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Abstract. In this paper we will establish the affine bundle theorem in
our synthetic approach to jet bundles in terms of infinitesimal spaces
Dn’s. We will then compare these affine bundles with the corresponding
ones constructed in our previous synthetic approach to jet bundles in
terms of infinitesimal spaces Dn’s both in the general microlinear setting
and in the finite-dimensional setting.

1. Introduction

In our [11] we have established the affine bundle theorem in our synthetic ap-
proach to jet bundles in terms of infinitesimal spaces Dn’s. In our succeeding
[12] we have introduced another synthetic approach to jet bundles in terms of
infinitesimal spaces Dn’s, and have compared it with the former approach both
in the general microlinear setting and in the finite-dimensional setting. However
our comparison in the finite-dimensional setting was incomplete, for our use of
dimension counting techniques has tacitly assumed that jet bundles in terms of
Dn’s and Dn’s are vector bundles, which is not the case unless the given bundle
is already a vector bundle. The principal objective in this paper is to establish
the affine bundle theorem in our second synthetic approach to jet bundles and
then to compare not merely the jet bundles based on both approaches but the
affine bundles constructed as a whole both in the general microlinear setting and
in the finite-dimensional setting. This completes our comparison between the
two approaches in the finite-dimensional setting. Last but not least, we should
say that the notion of a simple polynomial and correspondingly the notion of a
Dn-tangential are modified essentially.

0138-4821/93 $ 2.50 c© 2007 Heldermann Verlag



352 H. Nishimura: The Affine Bundle Theorem . . .

2. Preliminaries

2.1. Convention

Throughout the rest of the paper, unless stated to the contrary, E and M denote
microlinear spaces, and π : E →M denotes a bundle, i.e., a mapping from E to
M . The fiber of π over x ∈ M , namely, the set {y ∈ E | π(y) = x} is denoted
by Ex, as is usual. We denote by R the extended set of real numbers awash in
nilpotent infinitesimals, which is expected to acquiesce in the so-called general
Kock axiom (cf. [4]). The bundle π : E →M is called a vector bundle if the fiber
Ex of π over x is an R-module for every x ∈ M . Various canonical injections
among infinitesimal spaces are simply denoted by the same symbol i. Mappings
denoted by symbols with subscripts are sometimes denoted without subscripts,
provided that the intended subscripts are clear from the context.

2.2. Infinitesimal spaces

As is depicted in [4], an infinitesimal space corresponds to a Weil algebra R[X1, . . . ,
Xn]/I in finite presentation. Given two infinitesimal spaces E1 and E2 correspond-
ing to Weil algebras R[X1, . . . , Xn]/I and R[Y1, . . . , Ym]/J respectively, the in-
finitesimal space corresponding to the Weil algebra R[X1, . . . , Xn, Y1, . . . , Ym]/K,
where K is the ideal generated by I, J and {XiYj | 1 ≤ i ≤ n, 1 ≤ j ≤ m}, is
denoted by E1 ⊕ E2, from which there are canonical projections onto E1 and E2

denoted by pE1 and pE2 . Given two mappings f : E1 → F1 and g : E2 → F2 of
infinitesimal spaces, there exists a unique mapping f ⊕ g : E1 ⊕ E2 → F1 ⊕ F2

making the following diagram commutative:

E1
f−−−→ F1

pE1

x xpF1

E1 ⊕ E2
f⊕g−−−→ F1 ⊕ F2

pE2

y ypF2

E2 −−−→
g

F2

We denote by D1 or D the totality of elements of R whose squares vanish. More
generally, given a natural number n, we denote by Dn the set

{d ∈ R|dn+1 = 0}.

Given natural numbers m,n, we denote by D(m)n the set

{(d1, . . . , dm) ∈ Dm|di1 · · · din+1 = 0},

where i1, . . . , in+1 shall range over natural numbers between 1 and m including
both ends. We will often write D(m) for D(m)1. By convention D0 = D0 = {0}.
A polynomial ρ of d ∈ Dn is called a simple polynomial of d ∈ Dn if the constant
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term is 0. A simple polynomial ρ of d ∈ Dn is said to be of dimension m, in
notation dimnρ = m, provided that m is the least integer with ρm+1 = 0. By way
of example, letting d ∈ D3, we have dim3d = dim3(d + d2) = dim3(d + d3) = 3
and dim3d

2 = dim3d
3 = dim3(d

2 + d3) = 1. Letting e ∈ D1 or e ∈ D2, we have
dim3ed = 1 or dim3ed = 2 respectively. The reader should note that our present
definition of a simple polynomial is different from that in [12].

Simplicial infinitesimal spaces are spaces of the form

D(m;S) = {(d1, . . . , dm) ∈ Dm|di1 · · · dik = 0 for any (i1, . . . , ik) ∈ S},

where S is a finite set of sequences (i1, . . . , ik) of natural numbers with 1 ≤ i1 <
· · · < ik ≤ m. To give examples of simplicial infinitesimal spaces, we have D(2) =
D(2; (1, 2)) and D(3) = D(3; (1, 2), (1, 3), (2, 3)), which are all symmetric. The
number m is called the degree of D(m;S), in notation: m = degD(m;S), while
the maximum number n such that there exists a sequence (i1, . . . , in) of natural
numbers of length n with 1 ≤ i1 < · · · < in ≤ m containing no subsequence in
S is called the dimension of D(m;S), in notation: n = dimD(m;S). By way of
example, degD(3) = degD(3; (1, 2)) = degD(3; (1, 2), (1, 3)) = degD3 = 3, while
dimD(3) = 1, dimD(3; (1, 2)) = dimD(3; (1, 2), (1, 3)) = 2 and dimD3 = 3. It is
easy to see that if n = dimD(m;S), then d1+ · · ·+dm ∈ Dn for any (d1, . . . , dm) ∈
D(m;S). Given two simplicial infinitesimal spaces D(m;S) and D(m′;S ′), a
mapping ϕ = (ϕ1, . . . , ϕm′) : D(m;S) → D(m′;S ′) is called a monomial mapping
if every ϕj is a monomial in d1, . . . , dm with coefficient 1.

Given an infinitesimal space E, a mapping γ from E to M is called an E-
microcube on M . We denote by TE(M) the totality of E-microcubes on M .
Given x ∈M , we denote by TEx(M) the totality of E-microcubes γ on M with
γ(0, . . . , 0)= x. A mapping f : M →M ′ of microlinear spaces naturally gives rise
to a mapping γ ∈ TE(M) 7→ f ◦ γ ∈ TE(M ′), which is denoted by fE∗ or f∗. It
is well known that the canonical projection τE : TD(E) → E is a vector bundle.
Its subbundle νπ : V(π) → E with V(π) = {t ∈ TD(E) : π∗(t) = 0}, called the
vertical bundle of π, is also a vector bundle.

Given γ ∈ TDn(M) and a simplicial infinitesimal space D(m;S) with dimD(m;S)
≤ n, the mapping (d1, . . . , dm) ∈ D(m;S) 7→ γ(d1 + · · ·+ dm) ∈M is denoted by
γD(m;S). The following lemma should be obvious.

Lemma 1. Let γ ∈ TDn(M). Let D(m;S1) ⊆ D(m;S2) (this is the case if
S1 ⊇ S2) with n1 = dimD(m;S1) ≤ n2 = dimD(m;S2) ≤ n. Let n1 ≤ n3 ≤ n.
Then we have

γD(m;S2) |D(m;S1)= (γ |Dn3
)D(m;S1).

We denote by Sn the symmetric group of the set {1, . . . , n}, which is well known
to be generated by n−1 transpositions < i, i+1 > exchanging i and i+1 (1 ≤ i ≤
n − 1) while keeping the other elements fixed. Given σ ∈ Sn and γ ∈ TDn

x (M),
we define Σσ(γ) ∈ TDn

x (M) to be

Σσ(γ)(d1, . . . , dn) = γ(dσ(1), . . . , dσ(n))
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for any (d1, . . . , dn) ∈ Dn. Given α ∈ R and γ ∈ TDn
(M), we define α ·

i
γ ∈

TDn

x (M) (1 ≤ i ≤ n) to be

(α ·
i
γ)(d1, . . . , dn) = γ(d1, . . . , di−1, αdi, di+1, . . . , dn)

for any (d1, . . . , dn) ∈ Dn. Given α ∈ R and γ ∈ TDn(M), we define αγ ∈
TDn
x (M) (1 ≤ i ≤ n) to be

(αγ)(d) = γ(αd)

for any d ∈ Dn. For any γ ∈ TDn
x (M) and any d ∈ Dn, we define id(γ) ∈

TDn+1
x (M) to be

id(γ)(d
′) = γ(dd′)

for any d′ ∈ Dn+1.

2.3. Affine bundles

A bundle π : E → M is called an affine bundle over a vector bundle ξ : P → M
if Ex is an affine space over the vector space Px for any x ∈ M . Following the
lines of our previous paper [11], we will establish a variant of Theorem 0.3.6 of
that paper.

As in Lemma 0.3.2 of [11], we have

Lemma 2. The diagram

Dn
i−−−→ Dn+1

i

y yψDn+1

Dn+1 −−−−→
ϕDn+1

Dn+1 ⊕D

is a quasi-colimit diagram, where ϕDn+1(d) = (d, 0) and ψDn+1(d) = (d, dn+1) for
any d ∈ Dn+1.

Remark 3. We will write ϕDn+1 : Dn+1 → Dn+1 ⊕ D and ψDn+1 : Dn+1 →
Dn+1 ⊕D for the mappings referred to in Lemma 0.3.2 of [11].

Given two Dn+1-microcubes γ+ and γ− on M with γ+|Dn = γ−|Dn , there exists a
unique function f : Dn+1 ⊕D →M with f ◦ψDn+1 = γ+ and f ◦ϕDn+1 = γ−. We
define (γ+−̇γ−) ∈ TD(M) to be

(γ+−̇γ−)(d) = f(0, d)

for any d ∈ D. It is easy to see that

αγ+−̇αγ− = αn+1(γ+−̇γ−) (1)

for any α ∈ R and any γ± ∈ TDn+1(M) with γ+|Dn = γ−|Dn , while we know well
that

α ·
i
γ+−̇α ·

i
γ− = α(γ+−̇γ−) (1 ≤ i ≤ n+ 1) (2)

for any α ∈ R and any γ± ∈ TDn+1
(M) with γ+|D(n+1)n = γ−|D(n+1)n . By the very

definition of −̇, we have
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Proposition 4. Let f : M → M ′. Given γ+, γ− ∈ TDn+1(M) with γ+|Dn =
γ−|Dn, we have f∗(γ+)|Dn = f∗(γ−)|Dn and

f∗(γ+−̇γ−) = f∗(γ+)−̇f∗(γ−).

As in Lemma 0.3.4 of [11], we have

Lemma 5. The diagram

1
i−−−→ D

i

y yεDn+1

Dn+1 −−−−→
ϕDn+1

Dn+1 ⊕D

is a quasi-colimit diagram, where εDn+1(d) = (0, d) for any d ∈ D.

Remark 6. We will write εDn+1 : D → Dn+1 ⊕D for the mapping referred to in
Lemma 0.3.4 of [11].

Given t ∈ TD(M) and γ ∈ TDn+1(M) with t(0) = γ(0), there exists a unique
function f : Dn+1 ⊕ D → M with f ◦ ϕDn+1 = γ and f ◦ εDn+1 = t. We define
(t+̇γ) ∈ TDn+1(M) to be

(t+̇γ)(d) = f(d, dn+1)

for any d ∈ Dn+1. It is easy to see that

αn+1t+̇αγ = α(t+̇γ) (3)

for any α ∈ R. By the very definition of +̇ we have

Proposition 7. Let f : M → M ′. Given t ∈ TD(M) and γ ∈ TDn+1(γ) with
t(0) = γ(0, . . . , 0), we have f∗(t)(0) = f∗(γ)(0, . . . , 0) and

f∗(t+̇γ) = f∗(t)+̇f∗(γ).

As in Theorem 0.3.6 of [11], we have the following affine bundle theorem.

Theorem 8. The canonical projection TDn+1(M) → TDn(M) is an affine bundle
over the vector bundle TD(M)×

M
TDn(M) → TDn(M).

2.4. The first approach to jet bundles

In [11] we have discussed a synthetic approach to jet bundles in terms of infinites-
imal spaces Dn’s. We have no intention to reproduce the paper, but our present
notation and terminology are slightly different from those of that paper. First of
all, what were called n-pseudoconnections and n-preconnections in that paper are
now called Dn-pseudotangentials and Dn-tangentials respectively. We will write
JDn

x (π) and JDn
(π) for the space of Dn-tangentials for π : E → M at x ∈ E
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and that of Dn-tangentials for π : E → M in place of Jnx(π) and Jn(π) in that
paper respectively. We will denote the canonical projection JDn+1

(π) → JDn
(π)

by πn+1,n in place of πn+1,n in that paper. What is more than a matter of no-
tation or terminology is that, in our present definition of a Dn+1-tangential f for
π : E →M at x ∈ E, we require the following condition besides conditions (1.11)
and (1.12) of our previous paper [11]:

f((d1, . . . , dn+1) ∈ Dn+1 7→ γ(ed1, . . . , edn+1) ∈M)

= (d1, . . . , dn+1) ∈ Dn+1 7→ fD(n+1)n(γ)(ed1, . . . , edn+1) ∈ E

for any e ∈ Dn and any γ ∈ T
D(n+1)n

π(x) (M), where fD(n+1)n stands for the induced

D(n+1)n-pseudotangential of f depicted in Theorem 7 of our previous paper [12].

2.5. Symmetric forms

Given a vector bundle ξ : P → E, a symmetric Dn-form at x ∈ E with values in
ξ is a mapping ω : TDn

π(x)(M) → Px subject to the following conditions:

1. For any γ ∈ TDn

π(x)(M) and any α ∈ R, we have

ω(αγ) = αnω(γ.) (4)

2. For any simple polynomial ρ of d ∈ Dn and any γ ∈ TDl

π(x)(M) with dimnρ =
l < n, we have

ω(γ ◦ ρ) = 0. (5)

We denote by SDn
x (π; ξ) the totality of symmetric Dn-forms at x with values in ξ.

We denote by SDn(π; ξ) the set-theoretic union of SDn
x (π; ξ)’s for all x ∈ E. The

canonical projection SDn
(π; ξ) → E is obviously a vector bundle.

What were simply called symmetric n-forms along π with values in ξ in our
previous paper [11] are now called symmetric Dn-forms with values in ξ in distinc-
tion to symmetricDn-forms with values in ξ. Corresponding to our modification of
the notion of Dn+1-tangential in the preceding subsection, a Dn-form ω is required
to satisfy

ω((d1, . . . , dn) ∈ Dn 7→ γ(ed1, . . . , edn) ∈M) = 0

for any e ∈ Dn−1 and any γ ∈ T
D(n)n−1

π(x) (M) besides conditions (0.4.1)–(0.4.3) of

our previous paper [11]. The spaces SDn

x (π; ξ) and SDn
(π; ξ) shall be such as are

expected.

3. The second approach to jet bundles

We have already discussed the second approach to jet bundles in terms of in-
finitesimal spaces Dn’s in [12]. What has remained there to be discussed is the
affine bundle theorem as a Dn-variant of Theorem 1.9 in [11]. To begin with, let
us recall the fundamental concepts of our second approach.
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Definition 9. A Dn-pseudotangential for π at x∈E is a mapping f : TDn

π(x)(M) →
TDn
x (E) subject to the following two conditions:

1. We have
π ◦ (f(γ)) = γ (6)

for γ ∈ TDn

π(x)(M).

2. We have
f(αγ) = αf(γ) (7)

for any γ ∈ TDn

π(x)(M) and any α ∈ R.

We denote by ĴDn
x (π) the totality of Dn-pseudotangentials for π at x ∈ E.

We denote by ĴDn(π) the totality of Dn-pseudotangentials for π, i.e., the set-
theoretic union of ĴDn

x (π)’s for all x ∈ E. We have the canonical projection
π̂n+1,n : ĴDn+1(π) → ĴDn(π) such that

f(id(γ)) = id(π̂n+1,n(f)(γ))

for any f ∈ ĴDn+1(π), any d ∈ Dn and any γ ∈ TDn(M), for which the reader
is referred to Proposition 15 of our previous paper [12]. By assigning π(x) ∈ M
to each Dn-pseudotangential for π : E → M at x ∈ E we have the canonical
projection π̂n : ĴDn(π) → M , which is easily seen to be a vector bundle provid-
ing that π is already a vector bundle. Note that π̂n ◦ π̂n+1,n = π̂n+1. For any

natural numbers n, m with m ≤ n, we define π̂n,m : ĴDn(π) → ĴDm(π) to be the
composition π̂m+1,m ◦ · · · ◦ π̂n,n−1.

Definition 10. The notion of a Dn-tangential for π at x ∈ E is defined induc-
tively on n. The notion of a D0-tangential for π at x ∈ E and that of a D1-
tangential for π at x ∈ E shall be identical with that of a D0-pseudotangential for
π at x ∈ E and that of a D1-pseudotangential for π at x ∈ E respectively. Now we
proceed by induction on n. A Dn+1-pseudotangential f : T

Dn+1

π(x) (M) → TDn+1
x (E)

for π at x ∈ E is called a Dn+1-tangential for π at x if it acquiesces in the following
two conditions:

1. π̂n+1,n(f) is a Dn-tangential for π at x.

2. For any simple polynomial ρ of d ∈ Dn+1 with dimnρ = l ≤ n and any
γ ∈ TDl

π(x)(M), we have f(γ ◦ ρ) = (π̂n+1,l(f)(γ)) ◦ ρ.

We denote by JDn
x (π) the totality of Dn-tangentials for π at x. We denote by

JDn
x (π) the totality of Dn-tangentials for π, namely, the set-theoretic union of

JDn
x (π)’s for all x ∈ E. By the very definition of a Dn-tangential for π, the

projection π̂n+1,n : ĴDn+1(π) → ĴDn(π) is naturally restricted to a mapping πn+1,n :
JDn+1(π) → JDn(π). Similarly for πn : JDn(π) → M and πn,m : JDn(π) → JDm(π)
with m ≤ n. We can see easily that πn : JDn(π) →M is naturally a vector bundle
providing that π is already a vector bundle.

Now we will establish a Dn-variant of Theorem 1.9 of [11]. Let us begin with
a Dn-variant of Proposition 1.7 in [11].
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Proposition 11. Let f+, f− ∈ JDn+1
x (π) with πn+1,n(f

+) = πn+1,n(f
−). Then the

assignment γ ∈ T
Dn+1

π(x) (M) 7−→ f+(γ)−̇f−(γ) belongs to SDn+1

π(x) (π; vπ).

Proof. Since we have

π∗(f
+(γ)−̇f−(γ))

= π∗(f
+(γ))−̇π∗(f−(γ))

[by Proposition 4]

= 0

f+(γ)−̇f−(γ) belongs in V1
x(π). For any α ∈ R we have

f+(αγ)−̇f−(αγ)

= αf+(γ)−̇αf−(γ)

= αn+1(f+(γ)−̇f−(γ))

[by (1)]

which implies that the assignment γ∈T
Dn+1

π(x) (M) 7−→ f+(γ)−̇f−(γ)∈V1
x(π) abides

by (4). It remains to show that the assignment γ ∈ Tn+1
π(x)(M) 7−→ f+(γ)−̇f−(γ) ∈

V1
x(π) abides by (5), which follows directly from the second condition in Definition

10 and the assumption that πn+1,n(f
+) = πn+1,n(f

−). �

Now we will establish a Dn-variant of Proposition 1.8 in [11].

Proposition 12. Let f ∈ JDn+1
x (π) and ω ∈ SDn+1

π(x) (π; vπ). Then the assignment

γ ∈ T
Dn+1

π(x) (M) 7−→ ω(γ)+̇f(γ) belongs to JDn+1
x (π).

Proof. Since we have

π∗(ω(γ)+̇f(γ))

= π∗(ω(γ))+̇π∗(f(γ))

[by Proposition 7]

= γ

the assignment γ ∈ T
Dn+1

π(x) (M) 7−→ ω(γ)+̇f(γ) stands to (6). For any α ∈ R we
have

ω(αγ)+̇f(αγ)

= αn+1ω(γ)+̇αf(γ)

[by (3)]

= α(ω(γ)+̇f(γ))

so that the assignment γ ∈ T
Dn+1

π(x) (M) 7−→ ω(γ)+̇f(γ) stands to (7). That the

assignment γ ∈ T
Dn+1

π(x) (M) 7−→ ω(γ)+̇f(γ) stands to the first condition of Defini-
tion 10 follows from the simple fact that the image of the assignment under π̂n+1,n
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coincides with π̂n+1,n(f), which is consequent upon (5). It remains to show that

the assignment γ ∈ T
Dn+1

π(x) (M) 7−→ ω(γ)+̇f(γ) abides by the second condition of

Definition 10, which follows directly from (5) and the assumption that f satisfies
the second condition of Definition 10. �

For any f+, f− ∈ JDn+1(π) with πn+1,n(f
+) = πn+1,n(f

−), we define f+−̇f− ∈
SDn+1(M ; vπ) to be

(f+−̇f−)(γ) = f+(γ)−̇f−(γ)

for any γ ∈ T
Dn+1

π(x) (M). For any f ∈ JDn+1
x (π) and any ω ∈ SDn+1

π(x) (π; vπ) we define

ω+̇f ∈ JDn+1
x (π) to be

(ω+̇f)(γ) = ω(γ)+̇f(γ)

for any γ ∈ T
Dn+1

π(x) (M).
With these two operations we have the following microlinear generalization

of the classical affine bundle theorem (cf. Theorem 6.2.9 of Saunders [13]), which
has been concerned merely with the finite-dimensional setting.

Theorem 13. The bundle πn+1,n : JDn+1(π) → JDn(π) is an affine bundle over
the vector bundle SDn+1(π; vπ)×

E
JDn(π) → JDn(π).

Proof. This follows simply from Theorem 8. �

4. The comparison without coordinates

The relationship between JDn
(π) and JDn(π) without any reference to the affine

bundle structures stated in Theorem 1.9 of our [11] and Theorem 13 of this paper
has already been discussed in our [12]. We remind the reader that all the results
of our previous paper [12] are valid with due modifications, though our definition
of a simple polynomial and that of a Dn-tangential have been modified.

Let f be a Dn-tangential for π : E → M at x ∈ E. We have a function
Φn(f) : TDn

π(x)(M) → TDn
x (E), which is characterized by

f(γDn) = Φn(f)(γ)Dn

for any γ ∈ TDn

π(x)(M). For the existence and uniqueness of such a function, the

reader is referred to Lemma 18 of our previous [12], from which we quote two
crucial results.

Theorem 14. For any f ∈ JDn

x (π), we have Φn(f) ∈ JDn
x (π), so that we have a

canonical mapping Φn : JDn
(π) → JDn(π).

Proposition 15. The diagram

JDn+1

x (π)
Φn+1−−−→ JDn+1

x (π)

πn+1,n

y yπn+1,n

JDn

x (π) −−−→
Φn

JDn
x (π)

is commutative.
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Now we are in a position to investigate the relationship between the affine bundles
discussed in Theorem 1.9 of our [11] and Theorem 13 of this paper. Let us begin
with

Lemma 16. Let γ± ∈ TDn+1
x (E) with γ+ |Dn= γ− |Dn. Then

γ+
Dn+1 |D(n+1)n= γ−Dn+1 |D(n+1)n , (8)

and we have
γ+−̇γ− = γ+

Dn+1−̇γ−Dn+1 . (9)

Proof. Since D(n + 1)n ⊆ Dn+1, the first statement follows from the following
simple calculation:

γ+
Dn+1 |D(n+1)n

= (γ+ |Dn)D(n+1)n [by Lemma 1]

= (γ− |Dn)D(n+1)n

= γ−Dn+1 |D(n+1)n [by Lemma 1]. (10)

The second statement follows simply from the following commutative diagram
where + stands for addition of components.

�

Lemma 17. Let t ∈ T1
x(E) and γ ∈ TDn

x (E). Then we have

(t+̇γ)Dn = t+̇γDn . (11)

Proof. This follows simply from the following commutative diagram.

�

Now we are ready to state the main result of this section.
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Theorem 18. We have the following.

1. For any f+, f− ∈ Jnx(π) and any γ ∈ TDn

π(x)(M), we have

Φn(f
+)(γ)−̇Φn(f

−)(γ) = f+(γDn)−̇f−(γDn). (12)

2. For any f ∈ Jnx(π), any t ∈ TD
π(x)(M) and any γ ∈ TDn

π(x)(M), we have

(t+̇Φn(f)(γ))Dn = t+̇f(γDn). (13)

Proof.
1. Since f±(γDn) = (Φn(f

±)(γ))Dn , we have

f+(γDn)−̇f−(γDn)

= (Φn(f
+)(γ))Dn−̇(Φn(f

−)(γ))Dn

= Φn(f
+)(γ)−̇Φn(f

−)(γ) [by Lemma 16]. (14)

2. Since f(γDn) = (Φn(f)(γ))Dn , we have

t+̇f(γDn)

= t+̇(Φn(f)(γ))Dn

= (t+̇Φn(f)(γ))Dn [by Lemma 17]. (15)

�

Now we would like to discuss the relationship between SDn
(π; vπ) and SDn(π; vπ).

Proposition 19. For any ω ∈ SDn

x (π; vπ), the mapping γ ∈ TDn
x (M) 7→ ω(γDn),

denoted by Ψn(ω), belongs to SDn
x (π; vπ), thereby giving rise to a function Ψn :

SDn
(π; vπ) → SDn(π; vπ).

Proof. For n = 0, 1, the statement is trivial. For any ω ∈ SDn+1

x (M ; vπ), there
exist f+, f− ∈ Jn+1

x (π) such that πn+1,n(f
+) = πn+1,n(f

−) and ω = f+−̇f−. Then
we have the following:

1. Let α ∈ R and γ ∈ TDn+1
x (M). Then we have

ω((αγ)Dn+1)

= f+((αγ)Dn+1)−̇f−((αγ)Dn+1)

= Φn+1(f
+)(αγ)−̇Φn+1(f

−)(αγ) [by Theorem 18]

= α(Φn+1(f
+)(γ))−̇α(Φn+1(f

−)(γ))

= αn+1(Φn+1(f
+)(γ)−̇Φn+1(f

−)(γ))

= αn+1(f+(γDn+1)−̇f−(γDn+1)) [by Theorem 18]

= αn+1ω(γDn+1)

so that Ψn+1(ω) abides by (4).
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2. Let ρ be a simple polynomial of d ∈ Dn+1 and γ ∈ TDl

π(x)(M) with dimn+1ρ =
l < n+ 1, we have

ω((γ ◦ ρ)Dn+1)

= f+((γ ◦ ρ)Dn+1)−̇f−((γ ◦ ρ)Dn+1)

= Φn+1(f
+)(γ ◦ ρ)−̇Φn+1(f

−)(γ ◦ ρ) [by Theorem 18]

= (πn+1,l(Φn+1(f
+))(γ)) ◦ ρ−̇(πn+1,l(Φn+1(f

−))(γ)) ◦ ρ
= (Φl(πn+1,l(f

+))(γ)) ◦ ρ−̇(Φl(πn+1,l(f
−))(γ)) ◦ ρ [by Proposition 15]

= 0,

so that Ψn+1(ω) abides by (5).
�

Let us fix our terminology. Given an affine bundle π1 : E1 → M1 over a vector
bundle ξ1 : P1 →M1 and another affine bundle π2 : E2 →M2 over another vector
bundle ξ2 : P2 → M2, a triple (f, g, h) of mappings f : M1 → M2, g : E1 → E2

and h : P1 → P2 is called a morphism of affine bundles from the affine bundle
π1 : E1 →M1 over the vector bundle ξ1 : P1 →M1 to the affine bundle π2 : E2 →
E2 over the vector bundle ξ2 : P2 → M2 provided that they satisfy the following
conditions:

1. (f, g) is a morphism of bundles from π1 to π2. In other words, the following
diagram is commutative:

E1 g−→ E2

π1 ↓ ↓ π2

M1

−→
f E2

2. (f, h) is a morphism of bundles from ξ1 to ξ2. In other words, the following
diagram is commutative:

P1 h−→ P2

ξ1 ↓ ↓ ξ2
M1

−→
f E2

3. For any x ∈M1, (g|E1,x , h|P1,x) is a morphism of affine spaces from (E1,x, P1,x)
to (E2,x, P2,x).

Using this terminology, we can summarize Theorem 18 succinctly as follows:

Theorem 20. The triple (Φn,Φn+1,Ψn+1 × Φn) of mappings is a morphism of
affine bundles from the affine bundle πn+1,n : JDn+1

(π) → JDn
(π) over the vector

bundle SDn+1
(π; vπ)×

E
JDn

(π) → JDn
(π) in Theorem 1.9 of [11] to the affine bundle

πn+1,n : JDn+1(π) → JDn(π) over the vector bundle SDn+1(π; vπ)×
E

JDn(π) → JDn(π)

in Theorem 13.
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5. The comparison with coordinates

Throughout this section we assume that the bundle π : E →M is a formal bundle
(cf. [10]), so that we can assume without any loss of generality that E = Rp+q,
M = Rp and π is the canonical projection of Rp+q to the first p coordinates, for
our considerations to follow are always infinitesimal. We will let i with or without
subscripts range over natural numbers between 1 and p (including endpoints). By
the general Kock axiom any γ ∈ TDn

(M) is of the form

(d1, . . . , dn) ∈ Dn 7−→ (xi) + Σn
r=1Σ1≤k1<···<kr≤ndk1 · · · dkr(a

i
k1···kr

) ∈ Rp,

while any γ ∈ TDn(M) is of the form

d ∈ Dn 7−→ (xi) + Σn
r=1d

r(air) ∈ Rp.

The principal objective in this section is to show that

Theorem 21. For any natural number n, Φn : JDn
(π) → JDn(π) and Ψn :

SDn
(π; vπ) → SDn(π; vπ) are bijective.

We proceed by induction on n. For n = 0, 1, the theorem holds trivially. We have
shown in [12] that Φn is injective for any natural number n, so that Ψn is injective
for any natural number n. With due regard to Theorem 20, it suffices to show that
Ψn is bijective for any natural number n, for which we can and will use dimension
counting techniques. Let us remark the following two plain propositions, which
may belong to the folklore.

Proposition 22. Let x = (xi) ∈ M and V a finite-dimensional R-module. Let
ω : TDn

x (M) → V be a function acquiescent in conditions (0.4.1) and (0.4.2) of
our previous [11]. Then ω is of the following form:

ω((d1, . . . , dn) ∈ Dn 7−→ (xi) + Σn
r=1Σ1≤k1<···<kr≤ndk1 · · · dkr(a

i
k1···kr

) ∈ Rp)

= ΣΩn
J1,...,Js

((a
iJ1
J1

), . . . , (a
iJs
js

)),

where the last Σ is taken over all partitions of the set {1, . . . , n} into nonempty
subsets {J1, . . . ,Js}, Ωn

J1,...,Js
: (Rp)s → V is a symmetric s-linear mapping, and

aiJJ denotes aiJk1···kr
for J = {k1, . . . , kr} with k1 < · · · < kr.

Proof. By the same token as in the proof of Proposition 11 (Section 1.2) of [4]. �

Proposition 23. Let x ∈ M and V a finite-dimensional R-module. Let ω :
TDn
x (M) → V be a function acquiescent in condition (4). Then ω is of the follow-

ing form:

ω(d ∈ Dn 7−→ (xi) + Σn
r=1d

r(air) ∈ Rp)

= Σ(Ωn
r1,...,rk

((ai1r1
), . . . , (aikrk

))),

where Ωn
r1,...,rk

: (Rp)k → V is a symmetric k-linear mapping, and the last Σ is
taken over all partitions of the positive integer n into positive integers r1, . . . , rk
(so that n = r1 + · · ·+ rk) with r1 ≤ · · · ≤ rk.
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Proof. By the same token as in the proof of Proposition 11 (Section 1.2) of [4]. �

Proposition 24. For any x ∈M , R-modules SDn

x (π; vπ) and SDn
x (π; vπ) are of the

same dimension q(
p+ n− 1

n
), so that Ψn : SDn

(π; vπ) → SDn(π; vπ) is bijective.

Proof. Taking into consideration the condition (0.4.3) of our previous [11] in
Proposition 22, we can conclude that the R-module SDn

x (π; vπ) is of dimension

q(
p+ n− 1

n
), for Ωn

J1,...,Js
is zero unless {J1, . . . ,Js} = {{1}, . . . , {n}}. Similarly,

taking into consideration the condition (5) in Proposition 23, we can conclude that

the R-module SDn(π; vπ) is of dimension q(
p+ n− 1

n
), for Ωn

r1,...,rk
is zero except

Ωn
1,...,1. �
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