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Abstract. Let d be a fixed integer, 0 ≤ d ≤ 2, and let K be a family
of simply connected sets in the plane. For every countable subfamily
{Kn : n ≥ 1} of K, assume that ∩{Kn : n ≥ 1} is starshaped via
staircase paths and that its staircase kernel contains a convex set of
dimension at least d. Then ∩{K : K in K} has these properties as well.
For the finite case, define function f on {0, 1} by f(0) = 3, f(1) = 4.
Let K = {Ki : 1 ≤ i ≤ n} be a finite family of compact sets in the
plane, each having connected complement. For d fixed, d ε {0, 1}, and
for every f(d) members of K, assume that the corresponding intersection
is starshaped via staircase paths and that its staircase kernel contains
a convex set of dimension at least d. Then ∩{Ki : 1 ≤ i ≤ n} has these
properties, also. There is no analogous Helly number for the case in
which d = 2.
Each of the results above is best possible.
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1. Introduction

We begin with some definitions from [2] and [4]–[6]. Let S be a nonempty set in the
plane. Set S is called an orthogonal polygon if and only if S is a connected union
of finitely many convex polygons (possibly degenerate) whose edges are parallel

0138-4821/93 $ 2.50 c© 2008 Heldermann Verlag



528 M. Breen: Helly-type Theorems for Infinite and for Finite Intersections . . .

to the coordinate axes. Set S is horizontally convex if and only if for each pair x, y
in S with [x, y] horizontal, it follows that [x, y] ⊆ S. Vertically convex is defined
analogously. Set S is orthogonally convex if and only if S is both horizontally and
vertically convex.

Let λ be a simple polygonal path in the plane whose edges [vi−1, vi], 1 ≤ i ≤ n,
are parallel to the coordinate axes. Path λ is a staircase path if and only if the
associated vectors alternate in direction. That is, for an appropriate labeling, for
i odd the vectors

−−−→
vi−1vi have the same horizontal direction, and for i even the

vectors
−−−→
vi−1vi have the same vertical direction. Edge [vi−1, vi] will be called north,

south, east, or west according to the direction of vector
−−−→
vi−1vi. Similarly, we use

the terms north, south, east, west, northeast, northwest, southeast, southwest to
describe the relative position of points. For n ≥ 1, if the staircase path λ is a
union of at most n edges, then λ is called a staircase n-path.

Let S ⊆ R2. For points x and y in set S, we say x sees y (x is visible from y)
via staircase paths if and only if there is a staircase path in S that contains both
x and y. Set S is called convex via staircase paths (staircase convex) if and only if
for every x, y in S, x sees y via staircase paths. Similarly, set S is starshaped via
staircase paths (staircase starshaped) if and only if for some point p in S, p sees
each point of S via staircase paths. The set of all such points p is the staircase
kernel of S, denoted Ker S. Observe that a staircase starshaped set cannot be
empty.

A familiar theorem by Victor Klee [13] establishes the following Helly-type
theorem for countable intersections of convex sets: Let C be a family of convex
sets in Rd. If every countable subfamily of C has nonempty intersection, then
∩{C : C in C} is nonempty as well. Moreover, results in [3] provide the following
analogue of Klee’s theorem for sets that are starshaped via segments: Let k and d
be fixed integers, 0 ≤ k ≤ d, and let K be a family of sets in Rd, if every countable
subfamily of K has as its intersection a starshaped set whose kernel is at least
k-dimensional, then all members of K have such an intersection.

Many theorems in convexity that involve the more conventional notion of
visibility via straight line segments have interesting analogues that employ the
idea of visibility via staircase paths. (See [2], [4]–[6].) Thus it is reasonable
to pursue staircase versions of the results above, and we establish a staircase
analogue for infinite families of simply connected sets in the plane. Further, we
settle a question on the existence of related Helly numbers for finite families of
compact planar sets, each having connected complement.

Throughout the paper, we will use the following terminology and notation.
We say that a planar set S is simply connected if and only if for every simple
closed curve δ ⊆ S, the bounded region determined by δ lies in S. If λ is a simple
path containing points x and y, then λ(x, y) will denote the subpath of λ from x
to y (ordered from x to y). For any set S, int S will denote its interior. Readers
may refer to Valentine [15], to Lay [14], to Danzer, Grünbaum, Klee [8], and to
Eckhoff [9] for discussions concerning Helly-type theorems, visibility via straight
line segments, and starshaped sets.
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2. Results for infinite intersections

We begin with two easy propositions.

Proposition 1. Let K be any family of sets in Rd. If every countable intersection
of members of K has a nonempty interior, then ∩{K : K inK} has a nonempty
interior as well.

Proof. We use a contrapositive argument. Let N = {Nj : j = 1, 2, . . .} denote the
countable family of spherical neighborhoods having rational centers and rational
radii in Rd. If ∩{K : K in K} has empty interior, then for every Nj in N there is
an associated Kj in K not containing Nj. Hence ∩{Kj : j = 1, 2, . . .} contains no
spherical neighborhood at all and therefore has empty interior. The contrapositive
statement establishes the result.

Observe that an analogous result holds in any second countable topological space.

Proposition 2. Assume that K is a simply connected set in the plane and int K =
φ. If K is starshaped via staircase paths, then for each pair of distinct points x, y
in K there is a unique simple path λ in K joining x to y. Moreover, λ is either
a staircase path or a union of two staircase paths.

Proof. Let q ε Ker K. Then K contains staircase paths µx(q, x), µy(q, y) joining
q to x, q to y, respectively, and ordered from q to x, from q to y. Let z denote
the last point shared by µx, µy relative to this order. Reversing the order on
µx, λ ≡ µx(x, z) ∪ µy(z, y) is a simple x− y path in K. By our hypotheses for K,
clearly λ is unique (up to order), and λ satisfies the proposition.

The following lemma will be helpful.

Lemma 1. Let K be a family of simply connected sets in the plane, and let p, s ε ∩
{K : K inK}. Let n be a fixed integer, n ≥ 1. If every countable intersection of
members of K contains a staircase n-path from p to s, then ∩{K : K in K}
contains such a path as well.

Proof. To establish the result, we use induction on n. If n = 1, the result is
immediate. If n = 2, just two distinct staircase 2-paths from p to s exist, so clearly
one of these lies in ∩{K : K in K}. Inductively, assume that the result is true
for natural members j, 2 ≤ j < k, to prove for k. For convenience, assume that
s is strictly northeast of p. Let J denote the family of all countable intersections
of members of K. Then J satisfies our hypotheses, too. Moreover, for at least
one direction north or east, say east, every countable intersection of members of
J contains a staircase k-path from p to s whose first (nontrivial) segment is east.
For each J in J, there is in J an associated family of staircase k-paths λ from p
to s having first segment east. To each λ in our family let [p, tλ], tλ 6= p, be the
corresponding first segment, and let TJ denote the collection of points tλ. An easy
geometric argument shows that TJ is convex. (Of course, p /∈ TJ .)
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Using our comments above, every countable subfamily of {TJ : J in J} has
a nonempty intersection, so by Klee’s theorem [13], ∩{TJ : J in J} 6= φ. Select
t0 ε ∩ {TJ : J in J}. Then for every J in J, J contains a staircase k-path from
p to s having first segment [p, t0]. Thus each J in J, and hence each countable
intersection of members of K, contains a staircase (k − 1)-path from t0 to s. By
our induction hypothesis, ∩{K : K in K} contains a staircase (k−1)-path µ(t0, s)
from t0 to s, and ∩{K : K in K} contains the staircase k-path [p, t0]∪µ(t0, s) from
p to s. Therefore, the result holds for k and by induction holds for every integer
n ≥ 1, finishing the proof.

Corollary. Let K be a family of simply connected sets in the plane, and let
p, s ε ∩ {K : K inK}. If every countable intersection of members of K contains a
staircase path from p to s, then ∩{K : K inK} contains such a path as well.

Proof. We use a contrapositive argument. Suppose that ∩{K : K in K} contains
no staircase path from p to s. Then for every integer n ≥ 1,∩{K : K in K}
contains no staircase n-path from p to s. By the lemma, there exists a countable
subfamily Kn of K for which ∩{K : K in Kn} contains no staircase n-path from
p to s. Then ∩{K : K in some Kn, n ≥ 1} is a countable intersection of members
of K containing no staircase p − s path at all. The contrapositive statement
establishes the corollary.

Theorem 1. Let d be a fixed integer, 0 ≤ d ≤ 2, and let K be a family of simply
connected sets in the plane. For every countable subfamily {Kn : n ≥ 1} of K,
assume that ∩{Kn : n ≥ 1} is starshaped via staircase paths and that its staircase
kernel contains a convex set of dimension at least d. Then ∩{K : K inK} also
is starshaped via staircase paths, and its staircase kernel contains a convex set of
dimension d.

Proof. There are two parts to the proof.

Part 1. In this part of the argument, we will show that ∩{K : K in K} contains a
convex subset of dimension at least d. If every countable intersection of members
of K has a nonempty interior, then by Proposition 1 ∩{K : K in K} has nonempty
interior as well, and thus ∩{K : K in K} contains a convex set of dimension at
least d. Therefore, it suffices to consider the case in which, for some countable
subfamily {Kn : n ≥ 1} of K, G ≡ ∩{Kn : n ≥ 1} has empty interior. Of course,
this implies that 0 ≤ d ≤ 1. Let q ε Ker G 6= φ. If q is the only point in
G, then d = 0, q belongs to every K in K, and {q} = ∩{K : K in K}. Again
∩{K : K in K} contains a convex set of dimension d. Thus we assume that G
is nontrivial. For future reference, observe that G and its staircase starshaped
subsets satisfy Proposition 2.

Without loss of generality, assume that q is the origin, and let Q1, Q2, Q3, Q4

denote the standard four closed quadrants of the plane at q. For each i, 1 ≤ i ≤ 4,
let A1i denote the set of points in G ∩Qi district from q and visible from q via a
staircase 1-path (horizontal or vertical segment) in G. If A1i 6= φ, then each of its
points lies in a maximal connected subset s of A1i, and s is either a segment with
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endpoint q or a ray emanating from q. Define E1i to be the associated collection
of sets s ∪ {q}. If A1i = φ, then E1i = φ. Finally, define E1 = ∪{E1i : 1 ≤ i ≤ 4}.
Since G is nontrivial, E1 contains at least one set, and clearly E1 contains at most
four distinct sets.

Inductively, for k > 1 assume that Ek−1 is defined. For 1 ≤ i ≤ 4, let
Aki denote the set of points in Qi visible from q via a staircase k-path in G
but not via a staircase (k − 1)-path in G. If Aki 6= φ, then each of its points
lies in a maximal connected subset s of Aki, and s is either a segment or a ray.
Moreover, s has exactly one endpoint xs in a member of Ek−1. Define Eki to be
the associated collection of sets s ∪ {xs}. If Aki = φ, then Eki = φ. Finally, let
Ek = ∪{Eki : 1 ≤ i ≤ 4}. By induction, Ek is defined for every integer k ≥ 1.
Clearly ∪{e : e in Ek for some k} = G.

For future reference, notice that for any x ε G\{q} and for λ(q, x) the asso-
ciated (unique) q − x staircase path in G, each segment of λ is a subset of a
corresponding member of ∪{Ek : k ≥ 1}. If λ consists of exactly k0 segments,
then for 1 ≤ j ≤ k0 the jth segment of λ lies in a corresponding member of Ej.

Let J denote the family of all countable intersections of members of {K ∩G :
K in K}. Of course, J satisfies our hypotheses. The following propositions will be
useful.

Proposition 3. For some k ≥ 1, let e ε Ek, and let J ε J. If points x, y belong to
J ∩ e, then [x, y] ⊆ J ∩ e. That is, J ∩ e is convex.

Proof of Proposition 3. Since e is a segment or a ray in G, certainly [x, y] ⊆ e.
By Proposition 2, [x, y] is the only simple x− y path in G, hence the only simple
x − y path available to lie in the staircase starshaped subset J . Thus [x, y] ⊆ J
as well.

Proposition 4. For some k ≥ 1, let ex, ey ε Ek+1, and let e ε Ek. Assume that
each set ex, ey contains a point of e. Let J ε J. If x ε J ∩ ex and y ε J ∩ ey, then
J ∩ e 6= φ.

Proof of Proposition 4. Set G necessarily contains the simple path from point x
along ex to e, then along e to ey, then along ey to point y. Again using Proposition
2, this path lies in J as well, so J ∩ e 6= φ.

Proposition 5. For some k ≥ 2 and for J ε J, assume that points x, y of J belong
to distinct members ex, ey of Ek. Then for some e in Ek−1, e ∩ ex ∩ J 6= φ. (A
parallel statement holds for ey.)

Proof of Proposition 5. Let µx(q, x), µy(q, y) denote the staircase paths in G from
q to x, q to y, respectively, and let z be the last point the paths share. By the
argument in Proposition 2, λ ≡ µx(x, z)∪µy(z, y) is the unique simple x− y path
in G, so λ ⊆ J ∩ G. Of course, by previous comments z belongs to a member of
Ej for some 1 ≤ j ≤ k. If j < k, then µx(z, x) will meet a segment or ray from
each set Ej, Ej+1, . . . , Ek. If µx(z, x) meets edge e of Ek−1, then the last point of
µx(z, x) ∩ e satisfies the proposition.
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We will show that this must occur. Suppose on the contrary that z is not on a
member of Ej for any j ≤ k−1. Then z is in a member of Ek (only). This implies
that µx(q, x) and µy(q, y) share points from a member of E1, from a member of
E2, . . ., from a member of Ek. But then z, x, y must all lie on the same member
of Ek, contradicting our hypothesis. This finishes the argument and establishes
Proposition 5.

We will prove that ∩{J : J in J} 6= φ and hence ∩{K : K in K} 6= φ. There are
two cases to consider.

Case 1. Suppose that for each k ≥ 1 there is some Jk in J meeting at most
countably many segments and rays from Ek. Then J0 ≡ ∩{Jk : k ≥ 1} is a
member of J that meets at most countably many members e of ∪{Ek : k ≥ 1}.
For every such e, J0∩e is convex by Proposition 3. Thus J0 is a countable union of
segments and/or rays f , each a maximal convex subset of an associated member
e of ∪{Ek : k ≥ 1}. Label these f sets by {fm : m ≥ 1}.

We assert that for some m0, every member J of J meets fm0 : Suppose,
on the contrary, that for every m there is some J ′

m with J ′
m ∩ fm = φ. Then

∩{J0 ∩ J ′
m : m ≥ 1} = φ, contradicting our hypothesis for countable intersections

of members of K. This proves the assertion.
Therefore, for some m0 ≥ 1, every member of J meets fm0 . Since any countable

intersection of members of {J ∩ J0 : J in J} is in J, any such intersection meets
fm0 . That is, every countable subfamily of {J ∩ J0 ∩ fm0 : J in J} has a nonempty
intersection in fm0 . Since the sets J ∩ J0 ∩ fm0 are convex, by Klee’s theorem [13]
it follows that ∩{J ∩ J0 ∩ fm0 : J in J} 6= φ. Of course, this nonempty intersection
lies in ∩{K : K in K}, so ∩ {K : K in K} 6= φ, the desired result. This finished
Case 1.

Case 2. Suppose that for some k0 ≥ 1 there is no corresponding Jk0 in J meeting
at most countably many segments and rays from Ek0 . That is, every J in J meets
uncountably many members of Ek0 . Without loss of generality, assume that k0

is as small as possible. Observe that k0 ≥ 2 since E1 has at most four members.
Then for Ei, 1 ≤ i ≤ k0−1, there is some Ji in J meeting at most countably many
segments and rays from Ei.

Fix J in J and consider the set J1 ∩ · · · ∩ Jk0−1 ∩ J . This member of J

meets uncountably many members of Ek0 but just countably many members of
E1 ∪ · · · ∪ Ek0−1. By Proposition 5, if points x, y in J1 ∩ · · · ∩ Jk0−1 ∩ J belong
to distinct members of Ek, then J1 ∩ · · · ∩ Jk−1 ∩ J contains points from at least
one member of Ek0−1. Since only countably many members of Ek0−1 are available,
points from uncountably many members of Ek0 must correspond to the same
member of Ek0−1. That is, uncountably many Ek0 members meet the same Ek0−1

member at points of J1∩ · · ·∩Jk0−1∩J . We define E(J) to be the collection of all
members e of Ek0−1 for which J1∩· · ·∩Jk0−1∩J contains points from uncountably
many members of Ek0 along e. Of course, if e ε E(J), then e ∩ Jk0−1 6= φ.

We assert that some member of Ek0−1 belongs to every set E(J): Otherwise,
for every e in Ek−1, there would be an associated Je in J for which e /∈ E(Je). But
then J0 ≡ ∩{J1 ∩ · · · ∩ Jk−1 ∩ Je : e in Ek−1, e ∩ Jk−1 6= φ} would be a countable
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intersection of members of J for which E(J0) = φ. That is, J1∩· · ·∩Jk0−1∩J0 ≡ J0

would belong to J yet meet only countably many members of Ek0 , contradicting
our choice of k0. Our assertion is established.

Select e0 ε ∩{E(J) : J in J} 6= φ. For each J in J, define eJ = J1∩· · ·∩Jk0−1∩
J ∩ e0. By our choice of e0, each set eJ contains points from uncountably many
members of Ek0 , so eJ 6= φ. By Proposition 3, eJ is convex as well. It is easy to
see that every countable subfamily of {eJ : J in J} has a nonempty intersection,
so ∩{eJ : J in J} 6= φ by Klee’s theorem [13]. Since ∩{eJ : J in J} ⊆ ∩{K :
K in K},∩{K : K in K} 6= φ. Again we have the desired result. This finishes
Case 2.

We conclude that ∩{K : K in K} 6= φ. Select point p in this intersection. If d = 0,
the argument in Part 1 is finished. If d = 1, then every countable intersection
of members of K is starshaped via staircase paths, is nontrivial, and contains p.
Thus every such intersection contains at p a nondegenerate segment that is either
north, south, east, or west of p. It is easy to see that for at least one of these four
directions, say north, every countable intersection of members of K contains at p
a nondegenerate segment north of p. Moreover, a simple contrapositive argument
shows that ∩{K : K in K} necessarily contains such a segment as well. That is,
∩{K : K in K} contains a convex subset of dimension one. This finishes Part 1 in
the proof.

Part 2. In this part of the proof, we will show that the nonempty set S ≡ ∩{K :
K in K} is starshaped via staircase paths and that its staircase kernel contains a
convex subset of dimension d. Let J denote the family of all countable intersections
of members of K. Clearly J satisfies our hypotheses for Theorem 1.

We will use a strategy employed in [2], [3], and [7]. Adapting an argument
by Bobylev [1], for each Jα in J, we define Mα = {x : x in Jα, x sees via staircase
paths in Jα each point of S}. Let M denote the family of all the Mα sets. We will
show that M satisfies the hypotheses for Theorem 1.

It is easy to see that each set Mα is simply connected: Let γ be any simple
closed curve in Mα, with point b in the bounded region B determined by γ. Clearly
B ⊆ Jα. Select points v, w in γ such that b ε (v, w) ⊆ B ⊆ Jα and [v, w] is vertical.
For every point s in S, both v and w see s via staircase paths in Jα. The simply
connected region bounded by these paths and [v, w] lies in Jα. Moreover, by [6,
Lemma 2] this region is an orthogonally convex (and staircase convex) polygon,
and hence b sees s via a staircase path in Jα. Since this is true for every s in
S, b ε Mα. That is, Mα is simply connected.

We will show that each countable intersection of members of M is starshaped
via staircase paths and that its staircase kernel contains a convex set of dimension
at least d. In particular, for any countable subfamily {Mn : n ≥ 1} of M and
associated subfamily {Jn : n ≥ 1} of J, we will show that Ker ∩ {Jn : n ≥ 1} ⊆
Ker ∩ {Mn : n ≥ 1}.

To begin, notice that for any point z in Ker ∩ {Jn : n ≥ 1} 6= φ, since
S ⊆ ∩{Jn : n ≥ 1}, z sees each point of S via staircase paths in ∩{Jn : n ≥ 1}.
Hence z sees each point of S via staircase paths in Jn for each n ≥ 1, so z ε∩{Mn :
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n ≥ 1} 6= φ.
Let z ε Ker ∩ {Jn : n ≥ 1} 6= φ and let w ε ∩ {Mn : n ≥ 1} 6= φ to show that

z sees w via staircase paths in ∩{Mn : n ≥ 1}. Since ∩{Mn : n ≥ 1} ⊆ ∩{Jn :
n ≥ 1}, certainly z sees w via a staircase path λ ≡ λ(z, w) in ∩{Jn : n ≥ 1}.
We will show that λ ⊆ ∩{Mn : n ≥ 1}. For convenience of notation let n = 1
to show that λ ⊆ M1. Fix s ε S. By comments above, since z ε Ker ∩ {Jn : n ≥
1}, z ε ∩{Mn : n ≥ 1}, so z ε M1. Hence z sees s via a staircase path µ(z, s) in J1.
Similarly, since w ε M1, w sees s via a staircase path δ(w, s) in J1. By [6, Lemma
2], the bounded region determined by λ(z, w)∪µ(z, s)∪ δ(w, s) is an orthogonally
convex (and staircase convex) polygon, and this region lies in J1 by hypothesis.
We conclude that each point of λ(z, w) sees s via a staircase path in J1. Since this
is true for every s in S, λ(z, w) ⊆ M1. A parallel argument holds for each integer
n ≥ 1, so λ(z, w) ⊆ ∩{Mn : n ≥ 1}, the desired result. We have shown that,
for every w in ∩{Mn : n ≥ 1}, z sees w via a staircase path in ∩{Mn : n ≥ 1}.
Hence z ε Ker ∩ {Mn : n ≥ 1}, and Ker ∩ {Jn : n ≥ 1} ⊆ Ker ∩ {Mn : n ≥ 1}.
This implies that ∩{Mn : n ≥ 1} is starshaped via staircase paths and that its
staircase kernel contains a convex set of dimension at least d.

Since M satisfies the hypotheses of Theorem 1, we may apply the argument
in Part 1 above to conclude that ∩{Mα : Mα in M} is nonempty and contains a
convex subset of dimension at least d. Let p belong to ∩{Mα : Mα in M}. Then
for every Jα in J and for every s in S, p sees s via a staircase path λα(p, s) in Jα.
That is, every countable intersection of members of K contains a staircase path
from p to s. By the corollary to Lemma 1, ∩{K : K in K} ≡ S contains such
a path as well. Since this holds for every s in S, p ε KerS. Thus ∩{Mα : Mα in
M} ⊆ KerS, and in fact it is easy to see that the sets are equal. Thus KerS is
nonempty and contains a convex set of dimension at least d, finishing Part 2 and
establishing the theorem.

The result in Theorem 1 fails without the simple connectedness condition, as
Example 1 demonstrates.

Example 1. For each real number r, let (r, 0) be the associated point on the x
axis and let Kr = R2\{(r, 0)}. Define K = {Kr : r real}. It is easy to see that
countable intersections of members of K are starshaped via staircase paths: For
any countable collection {rn : n ≥ 1} of real numbers, choose r0 /∈ {rn : n ≥ 1}.
Then for every real number s 6= 0, (r0, s) ε Ker ∩ {Krn : n ≥ 1}. However,
∩{Kr : r real} is not connected and certainly is not starshaped via staircase paths.

Theorem 1 yields the following result for convex sets.

Corollary 1. Let d be a fixed integer, 0 ≤ d ≤ 2, and let K be a family of
sets in the plane. For every countable subfamily {Kn : n ≥ 1} of K, assume
that ∩{Kn : n ≥ 1} is convex via staircase paths and contains a convex set of
dimension at least d. Then ∩{K : K inK} has these properties as well.

Proof. Clearly staircase convex sets are simply connected and hence K satisfies the
hypotheses of Theorem 1. Using the notation from the proof of Theorem 1, Part 2,
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let S = ∩{K : K in K}. Let J denote the family of all countable intersections of
members of K and define the associated family of sets M. Observe that since each
member Jα of J is convex via staircase paths, Jα = Mα. Then by the proof of
Theorem 1, S = ∩{Jα : Jα in J} = ∩{Mα : Mα in M} = KerS contains a convex
set of dimension at least d. Moreover, using [6, Lemma 2], it is easy to see that
KerS is convex via staircase paths, so S = KerS has the required properties.

It is easy to show that Theorem 1 and Corollary 1 fail if we replace countable
with finite in the hypothesis. For example, consider the family K = {Kn : n ≥ 1},
where either Kn = {(x, y) : x ≥ n} or Kn = {(x, y) : 0 < x < 1

n
, 0 < y < 1

n
}. In

each case, finite intersections of members of K are starshaped (in fact, convex)
via staircase paths, and associated kernels are fully two-dimensional. However,
∩{Kn : n ≥ 1} = φ.

More interesting is the situation in which we require the sets in K to be
compact. Even then we cannot replace countable with finite in Theorem 1 and
its corollary, as Example 2 illustrates.

Example 2. In the plane let T = {(x, y) : 0 ≤ x ≤ 4 and 0 ≤ y ≤ 2}. For every
real number r, 0 < r < 4, let Tr = {(x, y) : r < x ≤ 4 and 0 ≤ y <

√
r }, and let

T ′
r = {(x, y) : 0 ≤ x < r and

√
r < y ≤ 2}.

Define Kr = T\(Tr ∪ T ′
r). (Set K1 ∩K2 is illustrated in Figure 1.) It is easy

to see that {Kr : 0 < r < 4} is a family of simply connected orthogonal polygons.
Moreover, every finite subfamily of {Kr : 0 < r < 4} has an intersection that is
starshaped (in fact, convex) via staircase paths, and the associated convex kernel
contains convex sets of dimension two. However, ∩{Kr : 0 < r < 4} ≡ {(x, y) :
y =

√
x, 0 ≤ x ≤ 4} is not staircase starshaped. Thus countable cannot be

replaced by finite in Theorem 1, even when the sets are compact (so that the
associated intersection is nonempty).

y= 2

y= x
y=2

y=1

x=1 x=2 x=4

T1

T

T'2
T'1

2

K1 K 2

U

Figure 1
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3. Results for finite intersections

Example 2 above shows that no finite Helly number exists to ensure that infinite
intersection of simply connected compact sets will be starshaped via staircase
paths, even when the sets are orthogonal polygons. However, for finite inter-
sections, we have the following result from [5, Theorem 1 s]: Let F be a finite
family of compact sets in the plane, each having connected complement. If every
three (not necessarily distinct) members of F have a nonempty intersection that
is starshaped via staircase paths, then all members of F have such an intersection.

Because there are Helly-type theorems to predict the dimension of the kernel
in a finite intersection of starshaped sets (see [7]), it is natural to seek staircase
analogues of these results as well. Perhaps surprisingly, there exists a finite Helly
number to guarantee that the staircase kernel contain a one-dimensional convex
subset, yet no similar number exists for the two-dimensional case. We have the
following result.

Theorem 2. Define function f on {0, 1} by f(0) = 3, f(1) = 4. Let K = {Ki :
1 ≤ i ≤ n} be a finite family of compact sets in the plane, each having connected
complement. For d fixed, d ε{0, 1}, and for every f(d) members of K, assume
that the corresponding intersection is starshaped via staircase paths and that the
associated staircase kernel contains a convex set of dimension at least d. Then all
members of f have such an intersection.

The number f(d) is best possible in each case. There is no analogous Helly
number for the case in which d = 2.

Proof. If d = 0, the result follows immediately from [5, Theorem 1 s], so we
restrict our attention to the case in which d = 1. Again by [5, Theorem 1 s], set
S ≡ ∩{Ki : 1 ≤ i ≤ n} is nonempty (and starshaped via staircase paths). As in
the proof of Theorem 1, Part 2, for each i, 1 ≤ i ≤ n, define set Mi ≡ {x : x in Ki, x
sees via staircase paths in Ki each point of S}, and let M ≡ {Mi : 1 ≤ i ≤ n}.
By arguments like those in [5, Theorem 1 s], M is a family of compact simply
connected sets. Moreover, by arguments like those in the proof of Theorem 1, Part
2, above, for any four members Mi of M, 1 ≤ i ≤ 4, Ker∩{Ki : 1 ≤ i ≤ 4} ⊆ Ker∩
{Mi : 1 ≤ i ≤ 4}. Then certainly every two members of M have a path connected
intersection and every three have a nonempty intersection. Using a version of
Molár’s theorem by Karimov, Repovs̆, and Z̆eljko [11], ∩{Mi : 1 ≤ i ≤ n} 6= φ.
Of course, this intersection is exactly KerS. Select p ε ∩ {Mi : 1 ≤ i ≤ n}. Using
our hypothesis and comments above, for every four members Mi of M, 1 ≤ i ≤
4,∩{Mi : 1 ≤ i ≤ 4} is nontrivial, is starshaped via staircase paths, and contains
p. Thus every four members of M contain at p a nondegenerate segment that is
either north, south, east, or west of p. As in the proof of Theorem 1, Part 1, for
at least one of these four directions, say north, every member of M contains at p a
nondegenerate segment north of p. Since M is finite, ∩{Mi : 1 ≤ i ≤ n} ≡ KerS
contains such a segment as well, finishing the proof of the first statement in the
theorem.
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Examples 1 and 2 in [2] show that the number f(0) = 3 above is best, while the
following easy example shows that f(1) = 4 is best as well.

Example 3. In the plane, let sj, 1 ≤ j ≤ 4, denote the four horizontal or
vertical unit segments having one endpoint at the origin. For 1 ≤ i ≤ 4, let
Ki = ∪{sj : 1 ≤ j ≤ 4, j 6= i}. Every three of the Ki sets intersect in a staircase
starshaped (staircase convex) set whose corresponding staircase kernel contains a
nondegenerate segment. However, ∩{Ki : 1 ≤ i ≤ 4} contains only the origin.

Example 4 demonstrates that there is no corresponding Helly number for d = 2.

Example 4. In the plane, for each integer k ≥ 0, let Ak denote the orthogonal
square having vertices (k, k) and (k + 1, k + 1), and let λk represent the east -
north 2-staircase from (k, k) to (k + 1, k + 1). Fix the integer n ≥ 1, and let
λ = ∪{λk : 0 ≤ k ≤ n}. For each j, 0 ≤ j ≤ n, define Kj = ∪{λ ∪ Ak : 0 ≤ k ≤
n, k 6= j}, and let K = {Kj : 0 ≤ j ≤ n}. (Figure 2 illustrates K1 for n = 4.)
Then every n members of K intersect in a simply connected orthogonal polygon
that is starshaped (in fact, convex) via staircase paths and whose staircase kernel
contains a two-dimensional convex subset. However, the staircase starshaped
(staircase convex) set ∩{Kj : 0 ≤ j ≤ n} ≡ λ has empty interior. Since n may
be as large as we like, this example reveals that no finite Helly number exists to
guarantee that the staircase kernel of our intersection contain a two-dimensional
convex subset.

λA

A

A

A

K

1
0

2

3

4

1
(for n = 4)

Figure 2

It is interesting to notice that the Helly numbers in Theorem 2 for d = 0 and
d = 1 agree with the corresponding Helly numbers for convex sets in [10] and [12]
and for starshaped sets in [7]. However, the analogy breaks down for d = 2, as
Example 4 has revealed.

Finally we turn to the convex case. Although [4, Example 4] demonstrates
that there is no finite Helly number for intersections of staircase convex polygons,
with the additional hypothesis that appropriate intersections again be staircase
convex, we have this result.

Corollary 2. Define function f on {0, 1} by f(0) = 3, f(1) = 4. Let K = {Ki :
1 ≤ i ≤ n} be a finite family of compact sets in the plane. For d fixed, d ε {0, 1},
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and for every f(d) members of K, assume that the corresponding intersection is
convex via staircase paths and contains a convex set of dimension at least d. Then
all members of K have such an intersection. The number f(d) is best possible in
each case. There is no analogous Helly number when d = 2.

Proof. The argument resembles the proof of Corollary 1 above. Observe that each
member K of K has a connected complement: Otherwise, R2\K would have a
bounded component B. For b ε B and H the horizontal line at b, H would meet
bdryB ⊆ K at a1, a2 with b ε (a1, a2), impossible since K is horizontally convex.
Hence members of K satisfy the hypotheses of Theorem 2. As in the proof of that
theorem, let S = ∩{Ki : 1 ≤ i ≤ n}. By [5, Theorem 1 s], S 6= φ, and we define the
associated family of sets M = {Mi : 1 ≤ i ≤ n}. Observe that Ki = Mi, 1 ≤ i ≤ n,
and therefore S = ∩{Ki : 1 ≤ i ≤ n} = ∩{Mi : 1 ≤ i ≤ n} = KerS, which is
staircase convex. If d = 0, the argument is finished. If d = 1, then by Theorem 2
above, KerS (and hence S) contains a convex set of dimension at least one, and
again the proof is complete.

Example 1 in [2] shows that f(0) = 3 is best, while Example 3 above indicates
that f(1) = 4 is best. Of course, Example 4 above settles the case for d = 2.

It is interesting to compare the Helly numbers above to the Krasnosel’skii
numbers for the dimension of the staircase kernel of an orthogonal polygon in [4].
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