Topological Criteria for \boldsymbol{k}-formal Arrangements*

Stefan O. Tohăneanu
Department of Mathematics, Texas A \mathcal{M} U University
College Station, TX 77843
e-mail: tohanean@math.tamu.edu

Abstract

We prove a criterion for k-formality of arrangements, using a complex constructed from vector spaces introduced in [2]. As an application, we give a simple description of k-formality of graphic arrangements: Let G be a connected graph with no loops or multiple edges. Let Δ be the flag (clique) complex of G and let $H_{\bullet}(\Delta)$ be the homology of the chain complex of Δ. If \mathcal{A}_{G} is the graphic arrangement associated to G, we will show that \mathcal{A}_{G} is k-formal if and only if $H_{i}(\Delta)=0$ for every $i=1, \ldots, k-1$. MSC2000: 52C35 (primary); 18G35 (secondary) Keywords: hyperplane arrangement, graph, chain complex, flag complex

1. Introduction

In [1], Falk and Randell introduced the notion of a formal arrangement. An arrangement is formal iff every linear dependency among the defining forms of the hyperplanes can be expressed as linear combination of dependencies among exactly 3 defining forms. Many interesting classes of arrangements are formal: in [1], Falk and Randell proved that $K(\pi, 1)$ arrangements and arrangements with quadratic Orlik-Solomon ideal are formal and, in [8], Yuzvinsky showed that free arrangements are also formal; and gave an example showing that formality does not depend on the intersection lattice. In [2], Brandt and Terao generalized the notion of formality to k-formality, proving that every free arrangement is k-formal.

[^0]For this they introduced the concept of 'higher' relation spaces, which capture 'the dependencies among dependencies'.

In the first section of this paper we briefly recall the notions of relation spaces and k-formality. By rewriting the definitions, we obtain a lemma characterizing k-formality topologically. Then we apply this criteria for graphic arrangements to obtain a description of k-formality in terms of the homology of a certain chain complex. With this it is easy to produce examples of graphic arrangements which are k-formal but not $(k+1)$-formal, for any given k.

2. Preliminaries

In what follows we adopt all the notation from [2]. Let \mathcal{A} be an arrangement of n hyperplanes in a vector space V over a field \mathbb{K}. For each $H \in \mathcal{A}$ we fix the defining form $\alpha_{H} \in V^{*}$.

Define a map $\phi: E(\mathcal{A}):=\oplus_{H \in \mathcal{A}} \mathbb{K} e_{H} \rightarrow V^{*}$, by $\phi\left(e_{H}\right)=\alpha_{H}$, where $E(\mathcal{A})$ is the vector space with basis $\left\{e_{H}\right\}$.

Let $F(\mathcal{A})$ be the kernel of this map. Then $\operatorname{dim} F(\mathcal{A})=n-r(\mathcal{A})$ where $r(\mathcal{A})$ is the rank of \mathcal{A}. The vector space $F(\mathcal{A})$ describes which linear forms are linearly dependent, as well as the dependency coefficients (up to scalar multiplication). We will refer to elements of $F(\mathcal{A})$ as relations.

Let $F_{2}(\mathcal{A})$ be the subspace of $F(\mathcal{A})$ generated by the relations corresponding to dependencies of exactly 3 linear forms.

Definition 2.1. \mathcal{A} is formal iff $F(\mathcal{A})=F_{2}(\mathcal{A})$.
Definition 2.2. For $3 \leq k \leq r(\mathcal{A})$, recursively define $R_{k}(\mathcal{A})$ to be the kernel of the map

$$
\pi_{k-1}=\pi_{k-1}(\mathcal{A}): \bigoplus_{X \in L, r(X)=k-1} R_{k-1}\left(\mathcal{A}_{X}\right) \rightarrow R_{k-1}(\mathcal{A})
$$

where L is the lattice of intersections of \mathcal{A} and π_{k-1} is the sum of the inclusion maps $R_{k-1}\left(\mathcal{A}_{X}\right) \hookrightarrow R_{k-1}(\mathcal{A})$. We identify $R_{2}(\mathcal{A})$ with $F(\mathcal{A})$.

To simplify notation, for $k \geq 2$ we will denote with $D_{k}=D_{k}(\mathcal{A})$ the vector space $\bigoplus_{X \in L, r(X)=k} R_{k}\left(\mathcal{A}_{X}\right)$.
Definition 2.3. We define:

1. An arrangement is 2 -formal if it is formal.
2. For $k \geq 3, \mathcal{A}$ is k-formal iff it is $(k-1)$-formal and the map $\pi_{k}: D_{k} \rightarrow$ $R_{k}(\mathcal{A})$ is surjective.

Lemma 2.4. For any arrangement \mathcal{A}, the following sequence of vector spaces and maps form a complex:

$$
D_{\bullet}: 0 \longrightarrow \cdots \xrightarrow{d_{3}} D_{2} \xrightarrow{d_{2}} D_{1} \xrightarrow{d_{1}} D_{0} \longrightarrow 0
$$

where $D_{0}=V^{*}, D_{1}=E(\mathcal{A})$ and for $k \geq 2, D_{k}$ are the spaces from the notations above. Also, $d_{1}=\phi$ and $d_{k}: D_{k} \rightarrow D_{k-1}, d_{k}=\pi_{k}$ for $k \geq 2$.

Proof. We have $d_{k}\left(D_{k}\right)=\pi_{k}\left(D_{k}\right) \subseteq R_{k}(\mathcal{A})=\operatorname{ker}\left(\pi_{k-1}\right) \subseteq D_{k-1}$. So d_{k} is well defined. Also, $d_{k-1} \circ d_{k}(v)=\pi_{k-1}\left(\pi_{k}(v)\right)=0$ for any $v \in D_{k}$, as $\pi_{k}(v) \in R_{k}(\mathcal{A})=$ $\operatorname{ker}\left(\pi_{k-1}\right)$. So, indeed we have a complex.

Lemma 2.5. \mathcal{A} is k-formal iff $H_{i}\left(D_{\mathbf{\bullet}}\right)=0$ for every $i=1, \ldots, k-1$.
Proof. π_{l} is surjective iff $\forall w \in R_{l}(\mathcal{A})$ there exists $v \in D_{l}$ such that $\pi_{l}(v)=w$.
We have $R_{l}(\mathcal{A})=\operatorname{ker}\left(\pi_{l-1}\right)=\operatorname{ker}\left(d_{l-1}\right)$ and $w=\pi_{l}(v)=d_{l}(v) \in \operatorname{Im}\left(d_{l}\right)$. So we get $\operatorname{ker}\left(d_{l-1}\right) \subseteq \operatorname{Im}\left(d_{l}\right)$ which give us $H_{l-1}(D)=0$.

Example 2.6. In this example we will discuss [2], Example 5.1., in terms of the homology of the above complex. We must specify that all the computations are already done in [2], and we are just translating into topological language.
\mathcal{A} is a real essential arrangement of rank 4 consisting of 10 hyperplanes, defined by the vanishing of the following linear forms: $\alpha_{1}=x_{3}, \alpha_{2}=x_{3}-x_{4}, \alpha_{3}=$ $x_{2}, \alpha_{4}=x_{2}+x_{3}-2 x_{4}, \alpha_{5}=x_{1}, \alpha_{6}=x_{1}+x_{3}-2 x_{4}, \alpha_{7}=x_{2}+2 x_{3}-2 x_{4}, \alpha_{8}=$ $x_{1}+2 x_{3}-2 x_{4}, \alpha_{9}=x_{1}+x_{2}+x_{3}-2 x_{4}, \alpha_{10}=x_{4}$.

So $D_{0}=\mathbb{R}^{4}, D_{1}=\mathbb{R}^{10}$ and the map $d_{1}: D_{1} \longrightarrow D_{0}$ is just the map ϕ and has rank 4. Therefore $\operatorname{ker}\left(d_{1}\right)$ has dimension $10-4=6$.

We have 7 nondegenerate rank 2 elements in $L(\mathcal{A})$ and each is an intersection of exactly 3 hyperplanes. So we have 7 relations of length 3: $\alpha_{1}-\alpha_{2}-\alpha_{10}=$ $0, \alpha_{1}+\alpha_{4}-\alpha_{7}=0, \alpha_{1}+\alpha_{6}-\alpha_{8}=0,2 \alpha_{2}+\alpha_{3}-\alpha_{7}=0,2 \alpha_{2}+\alpha_{5}-\alpha_{8}=$ $0, \alpha_{3}+\alpha_{6}-\alpha_{9}=0, \alpha_{4}+\alpha_{5}-\alpha_{9}=0$.

Therefore $D_{2}=\mathbb{R}^{7}$. The matrix of the map $d_{2}: D_{2} \longrightarrow D_{1}$ is exactly the matrix in [2], page 61

$$
\left(\begin{array}{cccccccccc}
1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\
1 & 0 & 0 & 1 & 0 & 0 & -1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 0 & -1 & 0 & 0 \\
0 & 2 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 1 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & -1 & 0
\end{array}\right),
$$

and it has rank 6. So $\operatorname{dim} \operatorname{Im}\left(d_{2}\right)=6$ and $\operatorname{dim} \operatorname{ker}\left(d_{2}\right)=7-6=1$.
Also in [2] we have listed all the elements of rank 3 from $L(\mathcal{A}):\{1,2,9,10\}$, $\{3,6,9,10\},\{4,5,9,10\},\{1,3,6,8,9\},\{1,4,5,7,9\},\{1,4,6,7,8\},\{2,3,5,7,8\}$, $\{2,3,6,7,9\},\{2,4,5,8,9\},\{3,4,5,6,9\},\{1,2,3,4,7,10\},\{1,2,5,6,8,10\}$.

If X is such an element (with $r(X)=3$), then $R_{3}\left(\mathcal{A}_{X}\right) \neq 0$ means that there is at least a relation among the relations of length 3 of elements of rank 2 in $L\left(\mathcal{A}_{X}\right)$. The nondegenerate rank 2 elements in $L\left(\mathcal{A}_{X}\right)$ are nondegenerate rank 2 elements in $L(\mathcal{A})$ and these are listed above. It is not difficult to check which are the relations of length 3 for each rank 3 element in \mathcal{A}. For reference, these are listed in the chart on page 62 in [2]. Also, there is no problem to check that for each $r(X)=3$, the length 3 relations are linearly independent. Therefore we conclude that $D_{3}=0$.

So the complex we get is:

$$
D_{\bullet}: 0 \longrightarrow \mathbb{R}^{7} \longrightarrow \mathbb{R}^{10} \longrightarrow \mathbb{R}^{4} \longrightarrow 0
$$

with homology: $H_{1}\left(D_{\bullet}\right)=0$ and $H_{2}\left(D_{\bullet}\right)=1$. So \mathcal{A} is formal, but not 3-formal.
Graphic arrangements are a class of arrangements possessing many nice properties (see, for example, [3], [5], [6], [7]), and for this class there is a pleasant combinatorial interpretation of Lema 2.5. In the next section, G denotes a connected graph with no loops or multiple edges. For the graphic arrangement \mathcal{A}_{G}, we will identify the complex above with the chain complex of the flag complex of G. Then, with Lemma 2.5., the statement in the abstract will be natural.

3. Graphic Arrangements

Let G be a connected graph on vertices $[n]=\{1, \ldots, n\}$ with no loops or multiple edges. The flag(clique) complex $\Delta=\Delta(G)$ is the simplicial complex with:

- The 0 -faces $=$ the vertices of G.
- The 1 -faces $=$ the edges of G.
- For $i \geq 2$, the i-faces $=$ the K_{i+1} (i.e., complete graph on $i+1$ vertices) subgraphs of G.
For $i \geq 0$, let a_{i} be the number of $i-$ faces of Δ. We have the natural chain complex of Δ :

$$
0 \longrightarrow \cdots \xrightarrow{f_{3}} C_{2} \xrightarrow{f_{2}} C_{1} \xrightarrow{f_{1}} C_{0} \longrightarrow 0,
$$

where $C_{i}=\mathbb{K}^{a_{i}}$ and $f_{i}: C_{i} \rightarrow C_{i-1}$ is the usual differential given in terms of generators: $f_{i}\left(\left[n_{1}, \ldots, n_{i+1}\right]\right)=\sum_{j=1}^{i+1}(-1)^{j-1}\left[n_{1}, \ldots, \hat{n_{j}}, \ldots, n_{i+1}\right]$.

The homology of this complex will be denoted by $H_{\bullet}(\Delta)$.
By definition, the graphic arrangement associated to G is $\mathcal{A}=\mathcal{A}_{G}=\left\{\operatorname{ker}\left\{\alpha_{i j}\right\} \mid\right.$ $\alpha_{i j}=x_{i}-x_{j}, i<j$ and $[i j]$ is an edge in $\left.G\right\}$. Note that \mathcal{A} is an arrangement in $V=\mathbb{K}^{a_{0}}$ of rank $a_{0}-1$ (if G is connected) and consists of a_{1} (= the number of edges in G) hyperplanes.

Notice that from the beginning we fixed the defining forms $\alpha_{i j}$. To be consistent with notation, $e_{i j}, i<j$ will be the symbols in $E(\mathcal{A})$ (i.e., $\phi\left(e_{i j}\right)=\alpha_{i j}$). With these, we can identify $D_{1}=E(\mathcal{A})$ with C_{1} by $e_{i j} \leftrightarrow[i j]$ for $i<j$.
If we fix the form of the elements in the basis of D_{i} 's and with proper notations of those, the correspondence between the two complexes will become natural. The next lemma will do this, but before we state and prove it here is the flavor of it:

For $X \in L$, let G_{X} be the subgraph of G built on the edges corresponding to the hyperplanes in X.

We have $D_{2}=\oplus_{X \in L_{2}} R_{2}\left(\mathcal{A}_{X}\right)$. Suppose for an $X \in L_{2}$ we have $R_{2}\left(\mathcal{A}_{X}\right)=$ $F\left(\mathcal{A}_{X}\right) \neq 0$. This means that we must have a dependency (relation) among some of the linear forms corresponding to some edges in G_{X}. But this translates in the fact that G_{X} contains a cycle. If the length of this cycle is ≥ 4, then the linear
forms corresponding to 3 consecutive edges in the cycle are linearly independent. This contradicts the fact that $\operatorname{rk}(X)=2$. So G_{X} contains a triangle. If we have an extra edge in G_{X}, beside those from the triangle, then the linear form of this extra edge and the linear forms associated to two of the edges of the triangle are linearly independent. Again we get a contradiction with the fact that $r k(X)=2$. So $G_{X}=$ a triangle. So each nonzero summand of D_{2} corresponds to a triangle in G. The converse of this statement is obvious.

Lemma 3.1. (The Recursive Identification Lemma) Let $X \in L$ with $r(X)=$ $l, l \geq 2$. Then $R_{l}\left(\mathcal{A}_{X}\right) \neq 0$ iff G_{X} is a K_{l+1} subgraph of G. More, $\operatorname{dim} R_{l}\left(\mathcal{A}_{X}\right)=1$ and if $G_{X}=\left[i_{1} i_{2} \cdots i_{l+1}\right], i_{1}<i_{2}<\cdots<i_{l+1}$, then we can pick a 'special' basis element of $R_{l}\left(\mathcal{A}_{X}\right)$ to be the relation on the special elements corresponding to the K_{l} subgraphs of $G_{X}: r_{i_{2} \cdots i_{l+1}}-r_{i_{1} i_{3} \cdots i_{l+1}}+\cdots+(-1)^{l} r_{i_{1} i_{2} \cdots i_{l}}$. This element is denoted with $r_{i_{1} i_{2} \cdots i_{l+1}}$.

Proof. Suppose $R_{l}\left(\mathcal{A}_{X}\right) \neq 0$. We will use induction on l.
For $l=2$ we have already seen this case above.
Suppose $l \geq 3$. By definition, we have $R_{l}\left(\mathcal{A}_{X}\right)=\operatorname{ker}\left(\pi_{l-1}\right)$, where

$$
\pi_{l-1}: D_{l-1}\left(\mathcal{A}_{X}\right)=\bigoplus_{Y \in L\left(\mathcal{A}_{X}\right), r(Y)=l-1} R_{l-1}\left(\left(\mathcal{A}_{X}\right)_{Y}\right) \longrightarrow R_{l-1}\left(\mathcal{A}_{X}\right)
$$

The induction hypothesis is telling that for each $Y \in L\left(\mathcal{A}_{X}\right), r(Y)=l-1$ such that $R_{l-1}\left(\left(\mathcal{A}_{X}\right)_{Y}\right) \neq 0, G_{Y}=\left[i_{1} i_{2} \cdots i_{l}\right]$ is a K_{l} subgraph of G_{X} and $\operatorname{dim} R_{l-1}\left(\left(\mathcal{A}_{X}\right)_{Y}\right)=1$ with $r_{i_{1} i_{2} \cdots i_{l}}$ 'special' basis element of $R_{l-1}\left(\left(\mathcal{A}_{X}\right)_{Y}\right)$.

From this we get first that $\operatorname{dim} D_{l-1}\left(\mathcal{A}_{X}\right)=$ the number of K_{l} subgraphs of G_{X}.
The condition $R_{l}\left(\mathcal{A}_{X}\right) \neq 0$ is telling us that, since $R_{l}\left(\mathcal{A}_{X}\right) \subseteq D_{l-1}\left(\mathcal{A}_{X}\right), G_{X}$ has at least one K_{l} subgraph.

If G_{X} has just one K_{l} subgraph, then $R_{l}\left(\mathcal{A}_{X}\right)=D_{l-1}\left(\mathcal{A}_{X}\right)$. But π_{l-1} is a sum of inclusions, and in this particular case it will be exactly an inclusion. So we get that $R_{l}\left(\mathcal{A}_{X}\right)=\operatorname{ker}\left(\pi_{l-1}\right)=0$, which is a contradiction.

Therefore, G_{X} has at least two K_{l} subgraphs.
Let's take two of them K_{l}^{1} and K_{l}^{2}, and first suppose they do not share any vertex. Let $v \in K_{l}^{1}$ and $w \in K_{l}^{2}$ be two vertices of G_{X}. Through v pass exactly $l-1$ edges and the corresponding linear forms $\alpha_{1}, \ldots, \alpha_{l-1}$ are linearly independent. Let's take two edges $\left[w, w_{1}\right]$ and $\left[w, w_{2}\right]$ of K_{l}^{2} and let β_{1} and β_{2} be the corresponding linear forms. Then, $\alpha_{1}, \ldots, \alpha_{l-1}, \beta_{1}, \beta_{2}$ are linearly dependent if at least one of the vertices $\left\{w, w_{1}, w_{2}\right\}$ is a vertex in K_{l}^{1}. Contradiction. Therefore, $\alpha_{1}, \ldots, \alpha_{l-1}, \beta_{1}, \beta_{2}$ are linearly independent. But this will contradict $r\left(\mathcal{A}_{X}\right)=l$.

Hence, K_{l}^{1} and K_{l}^{2} have at least a common vertex v. Suppose w_{1}, w_{2} are two vertices of K_{l}^{2} but not of K_{l}^{1}. Then, through v pass at least $l+1$ edges: $l-1$ from K_{l}^{1} and $\left[v, w_{1}\right],\left[v, w_{2}\right]$ from K_{l}^{2}. The corresponding linear forms are linearly independent and again we obtain a contradiction with the fact that $r\left(\mathcal{A}_{X}\right)=l$.

The conclusion of all of above is that any two distinct K_{l} subgraphs of G_{X} have exactly $l-1$ vertices in common. (*)

Suppose G_{X} has exactly two K_{l} subgraphs: $[1,2, \ldots, l-1, l]$ and $[1,2, \ldots, l-$ $1, l+1]$. Let $r \in R_{l}\left(\mathcal{A}_{X}\right), r \neq 0$. Then $r=r_{1,2, \ldots, l-1, l}+b r_{1,2, \ldots, l-1, l+1}$ for some $b \in \mathbb{K}-\{0\}$. We have $\pi_{l-1}(r)=0$ in $D_{l-2}\left(\mathcal{A}_{X}\right)$. So we get a relation on the 'special' basis elements of $D_{l-2}\left(\mathcal{A}_{X}\right)$:

$$
\begin{gathered}
0=\left(r_{2, \ldots, l-1, l}-r_{1,3, \ldots, l-1, l}+\cdots+(-1)^{l-1} r_{1,2, \ldots, l-1}\right) \\
+b\left(r_{2, \ldots, l-1, l+1}-r_{1,3, \ldots, l-1, l+1}+\cdots+(-1)^{l-1} r_{1,2, \ldots, l-1}\right) .
\end{gathered}
$$

Observe that this equation is impossible.
So G_{X} has at least three distinct K_{l} subgraphs: $K_{l}^{1}=[1,2, \ldots, l-1, l], K_{l}^{2}=$ $[1,2, \ldots, l-1, l+1]$ and K_{l}^{3}. If both l and $l+1$ are vertices in K_{l}^{3}, then l and $l+1$ are connected in G_{X}, so G_{X} contains a K_{l+1} subgraph. If, for example, $l \notin K_{l}^{3}$, then from (*) and since $K_{l}^{i}, i=1,2,3$ are distinct we get that $K_{l}^{3}=[1,2, \ldots, l-1, l+2]$, for some other vertex $l+2$ in G_{X}. Observe that through the vertex 1 pass at least $l+1$ edges of $G_{X}:[1,2],[1,3], \ldots,[1, l-1],[1, l],[1, l+1],[1, l+2]$. The corresponding linear forms of these edges are linearly independent so we get a contradiction with the fact that $r\left(\mathcal{A}_{X}\right)=l$.

We can conclude that G_{X} contains a K_{l+1} subgraph. Now, if there exists an extra edge of G_{X} not on this K_{l+1}, then the corresponding linear form of this edge together with the corresponding linear forms of the edges passing through any vertex of the K_{l+1} subgraph will form a linearly independent set of $l+1$ elements. Again we get a contradiction with the fact that $r\left(\mathcal{A}_{X}\right)=l$. So G_{X} is a K_{l+1}.

With this, G_{X} has exactly $l+1 K_{l}$ subgraphs. These subgraphs will give us the 'special' elements of $D_{l-1}\left(\mathcal{A}_{X}\right): r_{2, \ldots, l+1}, r_{1,3, \ldots, l+1}, \ldots, r_{1,2, \ldots, l}$. The only relation on these elements is exactly the 'special' element in $R_{l}\left(\mathcal{A}_{X}\right)$:

$$
r_{2, \ldots, l+1}-r_{1,3, \ldots, l+1}+\cdots+(-1)^{l} r_{1,2, \ldots, l} .
$$

We denote this element with $r_{1,2, \ldots, l, l+1}$ and it is forming the basis for $R_{l}\left(\mathcal{A}_{X}\right)$.
For the converse, it is obvious that if G_{X} is a K_{l+1}, then $R_{l}\left(\mathcal{A}_{X}\right) \neq 0$ and even more, $\operatorname{dim} R_{l}\left(\mathcal{A}_{X}\right)=1$.

With this lemma we can identify easily the two complexes. The way we pick the special basis elements will give us the same matrices for the differentials of the two complexes and, hence, with Lemma 2.5., we have proved the following proposition:

Proposition 3.2. Let G be a connected graph. \mathcal{A}_{G} is k-formal if and only if $H_{i}(\Delta)=0$ for every $i=1, \ldots, k-1$.

Note that from this proposition we get that in the graphic arrangement case, k-formality depends only on combinatorics, contrary to the case of lines arrangements (see Yuzvinsky's example).

Example 3.3. We conclude with an easy example of a formal graphic arrangement which is not 3 -formal. Consider the graph G in the figure below:

The associated flag complex Δ is the boundary complex of an octahedron on the same vertices and edges. The associated chain complex of Δ is:

$$
0 \longrightarrow \mathbb{K}^{8} \xrightarrow{f_{2}} \mathbb{K}^{12} \xrightarrow{f_{1}} \mathbb{K}^{6} \longrightarrow 0,
$$

where, if we order the basis lexicographically we have:

$$
f_{1}=\left[\begin{array}{cccccccccccc}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 1 & 1 \\
0 & 0 & -1 & 0 & 0 & -1 & 0 & 0 & -1 & 0 & -1 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & -1 & 0 & 0 & -1 & 0 & -1
\end{array}\right]
$$

and

$$
f_{2}=\left[\begin{array}{cccccccc}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
-1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

Since G is connected, then $\operatorname{dim} H_{0}(\Delta)=1$. So $\operatorname{rk}\left(f_{1}\right)=6-1=5$. Therefore, $\operatorname{dim} \operatorname{ker}\left(f_{1}\right)=12-5=7$.

Every 4 -cycle in G is a linear combination of 3 -cycles. So \mathcal{A}_{G} is formal (2formal). By the proposition above, $\operatorname{dim} H_{1}(\Delta)=0$ and with this we get $\operatorname{rk}\left(f_{2}\right)=$ 7. Therefore, $\operatorname{dim} \operatorname{ker}\left(f_{2}\right)=8-7=1$. So we get $\operatorname{dim} H_{2}(\Delta)=1$. Hence \mathcal{A}_{G} is not 3 -formal.

Acknowledgment. I thank Hal Schenck for many useful conversations and grant support.

References

[1] Falk, M.; Randell, R.: On the homotopy theory of arrangements. Adv. Stud. Pure. Math. 8 (1986), 101-124.
[2] Brandt, K. A.; Terao, H.: Free Arrangements and Relation Spaces. Discrete Comput. Geom. 12 (1994), 49-63.
[3] Kung, J.; Schenck, H.: Derivation modules of orthogonal duals of hyperplane arrangements. J. Algebr. Comb. 24 (2006), 122-132.

Zbl 1101.05019
[4] Orlik, P.; Terao, H.: Arrangements of Hyperplanes. Grundlehren Math. Wiss. 300, Springer-Verlag, Berlin 1992.

Zbl 0757.55001
[5] Schenck, H.; Suciu, A.: Lower central series and free resolutions of hyperplane arrangements. Trans. Am. Math. Soc. 354 (2002), 3409-3433. Zbl 1057.52015
[6] Schenck, H.; Suciu, A.: Resonance, linear syzygies, Chen groups, and the Bernstein-Gelfand-Gelfand correspondence, Trans. Am. Math. Soc. 358(5) (2006), 2269-2289. Zbl pre05007317
[7] Stanley, R.: Supersolvable lattices. Algebra Universalis 2 (1972), 197-217. Zbl 0256.06002
[8] Yuzvinsky, S.: First two obstructions to freeness of arrangements. Trans. Am. Math. Soc. 335 (1993), 231-244.

Zbl 0768.05019

Received November 3, 2005

[^0]: *Partially supported by NSF DMS 03-11142 and ATP 010366-0103.
 0138-4821/93 \$ 2.50 © 2007 Heldermann Verlag

