A Normed Space with the Beckman-Quarles Property

Joseph M. Ling
University of Calgary
Calgary, Alberta, Canada T2N $1 N_{4}$
e-mail: ling@math.ucalgary.ca

Abstract

Beckman and Quarles proved that a unit distance preserving mapping from a Euclidean space \mathbf{E}^{n} into itself is necessarily an isometry. In this paper, we give an example of a (non-strictly convex) normed space H for which every unit distance preserving function from H into itself is an isometry.

MSC 2000: 51M05, 52A10, 52A20, 52C05, 52C25
Keywords: Beckman-Quarles theorem, isometry

1. Introduction

Beckman and Quarles [1] proved that a unit distance preserving mapping from a Euclidean space \mathbf{E}^{n} into itself is necessarily an isometry. Since then, their result has been generalized and extended in various directions. See, for example, [2][10] for results and related questions. In this paper, we shall give an example of a (non-strictly convex) normed space H for which every unit distance preserving function from H into itself is an isometry.

Let C be a centrally symmetric convex set in \mathbf{R}^{n}. For this paper, we assume that C is bounded in the sense that there is some positive real number K such that for all $x=\left(x_{1}, \ldots, x_{n}\right)$ in C, we have $\left|x_{i}\right| \leq K$ for all $i=1,2, \ldots, n$, and that C is open in the usual topology of \mathbf{R}^{n}. Now, let

$$
\begin{gathered}
\|p\|=\inf \{t>0: p \in t C\} \\
d(p, q)=\|p-q\| .
\end{gathered}
$$

Then $\|\cdots\|$ is a norm, and d is a metric on \mathbf{R}^{n}, generating also the usual topology of \mathbf{R}^{n}, with the following properties:

0138-4821/93 \$ 2.50 © 2007 Heldermann Verlag
(1) d is translation invariant:

$$
d\left(t_{a}(p), t_{a}(q)\right)=d(p, q)
$$

for all $a \in \mathbf{R}^{n}$, where $t_{a}(z)=a+z$. In other words, if we use M_{d} to denote the metric space $\left(\mathbf{R}^{n}, d\right)$, then translations are isometries on M_{d}.
(2) The reflection σ about the origin is an isometry:

$$
d(\sigma(p), \sigma(q))=d(p, q)
$$

for all p, q in M_{d}.
Examples of M_{d} include the Euclidean space $\mathbf{E}^{n}(C$ being the usual open unit ball defined by the inequality $x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}<1$), and more generally, the l_{p} spaces (C being defined by $\left|x_{1}\right|^{p}+\left|x_{2}\right|^{p}+\cdots+\left|x_{n}\right|^{p}<1$) for $1 \leq p$. We may also look at l_{∞}, where C is defined by $\max \left\{\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{n}\right|\right\}<1$. For l_{∞}, there is a tiling of all of \mathbf{R}^{n} by lattice translates of (the closure of) C. For \mathbf{R}^{2}, l_{1} also has this property. Another d that has this property for \mathbf{R}^{2} comes from taking $C=Q+(-Q)$, where Q is $\{(x, y): x>0, y>0, x+y<1\}$, the interior of the convex hull of $\left\{0, e_{1}, e_{2}\right\}$, where as usual, $e_{1}=(1,0)$ and $e_{2}=(0,1)$. Here C is the (interior of the) hexagon with vertices $\pm e_{1}, \pm e_{2}$, and $\pm\left(e_{1}-e_{2}\right)$. This space will become our main object of study below, and we shall just refer it as H.

Now, according to the Beckman-Quarles theorem for the Euclidean plane \mathbf{E}^{n}, if $\varphi: \mathbf{E}^{n} \rightarrow \mathbf{E}^{n}$ is unit distance preserving, then φ is an isometry on \mathbf{E}^{2}. That is, condition
(1) for all $p, q \in \mathbf{E}^{n}, d(p, q)=1 \Rightarrow d(\varphi(p), \varphi(q))=1$
implies condition
(2) for all $p, q \in \mathbf{E}^{n}, d(\varphi(p), \varphi(q))=d(p, q)$.

We propose to say that M_{d} has the Beckman-Quarles property if every unit distance preserving map $\varphi: M_{d} \rightarrow M_{d}$ is an isometry on M_{d}.

It is immediate that not all M_{d} have the Beckman-Quarles property. The simplist example is l_{∞} on \mathbf{R}^{n}. Indeed, the map $\varphi: l_{\infty} \rightarrow l_{\infty}$ defined by

$$
\varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(\left\lfloor x_{1}\right\rfloor,\left\lfloor x_{2}\right\rfloor, \ldots,\left\lfloor x_{n}\right\rfloor\right)
$$

is unit distance preserving, but is not an isometry. (Here, $\lfloor x\rfloor$ is the floor of x, i.e., the largest integer not larger than x.) The situation for l_{1} on \mathbf{R}^{2} is clear, too.

These examples make one wonder if the existence or non-existence of tiling of \mathbf{R}^{n} by translates of C plays a determining factor. In this regard, we note that H has the Beckman-Quarles property, and it is the purpose of this article to supply a prove for this fact.

2. Main result

H has the Beckman-Quarles property.
In this section, we let $\varphi: H \rightarrow H$ be a unit distance preserving mapping, and fix it for our discussion. That is, for $p, q \in H$,

$$
d(p, q)=1 \Rightarrow d(\varphi(p), \varphi(q))=1
$$

The following claims follow immediately. We omit their proofs.
Lemma 1. For $p \in H$, let $S_{p}=\{q \in H: d(p, q)=1\}$ denote the unit circle centered at p. The following hold.
(1) $\varphi\left(S_{p}\right) \subseteq S_{\varphi(p)}$ for all $p \in H$.
(2) If p, q, r are vertices of a unit equilateral triangle, i.e., $d(p, q)=d(q, r)=$ $d(r, p)=1$, then so are $\varphi(p), \varphi(q), \varphi(r)$.
(3) For all $p \in H, S_{p}$ does not contain all three vertices of any unit equilateral triangle.

For any $p \in H$, we consider the six "vertices" of S_{p} as follows:

$$
\begin{aligned}
& p_{1}=p+e_{1}, \quad p_{2}=p+e_{2}, \quad p_{3}=p-e_{1}+e_{2}, \\
& p_{4}=p-e_{1}, \quad p_{5}=p-e_{2}, \quad p_{6}=p+e_{1}-e_{2} .
\end{aligned}
$$

We call p_{i} and p_{i+1} adjacent vertices of S_{p}, where we also take p_{7} to mean p_{1}. (In the following discussion, we shall assume that indices are treated with modulo 6 , unless otherwise stated.) In terms of this notation, we note the following facts. Again, we omit the proofs.

Lemma 2. Let $p \in H$, and let $i \in\{1,2, \ldots, 6\}$. Then
(1) $p=\left(p_{i}\right)_{i+3}=\left(p_{i}\right)_{i-3}$.
(2) $p_{i}=\left(p_{i-1}\right)_{i+1}=\left(p_{i+1}\right)_{i-1}$.
(3) Let $m^{i+j} \in\left[p, p_{i+j}\right]$ for $j \in J$, where $J=\{1,3,5\}$ or $\{2,4,6\}$. Then $\left\{m^{i+j}: j \in J\right\}$ is the set of vertices of a unit equilateral triangle if and only if $m^{i+j}=\left(p+p_{i+j}\right) / 2$ for all $j \in J .($ Here, $[p, q]=\{\lambda p+(1-\lambda) q: 0 \leq \lambda \leq 1\}$.
(4) S_{p} is the union of six line segments: $S_{p}=\cup_{i=1}^{6}\left[p_{i}, p_{i+1}\right]$.

Now, we can start to investigate the properties of unit distance preserving maps $\varphi: H \rightarrow H$.

Lemma 3. Let $\varphi(p)=q$. The following hold.
(1) For each $i=1,2, \ldots, 6, \varphi\left(p_{i}\right)$ is a vertex of S_{q}, i.e., there is some $j \in$ $\{1,2, \ldots, 6\}$ such that $\varphi\left(p_{i}\right)=q_{j}$.
(2) Adjacent vertices of S_{p} are mapped onto adjacent vertices of S_{q}. That is, if $\varphi\left(p_{i}\right)=q_{j}$, then $\left\{\varphi\left(p_{i-1}\right), \varphi\left(p_{i+1}\right)\right\} \subseteq\left\{q_{j-1}, q_{j+1}\right\}$.
(3) There is a $j \in\{1,2, \ldots, 6\}$ such that either $\varphi\left(p_{i}\right)=q_{j+i}$ for all i, or $\varphi\left(p_{i}\right)=$ q_{j-i} for all i.
Proof. (1) Suppose that $r^{i}=\varphi\left(p_{i}\right)$ is not a vertex of S_{q}. Since $r^{i} \in S_{q}$, there must be some j such that r^{i} belongs to the relative interior of the line segment [$\left.q_{j}, q_{j+1}\right]$. Thus, there is some $\lambda \in(0,1)$ such that

$$
r^{i}=\lambda q_{j}+(1-\lambda) q_{j+1}
$$

To facilitate our later discussion, we write

$$
r^{i+k}=\lambda q_{j+k}+(1-\lambda) q_{j+k+1},
$$

for all k. Also, for the same reason, we let

$$
m^{k}=\frac{p+p_{k}}{2}
$$

for all k. Now, as

$$
\left\{p_{i-1}, p_{i+1}\right\}=S(p) \cap S\left(p_{i}\right)
$$

we have

$$
\left\{\varphi\left(p_{i-1}\right), \varphi\left(p_{i+1}\right)\right\} \subseteq S(q) \cap S\left(r^{i}\right)=\left\{r^{i-1}, r^{i+1}\right\}
$$

Suppose now that $\varphi\left(p_{i-1}\right) \neq \varphi\left(p_{i+1}\right)$. Then $\left\{\varphi\left(p_{i-1}\right), \varphi\left(p_{i+1}\right)\right\}=\left\{r^{i-1}, r^{i+1}\right\}$. As

$$
\left[p, p_{i}\right]=S\left(p_{i-1}\right) \cap S\left(p_{i+1}\right),
$$

we have

$$
\varphi\left(\left[p, p_{i}\right]\right) \subseteq S\left(\varphi\left(p_{i-1}\right)\right) \cap S\left(\varphi\left(p_{i+1}\right)\right)=S\left(r^{i-1}\right) \cap S\left(r^{i+1}\right)=\left\{q, r^{i}\right\}
$$

In particular, $\varphi\left(m^{i}\right)=q$ or r^{i}.
If $\varphi\left(m^{i}\right)=q$, then as

$$
m^{i+2} \in S\left(p_{i+1}\right) \cap S\left(m^{i}\right), \text { and } m^{i-2} \in S\left(p_{i-1}\right) \cap S\left(m^{i}\right),
$$

we have

$$
\varphi\left(m^{i+2}\right) \in S\left(\varphi\left(p_{i+1}\right)\right) \cap S(q), \text { and } \varphi\left(m^{i-2}\right) \in S\left(\varphi\left(p_{i-1}\right)\right) \cap S(q) .
$$

In particular,

$$
\begin{aligned}
\left\{\varphi\left(m^{i+2}\right), \varphi\left(m^{i-2}\right)\right\} & \subseteq\left(S\left(\varphi\left(p_{i+1}\right)\right) \cup S\left(\varphi\left(p_{i-1}\right)\right)\right) \cap S(q) \\
& =\left(S\left(r^{i-1}\right) \cup S\left(r^{i+1}\right)\right) \cap S(q) \\
& =\left\{r^{i}, r^{i-2}, r^{i+2}\right\} .
\end{aligned}
$$

But this is impossible, as $d\left(m^{i+2}, m^{i-2}\right)=1$ but none of $d\left(r^{i-2}, r^{i}\right), d\left(r^{i-2}, r^{i+2}\right)$, and $d\left(r^{i}, r^{i+2}\right)$ is 1 . A similar calculation shows that $\varphi\left(m^{i}\right)=r^{i}$ also leads to a contradiction.

Thus, we must have $\varphi\left(p_{i-1}\right)=\varphi\left(p_{i+1}\right)$. The above argument may be repeated at the vertices p_{i-1} and p_{i+1} in place of p_{i}, and we conclude that $\varphi\left(p_{i}\right)=$ $\varphi\left(p_{i+2}\right)=\varphi\left(p_{i+4}\right)=r_{i}$ and $\varphi\left(p_{i-1}\right)=\varphi\left(p_{i+1}\right)=\varphi\left(p_{i+3}\right)$. But then as $m^{i+k+1} \in$ $S\left(p_{i+k}\right)$, we have $\varphi\left(m^{i+k+1}\right) \in S\left(\varphi\left(p_{i+k}\right)\right)=S\left(\varphi\left(p_{i}\right)\right)$ for $k=0,2,4$. But then $m^{i+1}, m^{i+3}, m^{i+5}$ are vertices of a unit equilateral triangle whose images under φ belong to the same $S\left(\varphi\left(p_{i}\right)\right)$, which is impossible, in view of Lemma 1 (2) and (3).
(2) follows immediately from (1). Indeed, if $S\left(p_{i}\right)=q_{j}$, then as $\left\{p_{i-1}, p_{i+1}\right\}=$ $S(p) \cap S\left(p_{i}\right)$, we have $\left\{\varphi\left(p_{i-1}\right), \varphi\left(p_{i+1}\right)\right\} \subseteq S(q) \cap S\left(q_{j}\right)=\left\{q_{j-1}, q_{j+1}\right\}$.
(3) By (2), the sequence of points $\varphi\left(p_{1}\right), \varphi\left(p_{2}\right), \ldots, \varphi\left(p_{6}\right), \varphi\left(p_{1}\right)$ forms a "close chain" of adjacent vertices of $S(q)$. As we see in the last stage of the proof of (1), $\varphi\left(p_{1}\right), \varphi\left(p_{3}\right)$, and $\varphi\left(p_{5}\right)$ cannot be the same vertex of $S(q)$. Similarly, $\varphi\left(p_{2}\right), \varphi\left(p_{4}\right)$, and $\varphi\left(p_{6}\right)$ cannot be the same vertex of $S(q)$. It follows that the set $V=\left\{\varphi\left(p_{1}\right), \ldots, \varphi\left(p_{6}\right)\right\}$ contains at least four (consecutive) vertices of $S(q)$.

If V has exactly four elements, then there is some i and some j such that

$$
\begin{aligned}
\varphi\left(p_{i}\right) & =q_{j}, & & \varphi\left(p_{i+1}\right)=\varphi\left(p_{i-1}\right)=q_{j+1}, \\
\varphi\left(p_{i+2}\right) & =\varphi\left(p_{i-2}\right)=q_{j+2}, & & \varphi\left(p_{i+3}\right)=q_{j+3} .
\end{aligned}
$$

But then $m^{i+1}, m^{i+3} \in S\left(p_{i+2}\right)$ implies that $\varphi\left(m^{i+1}\right), \varphi\left(m^{i+3}\right) \in S\left(q_{j+2}\right)$. Similarly, $\varphi\left(m^{i-1}\right) \in S\left(\varphi\left(p_{i-2}\right)\right)=S\left(q_{j+2}\right)$ as well. But then the vertices m^{i-1}, m^{i+1}, m^{i+3} of a unit equilateral triangle are mapped into the same $S\left(q_{j+2}\right)$. This is impossible.

So, V has at least five elements. Thus, there are i and j such that

$$
\begin{aligned}
\varphi\left(p_{i}\right) & =q_{j}, \varphi\left(p_{i+1}\right)=q_{j+1}, \ldots, \varphi\left(p_{i+4}\right)=q_{j+4}, \text { or } \\
\varphi\left(p_{i}\right) & =q_{j}, \varphi\left(p_{i+1}\right)=q_{j-1}, \ldots, \varphi\left(p_{i+4}\right)=q_{j-4}
\end{aligned}
$$

But as q_{j}, \ldots, q_{j+6} forms a "closed chain" of adjacent vertices, the first possibility implies $\varphi\left(p_{i+5}\right)=q_{j+5}$ and the second $\varphi\left(p_{i+5}\right)=q_{j-5}$.

In view of Lemma 3 (3), we introduce the following definition. We say that p is a point of type k^{+}if $\varphi\left(p_{i}\right)=(\varphi(p))_{k+i}$ for all i, and of type k^{-}if $\varphi\left(p_{i}\right)=(\varphi(p))_{k-i}$ for all i. Then Lemma 3 (3) implies that each point of H is of type k^{+}or type k^{-} for some k.

Lemma 4. Let $p \in H$ be of type k^{+}(respectively, k^{-}). The following hold:
(1) For all i, p_{i} is of type k^{+}(respectively, k^{-}). Hence, q is of type k^{+}for all $q \in p+\mathbf{Z}^{2}$ (respectively, k^{-}).
(2) For all $i, \varphi\left(\left[p, p_{i}\right]\right) \subseteq\left[\varphi(p),(\varphi(p))_{i+k}\right]$ $\left(\right.$ respectively, $\left.\varphi\left(\left[p, p_{i}\right]\right) \subseteq\left[\varphi(p),(\varphi(p))_{k-i}\right]\right)$.
(3) For all $i, \varphi\left(\frac{p+p_{i}}{2}\right)=\frac{\varphi(p)+(\varphi(p))_{i+k}}{2}$ and

$$
\varphi\left(\frac{p_{i}+p_{i+1}}{2}\right)=\frac{(\varphi(p))_{i+k}+(\varphi(p))_{i+k+1}}{2}
$$

(respectively, $\varphi\left(\frac{p+p_{i}}{2}\right)=\frac{\varphi(p)+(\varphi(p))_{k-i}}{2}$ and

$$
\left.\varphi\left(\frac{p_{i}+p_{i+1}}{2}\right)=\frac{(\varphi(p))_{k-i}+(\varphi(p))_{k-i-1}}{2}\right)
$$

Proof. (1) If p is of type k^{+}, then using Lemma 2 (1) and (2), we get

$$
\begin{aligned}
\varphi\left(\left(p_{i}\right)_{i+3}\right) & =\varphi(p)=\left[(\varphi(p))_{i+k}\right]_{i+k+3}=\left[\varphi\left(p_{i}\right)\right]_{k+i+3} \\
\varphi\left(\left(p_{i}\right)_{i+2}\right) & =\varphi\left(p_{i+1}\right)=(\varphi(p))_{k+i+1}=\left[(\varphi(p))_{k+i}\right]_{k+i+2}=\left[\varphi\left(p_{i}\right)\right]_{k+i+2}
\end{aligned}
$$

Thus, $\varphi\left(\left(p_{i}\right)_{j}\right)=\left[\varphi\left(p_{i}\right)\right]_{k+j}$ for two consecutive integers $j=i+2$ and $i+3$. By Lemma 3 (3), we see that the same must be true for all integers j. Thus, p_{i} is of type k^{+}.

A similar argument works for the case when p is of type k^{-}. Simply observe that if for all $i, \varphi\left(p_{i}\right)=(\varphi(p))_{k-i}$, then

$$
\begin{aligned}
\varphi\left(\left(p_{i}\right)_{i+3}\right) & =\varphi(p)=\left[(\varphi(p))_{k-i}\right]_{k-i-3}=\left[\varphi\left(p_{i}\right)\right]_{k-(i+3)} \\
\varphi\left(\left(p_{i}\right)_{i+2}\right) & =\varphi\left(p_{i+1}\right)=(\varphi(p))_{k-i-1}=\left[(\varphi(p))_{k-i}\right]_{k-i-2}=\left[\varphi\left(p_{i}\right)\right]_{k-(i+2)}
\end{aligned}
$$

Now, the statement for $q \in p+\mathbf{Z}^{2}$ follows from an inductive application of the argument, each step from a point q in $p+\mathbf{Z}^{2}$ to its neighboring points $q_{i}, 1 \leq i \leq 6$.
(2) Since $\left[p, p_{i}\right]=S\left(p_{i-1}\right) \cap S\left(p_{i+1}\right)$, we have

$$
\begin{aligned}
\varphi\left(\left[p, p_{i}\right]\right) & \subseteq S\left(\varphi\left(p_{i-1}\right)\right) \cap S\left(\varphi\left(p_{i+1}\right)\right) \\
& =S\left([\varphi(p)]_{k+i-1}\right) \cap S\left([\varphi(p)]_{k+i+1}\right) \\
& =\left[p,(\varphi(p))_{k+i}\right] .
\end{aligned}
$$

The proof for type k^{-}points is similar.
(3) The points $\frac{p+p_{j}}{2}, j \in J$, are vertices of a unit equilateral triangle, where $J=\{1,3,5\}$ or $\{2,4,6\}$. The first result follows from Lemma 1 (2), Lemma 2 (3) and Lemma 4 (2). Next, using this, together with Lemma 2 (2) and Lemma 4 (1), we have

$$
\begin{aligned}
\varphi\left(\frac{p_{i}+p_{i+1}}{2}\right) & =\varphi\left(\frac{p_{i}+\left(p_{i}\right)_{i+2}}{2}\right) \\
& =\frac{\varphi\left(p_{i}\right)+\left(\varphi\left(p_{i}\right)\right)_{i+2+k}}{2} \\
& =\frac{[\varphi(p)]_{k+i}+\left[(\varphi(p))_{k+i}\right]_{k+i+2}}{2} \\
& =\frac{[\varphi(p)]_{k+i}+[\varphi(p)]_{k+i+1}}{2}
\end{aligned}
$$

The case for type k^{-}points is similar.
Before we prove that a unit distance preserving function φ on H is necessarily an isometry, let us note the following isometries on H :

Let $\rho: H \rightarrow H$ be defined by

$$
\rho(x, y)=(-y, x+y) .
$$

Then it is easy to check that ρ is linear, and for the origin $0=(0,0)$, we have $\rho\left(0_{i}\right)=0_{i+1}$ for $i=1,2, \ldots, 6$. But then if $p=(x, y)$ is any point in H, and $p \neq 0$, there is a unique $t>0$ such that $t p \in S(0)$. Indeed, $t=1 / d(p, 0)$. Hence there is some j and some $\lambda \in[0,1]$ such that $t p=\lambda 0_{j}+(1-\lambda) 0_{j+1}$. Thus,

$$
\rho(p)=\frac{\lambda}{t} \rho\left(0_{j}\right)+\frac{1-\lambda}{t} \rho\left(0_{j+1}\right)=\frac{1}{t}\left(\lambda 0_{j+1}+(1-\lambda) 0_{j+2}\right),
$$

and so for the norm in $H,\|\rho(p)\|=1 / t=\|p\|$. Now, since ρ is linear and d is translation invariant, ρ must be an isometry.

It follows that powers ρ^{k} of ρ are isometries, $k \in \mathbf{Z}$. Note also that $\rho^{-k}=\rho^{6-k}$ for all k. Furthermore, for each k and each $i, \rho^{k}\left(0_{i}\right)=0_{i+k}$.

It is straightforward to see that $\sigma: H \rightarrow H$, defined by $\sigma(x, y)=(y, x)$, is an isometry. Furthermore, $\sigma\left(0_{i}\right)=0_{3-i}$ for each i. Then we obtain the isometries $\sigma \rho^{k}, k \in \mathbf{Z}$. Again, we note that for all k and $i, \sigma \rho^{k}\left(0_{i}\right)=\sigma\left(0_{i+k}\right)=0_{3-i-k}$. As well, $\rho^{k} \sigma=\sigma \rho^{-k}$ for all k.

Now, we are ready to prove our main theorem.
Theorem. φ is an isometry on H.
Proof. By composing φ with a translation, the reflection σ, and an appropriate power of ρ if necessary, we may assume that $\varphi(0)=0$, and $\varphi\left(0_{i}\right)=0_{i}$ for all i. (Thus, 0 and hence all points of \mathbf{Z}^{2} are of type 0^{+}.) It suffices to show that φ must be the identity map. This will not only show that all unit distance preserving mappings are isometries, but also delineate all isometries on H.

Since $\varphi\left(0_{i}\right)=0_{i}$ for all i and 0 is of type 0^{+}, all points of \mathbf{Z}^{2} are of type 0^{+}, and φ fixes all points of \mathbf{Z}^{2}. So, using Lemma 4 (2), we see that at each point p in \mathbf{Z}^{2}, φ maps $\left[p, p_{i}\right]$ into $\left[p, p_{i}\right]$, and each edge of $S(p)$ into itself. As well, by Lemma $4(3), \varphi$ fixes all midpoints of the segments $\left[p, p_{i}\right], 1 \leq i \leq 6$, and all midpoints of the edges of $S(p)$. We find it convenient to express this in an alternative way. The above amounts to saying that
(A) φ maps every horizontal segment $\left[p, p+e_{1}\right]$ into itself, every vertical segment [$\left.p, p+e_{2}\right]$ into itself, and every slant segment $\left[p, p+\left(e_{1}-e_{2}\right)\right]$ into itself, where $p \in \mathbf{Z}^{2}$, and
(B) φ fixes all points of $\left(\frac{1}{2} \mathbf{Z}\right)^{2}$.

Now, we use induction. Suppose that for some positive integer n, we have
$\left(\mathrm{A}_{n}\right) \varphi$ maps every horizontal segment $\left[p, p+\frac{e_{1}}{2^{n-1}}\right]$ into itself, every vertical segment $\left[p, p+\frac{e_{2}}{2^{n-1}}\right]$ into itself, and every slant segment $\left[p, p+\frac{e_{1}-e_{2}}{2^{n-1}}\right]$ into itself, where $p \in\left(\frac{1}{2^{n-1}} \mathbf{Z}\right)^{2}$, and
$\left(\mathrm{B}_{n}\right) \varphi$ fixes all points of $\left(\frac{1}{2^{n}} \mathbf{Z}\right)^{2}$.
Now, let $p \in\left(\frac{1}{2^{n}} \mathbf{Z}\right)^{2}$, and consider the line segments $\left[p, p+\frac{e_{1}}{2^{n}}\right],\left[p, p+\frac{e_{2}}{2^{n}}\right]$, and $\left[p, p+\frac{e_{1}-e_{2}}{2^{n}}\right]$. The points $u=p-\left(1-\frac{1}{2^{n}}\right) e_{1}+e_{2}$ and $v=p+e_{1}-e_{2}$ are in $\left(\frac{1}{2^{n}} \mathbf{Z}\right)^{2}$, and hence by $\left(B_{n}\right)$, are fixed by φ. Hence, as

$$
\left[p, p+\frac{e_{1}}{2^{n}}\right]=S(u) \cap S(v)
$$

we have

$$
\varphi\left(\left[p, p+\frac{e_{1}}{2^{n}}\right]\right) \subseteq S(\varphi(u)) \cap S(\varphi(v))=S(u) \cap S(v)=\left[p, p+\frac{e_{1}}{2^{n}}\right]
$$

So, φ maps the horizontal line segment $\left[p, p+\frac{e_{1}}{2^{n}}\right]$ into itself. The horizontal and slant segments can be treated in a similar manner, and this establishes $\left(\mathrm{A}_{n+1}\right)$.

Next, let p be a point of $\left(\frac{1}{2^{n+1}} \mathbf{Z}\right)^{2}$. We want to show that φ fixes p. In view of $\left(\mathrm{B}_{n}\right)$, we may assume that $p \notin\left(\frac{1}{2^{n}} \mathbf{Z}\right)^{2}$. First, we consider the case $p=\left(\frac{h}{2^{n+1}}, \frac{k}{2^{n+1}}\right)$, where h is odd, and k is even. Let $p^{\prime}=\left(\frac{h-1}{2^{n+1}}+1, \frac{k+1}{2^{n+1}}\right), q=$ $\left(\frac{h-1}{2^{n+1}}, \frac{k}{2^{n+1}}+1\right), q^{\prime}=\left(\frac{h}{2^{n+1}}+1, \frac{k+1}{2^{n+1}}-1\right)$, and $r=\left(\frac{h-1}{2^{n+1}}+1, \frac{k+2}{2^{n+1}}-1\right)$. Then q and r are in $\left(\frac{1}{2^{n}} \mathbf{Z}\right)^{2}$ and so q and r are fixed by φ. Also, $q^{\prime}=\frac{1}{2}\left(r+\left(r+\frac{e_{1}-e_{2}}{2^{n}}\right)\right) \in$ $\left[r, r+\frac{e_{1}-e_{2}}{2^{n}}\right]$. By $\left(\mathrm{A}_{n+1}\right)$, we see that $\varphi\left(q^{\prime}\right) \in\left[r, r+\frac{e_{1}-e_{2}}{2^{n}}\right]$. Similarly, we see that $\varphi(p) \in\left[p-\frac{e_{1}}{2^{n+1}}, p+\frac{e_{1}}{2^{n+1}}\right]$, and $\varphi\left(p^{\prime}\right) \in\left[p^{\prime}-\frac{e_{2}}{2^{n+1}}, p^{\prime}+\frac{e_{2}}{2^{n+1}}\right]$. So, if $\varphi(p)=$ $\lambda\left(p-\frac{e_{1}}{2^{n+1}}\right)+(1-\lambda)\left(p+\frac{e_{1}}{2^{n+1}}\right)$, where $\lambda \in[0,1]$, then as $p^{\prime} \in S(p) \cap S(q)$, we have $\varphi\left(p^{\prime}\right) \in S(\varphi(p)) \cap S(\varphi(q))=S(\varphi(p)) \cap S(q)$, and this forces $\varphi\left(p^{\prime}\right)=$ $\lambda\left(p^{\prime}-\frac{e_{2}}{2^{n+1}}\right)+(1-\lambda)\left(p^{\prime}+\frac{e_{2}}{2^{n+1}}\right)$. But then as $q^{\prime} \in S(p) \cap S\left(p^{\prime}\right)$, we have $\varphi\left(q^{\prime}\right) \in$ $S(\varphi(p)) \cap S\left(\varphi\left(p^{\prime}\right)\right)$. But $\varphi\left(q^{\prime}\right) \in\left[r, r+\frac{e_{1}-e_{2}}{2^{n}}\right]$, too. A simple calculation shows that this is possible only if $\lambda=1 / 2$. Thus, $\varphi(p)=p$, i.e., φ fixes p. It is clear that the case for h being even and k being odd is similar. Second, suppose that both h and k are odd. Then $p \in\left[s, s+\frac{e_{1}-e_{2}}{2^{n}}\right]$, where $s=\left(\frac{h-1}{2^{n+1}}, \frac{k+1}{2^{n+1}}\right) \in\left(\frac{1}{2^{n}} \mathbf{Z}\right)^{2}$. Thus, $\varphi(p) \in\left[s, s+\frac{e_{1}-e_{2}}{2^{n}}\right]$, by $\left(\mathrm{A}_{n+1}\right)$. Also, $S(p)$ intersects some certain horizontal line segment $\left[t, t+\frac{e_{1}}{2^{n}}\right]$ at its midpoint m, and some vertical line segment $\left[t^{\prime}, t^{\prime}+\frac{e_{2}}{2^{n}}\right]$ at its midpoint m^{\prime}. By what we have just proved, m and m^{\prime} are both fixed by φ. This is possible only if $\varphi(p)=p$. This proves $\left(\mathrm{B}_{n+1}\right)$, and so it completes the induction. So, $\left(\mathrm{A}_{n}\right)$ and $\left(\mathrm{B}_{n}\right)$ are true for all positive integers n.

Now, if $p=\left(x, \frac{k}{2^{m}}\right)$ is any point in $\mathbf{R} \times\left(\frac{1}{2^{m}} \mathbf{Z}\right)$ for some positive integer m, then by considering a shrinking segment of the form $\left[\frac{h}{2^{n}}, \frac{h+1}{2^{n}}\right] \times\left\{\frac{k}{2^{m}}\right\}, n \rightarrow \infty$, each containing p, we see that φ must also fix p. Likewise, φ fixes all points in $\left(\frac{1}{2^{m}} \mathbf{Z}\right) \times \mathbf{R}$, for every m. Finally, if p is any general point of H, then there exist (distinct) points $p^{\prime} \in \mathbf{R} \times\left(\frac{1}{2^{m}} \mathbf{Z}\right)$ and $p^{\prime \prime} \in\left(\frac{1}{2^{n}} \mathbf{Z}\right) \times \mathbf{R}$ such that $p \in S\left(p^{\prime}\right) \cap S\left(p^{\prime \prime}\right)$. But then $\varphi(p) \in S\left(p^{\prime}\right) \cap S\left(p^{\prime \prime}\right)$. As there are infinitely many choices of p^{\prime} and $p^{\prime \prime}$, we conclude that $\varphi(p)=p$.

References

[1] Beckman, F. S.; Quarles Jr., D. A.: On isometries of Euclidean Spaces. Proc. Am. Math. Soc. 4(5) (1953), 810-815.

Zbl 0052.18204
[2] Connelly, R.; Zaks, J.: The Beckman-Quarles theorem for rational d-spaces, d even and $d \geq 6$. In: Discrete Geometry (A. Bezdek, ed.), Pure Appl. Math. 253 (2003), 193-199. Marcel Dekker, New York, NY. Zbl 1047.51004
[3] Dekster, B. V.: Non-isometric distance 1 preserving mapping $E^{2} \rightarrow E^{6}$. Arch. Math. 45 (1985), 282-283. Zbl 0558.57007
[4] Rassias, T. M.: Is a distance one preserving mapping between metric spaces always an isometry? Am. Math. Mon. 90(3) (1983), 200. Zbl 0512.54017
[5] Rassias, T. M.; Šemrl, P.: On the Mazur-Ulam Theorem and the Aleksandrov Problem for Unit Distance Preserving Mappings. Proc. Am. Math. Soc. 118(3) (1993), 919-925. Zbl 0780.51010
[6] Tyszka, A.: A discrete form of the Beckman-Quarles Theorem. Am. Math. Mon. 104(8) (1997), 757-761. Zbl 0890.51013
[7] Tyszka, A.: Discrete versions of the Beckman-Quarles Theorem. Aequationes Math. 59 (2000), 124-133.

Zbl 0948.51014
[8] Tyszka, A.: A discrete form of the Beckman-Quarles theorem for rational eight-space. Aequationes Math. 62 (2001), 85-93.

Zbl 1004.51023
[9] Tyszka, A.: A discrete form of the Beckman-Quarles theorem for twodimensional strictly convex normed spaces. Nonlinear Funct. Anal. Appl. 7(3) (2002), 353-360.

Zbl 1034.46021
[10] Tyszka, A.: The Beckman-Quarles theorem for continuous mappings from C^{n} to \mathbf{C}^{n}. arXiv:math.MG/0406093v1.

Received September 10, 2005

