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Abstract. In our recent work we gave a treatment of certain as-
pects of multiplication modules, projective modules, flat modules and
cancellation-like modules via idealization. The purpose of this work is
to continue our study and develop the tool of idealization, particularly
in the context of closed, divisible injective, and simple modules. We de-
termine when a ring R (M), the idealization of M , is a quasi-Frobenius
or a distinguished ring. We also introduce and investigate the concept
of M -1

2
(weak) cancellation ideals.
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0. Introduction

All rings are commutative with identity and all modules are unital. Let R be a
ring and M an R-module. M is a multiplication module if every submodule N of
M has the form IM for some ideal I of R. Equivalently, N = [N : M ] M, [18]. A
submodule K of M is multiplication if and only if N ∩K = [(N ∩K) : K] K =
[N : K] K for all submodules N of M .

Let P be a maximal ideal of R and let TP (M) = {m ∈ M : (1− p) m = 0
for some m ∈ M}. Then TP (M) is a submodule of M . M is called P -torsion
if TP (M) = M . On the other hand M is called P -cyclic provided there exist
m ∈ M and q ∈ P such that (1− q) M ⊆ Rm. El-Bast and P. F. Smith, [19,
Theorem 1.2], showed that M is multiplication if and only if M is P -torsion or
P -cyclic for each maximal ideal P of R. A multiplication module M is locally
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cyclic and the converse is true if M is finitely generated, [18, Proposition 4]. A
submodule N of M is called a pure submodule of M if IN = N ∩ IM for every
ideal I of R, [20]. An ideal I is a pure ideal of R if and only if I is locally either
R or zero, [22].

Let N be a submodule of M and I an ideal of R. The residual submodule N
by I is [N :M I] = {m ∈ M : Im ⊆ N}, [24] and [25]. Obviously, [N : IM ] M ⊆
[N :M I]. The reverse inclusion is true if M is multiplication. If M is faithful
multiplication or projective then [0 :M I] = (annI) M . See [7] and [2, Lemma 5].

For a ring R and an R-module M , the idealization of M is the ring R(+)M =
R (M) which is formed from the direct sum R ⊕M by defining multiplication of
elements (r, m) and (s, n) of R (M) by (r, m) (s, n) = (rs, rn + sm). The purpose
of idealization is to put M inside a commutative ring A so that the structure of
M as an R-module is essentially the same as that of M as an A-module, that
is an ideal of A. 0(+)M is an ideal of R (M) satisfying (0(+)M)2 = 0. Every
ideal contained in 0(+)M has the form 0(+)N for some submodule N of M and
every ideal contains 0(+)M has the form I (+)M for some ideal I of R. Since
R ∼= R (M) /0(+)M, I → I (+)M gives a one-to-one correspondence between the
ideals of R and the ideals of R (M) containing 0(+)M . Thus prime (maximal)
ideals of R (M) have the form P (+)M for some prime (maximal) ideals P of R.
Homogeneous ideals of R (M) have the form I (+)N where I is an ideal of R, N a
submodule of M and IM ⊆ N . These ideals play a special role in studying prop-
erties of R (M) and showing how these properties are related to those of R and M .
It is shown, [17, Theorem 3.3], that a principal ideal R (M) (a, m) is homogeneous
if and only if R (M) (a, m) = Ra(+)(Rm + aM) = R (M) (a, 0)+R (M) (0, m), and
every ideal of R (M) is homogeneous if and only if every principal ideal of R (M)
is homogeneous. A ring R (M) is called homogeneous if every ideal of R (M) is
homogeneous, [3] and [4]. It is shown, [17, Corollary 3.4], that if R is an integral
domain then R (M) is homogeneous if and only if M is divisible. In this case every
ideal of R (M) is comparable to 0(+)M . If R is a local ring but not an integral
domain, R (M) is homogeneous if and only if M = 0, [17, Theorem 3.3]. If I (+)N
and J (+)K are homogeneous ideals of R (M) then[

I (+)N :R(M) J (+)K
]

= [I : J ] ∩ [N : K] (+) [N :M J ]

is homogeneous, [1, Lemma 1]. In particular, ann (I (+)N) = (annI ∩ annN)(+)

[0 :M I]. If M is faithful multiplication or projective then ann (I (+)IM) = annI (+)

(annI) M .
In our recent work on idealization we investigated the idealization of mul-

tiplication modules, projective modules, flat modules, like-cancellation modules,
invertible submodules, large and small submodules. We also determined when
a ring R (M) is a multiplication ring, ZPI-ring, arithmetical ring, Prüfer ring,
Bezout ring, (quasi) valuation ring, Marot ring, P -ring, coherent ring, finite con-
ductor ring or generalized GCD ring, see [1]–[5].

In the first part of this paper we investigate the idealization of modules, partic-
ularly in the context of closed, divisible, injective and simple modules, continuing
and extending some of our results in [1]–[5]. In the second part we show how
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quasi-Frobenius and distinguished properties of R (M) are related to those of R
and M . In the last part we introduce and investigate the concept of M -1

2
(weak)

cancellation and M -1
2

join principal ideals, particularly when M is a multiplica-
tion module. In the first and third part of the paper, some of our results of [3]
will be improved by weakening the required conditions.

All rings are commutative with identity and all modules are unital. For the
basic concepts used, we refer the reader to [20]–[25].

1. Some properties of homogeneous ideals

In this section we explore several properties of a homogeneous ideal of R(M) and
show how these properties can be transferred to its components and conversely.

Let R be a ring and N a submodule of an R-module M . Then N is called an
addition complement (resp. intersection complement), briefly adco (resp. inco),
of a submodule K of M if K + N = M (resp. K ∩ N = 0) and N is minimal
(resp. maximal) in K + N = M (resp. K ∩ N = 0), that is for all submodules
L of M with L + K = M (resp. L ∩ K = 0) and L ⊆ N (resp. N ⊆ L) then
N = L. It is shown, [23, Corollary 5.2.2], that for all submodules K and N of M ,
K ⊕N = M if and only if N is adco and inco of K in M . It is also well-known,
[23, Lemmas 5.2.4 and 5.2.5], that for all submodules N , K and L of M if N is
adco (resp. inco) of K and K is adco (resp. inco) of L then N is adco (resp. inco)
of L. A submodule N of M is large in M if for all submodules K of M , N ∩K = 0
implies K = 0. A submodule X of M is said to be closed in M if whenever X
is a large submodule of a submodule U of M then X = U . It is proved that a
submodule X of M is closed in M if and only if X is inco of a submodule of
M , [23]. Every submodule of M is a direct summand in M if and only if every
submodule of M is closed in M . For properties of adco, inco, large and closed
submodules and ideals, see for example [20] and [23].

The following result gives some basic properties of the addition complement,
intersection complement and closed ideals and submodules.

Proposition 1. Let R be a ring, M an R-module, I and J ideals of R and K
and N submodules of M .

(1) Let M be finitely generated multiplication. If I + annM is adco of J then
IM is adco of JM and the converse is true if we assume further that M is
faithful.

(2) Let M be faithful multiplication. If I is inco of J then IM is inco of JM
and the converse is true if we assume further that M is finitely generated.

(3) Let M be faithful multiplication. If I is closed in R then IM is closed in M
and the converse is true if we assume further that M is finitely generated.

(4) Let M be finitely generated multiplication. If [N : M ] is adco of [K : M ]
then N is adco of K and the converse is true if we assume further that M
is faithful.

(5) Let M be faithful multiplication. If [N : M ] is inco of [K : M ] then N is
inco of K and the converse is true if we assume further that M is finitely
generated.
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(6) Let M be faithful multiplication. If [N : M ] is closed in R then N is closed in
M and the converse is true if we assume further that M is finitely generated.

Proof. (1) Let M be finitely generated multiplication. Let I+annM be adco of J .
Then I + annM + J = R, and hence IM + JM = M . Suppose L be a submodule
of M such that L + JM = M and L ⊆ IM . It follows that M = ([L : M ] + J)M ,
and by, [22, Theorem 76], we have that

R = [L : M ] + J + annM = [L : M ] + J.

Since [L : M ] ⊆ [IM : M ] = I + annM , we get that I + annM = [L : M ]
and hence IM = L. So IM is adco of JM . Conversely, assume M is finitely
generated, faithful and multiplication. Let IM be adco of JM . Then (I + J) M =
IM + JM = M , and hence I + J = R, [29, Corollary 1 to Theorem 9]. Assume
A is an ideal of R such that A + J = R and A ⊆ I. Then AM + JM = M and
AM ⊆ IM . Since IM is adco of JM, AM = IM , and hence A = I. So I is adco
of J .

(2) Suppose M is faithful and multiplication. Let I be inco of J . Then I ∩ J = 0
and by, [19, Corollary 1.7], IM ∩ JM = 0. Let L be a submodule of M such
that L ∩ JM = 0 and IM ⊆ L. So [L : M ] ∩ J ⊆ [L : M ] ∩ [JM : M ] =
[(L ∩ JM) : M ] = [0 : M ] = 0 and I ⊆ [L : M ]. It follows that I = [L : M ] and
hence IM = L. Then IM is inco of JM . Conversely, let IM be inco of JM . Then
IM ∩ JM = 0, and hence (I ∩ J) M = 0. This implies that I ∩ J ⊆ [0 : M ] = 0.
Let A be an ideal of R such that A∩ J = 0 and I ⊆ A. Then AM ∩ JM = 0 and
IM ⊆ AM . Hence IM = AM and hence I = A. This gives that I is inco of J .

(3) Let I be closed in R and let IM be large in a submodule L of M . Then
I is large in [L : M ]. For, let J ⊆ [L : M ] and I ∩ J = 0. Since M is faithful
multiplication, it follows by, [19, Corollary 1.7], that IM∩JM = 0. Since JM ⊆ L
and IM is large in L, JM = 0, and hence J = 0. As I is closed in R, we get that
I = [L : M ] and hence L = IM . So IM is closed in M . For the converse, suppose
that IM is closed in M . Let I be large in J . Then IM is large in JM . For, if
L ⊆ JM and IM ∩ L = 0, then

0 = [0 : M ] = [(IM ∩ L) : M ] = I ∩ [L : M ] .

It follows that [L : M ] = 0, and hence L = 0. This implies that IM = JM , and
hence I = J . So I is closed in R.

The proofs of (4), (5) and (6) follow by (1), (2) and (3) respectively. �

The next two results give some properties of idealization of addition complement,
intersection complement and closed ideals and submodules.

Theorem 2. Let R be a ring, M an R-module and R (M) the idealization of M .
Let I be an ideal of R and N a submodule of M .

(1) If 0(+)N is adco of an ideal H of R (M) then H = R(M).

(2) Let M be faithful. If I (+)M is inco of an ideal H of R (M) then H = 0.
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(3) N is adco of a submodule K of M if and only 0(+)N is adco of 0(+)K in
0(+)M .

(4) N is inco of a submodule K of M if and only if 0(+)N is inco of 0(+)K in
0(+)M .

(5) N is closed in M if and only if 0(+)N is closed in 0(+)M .

(6) Let M be faithful multiplication. If I (+)IM is closed in R(M) then I is closed
in R. The converse is true if we assume further that M is finitely generated.

(7) If I (+)IM is adco of an ideal J (+)JM of R (M) then I is adco of J . The con-
verse is true if R (M) is homogeneous and M finitely generated and faithful.

(8) Let M be faithful multiplication. If I (+)IM is inco of an ideal J (+)JM of
R (M) then I is inco of J . The converse is true if we assume further that
R (M) is homogeneous.

Proof. (1) If 0(+)N is adco of H then 0(+)N + H = R (M). Hence H (0(+)N) =
0(+)N , and hence 0(+)N ⊆ H. So H = R (M).

(2) If I (+)M is inco of H then I (+)M ∩H = 0, and hence 0(+)M ∩H = 0. Since M
is faithful, 0(+)M is large in R (M), [3, Proposition 14]. Hence H = 0.

The proofs of (3), (4) and (5) are easy exercises by using the fact that any ideal
H ⊆ 0(+)M has the form 0(+)K for some submodule K of M .

(6) Suppose I (+)IM is closed. Let J be an ideal of R such that I is large in J .
Then I (+)IM is large in J (+)JM . For, let H ⊆ J (+)JM such that I (+)IM ∩H = 0.
Then I (+)IM ∩H∩0(+)M = 0. Assume H∩0(+)M = 0(+)K for some submodule K
of M . Then 0(+)IM ∩K = 0, and hence IM ∩K = 0. Next, 0(+)K = H ∩0(+)M ⊆
J (+)JM ∩0(+)M = 0(+)JM , and hence K ⊆ JM . Since I is large in J , IM is large
in JM and this implies that K = 0 and hence 0 = H∩0(+)M . Since 0(+)M is large
in R(M), H = 0. So I (+)IM is large in J (+)JM gives that I (+)IM = J (+)JM , and
hence I = J . So I is closed in R. Conversely, let I be closed in R and suppose
H is an ideal of R (M) such that I (+)IM is large in H. Then I (+)IM is large in
H ∩ 0(+)M = 0(+)K for some submodule K of M . We show that IM is large in
K. Let L ⊆ K with IM ∩ L = 0. Then I (+)IM ∩ 0(+)L = 0 where 0(+)L ⊆ 0(+)K.
It follows that 0(+)L = 0 and hence L = 0. As I is closed in R, we get from
Proposition 1 that IM is closed in M and hence IM = K. This implies that

I (+)IM ∩ 0(+)M = 0 + IM = 0(+)K = H ∩ 0(+)M.

Similarly, I (+)IM is large in H (0(+)M) = 0(+)X for some submodule X of M and
hence IM is large in X. Since IM is closed in M , IM = X, and hence

(I (+)IM) (0(+)M) = 0(+)IM = 0(+)X = H (0(+)M) .

Since M is finitely generated faithful multiplication, 0(+)M is finitely generated
multiplication, [1, Theorem 2] and [15, Theorem 3.1], and moreover ann (0(+)M) =
0(+)M . So by, [29, Theorem 9], we have that I (+)IM + 0(+)M = H + 0(+)M . Using
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the modular law which states that for all submodules K, L and N of M such that
K ⊆ N then (K + L) ∩N = K + (L ∩N), one gets that

H = (H + 0(+)M) ∩H = (I (+)IM + 0(+)M) ∩H

= I (+)IM + (H ∩ 0(+)M) = I (+)IM + 0(+)IM

= I (+)IM.

Hence I (+)IM is closed in R(M).

(7) Suppose I (+)IM is adco of J (+)JM . Then (I + J)(+)(I + J) M = I (+)IM +
J (+)JM = R (M) and hence I + J = R. Suppose A is an ideal of R such that
A+J = R and A ⊆ I. Then A(+)AM+J (+)JM = A+J (+)(A + J) M = R (M) and
A(+)AM ⊆ I (+)IM implies that A(+)AM = I (+)IM . Hence A = I and I is adco
of J . Suppose now M is finitely generated faithful multiplication and R (M) is
homogeneous. Let I be adco of J . Then I +J = R and hence I (+)IM +J (+)JM =
R (M). Suppose A(+)K is an ideal of R (M) such that A(+)K + J (+)JM = R (M)
and A(+)K ⊆ I (+)IM . Then A + J = R with A ⊆ I and K + JM = M with
K ⊆ IM . Since I is adco of J , A = I. Since M is finitely generated faithful
multiplication, it follows by Proposition 1 that IM is adco of JM and hence
K = IM . So A(+)K = I (+)IM and this shows that I (+)IM is adco of J (+)JM .

(8) If I (+)IM is inco of J (+)JM then I (+)IM ∩J (+)JM = 0 implies that I ∩J = 0.
Suppose B is an ideal of R such that B ∩ J = 0 and I ⊆ B. Since M is faithful
multiplication, we have that B(+)BM ∩ J (+)JM = B ∩ J (+)(B ∩ J) M = 0. As
I (+)IM ⊆ B(+)BM , we get that I (+)IM = B(+)BM , and hence I = B. So I is inco
of J . Conversely, suppose R (M) is homogeneous. Let B(+)L be an ideal of R (M)
such that B(+)L ∩ J (+)JM = 0 and I (+)IM ⊆ B(+)L. Then B ∩ J = 0 with I ⊆ B
and L ∩ JM = 0 with IM ⊆ L. Since I is inco of J , I = B. By Proposition
1, IM is inco of JM and hence L = IM . This shows that B(+)L = I (+)IM and
hence I (+)IM is inco of J (+)JM . �

Proposition 3. Let R be a ring, M an R-module and I (+)N and J (+)K homoge-
neous ideals of R (M) .

(1) If I (+)N is adco of J (+)K then I is adco of J . If I is adco of J and N is
adco of K such that R (M) is homogeneous then I (+)N is adco of J (+)K.

(2) If I (+)N is inco of J (+)K then N is inco of K. If I is inco of J and N is
inco of K such that R(M) is homogeneous then I (+)N is inco of J (+)K.

(3) If I (+)N is closed in R (M) then N is closed in M .

Proof. (1) Suppose I (+)N is adco of J (+)K. Then I (+)N + J (+)K = R(M) which
implies that I + J = R. Let A be an ideal of R such that A + J = R and A ⊆ I.
Since AM ⊆ IM ⊆ N , A(+)N is a homogeneous ideal of R (M) which satisfies
that A(+)N ⊆ I (+)N and A(+)N + J (+)K = R(M). This gives that A(+)N = I (+)N
and hence A = I. So I is adco of J . Now, let R (M) be a homogeneous ring, I
is adco of J and N is adco of K. Then I + J = R and N + K = M, and hence
(I + J)(+)(N + K) = I (+)N +J (+)K = R (M). Suppose A(+)L be an ideal of R (M)
such that A(+)L + J (+)K = R (M) and A(+)L ⊆ I (+)N . It follows that A + J = R
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with A ⊆ I and L + K = M with L ⊆ K. Hence A = I and L = N from which
we get that A(+)L = I (+)N, and hence I (+)N is adco of J (+)K.

(2) Let I (+)N be inco of J (+)K. Then I (+)N ∩ J (+)K = 0 and hence N ∩K = 0.
Suppose L is a submodule of M such that L ∩K = 0 and N ⊆ L. Since IM ⊆
N ⊆ L, I (+)L is a homogeneous ideal of R (M). Moreover, I (+)L ∩ J (+)K = 0 and
I (+)N ⊆ I (+)L. This implies that I (+)N = I (+)L and hence N = L. Hence N is
inco of K. Assume now R (M) is a homogeneous ring, I inco of J and N inco
of K. Then I ∩ J = 0 and N ∩ K = 0 which shows that I (+)N ∩ J (+)K = 0.
Let A(+)L be an ideal of R (M) such that A(+)L ∩ J (+)K = 0 and I (+)N ⊆ A(+)L.
Hence A ∩ J = 0 with I ⊆ A and L ∩K = 0 with L ⊆ N . Therefore I = A and
N = L from which we infer that I (+)N = A(+)L and hence I (+)N is inco of J (+)K.

(3) Suppose I (+)N is closed in R (M). Then I (+)N is inco of some ideal H of R (M).
It follows that I (+)N ∩H = 0, and hence I (+)N ∩H ∩0(+)M = 0. Let H ∩0(+)M =
0(+)L for some submodule L of M . Then 0(+)(N ∩ L) = I (+)N ∩ 0(+)L = 0, and
hence N ∩ L = 0. We claim that N is inco of L. Let X be a submodule of M
such that X ∩ L = 0 and N ⊆ X. Since IM ⊆ N ⊆ X, I (+)X is a homogeneous
ideal of R (M) which satisfies I (+)X ∩ 0(+)L = 0 and I (+)N ⊆ I (+)X. This gives
that I (+)N = I (+)X and hence N = X. Hence N is closed in M . �

An R-module M is called finitely cogenerated if for every non-empty collection of
submodules Nλ (λ ∈ Λ) of M with

⋂
λ∈Λ

Nλ = 0, there exists a finite subset Λ′ of Λ

such that
⋂

λ∈Λ′
Nλ = 0. M is called uniform if the intersection of any two non-zero

submodules of M is non-zero, while M has finite uniform dimension if it does not
contain an infinite direct sum of non-zero submodules, [23]. As a dual of large
submodules, a submodule N of M is called small in M if for all submodules K of
M , N +K = M implies K = M . It is shown, [23, Lemma 5.1.4], that a submodule
N of M is not small in M if and only if there exists a maximal submodule Q of
M with N  Q.

Compare the next result with [3, Propositions 17 and 18].

Proposition 4. Let R be a ring, M an R-module and I (+)N a homogeneous ideal
of R (M).

(1) I (+)N is small if and only if I is a small ideal of R.

(2) Let M be finitely generated and faithful. If N is a small submodule of M
then I (+)N is small.

(3) Let M be faithful multiplication. If I is a large ideal of R then I (+)N is large.
The converse is true if we assume further that I (+)N is pure.

(4) Let M be faithful. If N is a finitely cogenerated (resp. uniform, has fi-
nite uniform dimension) submodule of M then I (+)N is finitely cogenerated
(resp. uniform, has finite uniform dimension).

Proof. (1) Suppose I (+)N is not small. There exists a maximal ideal P (+)M of
R (M) such that I (+)N * P (+)M . Hence I * P , and hence I is not small. The
statement is reversible.
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(2) Suppose M is finitely generated and faithful. Let N be a small submodule
of M . Then [N : M ] is a small ideal of R. For, let A be an ideal of R such
that [N : M ] + A = R then M = [N : M ] M + AM ⊆ N + AM ⊆ M , so that
N + AM = M . Hence AM = M . Since M is finitely generated faithful, it follows
by, [22, Theorem 76], that A = R, and hence [N : M ] is small. It follows by (1)
that [N : M ](+)N is a small ideal of R (M). Since I (+)N ⊆ [N : M ](+)N , we infer
that I (+)N is small. Alternatively, since [N : M ] is small we get that I ⊆ [N : M ]
is small and by (1), I (+)N is small.

(3) Since M is faithful multiplication and I is large, we infer that IM is a large
submodule of M , [6, Proposition 12]. Since IM ⊆ N, N is a large submodule
of M . Since M is faithful, it follows by, [3, Proposition 14], that I (+)N is large.
Conversely, suppose I (+)N is a large and pure ideal of R (M). Let J be an ideal of
R such that I ∩ J = 0. Then IJ = 0, and hence J ⊆ annI from which it follows
that J (+)(annI) M is a homogeneous ideal of R (M). Next

J (+) (annI) M ∩ I (+)N = J ∩ I (+) (annI) M ∩N

⊆ 0(+) [0 :M I] ∩N.

Using the fact that for any pure ideal A of R (hence A is locally either R or zero),
A ∩ annA = 0 is true locally and hence globally, one gets that

0 = I (+)N ∩ ann (I (+)N) = I (+)N ∩ (annI ∩ annN) (+) [0 :M I]

= (I ∩ annI ∩ annN) (+)N ∩ [0 :M I] .

This gives that J (+)(annI) M ∩ I (+)N = 0, and hence J (+)(annI) M = 0. So J = 0
and hence I is a large ideal of R.

(4) Suppose M is faithful. Let Hλ (λ ∈ Λ) be a non-empty collection of ideals of
R (M) that are contained in I (+)N such that

⋂
λ∈Λ

Hλ = 0. Then
⋂

λ∈Λ

(Hλ∩0(+)M) =

(
⋂

λ∈Λ

Hλ) ∩ 0(+)M = 0. Assume Hλ ∩ 0(+)M = 0(+)Kλ for some submodules Kλ

of M . Since Hλ ⊆ I (+)N, 0(+)Kλ ⊆ 0(+)N and hence Kλ ⊆ N . As N is finitely
cogenerated, there exists a finite subset Λ′ of Λ such that

⋂
λ∈Λ′

Kλ = 0. It follows

that

0 = 0 +
⋂

λ∈Λ′
Kλ =

⋂
λ∈Λ′

0(+)Kλ =

( ⋂
λ∈Λ′

Hλ

)
∩ 0(+)M.

Since M is faithful, 0(+)M is a large ideal of R (M) by [3, Proposition 14] and
this shows that

⋂
λ∈Λ′

Hλ = 0. Hence I (+)N is finitely cogenerated. The uniform

case is now obvious. Finally, if I (+)N contains a direct sum of subideals Hλ then
0(+)N = I (+)N ∩ 0(+)M contains a direct sum of subideals Hλ ∩ 0(+)M . Assume
Hλ ∩ 0(+)M = 0(+)Kλ for some submodules Kλ of M . It follows that

∑
λ∈Λ

Kλ is a

direct sum and contained in N . Since N has finite uniform dimension, all but a
finite number of Kλ is zero. If Kλ = 0, then Hλ ∩ 0(+)M = 0(+)Kλ = 0. Since
M is faithful, 0(+)M is large in R(M) and hence Hλ = 0. Hence I (+)N has finite
uniform dimension. �
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An R-module M is called divisible if for every regular element r ∈ R, M = rM .
And M is called injective if it is a direct summand of any R-module B that is a
submodule of, that is M is injective if for R-modules B with M ⊆ B, B = M ⊕K
for some submodule K of B, [23]. A Z-module M is injective if and only if M is
divisible. More generally, if R is an integral domain then a torsion-free R-module
M is injective if and only if M is divisible, [23]. In this paper we say that a
submodule N of M is weak injective if it is a direct summand of any submodule
of M that is contained in. In particular, if N is weak injective then it is a direct
summand of M . Let I be an ideal of R and M a faithful multiplication R-module.
If I is weak injective then IM is weak injective. For if N is a submodule of M
with IM ⊆ N , then I ⊆ [N : M ] and hence [N : M ] = I ⊕ A for some ideal A of
R, hence N = IM ⊕ AM . The converse is true if one assumes further that M is
finitely generated. Let I ⊆ J for some ideal J of R. Then IM ⊆ JM , and hence
JM = IM ⊕K = IM ⊕ [K : M ] M . This implies that J = I ⊕ [K : M ]. So for a
submodule N of a faithful multiplication module M , if [N : M ] is a weak injective
ideal of R then N is weak injective and the converse is true if we suppose further
that M is finitely generated.

The next two results show how the divisibility and weak injectivity of a ho-
mogeneous ideal of R (M) can be transferred to its components and conversely.

Proposition 5. Let R be a ring, M an R-module, I an ideal of R and N a
submodule of M .

(1) If N is divisible then 0(+)N is a divisible ideal of R (M) and the converse is
true if M is torsion-free.

(2) If M is torsion-free and I (+)IM a divisible ideal of R (M) then I is divisible.
The converse is true if we assume further that M is divisible.

(3) Let IM ⊆ N . If M is torsion-free and I (+)N a divisible ideal of R (M) then
I is divisible and N divisible. The converse is true if we assume further that
M is divisible.

Proof. (1) Suppose N is divisible. Let (r, m) be a regular element of R (M). Then
r is a regular element of R and hence N = rN. This gives that (r, m) (0(+)N) =
0(+)rN = 0(+)N , and hence 0(+)N is divisible. Assume M is torsion-free. Suppose
0(+)N is divisible and let r ∈ R be regular. Then (r,0) is regular in R (M), [1,
Lemma 6], and hence 0(+)N = (r,0) (0(+)N) = 0(+)rN . So N = rN , and hence N
is divisible.

(2) Suppose M is torsion-free and I (+)IM is divisible. Let r ∈ R be regular then
(r,0) ∈ R (M) is regular. It follows that I (+)IM = (r,0) (I (+)IM) = rI (+)rIM , and
hence I = rI which means that I is divisible. Conversely, assume M is torsion-free
and divisible and I is divisible. Let (r, m) ∈ R (M) be regular. It follows by [17,
Theorem 3.9] that R (M) (r,m) = R (M) (r, 0) and r is a regular element of R.
This implies that I (+)IM = rI (+)rIM = (r,0) (I (+)IM) = (r,m) (I (+)IM). Hence
I (+)IM is divisible.

(3) Since IM ⊆ N, I (+)N is a homogeneous ideal of R (M). Suppose M is torsion-
free and I (+)N divisible. Let r ∈ R be regular then (r,0) ∈ R (M) is regular.
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Hence I (+)N = (r,0) (I (+)N) = rI (+)rN , and hence I = rI and N = rN . So I is a
divisible ideal of R and N a divisible submodule of M . Conversely, assume M is
torsion-free and divisible. Let (r,m) ∈ R (M) be regular then r is regular and by
[17, Theorem 3.9], we have that

R (M) (r,m) (I (+)N) = (Rr(+)M) (I (+)N) = rI (+)(rN + IM)

= rI (+)(rN + rIM) = rI (+)rN = I (+)N.

Hence I (+)N is divisible. �

Proposition 6. Let R be a ring, M an R-module, I an ideal of R and N a
submodule of M .

(1) If 0(+)N is a weak injective ideal of R (M) then N = 0.

(2) Let IM ⊆ N . If I (+)N is a weak injective ideal of R(M) then I is weak in-
jective. Assuming further that M is multiplication then N is weak injective.

(3) I is weak injective if and only if I (+)IM is a weak injective ideal of R (M).

Proof. (1) If 0(+)N is weak injective then it is a direct summand of R(M) and
hence N = 0, [4, Proposition 1].

(2) Suppose I (+)N is weak injective. Then I (+)N is a direct summand of R(M)
and hence R (M) = I (+)N⊕H for some ideal H of R (M). Let H+0(+)M = A(+)M
for some ideal A of R. Then R (M) = I (+)N +A(+)M and hence R = I +A. Let J
be an ideal of R such that I ⊆ J . Since I + A is multiplication, we get from, [14,
Corollary 1.2] and [29, Proposition 4], that J = J ∩ (I + A) = (J ∩ I)+ (J ∩A) =
I + (J ∩ A). Since R (M) = I (+)N + H is multiplication, it follows again by, [14,
Corollary 1.2] and [29, Propostion 4], that

0(+)M = (I (+)N ∩H) + 0(+)M = (I (+)N + 0(+)M) ∩ (H + 0(+)M)

= I (+)M ∩ A(+)M = (I ∩ A) (+)M.

So I ∩ A = 0 and hence I ∩ (J ∩ A) = 0. This implies that J = I ⊕ (J ∩ A).
Hence I is a weak injective ideal of R. Suppose now M is multiplication. Since
R (M) = I (+)N + H is a multiplication ideal of R(M), we infer that

0(+)M = (I (+)N + H) ∩ 0(+)M

= (I (+)N ∩ 0(+)M) + (H ∩ 0(+)M) = 0(+)N + (H ∩ 0(+)M).

Assume H ∩ 0(+)M = 0(+)L for some submodule L of M . Then M = N + L.
Let K be a submodule of M such that N ⊆ K. Hence K = K ∩ (N + L).
As M = N + L is multiplication, it follows by [14, Corollary 1.2] that K =
(K ∩N) + (K ∩ L) = N + (K ∩ L). On the other hand, we have I (+)N ∩H = 0
and hence I (+)N ∩ H ∩ 0(+)M = 0. So I (+)N ∩ 0(+)L = 0 and hence N ∩ L = 0
which implies that N ∩ (K ∩ L) = 0. This finally implies that K = N ⊕ (K ∩ L)
and this shows that N is a weak injective submodule of M .

(3) Suppose I is weak injective. Then R = I ⊕ J for some ideal J of R. The fact
R = I + J implies that R (M) = I (+)IM + J (+)JM . Let H be an ideal of R(M)
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such that I (+)IM ⊆ H. As I (+)IM + J (+)JM is a multiplication ideal of R (M),
we get from, [14, Corollary 1.2], that

H = H ∩ (I (+)IM + J (+)JM)

= (H ∩ I (+)IM) + (H ∩ J (+)JM) = (I (+)IM) ∩ (H ∩ J (+)JM) .

Since I ∩ J = 0, IJ = 0 and hence

IM ∩ JM = I(IM ∩ JM) + J (IM ∩ JM) ⊆ IJM = 0.

So I (+)IM ∩ J (+)JM = I ∩ J (+)IM ∩ JM = 0. This implies that I (+)IM ∩
(H ∩ J (+)JM) = 0, and hence H = I (+)IM ⊕ (H ∩ J (+)JM). This shows that
I (+)IM is a weak injective ideal of R (M). The converse follows by part (2). �

An R-module M is said to be simple if M 6= 0 and for every submodule N of M
either N = 0 or N = M , [23]. Obviously, simple modules are multiplication. The
next result gives some properties of simple ideals and modules.

Proposition 7. Let R be a ring and M an R-module. Let I be an ideal of R and
N a submodule of M .

(1) If M is finitely generated faithful multiplication then I is simple if and only
IM is a simple submodule of M .

(2) If [N : M ] is a simple ideal of R and M faithful multiplication then N is
simple. The converse is true if we assume further that M is finitely gener-
ated.

(3) N is simple if and only if 0(+)N is a simple ideal of R (M).

(4) If I (+)IM is a simple ideal of R (M) then I is simple. The converse is true
if M is finitely generated faithful multiplication and every ideal contained in
I (+)IM is faithful.

(5) Let IM ⊆ N . If I (+)N is a simple homogeneous ideal of R (M) and I 6= 0
then I is simple. Assuming further that M is faithful then N is simple.

Proof. (1) Since I is simple and M faithful, IM 6= 0. Suppose K is a submodule
of M such that K ⊆ IM . Then [K : M ] ⊆ [IM : M ] = I. So [K : M ] = 0, and
hence K = [K : M ] M = 0, or [K : M ] = I. The latter case shows that K = IM .
Hence IM is simple. Conversely, suppose IM is simple. Then I 6= 0. Let J ⊆ I be
an ideal of R. Then JM ⊆ IM . Hence JM = 0, and hence J = 0 or JM = IM .
Since M is finitely generated faithful multiplication, it follows by [29, Corollary
to Theorem 9] that J = I. So I is simple.

(2) Follows by (1).

(3) Suppose N is simple. Then 0(+)N 6= 0. Every ideal contained in 0(+)N has the
form 0(+)K for some submodule K of N . Hence K = 0 or K = N from which we
get that 0(+)K = 0 or 0(+)K = 0(+)N . The statement is reversible.

(4) Suppose I (+)IM is simple. Then I 6= 0. Let J ⊆ I be an ideal of R. Then
J (+)JM ⊆ I (+)IM , and hence J (+)JM = 0 or J (+)JM = I (+)IM . So J = 0 or
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J = I, and hence I is simple. For the converse, let I be simple. Then I (+)IM 6= 0.
Let H ⊆ I (+)IM be an ideal of R (M). Since H is faithful by assumption, H 6= 0.
We show that H = I (+)IM . We have H ∩ 0(+)M ⊆ I (+)IM ∩ 0(+)M = 0(+)IM .
Since M is faithful, 0(+)M is a large ideal of R (M) and hence H ∩ 0(+)M 6= 0. By
(1) and (3), 0(+)IM is a simple ideal of R (M). Hence H ∩0(+)M = 0(+)IM . Next,
H + 0(+)M ⊆ I (+)IM + 0(+)M = I (+)M . Assume H + 0(+)M = J (+)M for some
ideal J of R. Then J ⊆ I. Since J (+)JM ⊆ I (+)IM is faithful, we infer that J is
faithful, [1, Theorem 9]. Hence J 6= 0 and therefore J = I. So H + 0(+)M = I (+)

M = I (+)IM + 0(+)M . Using the modular law one gets that

H = (H + 0(+)M) ∩H = (I (+)IM + 0(+)M) ∩H

= I (+)IM + (H ∩ 0(+)M) = I (+)IM + 0(+)IM

= I (+)IM.

Hence I (+)IM is a simple ideal of R (M).

(5) Suppose I (+)N is simple. Then I (+)N 6= 0. Since I (+)IM ⊆ I (+)N and I 6= 0
(and hence I (+)IM 6= 0), we get that I (+)IM = I (+)N . The fact that I is simple
follows by (4). Suppose M is faithful. Since 0(+)N ⊆ I (+)N , we have either
0(+)N = 0 (hence N = 0) or I (+)N = 0(+)N . The case that N = 0 implies that
IM = 0 and hence I = 0, a contradiction. Hence I (+)N = 0(+)N and the result
follows by (3). �

In the following result we show how purity, multiplicativity or flatness of a homo-
geneous ideal of R (M) can be transferred to its components. Compare with [2,
Theorems 9(3) and 7(2)].

Proposition 8. Let R be a ring, M an R-module and I (+)N a homogeneous ideal
of R (M).

(1) If I (+)N is pure then I is a pure ideal of R and N a pure submodule of M .

(2) Let every principal ideal contained in I (+)N be homogeneous. If I is a finitely
generated multiplication ideal of R and N a finitely generated multiplication
submodule of M then I (+)N is finitely generated multiplication.

(3) If I (+)N is multiplication then N is a multiplication submodule of M if and
only if IM is.

(4) If I (+)N is flat then I is a flat ideal of R. Assuming further that M is flat
then N is a flat submodule of M .

Proof. (1) Let J be an ideal of R. Since I (+)N is pure, we get that

JI (+)JN = (J (+)JM) I (+)N) = J (+))JM ∩ I (+)N

= J ∩ I (+)JM ∩N.

Hence JI = J ∩ I and JN = JM ∩ N which shows that I is a pure ideal of R
and N a pure submodule of M . Alternatively, let P be a prime ideal of R then
P (+)M is a prime ideal of R (M). Hence IP (+)NP

∼= (I (+)N)P (+)M = 0P (+)M or
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R (M)P (+)M . It follows that IP = 0P or IP = RP and hence I is a pure ideal of
R and NP = 0P or NP = MP . The latter case shows that for any ideal J of R,
the equality JN = JM ∩ N is true locally and hence globally. So N is a pure
submodule of M .

(2) I (+)N is finitely generated, [1, Theorem 9], and hence it is enough to prove
the result locally, [18, Proposition 4]. So we may assume R (M) is a local ring
and hence R is local. It follows that I = Ra and N = Rn for some a ∈ I and
n ∈ N . Hence I (+)N = Ra(+)Rn = Ra(+)(Rn + aM) = R (M) (a, n), [17, Theorem
3.4]. So I (+)N is multiplication.

(3) Suppose I (+)N is multiplication. We first show that I is multiplication. Let
J ⊆ I be an ideal of R. Then JM ⊆ IM ⊆ N and hence J (+)N ⊆ I (+)N is a
homogeneous ideal of R (M). It follows that J (+)N = H (I (+)N) for some ideal H
of R(M), and hence

J (+)N = J (+)N + 0(+)IM = H (I (+)N) + 0(+)IM

= (H + 0(+)M) (I (+)N) .

Assume H + 0(+)M = A(+)M for some ideal A of R. Then J (+)N = AI (+)(AN +
IM). So J = AI and hence I is multiplication. Assume now that IM is multipli-
cation. Let P be a maximal ideal of R such that NP 6= 0P . Then P (+)M is a max-
imal ideal of R (M) and (I (+)N)P (+)M 6= 0P (+)M . Hence I (+)N is P (+)M -principal
and by, [1, Theorem 9], we have that I is P -principal. From, [1, Proposition 10],
we get that I = I [IM : N ] and hence IP = IP [IM : N ]P . Since IP is principal,
we infer from, [22, Theorem 76], that RP = [IM : N ]P + ann (IP ). As I is multi-
plication and P -principal, we get that IP 6= 0P , that is, ann (IP ) 6= RP and hence
RP = [IM : N ]P . There exists p ∈ P such that (1− p) ∈ [IM : N ] and hence
(1− p) N ⊆ IM . The fact that N is multiplication follows by, [29, Corollary to
Lemma 1]. Conversely, assume that N is multiplication. Let P be a maximal
ideal of R such that (IM)P 6= 0P . Hence IP 6= 0P and as we have seen above we
have p ∈ P such that (1− p) N ⊆ IM . The fact that IM is multiplication follows
by [13, Corollary 2] and [14, Proposition 4.1].

(4) Suppose I (+)N is a flat ideal of R(M). The fact that I is a flat ideal of R
follows by [2, Theorem 7(2)]. Since I ∼= I (+)N/0(+)N is a flat R-module, we infer
from, [25, Example 1, p. 54] and [20, Corollary 11.21], that 0(+)N is a pure R-
submodule of I (+)N . Consider R(M) as a direct sum of R and M and since M is
a flat R-module, one gets that R(M) is a flat R-module. The map f : R → R(M)
defined by f(a) = (a, 0) is a homomorphism of rings and hence R(M) is a flat
R-Algebra, [25, pp. 45–46]. Now, I (+)N is flat over R(M) and R(M) is a flat
R-Algebra, so by the transitivity of flatness one obtains that I (+)N is flat over R,
see for example [25, p. 46]. Using the fact that pure submodules of flat modules

are flat, [20], we infer that 0(+)N is a flat module over R. Let
k∑

i=1

rini = 0, where

ri ∈ R and ni ∈ N . Then
k∑

i=1

ri (0, ni) = (0, 0). Since 0(+)N is flat over R, it follows

by, [25, Theorem 7.6], that there exist (0, hj) ∈ 0(+)N and aij ∈ R, 1 ≤ j ≤ `, such
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that

0 =
k∑

i=1

riaij, (0, ni) =
∑̀
j=1

aij (0, hj) .

This implies that 0 =
k∑

i=1

riaij for all j and ni =
∑̀
j=1

aijhj for all i and this shows

that N is a flat R-module, [25, Theorem 7.6]. �

Let R be a ring and K, N submodules of an R-module M . Then K divides
N , denoted K|N if N = IK for some ideal I of R. If K|N then N ⊆ K
and the converse is true if M is multiplication. The common divisor by every
common divisor of K and N (if it does exist) is denoted by GCD (K, N). Similarly,
we define LCM (K, N) as a submodule of M which is a common multiple of K
and N which divides every common multiple of K and N (if such exists). The
existence and arithmetic properties of these in the case of finitely generated faithful
multiplication modules (ideals), finitely generated projective modules (ideals) and
invertible submodules (ideals) are discussed in [9]–[12]. The next theorem gives
some relationships between the gcd and lcm of a homogeneous ideal and those
ones of its components.

Theorem 9. Let R be a ring and M an R-module.

(1) For all submodules K and N of M , if M is multiplication and gcd (0(+)K,
0(+)N) exists then GCD(K, N) exists. The converse is true if M is a faithful
prime module and in both cases

gcd (0(+)K, 0(+)N) = 0(+)GCD (K, N) .

(2) For all submodules K and N of M , lcm (0(+)K, 0(+)N) exists if and only if
LCM (K, N) exists and in this case

lcm(0(+)K, 0(+)N) = 0(+)LCM (K, N) .

(3) Let M be divisible and torsion-free. For all invertible ideals I and J of R,
gcd (I, J) exists if and only if gcd (I (+)IM, J (+)JM) and in this case

gcd (I (+)IM, J (+)JM) = gcd(I, J)(+) gcd (I, J) M.

(4) Let M be divisible and multiplication. For all homogeneous ideals I (+)N
and J (+)K of R(M), if I and J are finitely generated faithful multiplication
ideals of R and lcm (I, J) exists then lcm (I (+)N, J (+)K) exists. The converse
is true if we assume further that M is faithful, and in both cases

lcm (I (+)N, J (+)K) = lcm (I, J) (+)LCM (N, K) .

Proof. (1) Suppose M is multiplication and let gcd (0(+)K, 0(+)N) = H. Since
K = IM for some ideal I of R, 0(+)K = 0(+)IM = (I (+)M) (0(+)M) and hence
0(+)M |0(+)K. Similarly, 0(+)M |0(+)N, and hence 0(+)M |H. So H ⊆ 0(+)M and this
means that H = 0(+)G for some submodule G of M . Now, 0(+)G|0(+)K implies that
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0(+)K = H ′ (0(+)G) = (H ′ + 0(+)M) (0(+)G) for some ideal H ′ of R (M). Assume
H ′+0(+)M = A(+)M for some ideal A of R. Then 0(+)K = 0(+)AG, and hence K =
AG, that is G|K. Similarly, G|N . Suppose G′ is any submodule of M such that
G′|K and G′|N . Then K = BG′ and N = CG′ for some ideals B and C of R. This
implies that 0(+)K = 0(+)BG′ = (B(+)M) (0(+)G′) and 0(+)N = (C(+)M) (0(+)G′).
So 0(+)G′|0(+)K and 0(+)G′|0(+)N , and this gives that 0(+)G′|0(+)G. If 0(+)G =
H ′′ (0(+)G′) for some ideal H ′′ of R (M), then 0(+)G = (H ′′ + 0(+)M) (0(+)G′) =
(D(+)M) (0(+)G′) for some ideal D of R. Hence G = DG′ and hence G′|G. So
G = GCD(K, N) and hence gcd (0(+)K, 0(+)N) = 0(+)GCD (K, N). Conversely, let
GCD (K, N) = G. Then G|K and G|N and hence 0(+)G|0(+)K and 0(+)G|0(+)N .
Assume H is an ideal of R (M) such that H|0(+)K and H|0(+)N . Then 0(+)K ⊆ H
and hence annH ⊆ ann (0(+)K) = annK(+)M . Since M is faithful and prime, we
infer that annH ⊆ 0(+)M and hence annH = 0(+)L for some submodule L of M .
This implies that H (0(+)L) = 0 and hence H ⊆ ann (0(+)L) = annL(+)M = 0(+)M .
So H = 0(+)G′ for some submodule G′ of M . As 0(+)G′|0(+)K and 0(+)G′|0(+)N ,
we get that G′|K and G′|N . Hence G′|G and this implies that 0(+)G′|0(+)G. So
0(+)G = gcd (0(+)K, 0(+)N).

(2) Suppose lcm (0(+)K, 0(+)N) = H. Then 0(+)K|H and 0(+)N |H. So H ⊆
0(+)(K ∩N), and hence H = 0(+)L for some submodule L ⊆ K∩N . So 0(+)K|0(+)L
and 0(+)N |0(+)L. This implies that K|L and N |L. Suppose L′ is any submodule
of M such that K|L′ and N |L′. Then 0(+)K|0(+)L′ and 0(+)N |0(+)L′. So 0(+)L|0(+)L′

and hence L|L′ and L = LCM (K, N). This also shows that lcm (0(+)K, 0(+)N) =
0(+)L = 0(+)LCM (K, N). The converse is now obvious.

(3) For all ideals of A of R, if A(+)AM is an invertible ideal of R (M) then A is
invertible and the converse is true if M is torsion-free, [4, Theorem 2]. Suppose
M is divisible and torsion-free. Then for any ideal A of R, if Av = (A−1)

−1
is

invertible then

(A(+)AM)v =
(
(A(+)AM)−1)−1

=
(
A−1

(+)M
)−1

= Av(+)M

= Av(+)AvM,

[21, Theorem 25.10] and [17, Theorem 3.9]. Suppose gcd (I, J) exists. It follows
by, [12, Theorem 2.1], that gcd (I, J) = (I + J)v. Since (I + J)v is invertible and
M divisible, we infer that (I + J)v(+)(I + J)v M is an invertible ideal of R (M),
see [4, Theorem 5]. Moreover,

(I (+)IM + J (+)JM)v = ((I + J) (+) (I + J) M)v = (I + J)v + (I + J)v M.

Hence (I (+)IM + J (+)JM)v is an invertible of R (M) and hence gcd(I (+)IM,
J (+)JM) exists and

gcd (I (+)IM, J (+)JM) = (I + J)v (+) (I + J)v M = gcd (I, J) (+) gcd (I, J) M.

Conversely, suppose gcd (I (+)IM, J (+)JM) exists. Then ((I + J) (+) (I + J) M)v =
(I + J)v(+)M is an invertible ideal of R (M) . It follows by [4, Theorem 2] that
(I + J)v is an invertible ideal of R and gcd (I, J) exists and is (I (+)J)v. Since
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(I + J)v is invertible and M divisible (I + J)v(+)M = (I + J)v(+)(I + J)v M =
(I (+)IM + J (+)JM)v. Hence gcd (I (+)IM, J (+)JM) = gcd (I, J)(+)gcd (I, J) M .

(4) Suppose M is divisible, I and J are finitely generated faithful multiplication
ideals of R. It follows by, [4, Theorem 5], that I (+)N and J (+)K are finitely gen-
erated multiplication ideals of R (M). Since M is multiplication, we infer from,
[1, Theorem 9] and [3, Theorem 3], that N and K are multiplication submodules
of M . If lcm (I, J) exists then lcm (I, J) = I ∩ J is a finitely generated faith-
ful multiplication ideal of R, [11, Lemma 5]. It follows that (I ∩ J (+) (N ∩K))
is a finitely generated multiplication ideal of R (M) and consequently K ∩ N is
a multiplication submodule of M , [4, Theorem 5] and [1, Theorem 9]. Using
the fact that for all submodules X and Y of M if X ∩ Y is multiplication then
LCM (X,Y ) exists and LCM (X,Y ) = X ∩ Y, we get that lcm (I (+)N, J (+)K) =
I (+)N ∩ J (+)K = (I ∩ J) + (N ∩K) = lcm (I, J)(+)LCM (N, K). For the converse,
suppose M is faithful multiplication. Then I (+)N and J (+)K are finitely gener-
ated faithful multiplication ideals of R (M). Suppose lcm (I (+)N, J (+)K) exists. It
follows by [11, Lemma 5] that lcm (I (+)N, J (+)K) = (I ∩ J)(+)(N ∩K) is a finitely
generated faithful multiplication ideal of R (M). Hence I ∩ J is multiplication
and hence lcm (I, J) exists and is I ∩ J . Since M is multiplication, N ∩ K is
multiplication and hence lcm (N, K) exists and is N ∩K. Hence

lcm (I (+)N, J (+)K) = lcm (I, J) (+)LCM (N, K) .

This completes the proof of the theorem. �

2. Annihilator conditions via idealization

In [2] we discussed two annihilator conditions, namely (a.c.) and property (A)
via idealization. A ring R satisfies Property (A) if each finitely generated ideal
I ⊆ Z (R) has a nonzero annihilator, where Z (R) is the set of zero divisors of R.
A condition closely intertwined with Property (A) is the annihilator condition;
abbreviated as (a.c.): A ring R satisfies (a.c.) if for each pair of elements a and
b in R, there exists c in R such that ann (Ra + Rb) = ann (c). More generally,
we say that an R-module M satisfies (a.c.) if for each pair of elements m and n
in M , there exists k in M such that ann (Rm + Rn) = ann (k), [21]. It is proved
that if M is flat and R(M) has property (A) then so too has R and the converse
is true if M is finitely generated. On the other hand, let R(M) be homogeneous.
If M is flat and each of R and M satisfies the (a.c.), then so too does R(M)
and the converse is true if M is finitely generated faithful and multiplication, [2,
Theorem 16]. In this paper we investigate another two annihilator conditions on a
ring R. Recall that R is a quasi-Frobenius ring, shortly QF ring, if R is Artinian
and ann (annI) = I for each ideal I of R. And an R-module M is called a QF
module if M is Artinian and [0 :M annN ] = N for each submodule N of M , [23,
p. 336]. A ring R is called distinguished if annI 6= 0 for each proper ideal I of R
and M is distinguished if [0 :M I] 6= 0 for each proper ideal I of R, [26]. A ring R
is QF if and only if every ideal of R is projective, equivalently, every ideal of R
is injective, [23, Theorem 13.6.1]. Since QF rings are Artinian rings, we first give
necessary and sufficient conditions for a ring R (M) to be Artinian. The proof of
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the next result is given in [17, Theorem 4.8] however we give here different proof
which may be of some interest.

Proposition 10. Let R be a ring and M an R-module. Then R (M) is Artinian
(resp. Noetherian) if and only if R is Artinian (resp. Noetherian) and M is Ar-
tinian (resp. Noetherian).

Proof. Suppose R (M) is Artinian. Let I1 ⊇ I2 ⊇ · · · be a descending chain
of ideals of R. Then I1(+)I1M ⊇ I2(+)I2M ⊇ · · · is a descending chain of ide-
als of R (M) and hence there exists a positive integer k such that Ik(+)IkM =
Ik+1(+)Ik+1M = · · · . This implies that Ik = Ik+1 = · · · , and hence R is Ar-
tinian. Next, let N1 ⊇ N2 ⊇ · · · be a descending chain of submodules of M then
0(+)N1 ⊇ 0(+)N2 ⊇ · · · is a descending chain of ideals of R (M). There exists a
positive integer l such that 0(+)Nl = 0(+)Nl+1 = · · · , and hence Nl = Nl+1 = · · · .
Hence M is Artinian. Conversely, suppose R is an Artinian ring and M an Ar-
tinian module. Let H1 ⊇ H2 ⊇ · · · be a descending chain of ideals of R (M).
Then H1 + 0(+)M ⊇ H2 + 0(+)M ⊇ · · · and H1 ∩ 0(+)M ⊇ H2 ∩ 0(+)M ⊇ · · ·
are descending chains of ideals of R (M). Assume Hi + 0(+)M = Ii(+)M and
Hi ∩ 0(+)M = 0(+)Ni for some ideals Ii of R and some submodules Ni of M . This
gives that I1 ⊇ I2 ⊇ · · · is a descending chain of ideals of R and N1 ⊇ N2 ⊇ · · ·
is a descending chain of submodules of M . Hence there exist positive integers
k and l such that Ik = Ik+1 = · · · and Nl = Nl+1 = · · · . It follows that
Hk + 0(+)M = Hk+1 + 0(+)M = · · · , and Hl ∩ 0(+)M = Hl+1 ∩ 0(+)M = · · · .
If k < l, then Hk + 0(+)M = Hk+1 + 0(+)M and Hk ∩ 0(+)M = Hk+1 ∩ 0(+)M . So
by using the modular law, one gets that

Hk = (Hk + 0(+)M) ∩Hk = (Hk+1 + 0(+)M) ∩Hk

= Hk+1 + (Hk ∩ 0(+)M) = Hk+1 + (Hk+1 ∩ 0(+)M)

= Hk+1.

Similarly, if k ≥ l then Hl = Hl+1 = · · · and this shows that R (M) is an Artinian
ring. The Noetherian case is now obvious by replacing the descending chain of
ideals (submodules) by ascending chain of ideals (submodules). Alternatively, let
R (M) be Noetherian. If I is an ideal of R, then I (+)IM is a finitely generated
ideal of R (M). It follows by [1, Theorem 7] that I is finitely generated. If N is
a submodule of M then 0(+)N is a finitely generated ideal of R(M), and hence N
is finitely generated [1, Theorem 2] and [14, Theorem 3.1]. So R is a Noetherian
ring and M a Noetherian module. Conversely, suppose R is a Noetherian ring and
M a Noetherian module. Suppose H is an ideal of R (M), and let H + 0(+)M =
I (+)M for some ideal I of R and H ∩ 0(+)M = 0(+)N for some submodule N of
M . Since I is finitely generated and M Noetherian (hence finitely generated),
I (+)M = H + 0(+)M is finitely generated. Also N is finitely generated since M
is Noetherian. So 0(+)N = H ∩ 0(+)M is finitely generated. The fact that H is
finitely generated follows by [25, Example 2.3, p. 13]. Hence R (M) is Noethe-
rian. �

We next determine when R (M) is a QF ring or a distinguished ring.
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Theorem 11. Let R be a ring and M an R-module.

(1) If R (M) is a QF ring then M is a QF module. Assuming further that M
is projective then R is a QF ring.

(2) Let M be faithful. If R is a QF ring and M a QF module then R (M) is a
QF ring.

(3) If R (M) is a distinguished ring then R is a distinguished ring or M a
distinguished module. The converse is true if M is faithful.

(4) Let M be faithful multiplication. If R (M) is a distinguished ring then R is
a distinguished ring and M a distinguished module.

Proof. (1) If R (M) is a QF ring then R (M) is Artinian, so by Proposition 10,
R is Artinian and M Artinian. Suppose N is a submodule of M . Then

0(+)N = ann (ann (0(+)N)) = ann (annN (+)M)

= ann (annN) ∩ annM (+) [0 :M annN ] ,

and hence N = [0 :M annN ]. This gives that M is a QF module. Suppose now
M is projective and I an ideal of R. It follows by, [2, Lemma 5], that

I (+)IM = ann (ann (I (+)IM)) = ann (annI) (+)ann (ann (I)) M.

So I = ann (annI), and R is a QF ring.

(2) Suppose M is faithful. Since R is QF (hence Artinian) and M is a QF (hence
Artinian) R-module, we infer from Proposition 10 that R (M) is Artinian. Let H
be an ideal of R (M). Assume H + 0(+)M = I (+)M and H ∩ 0(+)M = 0(+)N for
some ideal I of R and some submodule N of M . Then

H + 0(+)M = I (+)M = ann (annI) (+)M

⊇ ann(annI) ∩ annM (+) [0 :M annI] + 0(+)M

= ann (ann (I (+)M)) + 0(+)M

= ann(ann (H + 0(+)M) + 0(+)M

= ann (annH ∩ 0(+)M) + 0(+)M

⊇ ann (annH) + ann(0(+)M) + 0(+)M

= ann (annH) + 0(+)M ⊇ H + 0(+)M.

On the other hand,

H ∩ 0(+)M = 0(+)N = 0(+) [0 :M annN ]

= ann (ann (0(+)N)) = ann (ann (H ∩ 0(+)M))

⊇ ann(annH + 0(+)M)

= ann(annH) ∩ 0(+)M ⊇ H ∩ 0(+)M.

The application of the modular law shows that H = ann (annH) and hence R (M)
is a QF ring.
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(3) Suppose R (M) is distinguished. Let I be a proper ideal of R. Then I (+)M is
a proper ideal of R(M) and hence 0 6= ann (I (+)M) = annI ∩ annM (+)[0 :M I]. If
annI ∩ annM 6= 0, then annI 6= 0 and hence R is distinguished. If [0 :M I] 6= 0,
then obviously M is distinguished. For the converse, assume R is distinguished
and M is faithful and let H be a proper ideal of R (M). Assume H+0(+)M = I (+)M
for some ideal I of R. Then

annH ⊇ ann (I (+)M) = annI ∩ annM (+) [0 :M I]

= 0(+) [0 :M I] ⊇ 0(+) (annI) M.

Since M is faithful and annI 6= 0, (annI) M 6= 0. So annH 6= 0 and R (M) is
distinguished. Suppose now that M is distinguished. Then annH ⊇ 0(+)[0 :M I] 6=
0 and clearly R (M) is distinguished.

(4) Suppose M is faithful multiplication. Let I be a proper ideal of R. Then 0 6=
ann (I (+)IM) = 0(+)(annI) M . Hence (annI) M 6= 0, and hence annI 6= 0. So R is
distinguished. Moreover, [0 :M I] 6=0 and this shows that M is distinguished. �

An R-module M is called finitely annihilated if annM = annN for some finitely
generated submodule N of M , [30]. The next result gives necessary and sufficient
conditions for a homogeneous ideal of R(M) to be finitely annihilated.

Proposition 12. Let R be a ring, M an R-module, I an ideal of R and N a
submodule of M .

(1) N is finitely annihilated if and only if 0(+)N is a finitely annihilated ideal of
R (M).

(2) Suppose M is finitely generated faithful multiplication and IM ⊆ N . If I (+)N
is finitely annihilated then I is finitely annihilated and N finitely annihilated.

(3) Suppose M is faithful multiplication or projective. If I is finitely annihilated
then I (+)IM is a finitely annihilated ideal of R (M). The converse is true if
M is finitely generated faithful and multiplication.

(4) Suppose M is finitely generated faithful multiplication and IM ⊆ N . If
I (+)N is finitely generated and I finitely annihilated then I (+)N is a finitely
annihilated ideal of R (M).

(5) Suppose M is faithful multiplication and IM ⊆ N . If I is finitely annihilated
and annI ⊆ annN then I (+)N is a finitely annihilated ideal of R (M).

(6) Suppose R has the property that annA = ann(annA) for each ideal A of R
and M a faithful multiplication module such that IM ⊆ N . If I is a finitely
annihilated ideal of R (M) then I (+)N is finitely annihilated.

Proof. (1) Suppose 0(+)N is finitely annihilated. There exists a finitely generated
ideal H ⊆ 0(+)N of R (M) such that annH = ann(0(+)N). Assume H = 0(+)K for
some finitely generated submodule K of N , [15, Theorem 3.1]. Then annK(+)M =
annH = ann (0(+)N) = annN (+)M , and hence annK = annN . So N is finitely
annihilated. The statement is reversible.
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(2) Suppose M is finitely generated faithful multiplication. Let I (+)N be finitely
annihilated. There exists a finitely generated ideal H of R (M) that is contained
in I (+)N with annH = ann (I (+)N). Then annH = annN (+)(annI) M , and hence

ann(H + 0(+)M) = annH ∩ ann(0(+)M) = annH ∩ 0(+)M = 0(+) (annI) M.

Assume H + 0(+)M = J (+)M for some ideal J of R. Then

0(+)(annJ)M = ann (J (+)M) = 0(+) (annI) M .

This gives that (annJ)M = (annI)M and hence annJ = annI. Since H+0(+)M =
J (+)M is finitely generated, it follows by, [1, Theorem 9], that J is finitely gen-
erated, and this shows that I is finitely annihilated. Alternatively, suppose

H =
n∑

i=1

R (M) (ai, mi). It follows that

annN (+) (annI) M = ann (I (+)N) = annH =
n⋂

i=1

ann (ai, mi) .

For all i,

ann (ai, mi) ⊇ ann (Rai(+)(Rmi + aiM))

= ann (ai) ∩ ann (Rmi + aiM) (+)ann (ai) M

= ann (Rmi + aiM) (+)ann (ai) M.

Since M is faithful multiplication, it follows by [19, Corollary 1.7], that

annH ⊇
n⋂

i=1

ann (Rmi + aiM) (+)

(
n⋂

i=1

ann (ai)

)
M

= ann

(
n∑

i=1

(Rmi + aiM)

)
(+)

(
n∑

i=1

ann (ai)

)
M.

Since M is finitely generated faithful multiplication, we infer from [29, Corollary

to Theorem 9] that annI ⊇ ann
n∑

i=1

Rai ⊇ annI, so that annI = ann
n∑

i=1

Rai, and

I is finitely annihilated. Also annN ⊇ ann

(
n∑

i=1

(Rmi + aiM)

)
⊇ annN , so that

annN = ann

(
n∑

i=1

Rmi + aiM

)
, and N is finitely annihilated.

(3) Assume M is faithful multiplication or projective. Let J ⊆ I be finitely
generated ideal of R such that annI = annJ . It follows by, [1, Theorem 7],
that J (+)JM is a finitely generated ideal of R(M) that is contained in I (+)IM .
Moreover,

ann (I (+)IM) = annI (+) (annI) M = annJ (+) (annJ) M

= ann (J (+)JM) .
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Hence I (+)IM is finitely annihilated. The converse follows by (2).

(4) Since M is finitely generated and I (+)N is finitely generated, it follows by, [1,
Therorem 9], that N is finitely generated. Let J ⊆ I be a finitely generated ideal
of R such that annI = annJ . Since JM ⊆ IM ⊆ N, J (+)N is a homogeneous
ideal of R(M) that is finitely generated. As

ann (I (+)N) = annN (+) (annI) M = annN (+) (annJ) M

= ann (J (+)N) ,

we infer that I (+)N is finitely annihilated.

(5) Using the same arguments of parts (3) and (4) and the fact that annI ⊆annN ,
there exists a finitely generated ideal J (+)JM that is contained in I (+)N with the
property ann (I (+)N) = ann (J (+)JM). So I (+)N is finitely annihilated.

(6) Assume that J ⊆ I is a finitely generated ideal of R such that annI = annJ
and K ⊆ N is a finitely generated submodule of M such that annK = annN .
Since M is faithful and multiplication, we infer that

ann (I (+)N) = annN (+) (annI) M = annK(+) (annJ) M.

Since annK = annN ⊆ annI = annJ , we have that (ann[K : M ])J = ann(K)J =
0, and hence J ⊆ ann(ann([K : M ])) = [K : M ]. This gives that JM ⊆ K and
hence J (+)K is a finitely generated homogeneous ideal of R(M) that is contained
in I (+)N and ann (I (+)N) = ann (J (+)K). So I (+)N is finitely annihilated. �

Let R be a ring and M an R-module. Define

T (M)={m∈M : ann (m) 6= 0} and Si (M)={m∈M : ann (m) is large in R} .

T (M) is called the torsion submodule of M and Si (M) the singular submodule
of M, [23]. If R is an integral domain then T (M) is closed in M, [23, p. 139].

The next result characterizes the torsion and singular subideals of homoge-
neous ideals of R (M).

Proposition 13. Let R be a ring, M an R-module and I (+)N a homogeneous
ideal of R (M).

(1) If M is torsion-free then T (I (+)N) = T (I)(+)N.

(2) If M is faithful multiplication and R (M) a homogeneous ring then Si (I (+)N)
= Si(I)(+)N .

Proof. (1) Let (a, m) ∈ T (I (+)N). Then ann (a, m) 6= 0. Since M is torsion-
free, we infer that ann (a) 6= 0. Hence a ∈ T (I) and hence (a, m) ∈ T (I)(+)N .
So T (I (+)N) ⊆ T (I)(+)N . For the reverse inclusion, if (a, m) ∈ T (I)(+)N , then
a ∈ T (I). Hence ann (a) 6= 0, and hence ann (a, m) 6= 0. So (a, m) ∈ T (I (+)N)
and hence T (I)(+)N ⊆ T (I (+)N). This shows that T (I (+)N) = T (I)(+)N .
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(2) Suppose (a, m) ∈ Si (I (+)N). Then ann (a,m) is a large ideal of R (M). Since
R (M) is homogeneous, it follows by, [17, Theorem 3.3], that

ann (a,m) = ann (Ra(+)Rm + aM)

= ann (a) ∩ ann (m) (+)ann (a) M.

By [3, Proposition 17], ann (a) M is a large submodule of M . Since M is faithful
multiplication, we infer from [6, Proposition 12] that ann (a) is a large ideal of
R. Hence a ∈ Si(I) and hence (a,m) ∈ Si (I)(+)N . If (a,m) ∈ Si (I)(+)N then
a ∈ Si (I) and hence ann (a) is a large ideal of R. It follows that ann (a) M
is a large submodule of M , [6, Proposition 12]. [3, Proposition 14] shows that
ann (a, m) = ann (a) ∩ ann (m) (+)ann (a) M is a large ideal of R (M). So (a,m) ∈
Si (I (+)N) and hence Si(I (+)N) = Si (I)(+)N . �

3. Cancellation modules

Generalizing the case for ideals, an R-module M is defined to be cancellation
(resp. weak cancellation) if IM = JM for ideals I and J of R then I = J
(resp. I + annM = J + annM), [15] and [28]. Examples of cancellation modules
include invertible ideals, free modules [28] and finitely generated faithful multipli-
cation modules, [29, Corollary to Theorem 9]. If M is a finitely generated faith-
ful multiplication R-module (hence cancellation), then it is easily verified that
[IN : M ] = I [N : M ] for all ideals I of R and all submodules N of M. Anderson,
[15], defined an R-module M to be restricted cancellation if IM = JM 6= 0 for
some ideals I and J of R then I = J . Every cancellation module is restricted
cancellation but the converse is not true in general, [15]. An R-module M is a
cancellation module if and only if it is a faithful weak cancellation module. It is
also shown, [15, Theorem 2.5], that M is restricted cancellation if and only if it is
weak cancellation and annM is comparable to every ideal of R. A submodule N
of M is called join principal if [(IN + K) : N ] = I + [K : N ] for all submodules
K of M and all ideals I of R. Setting K = 0, N becomes weak cancellation. A
submodule N is join principal if and only if each of its homomorphic images is
weak cancellation, [15, Theorem 2.2]. An R-module M is called 1

2
cancellation

(resp. 1
2

weak cancellation) if for all ideals I of R, IM = M implies I = R (resp.
I+annM = R), [5] and [27]. M is a 1

2
cancellation module if and only if M 6= PM

for each maximal ideal P of R. In [5], we introduced and investigated the concept
of 1

2
join principal submodules. A submodule N of M is 1

2
join principal if for all

ideals I of R and all submodules K of M , N = IN + K implies R = I + [K : N ].
Let R be a ring and M an R-module. An ideal I of R is called M -cancellation

(resp. M -weak cancellation) if for all submodules K and N of M , IK = IN im-
plies K = N (resp. K + [0 :M I] = N + [0 :M I]). Equivalently, [IN :M I] = N
(resp. [IN :M I] = N + [0 :M I]) for all submodules N of M . I is said to
be an M -restricted cancellation ideal if for all submodules K and N of M , if
IK = IN 6= 0 then K = N . An ideal I of R is called M-join principal if
[(IK + N) :M I] = K + [N :M I] for all submodules K and N of M. Setting
N = 0, I becomes an M -weak cancellation ideal, [7]. Every M -cancellation ideal
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is M -restricted cancellation and every M -restricted cancellation is M -weak can-
cellation, and the three concepts coincide if both I and M are faithful. It is proved
that an ideal I of R is M -restricted cancellation if and only if I is M -weak can-
cellation and [0 :M I] is comparable to every submodule N of M , [7, Proposition
1.5]. Several facts on M -cancellation properties are given in [7]. Motivated by the
terminology of 1

2
join principal and 1

2
weak (cancellation) modules, we introduce

the following definitions. Let R be a ring and M an R-module. An ideal I of R
is called an M -1

2
join principal ideal of R if for all submodules K and N of M ,

IM = IK + N implies M = K + [N :M I]. It is easily verified that I is M -1
2

join
principal if IM ⊆ IK + N then M = K + [N :M I]. Setting N = 0, we define
I to be M -1

2
weak cancellation. In particular, I is called an M -1

2
cancellation

ideal of R if for all submodules K of M , IM = IK implies M = K. If N is a
proper pure submodule of M then [N : M ] is not M -1

2
cancellation. For, if N is

pure in M , then JN = JM ∩ N for all ideals J of R. Take J = [N : M ] then
[N : M ] N = [N : M ] M ∩N = [N : M ] M . M -cancellation ideals are M -1

2
cancel-

lation but not conversely. For a prime p, the Prüfer p-group M = Zp∞ is a faithful
but not multiplication Z-module. The only non-zero submodules of M are Zp ⊆
Zp2 ⊆ · · ·Zp∞ . For each k > 1, pZpk = Zpk−1 . Hence p2Zp2 = p2Zp = 0, and hence
p2Z is not M -cancellation. On the other hand, for each k > 1, p2Zp∞ 6= p2Zpk , and
hence p2Z is an M -1

2
cancellation ideal of R. Otherwise, if p2Zp∞ = p2Zpk , then

pkZp∞ = 0, and hence pkZ ⊆ [0 : Zp∞ ] = 0, a contradiction. Neither M -1
2

can-
cellation ideals are 1

2
cancellation nor 1

2
cancellation ideals are M -1

2
cancellation.

To explain the last statement, recall the ideal associated with an R-module M ,
θ (M) =

∑
m∈M

[Rm : M ] , which proved useful in studying multiplication modules.

A finitely generated module M is multiplication if and only if θ (M) = R. If M is
multiplication then M = θ (M) M from which it follows that for any submodule
N of M , N = θ (M) N . If M is a faithful multiplication module then θ (M) is
a pure ideal of R, that is multiplication and idempotent, [16, Theorem 2.6]. Let
M be a faithful multiplication R-module but not finitely generated. Then θ (M)
is M -1

2
cancellation because for each submodule N of M , if θ (M) M = θ (M) N ,

then M = N , [16, Lemma 1.1]. But θ (M) is not 1
2

cancellation, since otherwise

θ (M) = (θ (M))2 implies θ (M) = R and hence M is finitely generated. Let
R = Z/4Z and I = 2Z/4Z. Then I is a 1

2
cancellation ideal of R, [5]. Consider

M = Z/2Z as an R-module, then IM = 0 and this shows that I is not an M -1
2

cancellation ideal of R.

The following two results give some properties of M− 1
2

(weak) cancellation ideals.
First let us recall the trace ideal of an R-module M , Tr (M) =

∑
f∈Hom(M,R)

f (M).

If M is a projective module then M = Tr (M) M, annM = annTr (M) and Tr(M)
is a pure ideal of R, [20, Proposition 3.30]. For any submodule N of M , N =
Tr (M) N , [8, Theorem 3.1]. If M is faithful multiplication then Tr (M) = θ (M),
[16, Theorem 2.3].

Proposition 14. Let R be a ring, M an R-module and I an ideal of R.
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(1) I is M-1
2

cancellation if and only if IM 6= IQ for each maximal submodule
Q of M .

(2) Let M be faithful multiplication or projective. If I is a faithful M-1
2

weak
cancellation ideal then I is M-1

2
cancellation.

(3) Let M be finitely generated faithful multiplication. If I is projective or faith-
ful multiplication and contains an M-1

2
cancellation ideal of R then I is M-1

2

cancellation.

(4) If I is a pure ideal of R and contains an M-1
2

cancellation ideal of R then
I is M-1

2
cancellation.

Proof. (1) Obviously, if I is M -1
2

cancellation then IM 6= IQ for each maximal
submodule Q of M . Conversely, suppose I is not M -1

2
cancellation. There exists

a proper submodule N of M with IM = IN , and hence there exists a maximal
submodule Q of M with N ⊆ Q. So IM = IN ⊆ IQ ⊆ IM , so that IM = IQ, a
contradiction.

(2) Let N be a submodule of M with IM = IN . Then M = N + [0 :M I]. Since
M is faithful multiplication or projective, [0 :M I] = (annI) M = 0. So M = N,
and I is M -1

2
cancellation.

(3) Let J ⊆ I be M -1
2

cancellation and N a submodule of M with IM = IN .
Since M is finitely generated faithful and multiplication, I = I [N : M ] , and hence
Tr (I) = Tr (I) [N : M ]. This implies that Tr (I) M = Tr (I) N . If I is projective,
then J = JTr (I) , [8, Theorem 3.1], and hence JM = JN from which it follows
that M = N, and I is M -1

2
cancellation. Alternatively, if I is not M -1

2
cancellation

then IM = IQ for some maximal submodule Q of M . Hence Tr (I) M = Tr (I) Q
and hence JM = JTr (I) M = JTr (I) Q = JQ, a contradiction. If I is faithful
and multiplication then Tr (I) = θ (I) and J = Jθ (I) , [16, Lemma 1.1]. The
result is now clear.

(4) Let N be a submodule of M with IM = IN . Suppose J ⊆ I is M -1
2

cancel-
lation and I is pure, then J = JI and hence JM = JN . So M = N, and hence
I is M -1

2
cancellation. �

Proposition 15. Let R be a ring, M an R-module and I an ideal of R.

(1) Let M be finitely generated, faithful and multiplication. Then I is 1
2

join
principal (resp. 1

2
weak cancellation) if and only if I is M-1

2
join principal

(resp. M-1
2

weak cancellation).

(2) If M is finitely generated faithful multiplication and I is 1
2

cancellation then
I is M-1

2
cancellation. The converse is true if M is 1

2
cancellation.

(3) If M is multiplication and IM is a 1
2

join principal (resp. 1
2

weak can-
cellation) submodule of M then I is M-1

2
join principal (resp. M-1

2
weak

cancellation). The converse is true if we assume further that M is finitely
generated.

(4) If M is multiplication and IM is a 1
2

cancellation submodule of M then I
is M-1

2
cancellation. The converse is true if M is 1

2
cancellation.



M. M. Ali: Multiplication Modules . . . 473

Proof. (1) Suppose I is 1
2

join principal. Let K and N be submodules of M
such that IM = IK + N . Then IM = (I [K : M ] + [N : M ]) M, and hence I =
I [K : M ] + [N : M ]. This implies that R = [K : M ] + [[N : M ] : I] = [K : M ] +
[N : IM ], and hence M = [K : M ] M + [N : IM ] M = K + [N :M I]. So I
is M -1

2
join principal. Conversely, let I be M -1

2
join principal and let A and

B be ideals of R with I = AI + B. Then IM = I (AM) + BM , and hence
M = AM + [BM :M I] = (A + [BM : IM ]) M . It follows that R = A + [B : I],
and I is 1

2
join principal. The 1

2
weak cancellation case is obvious by taking N = 0

and B = 0 respectively.

(2) Obvious.

(3) We only discuss the 1
2

join principal case. Let M be multiplication and IM
a 1

2
join principal submodule of M . Let K and N be submodules of M with

IM = IK +N . Then IM = [K : M ] IM +N , and hence R = [K : M ]+[N : IM ].
So M = K + [N :M I], and I is an M -1

2
join principal ideal of R. Conversely,

let M be finitely generated multiplication and I an M -1
2

join principal. Suppose
J is an ideal of R and K a submodule of M with IM = J (IM) + K. Then
M = JM +[K :M I] = (J + [K : IM ]) M , and hence R = J +[K : IM ]+annM =
J + [K : IM ]. This shows that IM is 1

2
join principal.

(4) Obvious. �

The following result is now straightforward.

Corollary 16. Let R be a ring and M a finitely generated faithful multiplication
R-module. The following statements are equivalent for a submodule N of M .

(1) N is 1
2

join principal (resp. 1
2

weak cancellation, 1
2

cancellation).

(2) [N : M ] is a 1
2

join principal (resp. 1
2

weak cancellation, 1
2

cancellation) ideal
of R.

(3) [N : M ] is an M-1
2

join principal (resp. M-1
2

weak cancellation, M-1
2

can-
cellation) ideal of R.

The next theorem gives some relationships between M -join principal (resp. M -
cancellation) and M -1

2
join principal (resp.M -1

2
cancellation) submodules (ideals)

and their products.

Proposition 17. Let R be a ring, M an R-module and I, J ideals of R.

(1) If I is M-join principal and J is M-1
2

join principal (resp. M-1
2

weak can-
cellation) then IJ is M-1

2
join principal (resp. M-1

2
weak cancellation).

(2) If I is M-cancellation and J is M-1
2

weak cancellation (resp. M-1
2

cancel-
lation) then IJ is M-1

2
weak cancellation (resp. M-1

2
cancellation).

(3) If I is M-cancellation and IJ is M-1
2

join principal (resp. M-1
2

weak can-
cellation) then J is M-1

2
join principal (resp. M-1

2
weak cancellation).
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Proof. (1) We only do the join principal case. Let K and N be submodules
of M such that IJM = IJK + N . Since I is M -join principal, we infer that
JM ⊆ [IJM :M I] = [(IJK + N) :M I] = JK + [N :M I]. But J is M -1

2
join

principal. Thus M = K + [[N :M I] :M J ] = K + [N :M IJ ], and hence IJ is M -1
2

join principal.

(2) Suppose N is a submodule of M such that IJM = IJN . Then JM = JN .
Since J is M -1

2
weak cancellation, M = N + [0 :M J ] ⊆ N + [0 :M IJ ] , so that

M = N + [0 :M IJ ] and IJ is M -1
2

weak cancellation. The 1
2

cancellation case is
now obvious.

(3) Suppose K and N are submodules of M such that JM = JK + N . Then
IJM = IJK + IN , and hence

M = K + [IN :M IJ ] = K + [[IN :M I] :M J ] = K + [N :M J ] ,

and J is an M -1
2

join principal ideal of R. The 1
2

weak cancellation modules case
follows by taking N = 0. �

The following result shows how properties such as M -1
2

join principal (resp. M− 1
2

cancellation) are related to 0(+)M -1
2

join principal (resp. 0(+)M − 1
2

cancellation).

Proposition 18. Let R be a ring, M an R-module and I an ideal of R.

(1) I is M-1
2

join principal ideal if and only if I (+)IM is an 0(+)M-1
2

join prin-
cipal ideal of R (M).

(2) I is M-1
2

weak cancellation ideal if and only if I (+)IM is an 0(+)M-1
2

weak
cancellation ideal of R (M).

(3) I is M-1
2

cancellation ideal if and only if I (+)IM is an 0(+)M-1
2

cancellation
ideal of R (M).

Proof. (1) Suppose I is M − 1
2

join principal. Let K and N be submod-
ules of M and let (0(+)M) (I (+)IM) = (0(+)K) (I (+)IM) + 0(+)N . Then 0(+)IM =
0(+)(IK + N) , and hence IM = IK + N . It follows that M = K + [N :M I] , and
this gives that

0(+)M = 0(+) (K + [N :M I]) = 0(+)K + 0(+) [N :M I]

= 0(+)K + [0(+)N :0(+)M I (+)IM ] ,

and I (+)IM is an M -1
2

join principal ideal of R (M). The converse is now clear.

(2) The M -1
2

weak cancellation case follows from (1) by letting N = 0.

(3) Clear. �

The next result gives some conditions under which the ideal I (+)IM becomes weak
cancellation (resp. restricted cancellation). Compare with [3, Proposition 10 and
Theorem 11].

Proposition 19. Let R be a ring, M an R-module and I an ideal of R.
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(1) If I (+)IM is a cancellation ideal of R(M) then I is cancellation and the
converse is true if M is torsion-free.

(2) If I (+)IM is a weak cancellation ideal of R(M) then I is weak cancellation
and the converse is true if M is finitely generated, faithful and multiplication.

(3) If I (+)IM is a restricted cancellation ideal of R(M) then I is restricted can-
cellation and IM 6= 0 implies I is faithful. The converse is true if M is
finitely generated, faithful and multiplication.

Proof. (1) [5, Proposition 11].

(2) Suppose I (+)IM is a weak cancellation ideal of R(M). By [15, Theorem
2.4], I (+)IM is a cancellation R(M)/ann(I (+)IM) ∼= R(M)/annI (+)[0 :M I] ∼=
R/annI (+)M/[0 :M I]-module. It follows by (1) that I is a cancellation R/annI-
module and hence I is a weak cancellation ideal of R, [15, Theorem 2.4]. Con-
versely, suppose M is finitely generated faithful multiplication and I is weak
cancellation. Then I is a cancellation R/annI-module. Since M is a multiplica-
tion R-module, it is easily verified that M/(annI)M is a multiplication R/annI-
module. Moreover, [0 :R/annI M/(annI)M ] = [(annI)M : M ]/annI. Since M
is finitely generated faithful and multiplication (hence cancellation), [0 :R/annI

M/(annI)M ] = annI/annI = 0. That is M/(annI)M is a faithful multiplica-
tion R/annI-module, and hence it is a torsion free R/annI-module, [19, Lemma
4.1]. It follows by (1) that I (+)IM is a cancellation R/annI (+)M/(annI)M ∼=
R(M)/ann(I (+)IM)-module. This implies that I (+)IM is a weak cancellation ideal
of R (M).

(3) Suppose I (+)IM is a restricted cancellation ideal of R (M). Then I (+)IM is
weak cancellation and by (2), I is a weak cancellation ideal of R. Let A be an
ideal of R then A(+)AM ⊆ ann (I (+)IM) = annI (+)[0 :M I] from which we get
A ⊆ annI or ann(I (+)IM) ⊆ A(+)AM and this case gives that annI ⊆ A. By,
[15, Theorem 2.5], I is restricted cancellation. Now suppose IM 6= 0. Then
0 6= (I (+)IM)(0(+)M) = (I (+)IM) (annI (+)M), and hence annI = 0. Conversely,
suppose M is finitely generated, faithful and multiplication. Let I be restricted
cancellation. Then I is weak cancellation and by (2), I (+)IM is weak cancellation.
If 0 6= IM , then I is faithful. Since M is faithful multiplication, I (+)IM is faithful
and hence I (+)IM is restricted cancellation (in fact, I (+)IM is cancellation). If
IM = 0, then M = [0 :M I] = (annI)M . Since M is finitely generated, faithful
and multiplication (hence cancellation), R = annI, that is I = 0, and this case
shows that I (+)IM = 0 is again a restricted cancellation ideal of R(M). �

We close by a result that gives necessary and sufficient conditions for a homoge-
neous ideal of R (M) to be join principal.

Theorem 20. Let R be a ring, M an R-module and I (+)N a homogeneous ideal
of R (M).

(1) If I (+)N is join principal then I is a weak cancellation ideal of R and N/IM
is a weak cancellation R-submodule of M/IM .
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(2) If I (+)N is join principal then I is a join principal ideal of R. The converse
is true if H = [H :R(M ) 0(+)M ] for any ideal H of R(M).

(3) Let M be cancellation. If I (+)N is weak cancellation then N is a weak can-
cellation submodule of M .

(4) Let M be cancellation. If I (+)N is cancellation then N is a cancellation
submodule of M .

(5) Suppose I (+)N is restricted cancellation. If I2 6= 0 then I is a restricted
cancellation ideal of R and if we assume further that M is restricted cancel-
lation then N is a restricted cancellation submodule of M . If I2 = 0 then
I (+)N is a nilpotent ideal of R (M) and if R is reduced or N faithful then I
is restricted cancellation and N is restricted cancellation.

Proof. (1) [15, Theorem 2.2] says that if I (+)N is a join principal ideal of R (M)
then I (+)N/0(+)N ∼= I is a weak cancellation ideal of R, and

I (+)N/I (+)IM = I (+)IM + 0(+)N/I (+)IM
∼= 0(+)N/I (+)IM ∩ 0(+)N

= 0(+)N/0(+)IM ∼= 0(+)N/IM

is a weak cancellation ideal of R (M) /I (+)IM ∼= R (M/IM). It follows that N/IM
is a weak cancellation submodule of M/IM , [1, Theorem 2] and [15, Theorem 3.1].

(2) Suppose I (+)N is join principal. The fact that I is join principal follows by
[3, Theorem 9]. Note that if I is join principal then I is weak cancellation and
that confirms part (1). For the converse, let H1 and H2 be ideals of R(M) and
let H1 + 0(+)M = A(+)M and H2 + 0(+)M = B(+)M for some ideals A and B of R.
Then

[(H1 (I (+)N) + H2) :R(M) I (+)N ]

⊆ [(H1 (I (+)N) + 0(+)IM) + H2 + 0(+)M) :R(M) (I (+)N + 0(+)M)]

= [((H1 + 0(+)M)(I (+)N) + H2 + 0(+)M) :R(M) I (+)M ]

= [((A(+)M)(I (+)N) + B(+)M) :R(M) I (+)M ]

= [(AI + B)(+)M :R(M) I (+)M ] = [(AI + B) : I](+)M

= A + [B : I](+)M = A(+)M + [B : I](+)M

= H1 + 0(+)M + [B(+)M :R(M) I (+)M ]

= H1 + [H2 + 0(+)M :R(M) I (+)M ]

⊆ H1 + [H2(0(+)M) :R(M) 0(+)IM ]

⊆ H1 + [(H2 ∩ 0(+)M) :R(M) 0(+)IM ]

= H1 + [H2 :R(M) 0(+)IM ] = H1 + [H2 :R(M) (0(+)M)(I (+)N)]

⊆ H1 + [H2 :R(M) 0(+)M ] :R(M) I (+)N ]

= H1 + [H2 :R(M) I (+)N ].

The other inclusion is always true and hence

[H1(I (+)N) + H2 :R(M) I (+)N ] = H1 + [H2 :R(M) I (+)N ].
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This shows that I (+)N is join principal. Note that we used in the proof the fact
that

0(+)M ⊆ B(+)M ⊆ [B(+)M :R(M) I (+)M ].

(3) Suppose M is cancellation and I (+)N a weak cancellation ideal of R (M). Let
A and B be ideals of R such that AN = BN . Since AIM ⊆ AN = BN , we infer
that 0(+)AIM ⊆ 0(+)BN , and hence

(0(+)AM) (I (+)N) ⊆ (B(+)BM) (0(+)N) ⊆ (B(+)BM) (I (+)N) .

This implies that

0(+)AM + (annI ∩ annN) (+) [0 :M I] ⊆ B(+)BM + (annI ∩ annN) (+) [0 :M I] ,

from which one gets that AM + [0 :M I] ⊆ BM + [0 :M I]. Hence AIM ⊆ BIM ,
and this gives that AI ⊆ BI. It follows that (A(+)M) (I (+)N) ⊆ (B(+)M) (I (+)N) ,
and hence

A(+)M + (annI ∩ annN) (+) [0 :M I] ⊆ B(+)M (+) (annI ∩ annN) (+) [0 :M I] .

So A + (annI ∩ annN) ⊆ B + (annI ∩ annN). Since M is cancellation (hence
faithful) and IM ⊆ N , we have that annN ⊆ ann (IM) = annI. This finally
gives that A + annN ⊆ B + annN . Similarly, B + annN ⊆ A + annN . Hence N
is weak cancellation.

(4) Suppose M is cancellation and I (+)N is cancellation. By (3), N is weak
cancellation. By [1, Proposition 14] I is cancellation and hence IM is cancellation.
It follows that annN ⊆ ann(IM) = 0, and hence N is cancellation.

(5) Suppose I (+)N is a restricted cancellation ideal of R (M). If I2 6= 0, then
0 6= I2

(+)IN = (I (+)N)2 = (I (+)N) (I (+)IM). So I (+)N = I (+)IM . The fact that
I is restricted cancellation follows by Proposition 19. Suppose M is restricted
cancellation. Since N = IM , it is easily verified that N is restricted cancellation.
Next, let I2 = 0. Then I ⊆ annI and hence IM ⊆ (annI)M ⊆ [0 :M I]. But I (+)N
is weak cancellation, [15, Theorem 2.5]. Therefore (I (+)N)2 = (I (+)N) (I (+)IM)
implies that

I (+)N + (annI ∩ annN) (+) [0 :M I] = I (+)IM + (annI ∩ annN)(+) [0 :M I]) .

So N + [0 :M I] = IM + [0 :M I] and hence IN = I2M = 0. This gives that
(I (+)N)2 = 0, and hence I (+)N is nilpotent. If R is reduced then I = 0 is restricted
cancellation. Moreover, I (+)N = 0(+)N is restricted cancellation implies that N is
restricted cancellation, see [1, Theorem 2] and [15, Theorem 3.1]. Finally, if N is
faithful then IN = 0 implies I = 0 and again I is restricted cancellation and N
is restricted cancellation (in fact, N is cancellation). �
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