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Abstract. In a former paper [18] a method is described that determines
the data and the density of the optimal ball or horoball packing to each
Coxeter tiling in the hyperbolic 3-space. In this work we extend this
procedure – based on the projective interpretation of the hyperbolic
geometry – to higher dimensional Coxeter honeycombs in Hd, (d =
4, 5), and determine the metric data of their optimal ball and horoball
packings, respectively.

1. Introduction

In [3], Böröczky and Florian determined the densest horosphere packing of H3

without any symmetry assumption. They proved that this provides the general
density upper bound for all sphere packings (more precisely ball packings) of H3,
where the density is related to the Dirichlet-Voronoi cell of every ball, as follows:

s0 = (1 +
1

22
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42
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52
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82
− −+ + · · · )−1 ≈ 0.85327609.

This limit is achieved by the 4 horoballs touching each other in the ideal regular
simplex whose honeycomb has the Schläfli symbol (3, 3, 6), the horoball centres
are just in the 4 vertices of the simplex. Beyond the universal upper bound there
are a few results in this topic ([4], [15], [16], [17]), therefore our method seems
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to be timely for determining local optimal ball and horoball packings for given
hyperbolic tilings.

In [18] we investigated the regular Coxeter honeycombs and their optimal ball
and horoball packings in the hyperbolic space H3. These Coxeter tilings are the
following:

(p, q, r) = (3, 5, 3), (4, 3, 5), (5, 3, 4), (5, 3, 5),

(3, 3, 6), (3, 4, 4), (4, 3, 6), (5, 3, 6),

(3, 6, 3), (4, 4, 4), (6, 3, 6),

(4, 4, 3), (6, 3, 3), (6, 3, 4), (6, 3, 5).

In each case we have determined the metric data of the cell, moreover, we have
computed the density of the optimal ball or horoball packing.

A d-dimensional honeycomb P (or solid tessellation, or tiling) is an infinite set
of congruent polyhedra (polytopes) fitting together to fill all space (Hd (d ≥ 2))
just once, so that every face of each polyhedron (polytope) belongs to another
polyhedron as well. At present the cells are congruent regular polyhedra. A
honeycomb with cells congruent to a given regular polyhedron P exists if and
only if the dihedral angle of P is a submultiple of 2π (in the hyperbolic plane zero
angle is also possible). All honeycombs with bounded cells were first found by
Schlegel in 1883, those with unbounded cells by H. S. M. Coxeter in his famous
article [5]. Such honeycombs exist only for d ≤ 5.

Another approach to describing honeycombs involves the analysis of their
symmetry groups. If P is such a honeycomb, then any motion taking one cell
into another maps the whole honeycomb onto itself. The symmetry group of a
honeycomb is denoted by SymP . Therefore the characteristic simplex F of any
cell P ∈ P is a fundamental domain of the group SymP generated by reflections
in its facets ((d− 1)-dimensional hyperfaces).

The scheme of a regular polytope P is a weighted graph (characterizing
P ⊂ Hd up to congruence) in which the nodes, numbered by 0, 1, . . . , d corre-
spond to the bounding hyperplanes of F . Two nodes are joined by an edge
if the corresponding hyperplanes are not orthogonal. Let the set of weights
(n1, n2, n3, . . . , nd−1) be the Schläfli symbol of P , and nd the weight describing
the dihedral angle of P that equals 2π

nd
. Then F is the Coxeter simplex with the

scheme

n n n n1 2 d-1 d

0 1 2 d-2 d-1 d

.

The ordered set (n1, n2, n3, . . . , nd−1, nd) is said to be the Schläfli symbol of the
honeycomb P . To every scheme there is a corresponding symmetric matrix (bij)
of size (d + 1) × (d + 1) where bii = 1 and, for i 6= j ∈ {0, 1, 2, . . . , d}, bij equals
− cos π

nij
with all angles between the facets i,j of F ; then nk =: nk−1,k, too.

Reversing the numbers of the nodes in the scheme of P (but keeping the weights),



J. Szirmai: The Optimal Ball and Horoball Packings to the Coxeter . . . 37

leads to the so called dual honeycomb P∗ whose symmetry group coincides with
SymP .

In this paper we investigate regular Coxeter honeycombs and their optimal
ball and horoball packings in the hyperbolic space Hd, (d = 4, 5). By SymP we
denote the symmetry group of the honeycomb Pn1n2...nd

, thus

Pn1n2...nd
= {

⋃
γ∈SymPn1n2...nd−1

γ(Fn1n2...nd
)}.

For the density, we relate each ball or horoball, respectively, to its regular polytope
Pn1n2...nd

that contains it (not necessarily assumed to be a Dirichlet-Voronoi cell).

The 4-dimensional Coxeter tilings are the following:

(n1, n2, n3, n4) = (5, 3, 3, 3), (3, 3, 3, 5), (5, 3, 3, 4), (1.1)

(4, 3, 3, 5), (5, 3, 3, 5), (3, 4, 3, 4);

(n1, n2, n3, n4) = (4, 3, 4, 3); (1.2)

The 5-dimensional Coxeter tilings are the following:

(n1, n2, n3, n4, n5) = (3, 3, 3, 4, 3), (1.3)

(n1, n2, n3, n4, n5) = (3, 4, 3, 3, 3), (3, 4, 3, 3, 4), (1.4)

(4, 3, 3, 4, 3), (3, 3, 4, 3, 3).

From these, in Section 3 of this paper, we shall consider every tiling, where a
horosphere is inscribed in each regular polyhedron which is infinite centred and
its vertices are proper points or lie at infinity. Thus we obtain of the parameters
(1.2), (1.4) satisfying the above mentioned properties.

In Section 4 we consider the Coxeter honeycombs with parameters (1.1) and
(1.3). In these cases the cells have proper centres and its vertices are proper points
or lie at infinity, thus we investigate the ball packings where each ball lies in its
regular polyhedron Pn1n2...nd

.
With our method, based on the projective interpretation of hyperbolic ge-

ometry [12], [14], in each case we have determined the metric data of the cell,
moreover, we have computed the density of the optimal ball and horoball pack-
ing, respectively.

The computations were carried out by Maple V Release 5 up to 30 decimals.

2. The projective model

Let X denote either the d-dimensional sphere Sd, the d-dimensional Euclidean
space Ed or the hyperbolic space Hd, d ≥ 2. We use for Hd the projective model
in the Lorentz space E1,d of signature (1, d), i.e. E1,d denotes the real vector space
Vd+1 equipped with the bilinear form of signature (1, d)

〈x,y〉 = −x0y0 + x1y1 + · · ·+ xdyd (2.1)
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where the non-zero vectors

x = (x0, x1, . . . , xd) ∈ Vd+1 and y = (y0, y1, . . . , yd) ∈ Vd+1,

are determined up to real factors, for representing points of Pd(R). Then Hd can
be interpreted as the interior of the quadric

Q = {[x] ∈ Pd|〈x,x〉 = 0} =: ∂Hd (2.2)

in the real projective space Pd(Vd+1, Vd+1). Any proper interior point x ∈ Hd is
characterized by 〈x,x〉 < 0.

The points of the boundary ∂Hd in Pd are called points at infinity of Hd, the
points y with 〈y,y〉 > 0 lying outside ∂Hd are said to be outer points of Hd.
Let P ([x]) ∈ Pd, a point [y] ∈ Pd is said to be conjugate to [x] relative to Q
if 〈x,y〉 = 0 holds. The set of all points which are conjugate to P ([x]) form a
projective (polar) hyperplane

pol(P ) := {[y] ∈ Pd|〈x,y〉 = 0.} (2.3)

Thus the quadric Q (by the symmetric bilinear form or scalar product in (2.1))
induces a bijection (linear polarity Vd+1 → Vd+1) from the points of Pd onto its
hyperplanes.

The point X[x] and the hyperplane α[a] are called incident if xa = 0 i.e.
the value of the linear form a on the vector x is equal to zero (x ∈ Vd+1 \
{0}, a ∈ V d+1 \ {0}). The straight lines of Pd are characterized by 2-subspaces
of Vd+1 or by d− 1-spaces of Vd+1, i.e. by 2 points or dually by d−1 hyperplane,
respectively [12].

Let P ⊂ Hd denote a polyhedron bounded by hyperplanes H i, which are
characterized by unit normal vectors bi ∈ Vd+1 directed inwards with respect to
P :

H i := {x ∈ Hd|〈x, bi〉 = 0} with 〈bi, bi〉 = 1. (2.4)

We always assume that P is acute-angled polyhedron and the vertices are proper
points or lie at infinity.

The Gram matrix G(P ) := (〈bi, bj〉) i, j ∈ {0, 1, 2, . . . , d} of the normal vectors
bi associated to P is an indecomposable symmetric matrix of signature (1, d) with
entries 〈bi, bi〉 = 1 and 〈bi, bj〉 ≤ 0 for i 6= j, having the following geometrical
meaning

〈bi, bj〉 =


0 if H i ⊥ Hj ,

− cos αij if H i,Hj intersect on P at angle αij ,

− 1 if H i,Hj are parallel in hyperbolic sense,

− cosh lij if H i,Hj admit a common perpendicular of length lij .

Definition 2.1. An orthoscheme O in X is a simplex bounded by d+1 hyperplanes
H0, . . . , Hd such that ([8], [1])

H i⊥Hj, for j 6= i− 1, i, i + 1.
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A plane orthoscheme is a right-angled triangle, whose area can be expressed by the
well known defect formula. For an orthoscheme we denote the (d − 1)-hyperface
opposite to the vertex Ai by H i (0 ≤ i ≤ d). An orthoscheme O has d dihedral
angles which are not right angles. Let αij denote the dihedral angle of O between
the faces H i and Hj. Then we have

αij =
π

2
, if 0 ≤ i < j − 1 ≤ d.

The remaining d dihedral angles αi,i+1, (0 ≤ i ≤ d − 1) are called the essential
angles of O. The initial and final vertices, A0 and Ad of the orthogonal edge-path

d−1⋃
i=0

AiAi+1

are called principal vertices of the orthoscheme.
In our cases the characteristic simplex F of any honeycomb P with Schläfli

symbol (n1, n2, n3, . . . , nd) is an orthoscheme.
The matrix (bij) = G(P ) is the so called Coxeter-Schläfli matrix of such an

orthoscheme F with parameters n1, n2, n3, . . . , nd:

(bij) :=



1 − cos π
n1

0 . . . 0

− cos π
n1

1 − cos π
n2

. . . 0

0 − cos π
n2

1 . . . 0

0 0 − cos π
n3

. . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . 0 − cos π

nd
1


. (2.5)

Inverting the Coxeter-Schläfli matrix (bij) (see (2.5) and Section 1) of an or-
thoscheme we get the matrix (aij) and we can express any distance between two
vertices by the following formula [10]:

cosh
dij

k
=

−aij√
aiiajj

, (2.6)

at present paper we choose k = 1, K = −k2 is the sectional curvature of Hd. The
distance s of two proper points (x) and (y) can be calculated by the following
formula:

cosh
s

k
=

−〈x,y〉√
〈x,x〉〈y,y〉

. (2.7)

2.1. Description of a horosphere in the hyperbolic space Hd

We shall use the Cayley-Klein ball model with centre Ad−1(1, 0, . . . , 0) of the
hyperbolic space Hd in a Cartesian homogeneous rectangular coordinate system
{ei} i = 0, . . . , d to (2.1). We have illustrated in Figure 2.a the site of the horo-
sphere in the 3-dimensional Cayley-Klein ball model. The equation of the horo-
sphere with centre Ad(1, 0, . . . , 1) through the point S(1, 0, . . . , s) in the projective
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coordinates (x0, x1, x2, . . . , xd) is the following [18]:

0 = −2s(x0)2 − 2(xd)2 + 2(s + 1)(x0xd) + (s− 1)((x1)2 + · · ·+ (xd−1)2). (2.7)

In the Cartesian rectangular coordinate system this equation is the following:

2(
∑d−1

i=1 h2
i )

1− s
+

4(hd − s+1
2

)2

(1− s)2
= 1, where hi :=

xi

x0
, i = 1, 2, . . . , d. (2.8)

The site of this horosphere in the part of the infinite regular polyhedron is illus-
trated in Figure 1 (d=3).

V
t

t

z

t

y

V

S

E (1,0,1,0)A (1,0,0,0) 2
2

S(1,0,0,s)

P(1,0,p,1)A (1,0,0,1)
3

Figure 1.

3. The d-dimensional optimal horoball packings

In this section we consider those Coxeter tilings in the 4- and the 5-dimensional
hyperbolic space, where an infinite regular polyhedron (polytope) is circumscribed
about a horosphere and the polyhedron has proper vertices or the vertices lie at
infinity. These honeycombs are given by their Schläfli symbols with parameters
(1.2) and (1.4) where the facets are regular 3- and 4-dimensional polyhedra, respec-
tively. In Figure 2.a we illustrate a part of a 3-dimensional Coxeter honeycomb,
where A3 is the centre of a horosphere, the centre of a regular polygon is denoted
by A2 (A2 is also the common point of this face and the optimal horosphere), A0

is one of its vertices, and we denote by A1 the footpoint of A2 on an edge of this
face (see [18]). Analogously in Figure 2.b, we display a part of the infinite regular
polyhedron of a Coxeter tiling in 4-dimensional hyperbolic space, where A4 is the
centre of a horosphere, A3 is the centre of the facet-polyhedron (A3 is also the com-
mon point of this facet-polyhedron and the optimal horosphere), the centre of its
regular polygon is denoted by A2, A0 is one of its vertices, and A1 is the centre of
an edge of this face where A0 is one of its endpoints. It is sufficient to consider the
optimal horoball packing in the orthoscheme A0A1A2 . . . Ad because the tiling can
be constructed from such orthoschemes as fundamental domain of SymPn1n2...nd

.
We introduce a Cartesian rectangular projective coordinate system, by a vector
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basis Ai(vi) (i = 0, 1, 2, . . . , d) for Pd, with the following coordinates of the points
of the infinite regular polyhedron (in the 4-dimensional case see Figure 2.b),

A0(v0)(1, v
1
0, . . . , v

d−1
0 , 0), A1(v1)(1, v

1
1, . . . , v

d−2
1 , 0, 0),

A2(v2)(1, v
1
2, . . . , v

d−3
2 , 0, 0, 0), A3(v3)(1, v

1
3, . . . , v

d−4
3 , 0, 0, 0, 0), . . .

Ad−1(vd−1)(1, 0, . . . , 0, 0), Ad(vd)(1, 0, . . . , 0, 1).

3.1. The data of a cell of a regular honeycomb

By the formulas (2.5), (2.6) and (2.7) and by the above introduced coordinate
system we get a system of equations for i, j = 0, 1, 2, . . . , d− 1, i 6= j, for the
coordinates:

−〈vi,vj〉√
〈vi,vi〉〈vj,vj〉

=
−aij√
aiiajj

. (3.1)

Solving this system of equations we get the coordinates in our basis {ei}, i =
0, . . . , d, as follows in Table 1:

Table 1

(n1, n2, . . . , nd) v1
0 = v1

1 = v1
2 = v1

3 v2
0 = v2

1 = v2
2 v3

0 = v3
1 v4

0

(4, 3, 4, 3) 1
2

1
2

1
2

–

(3, 4, 3, 3, 3) 1
2

1
2
√

3
1

2
√

6
1

2
√

2

(3, 4, 3, 3, 4) 1√
2

1√
6

1
2
√

6
1
2

(4, 3, 3, 4, 3) 1
2

1
2

1
2

1
2

(3, 3, 4, 3, 3) 1
2

1
2
√

6
1√
6

1
2
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3.2. On the optimal horoballs

It is clear that the optimal horosphere has to touch the faces of its contain-
ing infinite regular polyhedron. Thus the optimal horoball passes through the
point Ad−1(1, 0, . . . , 0, 0) and the parameter s in the equation of the optimal
horosphere is 0 (see Section 2.1). The orthoscheme A0A1 . . . Ad and its images
under SymPn0n1...nd

divide the optimal horosphere into congruent horospherical
simplices (see Figure 2). The vertices A′

0, A
′
1, A

′
2, . . . , A

′
d−1 = Ad−1(1, 0, . . . , 0, 0)

of such a simplex are in the edges A0Ad, A2Ad, . . . , Ad−1Ad, and on the op-
timal horosphere, respectively. Therefore, their coordinates can be determined
in the Cayley-Klein model. We have summarized the coordinates of the points
A′

i (i = 0, 1, . . . , d− 1) for the investigated honeycombs in the following:

(4, 3, 4, 3) : A′
0(1,

4

11
,

4

11
,

4

11
,

3

11
), A′

1(1,
2

5
,
2

5
, 0,

1

5
), A′

2(1,
4

9
, 0, 0,

1

9
).

(3, 4, 3, 3, 3) : A′
0(1,

2

5
,
2
√

3

15
,

√
6

15
,

√
2

5
,
1

5
), A′

1(1,
8

19
,
8
√

3

57
,
4
√

6

57
, 0,

3

19
),

A′
2(1,

3

7
,

√
3

7
, 0, 0,

1

7
), A′

3(1,
4

9
, 0, 0, 0,

1

9
),

(3, 4, 3, 3, 4) : A′
0(1,

√
2

3
,

√
6

9
,

√
3

9
,
1

3
,
1

3
), A′

1(1,
4
√

2

11
,
4
√

6

33
,
4
√

3

33
, 0,

3

11
),

A′
2(1,

3
√

2

8
,

√
6

8
, 0, 0,

1

4
), A′

3(1,
2
√

2

5
, 0, 0, 0,

1

5
),

(4, 3, 3, 4, 3) : A′
0(1,

1

3
,
1

3
,
1

3
,
1

3
,
1

3
), A′

1(1,
4

11
,

4

11
,

4

11
, 0,

3

11
),

A′
2(1,

2

5
,

√
2

5
, 0, 0,

1

5
), A′

3(1,
4

9
, 0, 0, 0,

1

9
),

(3, 3, 4, 3, 3) : A′
0(1,

1

3
,

1

3
√

3
,

√
6

9
,
2

3
,
1

3
), A′

1(1,
2

5
,
2
√

3

15
,
2
√

6

15
, 0,

1

5
),

A′
2(1,

3

7
,

√
3

7
, 0, 0,

1

7
), A′

3(1,
4

9
, 0, 0, 0,

1

9
).

The lengths of the edges of such a horospherical polyhedron (the edges are horo-
cycle segments) are determined by the classical formula of J. Bolyai (see Figure 3):

l(x) = k sinh
x

k
(at present k = 1). (3.2)

The volume of the horoball pieces in the d-dimensional hyperbolic space can be
calculated by the formula (3.3) which is the generalization of the classical formula
of J. Bolyai to higher dimensions (see [19]). If the volume of the polyhedron A
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H1 H2

x

l(x)

. . .

E3

Figure 3.

on the horosphere is A, the volume determined by A and the aggregate of axes
drawn from A is equal to

V =
1

d− 1
kA (we assume that k = 1 here). (3.3)

It is well known that the intrinsic geometry of the horosphere is Euclidean,
therefore, the volume An0n1...nd

of the horospherical d − 1-dimensional simplex
A′

0A
′
1 . . . A′

d−1 can be calculated from the lengths of edges implied by (2.7) and
(3.2).

For the density of the packing it is sufficient to relate the volume of the optimal
horoball piece to that of its containing orthoscheme A0A1 . . . Ad (see Figure 3)
because the tiling can be constructed of such simplex.

The volume of a Coxeter orthoscheme with Schläfli symbol (n0, . . . , nd) is
denoted by Wn0n1...nd

. The volumes of all hyperbolic Coxeter simplex (where the
vertices are proper points or lie at infinity) were determined by N. W. Johnson,
R. Kellerhals, J. G. Ratcliffe and S. T. Tschantz in their nice work [7]. The
volumes are summarized in Table 2.

Definition 3.1. The density of the horoball packing for the regular honeycombs
(1.2), (1.4) is defined by the following formula:

δn0n1...nd
:=

1
d−1

kAn0n1...nd

Wn0n1...nd

. (3.4)

In Table 2 we have collected the results of the optimal horoball packings for the
Coxeter honeycombs of Schläfli symbols (1.2) and (1.4):
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Table 2

(n0, n1, . . . , nd) An0n1...nd
Wn0n1...nd

δn0n1...nd

(4, 3, 4, 3)
√

3
108

sinh
arcosh 11

8

2
π2

864
≈ 0.60792710

(3, 4, 3, 3, 3)
√

3
2304

sinh
arcosh 17

16

2
7ζ(3)
46080

≈ 0.59421955

(3, 4, 3, 3, 4) 1
144

sinh
arcosh 9

8

2
7ζ(3)
4608

≈ 0.23768782

(4, 3, 3, 4, 3) 1
384

sinh
arcosh 9

8

2
7ζ(3)
4608

≈ 0.35653173

(3, 3, 4, 3, 3)
√

2
1152

sinh
arcosh 5

4

2
7ζ(3)
9216

≈ 0.47537564

Remark 3.2. In the 5-dimensional cases ζ is Riemann’s zeta function:

ζ(n) :=
∞∑

r=1

1

rn
.

4. The d-dimensional optimal ball packings

In this section we investigate the Coxeter honeycombs with Schläfli symbols in
(1.1) and (1.3).

In Figure 4 we have illustrated a part of the 3- and 4-dimensional regular
polyhedron (polytope) of a Coxeter tiling. In the 3-dimensional case (Figure
4.a) A3 is the centre of a cell, the centre of a regular polygon is denoted by A2,
A0 is one of its vertices and we denote by A1 the midpoint of an edge of this
face. Analogously in Figure 4.b, we display a part of the regular polyhedron of
a Coxeter tiling in 4-dimensional hyperbolic space, where A4 is the centre of a
regular polyhedron (polytope), A3 is the centre of the facet-polyhedron (A3 is
also the common point of this facet-polyhedron and the optimal ball), the centre
of its regular polygon is denoted by A2, A1 is the centre of an edge of this face
where A0 is one of its. In general, it is sufficient to consider the optimal ball
packing in the orthoscheme A0A1A2 . . . Ad because the tiling can be constructed
from such orthoschemes as fundamental domain of SymPn1n2...nd

.
The cells for these parameters have proper centres and the vertices are proper

points or lie at infinity. The volume of every regular polyhedron of Pn1n2...nd
is

denoted by V (Pn1n2...nd
). In this section we are interested in ball packings, where

the congruent balls with radius R = Rn1n2...nd
lie in cells of the above mentioned

tilings.

Definition 4.1. The density of the ball packing to any Coxeter honeycomb (1.1)
and (1.3) can be defined by the following formula:

δn1n2...nd
:=

2πd/2
∫ R

0
sinhd−1(x)dx

Γ(d
2
)V (Pn1n2...nd

)
. (4.1)

Remark 4.2. The Gamma function is defined for Re(z) > 0 by:

Γ(z) =

∫ ∞

0

e−ttz−1dt
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and is extended to the rest of the complex plane by analytic continuation.

It is clear that the optimal ball with centre Ad has to touch the facets of its regular
polyhedron (see Figure 4). Thus the optimal ball passes through the point Ad−1,
and the optimal radius Ad−1Ad of these tilings can be calculated by the projective
method [10], [14], where (aij) = (bij)−1 and bij = − cos π

nij
(see Section 1 and

(2.5), (2.6)).

A
4

A0

A A

A
3

21

=A
3

,

x

w

a. b.

1

x

z

A
A

A

0

A
2

3

Figure 4

Ropt
n1n2...nd

:= Ad−1Ad = arcosh
−a(d−1)d

√
a(d−1)(d−1)add

. (4.2)

Again, we have calculated the volume Wn1n2...nd
of the orthoschemes A0A1 . . . Ad

(see [7]) for the parameters (1.1) and (1.3).
The volumes Wn1n2...nd

and the volumes V (Pn1n2...nd
) of the regular polyhedra

Pn1n2...nd
∈ Pn1n2...nd

are summarized in Table 3.

Table 3

(n1, n2, . . . , nd) Wn1n2...nd
V (Pn1n2...nd

)

(5, 3, 3, 3) π2

10800
14400 ·W5333 = 4

3
π2 ≈ 13.15947253

(3, 3, 3, 5) π2

10800
120 ·W3335 = 1

90
π2 ≈ 13.15947253

(5, 3, 3, 4) 17π2

21600
14400 ·W5334 = 34

3
π2 ≈ 111.85551655

(4, 3, 3, 5) 17π2

21600
384 ·W4335 = 68

225
π2 ≈ 2.98281378

(5, 3, 3, 5) 13π2

5400
14400 ·W5335 = 104

3
π2 ≈ 342.14628590

(3, 4, 3, 4) π2

864
1152 ·W3434 = 4

3
π2 ≈ 13.15947253

(3, 3, 3, 4, 3) 7ζ(3)
46080

3840 ·W33343 = 35
6
ζ(3) ≈ 7.01199860

The optimal radius and optimal density is summarized by the formulas (4.1), (4.2)
in the following table:
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Table 4

(n1, n2, . . . , nd) Ropt
n1n2...nd

δopt
n1n2...nd

(5, 3, 3, 3) arcosh 3−
√

5√
(3−

√
5)(7−3

√
5)

≈ 0.69098301

(3, 3, 3, 5) arcosh1+
√

5√
10

≈ 0.09877254

(5, 3, 3, 4) arcosh
√

2(3−
√

5)√
(3−

√
5)(7−3

√
5)

≈ 0.41862781

(4, 3, 3, 5) arcosh
√

2(
√

5+1)
4

≈ 0.14406128

(5, 3, 3, 5) arcosh −1+
√

5√
(3−

√
5)(7−3

√
5)

≈ 0.23250327

(3, 4, 3, 4) arcosh(
√

2) ≈ 0.29289322

(3, 3, 3, 4, 3) arcosh
√

5
2

≈ 0.02162577

Analogous questions for determining the optimal ball and horoball packings of
tilings in hyperbolic d-space (d > 2) seem to be interesting and timely. Our
projective method suites to studying these problems.

Acknowledgement. I thank Prof. Emil Molnár for helpful comments to this
paper.
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