r = 2. Luckily, the same proce-

dure as above worked fine for T 5
10 as well. Instead of X, for which we did not

have an explicit representation so far, we used the polyhedral cone H of dimen-
sion 4. Choosing a “best” C = ((a1, o), (a2, o)) ∈ ([n]2)2, we defined Z by us-
ing (37) with Y := H. Note that there is no further symmetry in T 5

10. Thus
we used the non-injective linear map b 7→ ẽC,b to project the 3-dimensional set
{ b ∈ Y : b(C)(b) = u(r) } to the set Z of dimension d(T 5

10, r) := dim aff Z = 2.
Luckily, ẽC,· maps the 2-dimensional surface X (considered in projective space) bi-
jectively to the polyhedral set Z, which is simply the relative interior of a square.
So the combinatorics of H changes by this transformation. The verification of
this exception can be done manually using topological arguments. Note that the
boundary of Z consists of four segments whose preimages belong to the closure of
X, which was verified by the authors implementation.

Summarizing we set k(T 5
10) := 1, R(T 5

10, 1) := {2}, d(T 5
10, r) := 2 for r = 2,

ST 5
10,1

:= ((p1,−1), (1, 0), (0, 0), (0, 1), (2, p2)) ∈ (Z[X, p1, p2]2)5 and P (T 5
10, 1, r) :=

(0, 1)2 = int conv{(0, 0), (0, 1), (1, 0), (1, 1)} to get the classification of affine 2-
distance configurations which belong to T 5

10.
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6.8. Strong 2-distance configurations

Remember that the idea behind the system SysEmP(ρ(w, r), l(w)) was the weak

convex position of all the points e(i)−e(j)
ρ(i,j)

∈ U ⊂ R2 with ρ = ρ(w, r). This weak
convex position is necessary and also sufficient for the existence of a unit ball B
(i.e., a convex centered body in R2) which contains U in its boundary. Exactly if
the unit ball B of the Minkowski plane M2 satisfies U ⊂ ∂B, then ρ is the metric
induced by S in M2.

In Section 5.4 we have seen how the structure of U determines the conditions
which B must satisfy: in which cases ∂B must contain some line segment, in
which cases ∂B must contain some vertices or even in which cases B is uniquely
determined by U . These questions can be answered in terms of whether or not
b ∈ rel int ac for a,b, c ∈ U . The required information for an affine 2-distance
configuration A(w, r, b) can be extracted easily from the oriented position list
l(w) together with the incidence relation of b ∈ Y with the corresponding triangle
inequality.

Proposition 58. Let ρ = ρ(w, r), e : [n]→ R2 and b := be ∈ L(SysEmP(ρ(w, r),
l(w))).

Furthermore, assume that for I = ((i1, j1), (i3, j3), (i2, j2)) ∈ (Pn)3 the vectors

a =
1

ρ(i1, j1)
(e(i1)− e(j1)),b =

1

ρ(i2, j2)
(e(i2)− e(j2)), c =

1

ρ(i3, j3)
(e(i3)− e(j3))

and −a are in this cyclical order and pairwise distinct. Then b ∈ rel int ac holds
if and only if b is incident to wI

ρ,2,fsignl(w) , i.e., if wI
ρ,2,fsignl(w)(b) = 0.

Note that the condition that a,b, c,−a are in cyclic order and distinct is equivalent
to: ({(i1, j1)}, {(i2, j2)}, {(i3, j3)}) is a sublist of l(Shift(w, s)) for a suitable s ∈ Z.
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