
Beiträge zur Algebra und Geometrie
Contributions to Algebra and Geometry
Volume 48 (2007), No. 1, 131-139.

A Normed Space with the
Beckman-Quarles Property

Joseph M. Ling

University of Calgary
Calgary, Alberta, Canada T2N 1N4

e-mail: ling@math.ucalgary.ca
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1. Introduction

Beckman and Quarles [1] proved that a unit distance preserving mapping from a
Euclidean space En into itself is necessarily an isometry. Since then, their result
has been generalized and extended in various directions. See, for example, [2]–
[10] for results and related questions. In this paper, we shall give an example of
a (non-strictly convex) normed space H for which every unit distance preserving
function from H into itself is an isometry.

Let C be a centrally symmetric convex set in Rn. For this paper, we assume
that C is bounded in the sense that there is some positive real number K such
that for all x = (x1, . . . , xn) in C, we have |xi| ≤ K for all i = 1, 2, . . . , n, and
that C is open in the usual topology of Rn. Now, let

||p|| = inf {t > 0 : p ∈ tC}

d (p, q) = ||p− q|| .
Then ||· · · || is a norm, and d is a metric on Rn, generating also the usual topology
of Rn, with the following properties:
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(1) d is translation invariant:

d (ta (p) , ta (q)) = d (p, q)

for all a ∈ Rn, where ta (z) = a + z. In other words, if we use Md to denote
the metric space (Rn, d), then translations are isometries on Md.

(2) The reflection σ about the origin is an isometry:

d (σ (p) , σ (q)) = d (p, q)

for all p, q in Md.

Examples of Md include the Euclidean space En (C being the usual open unit
ball defined by the inequality x2

1 + x2
2 + · · ·+ x2

n < 1), and more generally, the lp
spaces (C being defined by |x1|p + |x2|p + · · ·+ |xn|p < 1) for 1 ≤ p. We may also
look at l∞, where C is defined by max {|x1| , |x2| , . . . , |xn|} < 1. For l∞, there is
a tiling of all of Rn by lattice translates of (the closure of) C. For R2, l1 also
has this property. Another d that has this property for R2 comes from taking
C = Q + (−Q), where Q is {(x, y) : x > 0, y > 0, x + y < 1}, the interior of the
convex hull of {0, e1, e2}, where as usual, e1 = (1, 0) and e2 = (0, 1). Here C is
the (interior of the) hexagon with vertices ±e1,±e2, and ± (e1 − e2). This space
will become our main object of study below, and we shall just refer it as H.

Now, according to the Beckman-Quarles theorem for the Euclidean plane En,
if ϕ : En → En is unit distance preserving, then ϕ is an isometry on E2. That is,
condition

(1) for all p, q ∈ En, d (p, q) = 1 ⇒ d (ϕ (p) , ϕ (q)) = 1

implies condition

(2) for all p, q ∈ En, d (ϕ (p) , ϕ (q)) = d (p, q).

We propose to say that Md has the Beckman-Quarles property if every unit dis-
tance preserving map ϕ : Md → Md is an isometry on Md.

It is immediate that not all Md have the Beckman-Quarles property. The
simplist example is l∞ on Rn. Indeed, the map ϕ : l∞ → l∞ defined by

ϕ (x1, x2, . . . , xn) = (bx1c , bx2c , . . . , bxnc) ,

is unit distance preserving, but is not an isometry. (Here, bxc is the floor of x,
i.e., the largest integer not larger than x.) The situation for l1 on R2 is clear, too.

These examples make one wonder if the existence or non-existence of tiling of
Rn by translates of C plays a determining factor. In this regard, we note that H
has the Beckman-Quarles property, and it is the purpose of this article to supply
a prove for this fact.

2. Main result

H has the Beckman-Quarles property.

In this section, we let ϕ : H → H be a unit distance preserving mapping, and fix
it for our discussion. That is, for p, q ∈ H,

d (p, q) = 1 ⇒ d (ϕ (p) , ϕ (q)) = 1.
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The following claims follow immediately. We omit their proofs.

Lemma 1. For p ∈ H, let Sp = {q ∈ H : d (p, q) = 1} denote the unit circle
centered at p. The following hold.

(1) ϕ (Sp) ⊆ Sϕ(p) for all p ∈ H.

(2) If p, q, r are vertices of a unit equilateral triangle, i.e., d (p, q) = d (q, r) =
d (r, p) = 1, then so are ϕ (p) , ϕ (q) , ϕ (r).

(3) For all p ∈ H, Sp does not contain all three vertices of any unit equilateral
triangle. �

For any p ∈ H, we consider the six “vertices” of Sp as follows:

p1 = p + e1, p2 = p + e2, p3 = p− e1 + e2,

p4 = p− e1, p5 = p− e2, p6 = p + e1 − e2.

We call pi and pi+1 adjacent vertices of Sp, where we also take p7 to mean p1. (In
the following discussion, we shall assume that indices are treated with modulo 6,
unless otherwise stated.) In terms of this notation, we note the following facts.
Again, we omit the proofs.

Lemma 2. Let p ∈ H, and let i ∈ {1, 2, . . . , 6}. Then

(1) p = (pi)i+3 = (pi)i−3.

(2) pi = (pi−1)i+1 = (pi+1)i−1.

(3) Let mi+j ∈ [p, pi+j] for j ∈ J , where J = {1, 3, 5} or {2, 4, 6}. Then
{mi+j : j ∈ J} is the set of vertices of a unit equilateral triangle if and only if
mi+j = (p + pi+j) /2 for all j ∈ J . (Here, [p, q]={λp+(1−λ) q : 0≤λ≤1}.)

(4) Sp is the union of six line segments: Sp = ∪6
i=1 [pi, pi+1]. �

Now, we can start to investigate the properties of unit distance preserving maps
ϕ : H → H.

Lemma 3. Let ϕ (p) = q. The following hold.

(1) For each i = 1, 2, . . . , 6, ϕ (pi) is a vertex of Sq, i.e., there is some j ∈
{1, 2, . . . , 6} such that ϕ (pi) = qj.

(2) Adjacent vertices of Sp are mapped onto adjacent vertices of Sq. That is, if
ϕ (pi) = qj, then {ϕ (pi−1) , ϕ (pi+1)} ⊆ {qj−1, qj+1}.

(3) There is a j ∈ {1, 2, . . . , 6} such that either ϕ (pi) = qj+i for all i, or ϕ (pi) =
qj−i for all i.

Proof. (1) Suppose that ri = ϕ (pi) is not a vertex of Sq. Since ri ∈ Sq, there
must be some j such that ri belongs to the relative interior of the line segment
[qj, qj+1]. Thus, there is some λ ∈ (0, 1) such that

ri = λqj + (1− λ) qj+1.
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To facilitate our later discussion, we write

ri+k = λqj+k + (1− λ) qj+k+1,

for all k. Also, for the same reason, we let

mk =
p + pk

2

for all k. Now, as
{pi−1, pi+1} = S (p) ∩ S (pi) ,

we have
{ϕ (pi−1) , ϕ (pi+1)} ⊆ S (q) ∩ S

(
ri

)
=

{
ri−1, ri+1

}
.

Suppose now that ϕ (pi−1) 6= ϕ (pi+1). Then {ϕ (pi−1) , ϕ (pi+1)} = {ri−1, ri+1}.
As

[p, pi] = S (pi−1) ∩ S (pi+1) ,

we have

ϕ ([p, pi]) ⊆ S (ϕ (pi−1)) ∩ S (ϕ (pi+1)) = S
(
ri−1

)
∩ S

(
ri+1

)
=

{
q, ri

}
.

In particular, ϕ (mi) = q or ri.
If ϕ (mi) = q, then as

mi+2 ∈ S (pi+1) ∩ S
(
mi

)
, and mi−2 ∈ S (pi−1) ∩ S

(
mi

)
,

we have

ϕ
(
mi+2

)
∈ S (ϕ (pi+1)) ∩ S (q) , and ϕ

(
mi−2

)
∈ S (ϕ (pi−1)) ∩ S (q) .

In particular,{
ϕ

(
mi+2

)
, ϕ

(
mi−2

)}
⊆ (S (ϕ (pi+1)) ∪ S (ϕ (pi−1))) ∩ S (q)

=
(
S

(
ri−1

)
∪ S

(
ri+1

))
∩ S (q)

=
{
ri, ri−2, ri+2

}
.

But this is impossible, as d (mi+2, mi−2) = 1 but none of d (ri−2, ri) , d (ri−2, ri+2),
and d (ri, ri+2) is 1. A similar calculation shows that ϕ (mi) = ri also leads to a
contradiction.

Thus, we must have ϕ (pi−1) = ϕ (pi+1). The above argument may be re-
peated at the vertices pi−1 and pi+1 in place of pi, and we conclude that ϕ (pi) =
ϕ (pi+2) = ϕ (pi+4) = ri and ϕ (pi−1) = ϕ (pi+1) = ϕ (pi+3). But then as mi+k+1 ∈
S (pi+k), we have ϕ

(
mi+k+1

)
∈ S (ϕ (pi+k)) = S (ϕ (pi)) for k = 0, 2, 4. But then

mi+1, mi+3, mi+5 are vertices of a unit equilateral triangle whose images under
ϕ belong to the same S (ϕ (pi)), which is impossible, in view of Lemma 1 (2) and
(3).

(2) follows immediately from (1). Indeed, if S (pi) = qj, then as {pi−1, pi+1} =
S (p) ∩ S (pi), we have {ϕ (pi−1) , ϕ (pi+1)} ⊆ S (q) ∩ S (qj) = {qj−1, qj+1}.



J. M. Ling: A Normed Space with the Beckman-Quarles Property 135

(3) By (2), the sequence of points ϕ (p1) , ϕ (p2) , . . . , ϕ (p6) , ϕ (p1) forms a “close
chain” of adjacent vertices of S (q). As we see in the last stage of the proof
of (1), ϕ (p1) , ϕ (p3), and ϕ (p5) cannot be the same vertex of S (q). Similarly,
ϕ (p2) , ϕ (p4), and ϕ (p6) cannot be the same vertex of S (q). It follows that the
set V = {ϕ (p1) , . . . , ϕ (p6)} contains at least four (consecutive) vertices of S (q).

If V has exactly four elements, then there is some i and some j such that

ϕ (pi) = qj, ϕ (pi+1) = ϕ (pi−1) = qj+1,

ϕ (pi+2) = ϕ (pi−2) = qj+2, ϕ (pi+3) = qj+3.

But then mi+1, mi+3 ∈ S (pi+2) implies that ϕ (mi+1) , ϕ (mi+3) ∈ S (qj+2). Simi-
larly, ϕ (mi−1) ∈ S (ϕ (pi−2)) = S (qj+2) as well. But then the vertices mi−1, mi+1,
mi+3 of a unit equilateral triangle are mapped into the same S (qj+2). This is
impossible.

So, V has at least five elements. Thus, there are i and j such that

ϕ (pi) = qj, ϕ (pi+1) = qj+1, . . . , ϕ (pi+4) = qj+4, or

ϕ (pi) = qj, ϕ (pi+1) = qj−1, . . . , ϕ (pi+4) = qj−4

But as qj, . . . , qj+6 forms a “closed chain” of adjacent vertices, the first possibility
implies ϕ (pi+5) = qj+5 and the second ϕ (pi+5) = qj−5. �

In view of Lemma 3 (3), we introduce the following definition. We say that p is a
point of type k+ if ϕ (pi) = (ϕ (p))k+i for all i, and of type k− if ϕ (pi) = (ϕ (p))k−i

for all i. Then Lemma 3 (3) implies that each point of H is of type k+ or type k−

for some k.

Lemma 4. Let p ∈ H be of type k+ (respectively, k−). The following hold:

(1) For all i, pi is of type k+ (respectively, k−). Hence, q is of type k+ for all
q ∈ p + Z2 (respectively, k−).

(2) For all i, ϕ ([p, pi]) ⊆
[
ϕ (p) , (ϕ (p))i+k

]
(respectively, ϕ ([p, pi]) ⊆

[
ϕ (p) , (ϕ (p))k−i

]
).

(3) For all i, ϕ

(
p + pi

2

)
=

ϕ (p) + (ϕ (p))i+k

2
and

ϕ

(
pi + pi+1

2

)
=

(ϕ (p))i+k + (ϕ (p))i+k+1

2

(respectively, ϕ

(
p + pi

2

)
=

ϕ (p) + (ϕ (p))k−i

2
and

ϕ

(
pi + pi+1

2

)
=

(ϕ (p))k−i + (ϕ (p))k−i−1

2
).

Proof. (1) If p is of type k+, then using Lemma 2 (1) and (2), we get

ϕ
(
(pi)i+3

)
= ϕ (p) =

[
(ϕ (p))i+k

]
i+k+3

= [ϕ (pi)]k+i+3 ,

ϕ
(
(pi)i+2

)
= ϕ (pi+1) = (ϕ (p))k+i+1 =

[
(ϕ (p))k+i

]
k+i+2

= [ϕ (pi)]k+i+2 .
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Thus, ϕ
(
(pi)j

)
= [ϕ (pi)]k+j for two consecutive integers j = i + 2 and i + 3. By

Lemma 3 (3), we see that the same must be true for all integers j. Thus, pi is of
type k+.

A similar argument works for the case when p is of type k−. Simply observe
that if for all i, ϕ (pi) = (ϕ (p))k−i, then

ϕ
(
(pi)i+3

)
= ϕ (p) =

[
(ϕ (p))k−i

]
k−i−3

= [ϕ (pi)]k−(i+3) ,

ϕ
(
(pi)i+2

)
= ϕ (pi+1) = (ϕ (p))k−i−1 =

[
(ϕ (p))k−i

]
k−i−2

= [ϕ (pi)]k−(i+2) .

Now, the statement for q ∈ p + Z2 follows from an inductive application of the
argument, each step from a point q in p+Z2 to its neighboring points qi, 1 ≤ i ≤ 6.

(2) Since [p, pi] = S (pi−1) ∩ S (pi+1), we have

ϕ ([p, pi]) ⊆ S (ϕ (pi−1)) ∩ S (ϕ (pi+1))

= S
(
[ϕ (p)]k+i−1

)
∩ S

(
[ϕ (p)]k+i+1

)
=

[
p, (ϕ (p))k+i

]
.

The proof for type k− points is similar.

(3) The points
p + pj

2
, j ∈ J , are vertices of a unit equilateral triangle, where

J = {1, 3, 5} or {2, 4, 6}. The first result follows from Lemma 1 (2), Lemma 2 (3)
and Lemma 4 (2). Next, using this, together with Lemma 2 (2) and Lemma 4 (1),
we have

ϕ

(
pi + pi+1

2

)
= ϕ

(
pi + (pi)i+2

2

)
=

ϕ (pi) + (ϕ (pi))i+2+k

2

=
[ϕ (p)]k+i +

[
(ϕ (p))k+i

]
k+i+2

2

=
[ϕ (p)]k+i + [ϕ (p)]k+i+1

2
.

The case for type k− points is similar. �

Before we prove that a unit distance preserving function ϕ on H is necessarily an
isometry, let us note the following isometries on H:

Let ρ : H → H be defined by

ρ (x, y) = (−y, x + y) .

Then it is easy to check that ρ is linear, and for the origin 0 = (0, 0), we have
ρ (0i) = 0i+1 for i = 1, 2, . . . , 6. But then if p = (x, y) is any point in H, and
p 6= 0, there is a unique t > 0 such that tp ∈ S (0). Indeed, t = 1/d (p, 0). Hence
there is some j and some λ ∈ [0, 1] such that tp = λ0j + (1− λ) 0j+1. Thus,

ρ (p) =
λ

t
ρ (0j) +

1− λ

t
ρ (0j+1) =

1

t
(λ0j+1 + (1− λ) 0j+2) ,
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and so for the norm in H, ||ρ (p)|| = 1/t = ||p||. Now, since ρ is linear and d is
translation invariant, ρ must be an isometry.

It follows that powers ρk of ρ are isometries, k ∈ Z. Note also that ρ−k = ρ6−k

for all k. Furthermore, for each k and each i, ρk (0i) = 0i+k.
It is straightforward to see that σ : H → H, defined by σ (x, y) = (y, x), is an

isometry. Furthermore, σ (0i) = 03−i for each i. Then we obtain the isometries
σρk, k ∈ Z. Again, we note that for all k and i, σρk (0i) = σ (0i+k) = 03−i−k. As
well, ρkσ = σρ−k for all k.

Now, we are ready to prove our main theorem.

Theorem. ϕ is an isometry on H.

Proof. By composing ϕ with a translation, the reflection σ, and an appropriate
power of ρ if necessary, we may assume that ϕ (0) = 0, and ϕ (0i) = 0i for all i.
(Thus, 0 and hence all points of Z2 are of type 0+.) It suffices to show that ϕ
must be the identity map. This will not only show that all unit distance preserving
mappings are isometries, but also delineate all isometries on H.

Since ϕ (0i) = 0i for all i and 0 is of type 0+, all points of Z2 are of type 0+,
and ϕ fixes all points of Z2. So, using Lemma 4 (2), we see that at each point p in
Z2, ϕ maps [p, pi] into [p, pi], and each edge of S (p) into itself. As well, by Lemma
4 (3), ϕ fixes all midpoints of the segments [p, pi] , 1 ≤ i ≤ 6, and all midpoints
of the edges of S (p). We find it convenient to express this in an alternative way.
The above amounts to saying that

(A) ϕ maps every horizontal segment [p, p + e1] into itself, every vertical segment
[p, p + e2] into itself, and every slant segment [p, p + (e1 − e2)] into itself,
where p ∈ Z2, and

(B) ϕ fixes all points of
(

1
2
Z

)2
.

Now, we use induction. Suppose that for some positive integer n, we have

(An) ϕ maps every horizontal segment
[
p, p + e1

2n−1

]
into itself, every vertical

segment
[
p, p + e2

2n−1

]
into itself, and every slant segment

[
p, p + e1−e2

2n−1

]
into

itself, where p ∈
(

1
2n−1Z

)2
, and

(Bn) ϕ fixes all points of
(

1
2n Z

)2
.

Now, let p ∈
(

1
2n Z

)2
, and consider the line segments

[
p, p + e1

2n

]
,
[
p, p + e2

2n

]
, and[

p, p + e1−e2

2n

]
. The points u = p −

(
1− 1

2n

)
e1 + e2 and v = p + e1 − e2 are in(

1
2n Z

)2
, and hence by (Bn), are fixed by ϕ. Hence, as[

p, p +
e1

2n

]
= S (u) ∩ S (v) ,

we have

ϕ
([

p, p +
e1

2n

])
⊆ S (ϕ (u)) ∩ S (ϕ (v)) = S (u) ∩ S (v) =

[
p, p +

e1

2n

]
.

So, ϕ maps the horizontal line segment
[
p, p + e1

2n

]
into itself. The horizontal and

slant segments can be treated in a similar manner, and this establishes (An+1).
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Next, let p be a point of
(

1
2n+1Z

)2
. We want to show that ϕ fixes p. In

view of (Bn), we may assume that p /∈
(

1
2n Z

)2
. First, we consider the case

p =
(

h
2n+1 ,

k
2n+1

)
, where h is odd, and k is even. Let p′ =

(
h−1
2n+1 + 1, k+1

2n+1

)
, q =(

h−1
2n+1 ,

k
2n+1 + 1

)
, q′ =

(
h

2n+1 + 1, k+1
2n+1 − 1

)
, and r =

(
h−1
2n+1 + 1, k+2

2n+1 − 1
)
. Then q

and r are in
(

1
2n Z

)2
and so q and r are fixed by ϕ. Also, q′ = 1

2

(
r +

(
r + e1−e2

2n

))
∈[

r, r + e1−e2

2n

]
. By (An+1), we see that ϕ (q′) ∈

[
r, r + e1−e2

2n

]
. Similarly, we see

that ϕ (p) ∈
[
p− e1

2n+1 , p + e1

2n+1

]
, and ϕ (p′) ∈

[
p′ − e2

2n+1 , p
′ + e2

2n+1

]
. So, if ϕ (p) =

λ
(
p− e1

2n+1

)
+ (1− λ)

(
p + e1

2n+1

)
, where λ ∈ [0, 1], then as p′ ∈ S (p) ∩ S (q),

we have ϕ (p′) ∈ S (ϕ (p)) ∩ S (ϕ (q)) = S (ϕ (p)) ∩ S (q), and this forces ϕ (p′) =
λ

(
p′ − e2

2n+1

)
+(1− λ)

(
p′ + e2

2n+1

)
. But then as q′ ∈ S (p)∩S (p′), we have ϕ (q′) ∈

S (ϕ (p)) ∩ S (ϕ (p′)). But ϕ (q′) ∈
[
r, r + e1−e2

2n

]
, too. A simple calculation shows

that this is possible only if λ = 1/2. Thus, ϕ (p) = p, i.e., ϕ fixes p. It is clear that
the case for h being even and k being odd is similar. Second, suppose that both

h and k are odd. Then p ∈
[
s, s + e1−e2

2n

]
, where s =

(
h−1
2n+1 ,

k+1
2n+1

)
∈

(
1
2n Z

)2
. Thus,

ϕ (p) ∈
[
s, s + e1−e2

2n

]
, by (An+1). Also, S (p) intersects some certain horizontal line

segment
[
t, t + e1

2n

]
at its midpoint m, and some vertical line segment

[
t′, t′ + e2

2n

]
at its midpoint m′. By what we have just proved, m and m′ are both fixed by
ϕ. This is possible only if ϕ (p) = p. This proves (Bn+1), and so it completes the
induction. So, (An) and (Bn) are true for all positive integers n.

Now, if p =
(
x, k

2m

)
is any point in R ×

(
1

2m Z
)

for some positive integer m,
then by considering a shrinking segment of the form

[
h
2n , h+1

2n

]
×

{
k

2m

}
, n → ∞,

each containing p, we see that ϕ must also fix p. Likewise, ϕ fixes all points in(
1

2m Z
)
×R, for every m. Finally, if p is any general point of H, then there exist

(distinct) points p′ ∈ R×
(

1
2m Z

)
and p′′ ∈

(
1
2n Z

)
×R such that p ∈ S (p′)∩S (p′′).

But then ϕ (p) ∈ S (p′)∩S (p′′). As there are infinitely many choices of p′ and p′′,
we conclude that ϕ (p) = p. �
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