Uncountable Families of Partial Clones Containing Maximal Clones

Lucien Haddad Dietlinde Lau
Département de Mathématiques et d'Informatique,
Collège Militaire Royal du Canada, boite postale 17000, STN Forces, Kingston ON K7K 7B4, Canada
e-mail: haddad-l@rmc.ca
Institut für Mathematik, Universität Rostock, Universitätsplatz 1, D-18055 Rostock, Germany
e-mail: dietlinde.lau@uni-rostock.de

Abstract

Let A be a non singleton finite set. We show that every maximal clone determined by a prime affine or h-universal relation on A is contained in a family of partial clones on A of continuum cardinality. MSC 2000: 03B50, 08A40, 08A55

Keywords: partial clones, maximal clones, partial algebras

1. Introduction

Let $k \geq 2$ and \mathbf{k} be a k-element set. Denote by $\operatorname{Par}(\mathbf{k})$ the set of all partial functions on \mathbf{k} and let $\mathrm{Op}(\mathbf{k})$ be the set of all everywhere defined functions on \mathbf{k}. A partial clone on \mathbf{k} is a subset of $\operatorname{Par}(\mathbf{k})$ closed under composition and containing all the projections on \mathbf{k}. A partial clone contained in $\operatorname{Op}(\mathbf{k})$ is called a clone on \mathbf{k}. The partial clones on \mathbf{k}, ordered by inclusion, form an algebraic dually atomic lattice \mathcal{P}_{k} (see e.g., $[2,7]$). The set of all clones on \mathbf{k}, ordered by inclusion, forms a dually atomic sublattice \mathcal{O}_{k} of \mathcal{P}_{k} (see [16], p. 80). In 1941 E. L. Post fully described the lattice $\mathcal{O}_{2}([17])$, which is countably infinite and quite exceptional among the lattices \mathcal{O}_{k}; indeed \mathcal{O}_{k} is of continuum cardinality whenever $k \geq 3$ ([12]). The study of partial clones on a 2-element set was initiated by Freivald in 1966 who described all 8 maximal elements of \mathcal{P}_{2} and showed that this lattice is
of continuum cardinality ([4]). The lattices $\mathcal{O}_{k}(k \geq 3)$ and $\mathcal{P}_{k}(k \geq 2)$ are quite unknown, and so a significant effort was concentrated on special parts of them, mainly the upper and lower parts (for lists of references see [22] for the total case and $[3,9,14,23]$ for the partial case). A remarkable result in Universal Algebra is the classification of all maximal elements of \mathcal{O}_{k} due to Ivo G. Rosenberg for arbitrary $k \geq 3$. His result will be discussed and used in part in this paper.
The total component of a partial clone C is the clone $C \cap \operatorname{Op}(\mathbf{k})$. A natural problem arises here: given a total clone M, describe the set \widetilde{M} of all partial clones whose total component is M. This problem was first considered by Alekseev and Voronenko in [1], followed by Strauch in [24, 25] for some maximal clones over $\{0,1\}$. Implicit results in this direction can be found in $[8,10,19]$. The same problem has been studied in depth in the paper [11] for maximal clones in the general case. It is well known that the maximal clones on $\mathbf{k}(k \geq 3)$, as classified by Rosenberg, are grouped into six different families (see Theorem 1 below or, e.g., $[21,22]$). Maximal clones from four of these families are considered in $[11]^{1}$. The interval \widetilde{M} is completely described if M is a maximal clone determined by either a central or equivalence relation on \mathbf{k}. In both cases the interval \widetilde{M} is finite. Now if the maximal clone M is determined by a bounded order, then a finite subinterval of \widetilde{M} contained in the strong closure of M (see section 2 for the definition) is described in [11]. We point out here that describing the interval \widetilde{M} for a maximal clone M determined by a bounded order may turn out to be a very difficult task. Finally it is shown in [11] that \widetilde{M} is finite if M is a maximal clone determined by a fixed-point-free permutation consisting of cycles of same length p, where p is a prime divisor of k. A complete description of \widetilde{M} is given for the two cases $p=2,3$.
In this paper we consider the two families of maximal clones not studied in [11], namely the families of maximal clones determined by prime affine relations and by h-universal relations on \mathbf{k}. We show that if M is a maximal clone in either family, then the strong closure of M is contained in uncountably many partial clones. Thus the interval of partial clones \widetilde{M} is of continuum cardinality. We point out here that our result for the prime affine case generalizes one of the main results established in [1], namely that if L denotes the maximal clone of all linear functions on $\{0,1\}$, then the interval of partial clones \widetilde{L} is of continuum cardinality over $\{0,1\}$.

2. Basic definitions and notations

Let $k \geq 2$ be an integer and $\mathbf{k}:=\{0,1, \ldots, k-1\}$. For a positive integer n, an n-ary partial function on \mathbf{k} is a map $f: \operatorname{dom}(f) \rightarrow \mathbf{k}$ where $\operatorname{dom}(f) \subseteq \mathbf{k}^{n}$ is called the domain of f. Let $\operatorname{Par}^{(n)}(\mathbf{k})$ denote the set of all n-ary partial functions on \mathbf{k} and let $\operatorname{Par}(\mathbf{k}):=\bigcup_{n \geq 1} \operatorname{Par}^{(n)}(\mathbf{k})$. Moreover set $\operatorname{Op}^{(n)}(\mathbf{k}):=\left\{f \in \operatorname{Par}^{(n)}(\mathbf{k}) \mid \operatorname{dom}(f)=\right.$

[^0]$\left.\mathbf{k}^{n}\right\}$ and let $\operatorname{Op}(\mathbf{k}):=\bigcup_{n \geq 1} \operatorname{Op}^{(n)}(\mathbf{k})$, i.e., $\operatorname{Op}(\mathbf{k})$ is the set of all total functions on \mathbf{k}. In the sequel we will say "function" for "total function".

A partial function $g \in \operatorname{Par}^{(n)}(\mathbf{k})$ is a subfunction of $f \in \operatorname{Par}^{(n)}(\mathbf{k})$ (in symbols $g \leq f$ or $\left.g=\left.f\right|_{\operatorname{dom}(g)}\right)$ if $\operatorname{dom}(g) \subseteq \operatorname{dom}(f)$ and $g(\underline{a})=f(\underline{a})$ for all $\underline{a} \in \operatorname{dom}(g)$.
For every positive integer n, and every $1 \leq i \leq n$, we denote by e_{i}^{n} the n-ary function i-th projection defined by $e_{i}^{n}\left(x_{1}, \ldots, x_{n}\right):=x_{i}$ for all $\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{k}^{n}$. Furthermore let

$$
J_{\mathbf{k}}:=\left\{e_{i}^{n} \mid 1 \leq i \leq n<\infty\right\}
$$

be the set of all projections on \mathbf{k}.
For $n, m \geq 1, f \in \operatorname{Par}^{(n)}(\mathbf{k})$ and $g_{1}, \ldots, g_{n} \in \operatorname{Par}^{(m)}(\mathbf{k})$, the composition of f and g_{1}, \ldots, g_{n}, denoted $f\left[g_{1}, \ldots, g_{n}\right]$ is the m-ary partial function on \mathbf{k} defined by $\operatorname{dom}\left(f\left[g_{1}, \ldots, g_{n}\right]\right):=\left\{\underline{v} \in \mathbf{k}^{m} \mid \underline{v} \in \bigcap_{i=1}^{n} \operatorname{dom}\left(g_{i}\right)\right.$ and $\left.\left(g_{1}(\underline{v}), \ldots, g_{n}(\underline{v})\right) \in \operatorname{dom}(f)\right\} ;$ and

$$
f\left[g_{1}, \ldots, g_{n}\right](\underline{v}):=f\left(g_{1}(\underline{v}), \ldots, g_{n}(\underline{v})\right)
$$

for all $\underline{v} \in \operatorname{dom}\left(f\left[g_{1}, \ldots, g_{n}\right]\right)$.

Definitions.

1. A partial clone on \mathbf{k} is a composition closed subset of $\operatorname{Par}(\mathbf{k})$ containing $J_{\mathbf{k}}$. A partial clone contained in $\mathrm{Op}(\mathbf{k})$ is called a clone on \mathbf{k}.
As mentioned earlier, the set of partial clones on \mathbf{k}, ordered by inclusion, form an algebraic dually atomic lattice \mathcal{P}_{k} in which arbitrary infimum is the set-theoretical intersection. For $F \subseteq \operatorname{Par}(\mathbf{k})$, we denote by $\langle F\rangle$ the partial clone generated by F, i.e., $\langle F\rangle$ is the intersection of all partial clones containing the set F.
2. A partial clone C is strong if it contains all subfunctions of its functions. Furthermore, if C is a clone on \mathbf{k}, then we denote by $\operatorname{Str}(C)$ the strong closure of C, i.e.,

$$
\operatorname{Str}(C):=\{g \in \operatorname{Par}(\mathbf{k}) \mid g \leq f \text { for some } f \in C\}
$$

It is easy to see that for every clone C the strong closure $\operatorname{Str}(C)$ of C is a strong partial clone on \mathbf{k} containing C (see e.g., $[3,16,18,19]$).
3. We introduce the concept of partial polymorphisms of a relation. We use the same notation as in [10]. Let $h \geq 1$ and ϱ be an h-ary relation on \mathbf{k}, (i.e., $\varrho \subseteq \mathbf{k}^{h}$), and let f be an n-ary partial function on \mathbf{k}. Denote by $\mathcal{M}(\varrho, \operatorname{dom}(f))(\varrho \neq \emptyset)$ the set of all $h \times n$ matrices M whose columns $M_{* j} \in \varrho$, for $j=1, \ldots, n$ and whose rows $M_{i *} \in \operatorname{dom}(f)$ for $i=1, \ldots, h$. We say that f preserves ϱ if for every $M \in \mathcal{M}(\varrho, \operatorname{dom}(f))$, the h-tuple $f(M):=\left(f\left(M_{1 *}\right), \ldots, f\left(M_{h *}\right)\right) \in \varrho$. Set $\mathrm{pPol} \varrho:=\{f \in \operatorname{Par}(\mathbf{k}) \mid f$ preserves $\varrho\}$ and $\operatorname{Pol} \varrho=\operatorname{pPol} \varrho \cap \operatorname{Op}(\mathbf{k})$ (i.e., Pol ϱ is the set of all (total) functions that preserve the relation ϱ). It is well-known that for every relation $\varrho, \operatorname{Pol} \varrho$ is a clone (see e.g. [16]), while $\mathrm{pPol} \varrho$ is a strong partial clone called the (partial) clone determined by ϱ (see e.g. $[18,19,14,3]$), (by the results of [18] and [19]), we know even more: a partial clone is strong if and only if it is of the form $\mathrm{pPol} Q$ for some set Q of finitary relations).

Notice that partial clones determined by relations are defined in a different but equivalent way in [11].
4. The partial clones on \mathbf{k}, ordered by inclusion, form an algebraic lattice ([19]) in which every meet is the set-theoretical intersection. A partial clone C covers a partial clone D if $D \subset C$ and the strict inclusions $D \subset C^{\prime} \subset C$ hold for no partial clone C^{\prime} on \mathbf{k}. Notice that this holds if and only if $\langle D \cup\{g\}\rangle=C$ for each $g \in C \backslash D$. Furthermore a partial clone (a clone) M is a maximal partial clone (a maximal clone) if M is covered by $\operatorname{Par}(\mathbf{k})$ (is covered by $\operatorname{Op}(\mathbf{k})$).
The main goal of this paper is to study families of partial clones containing some maximal clones on \mathbf{k}. We introduce some family of relations on \mathbf{k} for the purpose recalling the Rosenberg classification of all maximal clones over \mathbf{k}. For $1 \leq h \leq k$ set

$$
\iota_{k}^{h}:=\left\{\left(a_{1}, \ldots, a_{h}\right) \in \mathbf{k}^{h} \mid a_{i}=a_{j} \text { for some } 1 \leq i<j \leq n\right\} .
$$

Let $h \geq 1, \varrho$ be an h-ary relation on \mathbf{k} and denote by S_{h} the set of all permutations on $\{1, \ldots, h\}$. For $\pi \in S_{h}$ set

$$
\varrho^{(\pi)}:=\left\{\left(x_{\pi(1)}, \ldots, x_{\pi(h)}\right) \mid\left(x_{1}, \ldots, x_{h}\right) \in \varrho\right\} .
$$

The h-ary relation ϱ is said to be

1) totally symmetric (in case $h=2$ symmetric) if $\rho^{(\pi)}=\rho$ for every $\pi \in S_{h}$,
2) totally reflexive (in case $h=2$ reflexive) if $\iota_{k}^{h} \subseteq \varrho$,
3) prime affine if $h=4, \mathbf{k}=\mathbf{p}^{m}$ where p is a prime number, $m \geq 1, \mathbf{p}:=$ $\{0, \ldots, p-1\}$ and we can define an elementary Abelian p-group $<\mathbf{k},+>$ on \mathbf{k} so that

$$
\rho:=\left\{(\underline{a}, \underline{b}, \underline{c}, \underline{d}) \in \mathbf{k}^{4} \mid \underline{a}+\underline{b}=\underline{c}+\underline{d}\right\} .
$$

4) central, if $\varrho \neq \mathbf{k}^{h}, \varrho$ is totally symmetric, totally reflexive and $\{c\} \times \mathbf{k}^{h-1} \subseteq \varrho$ for some $c \in \mathbf{k}$. Notice that for $h=1$ each $\emptyset \neq \varrho \subset \mathbf{k}$ is central and for $h \geq 2$ such c is called a central element of ϱ,
5) elementary, if $k=h^{m}, h \geq 3, m \geq 1$ and

$$
\left(a_{1}, a_{2}, \ldots, a_{h}\right) \in \rho \Longleftrightarrow\left(\forall i \in\{0, \ldots, m-1\}\left(a_{1}^{[i]}, a_{2}^{[i]}, \ldots, a_{h}^{[i]}\right) \in \iota_{h}^{h}\right),
$$

where $a^{[i]}\left(a \in\left\{0,1, \ldots, h^{m-1}\right\}\right)$ denotes the i-th digit in the h-adic expansion

$$
a=a^{[m-1]} \cdot h^{m-1}+a^{[m-2]} \cdot h^{m-2}+\cdots+a^{[1]} \cdot h+a^{[0]},
$$

6) a homomorphic inverse image of an h-ary relation ϱ^{\prime} on \mathbf{k}^{\prime}, if there exists a surjective mapping $q: \mathbf{k} \longrightarrow \mathbf{k}^{\prime}$ with

$$
\left(a_{1}, \ldots, a_{h}\right) \in \varrho \Longleftrightarrow\left(q\left(a_{1}\right), \ldots, q\left(a_{h}\right)\right) \in \varrho^{\prime}
$$

for all $a_{1}, \ldots, a_{h} \in \mathbf{k}$,
7) h-universal, if ϱ is a homomorphic inverse image of an h-ary elementary relation.

Denote by
\mathcal{C}_{k} the set of all central relations on \mathbf{k};
\mathcal{C}_{k}^{h} the set of all h-ary central relations on \mathbf{k};
\mathcal{U}_{k} the set of all non-trivial equivalence relations on \mathbf{k};
$P_{k, p}$ the set of all fixed point-free permutations on \mathbf{k} consisting of cycles of the same prime length p;
$\mathcal{S}_{k, p}:=\left\{s^{0} \mid s \in P_{k, p}\right\}$, where $s^{0}:=\{(x, s(x)) \mid x \in \mathbf{k}\}$ is the graph of $s ;$
$\mathcal{S}_{k}:=\bigcup\left\{\mathcal{S}_{k, p} \mid p\right.$ is a prime divisor of $\left.k\right\}$;
\mathcal{M}_{k} the set of all order relations on \mathbf{k} with a least and a greatest element;
\mathcal{M}_{k}^{\star} the set of all lattice orders on \mathbf{k};
\mathcal{L}_{k} the set of all prime affine relations on \mathbf{k};
\mathcal{B}_{k} the set of all h-universal relations, $3 \leq h \leq k-1$.
The Rosenberg classification of all maximal clones on \mathbf{k} is based on the above relations. We have:

Theorem 1. ([21]) Let $k \geq 2$. Every proper clone on \mathbf{k} is contained in a maximal one. Moreover a clone M is a maximal clone over \mathbf{k} if and only if $M=\operatorname{Pol} \rho$ for some relation $\rho \in \mathcal{C}_{k} \cup \mathcal{M}_{k} \cup \mathcal{S}_{k} \cup \mathcal{U}_{k} \cup \mathcal{L}_{k} \cup \mathcal{B}_{k}$.

We say that a partial clone C over \mathbf{k} is of type $\mathcal{X} \in\{\mathcal{C}, \mathcal{M}, \mathcal{S}, \mathcal{U}, \mathcal{L}, \mathcal{B}\}$ if $C \cap$ $O p(\mathbf{k})=\operatorname{Pol} \varrho$ for some $\varrho \in \mathcal{X}_{k}$. As mentioned earlier, the two authors together with I. G. Rosenberg studied partial clones of type $\mathcal{C}, \mathcal{M}, \mathcal{S}, \mathcal{U}$ in [11] and the present paper is devoted to the study of partial clones of type \mathcal{B}, \mathcal{L}. Our goal is to show the following:
Theorem 2. Let $k \geq 3$ and M be a maximal clone determined by either an h universal or prime affine relation or on \mathbf{k}. Then the set of partial clones containing M has the cardinality of continuum on \mathbf{k}.

It is shown in [9] that every maximal clone is contained in exactly one maximal partial clone over k. Moreover maximal partial clones containing maximal clones are all described in [9]. In particular it is shown that:

Proposition 3. ([9]) Let $k \geq 2$. Every maximal clone is contained in exactly one maximal partial clone over \mathbf{k}. Let $M=\operatorname{Pol} \rho$ be a maximal clone over \mathbf{k}, then
(i) if ρ is an h-universal relation, then $\mathrm{pPol} \rho$ is the unique maximal partial clone over \mathbf{k} that contains M.
(ii) if ρ is prime affine then $\mathbf{k}=\mathbf{p}^{m}$ where p is prime, $m \geq 1$ and

$$
\rho=\left\{(\underline{a}, \underline{b}, \underline{c}, \underline{d}) \in\left(\mathbf{p}^{m}\right)^{4} \mid \underline{a}+\underline{b}=\underline{c}+\underline{d}\right\} .
$$

Let λ_{p} be the p-ary relation on \mathbf{p}^{m} defined by

$$
\lambda_{p}:=\left\{(\underline{a}, \underline{a}+\underline{b}, \underline{a}+2 \cdot \underline{b}, \ldots, \underline{a}+(p-1) \cdot \underline{b}) \mid \underline{a}, \underline{b} \in \mathbf{p}^{m}\right\},
$$

where + and \cdot are the operations of the vector space \mathbf{p}^{m} on the field \mathbf{p}. Then $\mathrm{pPol} \lambda_{p}$ is the maximal partial clone on \mathbf{k} that properly contains the partial clone $\mathrm{pPol} \varrho$ (and consequently contains the maximal clone $\mathrm{Pol} \varrho$).

3. Intervals of partial clones of type \mathcal{B}

Let $h \geq 3, m \geq 1$ and k be such that $3 \leq h^{m} \leq k$. Let $\mathbf{m}:=\{0, \ldots, m-1\}$ and $\mathbf{h}^{\mathbf{m}}:=\left\{0,1, \ldots, h^{m}-1\right\}$. In the sequel ζ_{m} denotes an h-ary elementary relation on $\mathbf{h}^{\mathbf{m}}$, i.e.,

$$
\left(a_{0}, a_{1}, \ldots, a_{h-1}\right) \in \zeta_{m} \Longleftrightarrow \forall i \in \mathbf{m}:\left(a_{0}^{[i]}, a_{1}^{[i]}, \ldots, a_{h-1}^{[i]}\right) \in \iota_{h}^{h}
$$

for all $a_{0}, \ldots, a_{h-1} \in \mathbf{h}^{\mathbf{m}}$.
Furthermore let $\rho \in \mathcal{B}_{k}$ be an h-ary universal relation that is a homomorphic inverse image of ζ_{m}, i.e., there is a surjective mapping $q: \mathbf{k} \longrightarrow \mathbf{h}^{\mathbf{m}}$ with

$$
\left(a_{1}, \ldots, a_{h}\right) \in \varrho \Longleftrightarrow\left(q\left(a_{1}\right), \ldots, q\left(a_{h}\right)\right) \in \zeta_{m}
$$

for all $a_{1}, \ldots, a_{h} \in \mathbf{k}$.
We need the following characterization of functions preserving ζ_{m} and ρ given by the second author in [13] (see also [15], Theorem 5.2.6.1).

Lemma 4. 1) Let $f \in \operatorname{Op}^{(n)}\left(\mathbf{h}^{\mathbf{m}}\right)$ and f_{0}, \ldots, f_{m-1} be the n-ary functions in $\mathrm{Op}\left(\mathbf{h}^{\mathbf{m}}\right)$ defined by

$$
f_{i}\left(x_{1}, \ldots, x_{n}\right):=\left(f\left(x_{1}, \ldots, x_{n}\right)\right)^{[i]}
$$

for all $i=0,1, \ldots, m-1$, i.e.,

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=0}^{m-1} f_{i}\left(x_{1}, \ldots, x_{n}\right) \cdot h^{i}
$$

holds for all $x_{1}, \ldots, x_{n} \in \mathbf{h}^{\mathbf{m}}$. Then

$$
\begin{aligned}
f \in \operatorname{Pol} \zeta_{m} \Longleftrightarrow & \forall i \in\{0,1, \ldots, m-1\}: \\
& \text { either }\left|\operatorname{im}\left(f_{i}\right)\right| \leq h-1 \\
& \text { or there are } j \in\{1, \ldots, n\}, v \in \mathbf{m}, \text { a permutation s on } \mathbf{h} \\
& \text { such that } f_{i}\left(x_{1}, \ldots, x_{n}\right)=s\left(\left(x_{j}\right)^{[v]}\right) .
\end{aligned}
$$

2) Let $f \in \mathrm{Op}^{(n)}(\mathbf{k})$ and f_{0}, \ldots, f_{m-1} be the n-ary functions in $\mathrm{Op}(\mathbf{k})$ defined by

$$
f_{i}\left(x_{1}, \ldots, x_{n}\right):=\left(q\left(f\left(x_{1}, \ldots, x_{n}\right)\right)\right)^{[i]}
$$

for all $i=0,1, \ldots, m-1$. Then

$$
\begin{align*}
f \in \operatorname{Pol} \rho \Longleftrightarrow & \forall i \in\{0,1, \ldots, m-1\}: \tag{1}\\
& \text { either }\left|\operatorname{im}\left(f_{i}\right)\right| \leq h-1 \\
& \text { or there are } j \in\{1, \ldots, n\}, v \in \mathbf{m}, \text { a permutation s on } \mathbf{h} \\
& \text { such that } f_{i}\left(x_{1}, \ldots, x_{n}\right)=s\left(\left(q\left(x_{j}\right)\right)^{[v]}\right)
\end{align*}
$$

We illustrate this with the following
Examples. Let $h=3, m=2, k=11, q: \mathbf{1 1} \longrightarrow \mathbf{9}$ be defined by $q(x):=$ $x+1(\bmod 9)$ for $x \in \mathbf{9}, q(9)=4$ and $q(10)=1$. Furthermore let the two permutations s_{1} and s_{2} be defined by

x	$s_{1}(x)$	$s_{2}(x)$
0	1	2
1	0	0
2	2	1

For $x=x^{[1]} \cdot 3+x^{[0]} \in \mathbf{9}$, let $g(x):=s_{1}\left(x^{[0]}\right)$ and $g^{\prime}(x):=s_{2}\left(x^{[1]}\right)$, i.e.,

x	$x^{[1]}$	$x^{[0]}$	$g(x)$	$g^{\prime}(x)$
0	0	0	1	2
1	0	1	0	2
2	0	2	2	2
3	1	0	1	0
4	1	1	0	0
5	1	2	2	0
6	2	0	1	1
7	2	1	0	1
8	2	2	2	1

Then the ternary functions $f, h \in \operatorname{Op}(\mathbf{9})$ defined by

$$
f\left(x_{1}, x_{2}, x_{3}\right):=g\left(x_{1}\right) \cdot 3+g^{\prime}\left(x_{3}\right)
$$

(here $f_{0}\left(x_{1}, x_{2}, x_{3}\right)=g^{\prime}\left(x_{3}\right)=s_{2}\left(x_{3}^{[1]}\right)$ and $f_{1}\left(x_{1}, x_{2}, x_{3}\right)=g\left(x_{1}\right)=s_{1}\left(x_{1}^{[0]}\right)$) and

$$
h\left(x_{1}, x_{2}, x_{3}\right):=g\left(x_{2}\right) \cdot 3+f^{\prime}\left(x_{1}, x_{2}, x_{3}\right),
$$

where $\operatorname{im}\left(f^{\prime}\right) \subset\{0,1,2\}$ and $|\operatorname{im}(f)| \leq 2$, both belong to $\mathrm{Pol} \zeta_{2}$.
The following is an example of a unary function $f \in \mathrm{Op}(\mathbf{1 1})$ (see last column below) that preserves the relation ρ :

x	$q(x)$	$(q(x))^{[1]}$	$(q(x))^{[0]}$	$s_{1}\left((q(x))^{[1]}\right)$	$r(x)$	$q(f(x))$	$f(x)$
0	1	0	1	1	1	4	3
1	2	0	2	1	1	4	9
2	3	1	0	0	1	1	10
3	4	1	1	0	1	1	0
4	5	1	2	0	0	0	8
5	6	2	0	2	0	6	5
6	7	2	1	2	0	6	5
7	8	2	2	2	1	7	6
8	0	0	0	1	1	4	3
9	4	1	1	0	1	1	0
10	1	0	1	1	1	4	9

since

$$
q(f(x))=s_{1}\left((q(x))^{[1]}\right) \cdot 3+r(x) .
$$

Now let ζ_{m}, ρ and q be as discussed in the beginning of this section. As the mapping $q: \mathbf{k} \rightarrow \mathbf{h}^{\mathbf{m}}$ is surjective and $m \geq 1$, we have $|\operatorname{im}(q)| \geq h$ and so there are $i_{0}, \ldots, i_{h-1} \in \mathbf{k}$ such that $\left\{q\left(i_{0}\right), \ldots, q\left(i_{h-1}\right)\right\}=\mathbf{h}$. For notational ease we may assume that

$$
\begin{equation*}
\forall i \in\{0,1, \ldots, h-1\}: q(i)=i \tag{2}
\end{equation*}
$$

and as $(0,1, \ldots, h-1) \notin \zeta_{m}$ we have $(0,1, \ldots, h-1) \notin \rho$. For $n \geq 2$ set

$$
\begin{aligned}
\iota_{2 n+h}:= & \left\{\left(a_{1}, \ldots, a_{2 n+h}\right) \in \mathbf{h}^{2 n+h}| |\left\{a_{1}, \ldots, a_{2 n+h}\right\} \mid \leq h-1\right\}, \\
\chi_{2 n+h}:= & \left\{\left(a_{1}, \ldots, a_{2 n+h}\right) \in \mathbf{h}^{2 n+h}| |\left\{a_{1}, \ldots, a_{2 n+h}\right\} \mid=h\right. \text { with } \\
& \text { 1) } h-2 \text { symbols occurring each once and } \\
& \text { 2) one symbol occurring twice and } \\
& \text { 3) one symbol occurring } \left.2 n \text { times in } a_{1}, \ldots, a_{2 n+h}\right\}
\end{aligned}
$$

and

$$
\sigma_{2 n+h}:=\iota_{2 n+h} \cup \chi_{2 n+h} .
$$

The relations $\sigma_{2 n+h}$ have been defined in Theorem 11 of [10], and were combined with an infinite family of partial functions to exhibit a family of partial clones of continuum cardinality. We will use some of the results related to these relations and established in [10] later on in Lemma 8.
Now using the mapping q and the relations $\sigma_{2 n+h}$ we define the family of relations $\sigma_{2 n+h}^{\star}$ as follows :

$$
\begin{aligned}
\left(a_{1}, \ldots, a_{h}\right) \in \sigma_{2 n+h}^{\star}: \Longleftrightarrow & \forall i \in\{0,1, \ldots, m-1\}: \\
& \left(\left(q\left(a_{1}\right)\right)^{[i]},\left(q\left(a_{2}\right)\right)^{[i]}, \ldots,\left(q\left(a_{h}\right)\right)^{[i]}\right) \in \sigma_{2 n+h} .
\end{aligned}
$$

The relations $\sigma_{2 n+h}^{\star}$ and $\sigma_{2 n+h}$ are closely related. First we show that they have same restrictions on the set \mathbf{h} :

Lemma 5.

$$
\begin{equation*}
\sigma_{2 n+h}^{\star} \cap \mathbf{h}^{2 n+h}=\sigma_{2 n+h} \cap \mathbf{h}^{2 n+h} . \tag{3}
\end{equation*}
$$

Proof. Obviously, by (2), we have

$$
\begin{aligned}
& \left(a_{1}, \ldots, a_{2 n+h}\right) \in \sigma_{2 n+h}^{\star} \cap \mathbf{h}^{2 n+h} \Longrightarrow \\
& \left(\left(a_{1}^{[0]}, \ldots, a_{2 n+h}^{[0]}\right)=\left(a_{1}, \ldots, a_{2 n+h}\right) \in \sigma_{2 n+h}\right) \wedge \\
& \left(\forall i \in\{1,2, \ldots, m-1\}: a_{1}^{[i]}=\cdots=a_{2 n+h}^{[i]}=0\right) .
\end{aligned}
$$

On the other hand, if $\left(a_{1}, \ldots, a_{2 n+h}\right) \in \sigma_{2 n+h} \cap \mathbf{h}^{2 n+h}$, then $\left(a_{1}^{[i]}, \ldots, a_{2 n+h}^{[i]}\right) \in$ $\sigma_{2 n+h}$ for all $i \in \mathbf{m}$ and, by the definition of $\sigma_{2 n+h}^{\star},\left(a_{1}, \ldots, a_{2 n+h}\right) \in \sigma_{2 n+h}^{\star} \cap \mathbf{h}^{2 n+h}$ holds.

Our next result shows that $\mathrm{pPol} \sigma_{2 n+h}^{\star}$ is a partial clone of type \mathcal{B} for all $h \geq 3$ and all $n \geq 2$.

Lemma 6. Let $n \geq 2$. Then $\operatorname{Pol} \rho \subseteq \operatorname{pPol} \sigma_{2 n+h}^{\star} \subseteq \operatorname{pPol} \rho$.
Proof. First we show that $\operatorname{Pol} \rho \subseteq \operatorname{pPol} \sigma_{2 n+h}^{\star}$. Let $f \in \operatorname{Pol} \rho$ be n-ary and as in Lemma 4 let f_{0}, \ldots, f_{m-1} be the n-ary functions defined by

$$
f_{i}\left(x_{1}, \ldots, x_{n}\right):=\left(q\left(f\left(x_{1}, \ldots, x_{n}\right)\right)\right)^{[i]}
$$

for all $i=0,1, \ldots, m-1$. Thus

$$
q\left(f\left(x_{1}, \ldots, x_{n}\right)\right)=\sum_{i=0}^{m-1} f_{i}\left(x_{1}, \ldots, x_{n}\right) \cdot h^{i}
$$

for all $\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{k}^{n}$. As $f \in \operatorname{Pol} \rho$, the functions f_{0}, \ldots, f_{m-1} satisfy (4) (Lemma 4). We show that $f \in \operatorname{Pol} \sigma_{2 n+h}^{\star}$. Let $\left(r_{t, i}\right)$ be a $(2 n+h) \times n$ matrix with all columns $\left(r_{1 i}, r_{2 i}, \ldots, r_{2 n+h, i}\right) \in \sigma_{2 n+h}^{\star}, i=1, \ldots, n$. We show that

$$
\left(f\left(r_{11}, r_{12}, \ldots, r_{1 n}\right), \ldots, f\left(r_{2 n+h, 1}, r_{2 n+h, 2}, \ldots, r_{2 n+h, n}\right)\right) \in \sigma_{2 n+h}^{\star}
$$

and this holds if and only if

$$
\left(q\left(f\left(r_{11}, r_{12}, \ldots, r_{1 n}\right)\right)^{[i]}, \ldots, q\left(f\left(r_{2 n+h, 1}, r_{2 n+h, 2}, \ldots, r_{2 n+h, n}\right)\right)^{[i]}\right) \in \sigma_{2 n+h}
$$

for all $i=0,1, \ldots, m-1$. But

$$
\begin{aligned}
& \left(q\left(f\left(r_{11}, r_{12}, \ldots, r_{1 n}\right)\right)^{[i]}, \ldots, q\left(f\left(r_{2 n+h, 1}, r_{2 n+h, 2}, \ldots, r_{2 n+h, n}\right)\right)^{[i]}\right) \\
& =\left(f_{i}\left(r_{11}, \ldots, r_{1 n}\right), \ldots, f_{i}\left(r_{2 n+h, 1}, \ldots, r_{2 n+h, n}\right)\right) \\
& \in \begin{cases}\iota_{2 n+h} & \text { if }\left|\operatorname{im}\left(f_{i}\right)\right| \leq h-1, \\
\sigma_{2 n+h} & \text { if } f_{i}\left(x_{1}, \ldots, x_{n}\right)=s\left(\left(q\left(x_{j}\right)\right)^{[v]}\right),\end{cases}
\end{aligned}
$$

for all $i=0,1, \ldots, m-1$. Thus f preserves the relation $\sigma_{2 n+h}^{\star}$.
We use Proposition 3 to prove that $\mathrm{pPol} \sigma_{2 n+h}^{\star} \subseteq \mathrm{pPol} \rho$. Since the lattice \mathcal{P}_{k} is dually atomic, each of the partial clones $\mathrm{pPol} \sigma_{2 n+h}^{\star}$ is contained in at least one maximal partial clone. Now by Proposition 3 the maximal clone Pol ϱ is contained in a unique maximal partial clone over \mathbf{k}, namely $\mathrm{pPol} \rho$. If the inclusion $\mathrm{pPol} \sigma_{2 n+h}^{\star} \subseteq \mathrm{pPol} \rho$ does not hold for some $n \geq 2$ and some $h \geq 3$, then
$\mathrm{pPol} \sigma_{2 n+h}^{\star}$ would be contained in a maximal partial clone distinct from $\mathrm{pPol} \varrho$, and so $\operatorname{Pol} \rho$ would be contained in two distinct maximal partial clones, contradicting Proposition 3.

We need an infinite family of partial functions $\varphi_{2 n+h}$ defined in [10]. Let

$$
\begin{aligned}
v_{0} & =\left(x_{0}, x_{1}, \ldots, x_{2 n+h-1}\right) \\
& :=(0,1,2, \ldots, h-3, h-2, h-2, \underbrace{h-1, h-1, \ldots, h-1}_{2 n \text { times }})
\end{aligned}
$$

and, for $j=0, \ldots, 2 n+h-1$, let

$$
v_{j}:=\left(x_{j}, x_{1+j(\bmod 2 n+h)}, x_{2+j(\bmod 2 n+h)}, \ldots, x_{2 n+h-1+j}(\bmod 2 n+h)\right) .
$$

For $n \geq 2$ let $\varphi_{2 n+h}$ be the $(2 n+h)$-ary function defined by

$$
\operatorname{dom}\left(\varphi_{2 n+h}\right):=\left\{v_{0}, v_{1}, \ldots, v_{2 n+h-1}\right\}
$$

and

$$
\varphi_{2 n+h}\left(x_{1}, \ldots, x_{2 n+h}\right):=\left\{\begin{array}{lll}
h-1 & \text { if } & \left(x_{1}, \ldots, x_{2 n+h}\right)=v_{h-1} \\
x_{1} & \text { if } & \left(x_{1}, \ldots, x_{2 n+h}\right) \\
& & \in\left\{v_{1}, \ldots, v_{h-2}, v_{h}, \ldots, v_{2 n+h-1}\right\} .
\end{array}\right.
$$

Lemma 7. Let $n, m \geq 2$. Then

$$
\varphi_{2 n+h} \in \mathrm{pPol} \sigma_{2 m+h}^{\star} \Longleftrightarrow \varphi_{2 n+h} \in \mathrm{pPol} \sigma_{2 m+h} .
$$

Proof. This follows from (3) and

$$
\begin{aligned}
& \forall\left(r_{11}, \ldots, r_{2 m+h, 1}\right), \ldots,\left(r_{1,2 n+h}, \ldots, r_{2 m+h, 2 n+h}\right) \in\left(\sigma_{2 m+h}^{\star} \cup \sigma_{2 m+h}\right) \backslash \mathbf{h}^{\mathbf{2 m}+\mathbf{h}}: \\
& \left\{\left(r_{11}, \ldots, r_{1,2 n+h}\right), \ldots,\left(r_{2 m+h, 1}, \ldots, r_{2 m+h, 2 n+h}\right)\right\} \nsubseteq \operatorname{dom}\left(\varphi_{2 n+h}\right)
\end{aligned}
$$

The following result comes from the proof of Theorem 11 in [10]:
Lemma 8. Let $n, m \geq 2$. Then

$$
\varphi_{2 m+h} \in \operatorname{pPol} \sigma_{2 n+h} \Longleftrightarrow n \neq m .
$$

We combine Lemmas 7,8 to obtain
Lemma 9. Let $n, m \geq 2$. Then

$$
\varphi_{2 m+h} \in \mathrm{pPol} \sigma_{2 n+h}^{\star} \Longleftrightarrow n \neq m .
$$

Let $\mathcal{P}\left(N_{\geq 2}\right)$ be the power set of $N_{\geq 2}:=\{2,3, \ldots\}$. From Lemma 9 , the correspondence

$$
\chi: \mathcal{P}\left(N_{\geq 2}\right) \longrightarrow[\operatorname{Str}(\operatorname{Pol} \rho), \mathrm{pPol} \rho]
$$

defined by

$$
\chi(X):=\bigcap_{n \in N \geq 2 \backslash X} \mathrm{pPol} \sigma_{2 n+h}^{\star}
$$

($X \in \mathcal{P}\left(N_{\geq 2}\right)$) is a one-to-one mapping. We have shown
Theorem 10. Let $k \geq 3$ and $\rho \in \mathcal{B}_{k}$. Then the interval of partial clones $[\operatorname{Str}(\operatorname{Pol} \rho), \mathrm{pPol} \rho]$ is of continuum cardinality on \mathbf{k}.

4. Intervals of partial clones of type \mathcal{L}

In this section we consider a maximal clone $L=\operatorname{Pol} \varrho$ where $\rho \in \mathcal{L}_{k}$ is a prime affine relation on \mathbf{k}. Thus $k=p^{\ell}$ for some $\ell \geq 1, p$ is a prime number and $\varrho=\left\{(x, y, z, t) \in \mathbf{k}^{4} \mid x+y=z+t\right\}$, where $\langle\mathbf{k},+\rangle$ is an elementary Abelian p-group. Choose the notation so that $\langle\mathbf{k},+\rangle=\left\langle\mathbf{p}^{\ell}, \oplus\right\rangle=\underbrace{\langle\mathbf{p},+\rangle \times \ldots \times\langle\mathbf{p},+\rangle}_{\ell}$ where $\langle\mathbf{p},+\rangle$ is the cyclic group $\bmod p$ on $\mathbf{p}:=\{0, \ldots, p-1\}$. We will use the description given in [21] of the maximal clone L (see also [9]). Let $\mathbf{p}^{\ell \times \ell}$ be the set of all square matrices of size ℓ with entries from \mathbf{p}.

Proposition 11. [21] Let $\mathbf{k}=\mathbf{p}^{\ell}, \rho \in \mathcal{L}_{k}$ and $L=\operatorname{Pol} \rho$ be as defined above. Then

$$
\begin{aligned}
L=\bigcup_{n \geq 1}\left\{f \in \mathrm{Op}^{(n)}\left(\mathbf{p}^{\ell}\right) \mid\right. & \mid \underline{a} \in \mathbf{p}^{\ell}, \exists A_{1}, \ldots, A_{n} \in \mathbf{p}^{\ell \times \ell} \text { such that } \\
& \left.\forall x_{1}, \ldots, x_{n} \in \mathbf{p}^{\ell}\left(f\left(x_{1}, \ldots, x_{n}\right)=\underline{a} \oplus \sum_{i=1}^{n} x_{i} \otimes A_{i}\right)\right\},
\end{aligned}
$$

where \oplus and \otimes are the usual matrix operations over the finite field $(\mathbf{p} ;+, \cdot)$.
In the sequel we write E for \mathbf{p}^{ℓ}.
Remark. The binary sum of the elementary Abelian p-group E is denoted by \oplus. For every $a \in E$ denote by $c_{a} \in \mathrm{Op}^{(1)}(E)$ the unary constant function defined by $c_{a}(x):=a$ for all $x \in E$. Moreover for every square matrix $A \in \mathbf{p}^{\ell \times \ell}$ let $\otimes_{A} \in \mathrm{Op}^{(1)}(E)$ denote the unary function defined by $\otimes_{A}(x):=x \otimes A$ for all $x \in E$. Put

$$
L^{\prime}:=\{\oplus\} \cup\left\{c_{a} \mid a \in E\right\} \cup\left\{\otimes_{A} \mid A \in \mathbf{p}^{\ell \times \ell}\right\},
$$

then using Proposition 11 one can easily verify that L^{\prime} is a generating set for the maximal clone L, i.e., $L=\left\langle L^{\prime}\right\rangle$. This fact will be used in the proof of Lemma 12. We will also use the Definability Lemma shown in [18] and used in [5, 7, 10]. It gives necessary and sufficient conditions under which $\mathrm{pPol} \lambda_{1}$ is contained in $\mathrm{pPol} \lambda_{2}$ for two relations λ_{1} and λ_{2}.

We need to introduce some notations that will be used later on. For $x:=$ $\left(x_{1}, \ldots, x_{\ell}\right) \in E$ and $y \in E$, let $\ominus x:=\left(p-x_{1}(\bmod p), \ldots, p-x_{\ell}(\bmod p)\right)$ and $x \ominus y:=x \oplus(\ominus y)$. Furthermore let $-1:=p-1$, and

$$
\mathbf{0}:=(0,0, \ldots, 0), \mathbf{1}:=(1,1, \ldots, 1),-\mathbf{1}:=(-1,-1, \ldots,-1) \in E .
$$

If M is a nonempty set, then by $M^{r \times s}$ we denote the set of all $r \times s$ matrices with entries from M.

If $a:=\left(a_{1}, a_{2}, \ldots, a_{\ell}\right) \in E$, then we denote by $a[i]$ the i-th coordinate of a, i.e., $a[i]:=a_{i}$ for all $i \in\{1, \ldots, \ell\}$. For $r \geq 2 p$ let

$$
\lambda_{r}:=\left\{\left(x_{1}, x_{2}, \ldots, x_{r}\right) \in E^{r} \mid x_{1} \oplus x_{2} \oplus \ldots \oplus x_{r}=\mathbf{0}\right\} .
$$

For $x:=\left(x_{1}, \ldots, x_{n}\right) \in E^{n}$ where $x_{i}:=\left(x_{i 1}, \ldots, x_{i \ell}\right) \in E$, for all $1 \leq i \leq n$, let

$$
\widehat{x}:=\left(x_{11}, \ldots, x_{1 \ell}, x_{21}, \ldots, x_{2 \ell}, \ldots, x_{n 1}, \ldots, x_{n \ell}\right) \in \mathbf{p}^{n \ell}
$$

For $1 \leq s \leq n$ let

$$
T_{n ; s}:=\left\{\left(x_{1}, \ldots, x_{n}\right) \in E^{n} \mid\left(\widehat{x_{1}, \ldots, x_{n}}\right) \in\{0,1\}^{n \ell} \text { and } \sum_{i=1}^{n} \sum_{j=1}^{\ell} x_{i j} \leq s \ell\right\},
$$

thus $\left(x_{1}, \ldots, x_{n}\right) \in T_{n ; s}$ iff $\left(\widehat{x_{1}, \ldots, x_{n}}\right) \in\{0,1\}^{n \ell}$ and the number of 1 's in $\left(x_{1}, \ldots, x_{n}\right)$ is at most $s \ell$.
For $2 p \leq r$ and $1 \leq s \leq p r-1$ let $\tau_{r, s} \in \operatorname{Par}(E)$ denote the partial function with the arity

$$
n(r, s):=(p r-1) s+1
$$

and defined by

$$
\operatorname{dom}\left(\tau_{r, s}\right):=T_{n(r, s) ; s} \cup\{(-\mathbf{1}, \ldots,-\mathbf{1})\}
$$

and

$$
\tau_{r, s}(x):= \begin{cases}\mathbf{0} & \text { for } \quad x \in T_{n(r, s) ; s} \\ \mathbf{1} & \text { for } \\ x_{1}=\cdots=x_{n(r, s)}=-\mathbf{1}\end{cases}
$$

Lemma 12. Let $2 p \leq r$ and $1 \leq s \leq p r-1$. Then
(a) $\tau_{r, s} \in \mathrm{pPol} \lambda_{p r}$,
(b) $\tau_{r, s} \notin \mathrm{pPol} \lambda_{p(r+1)}$,
(c) $\mathrm{pPol} \lambda_{p(r+1)} \subset \mathrm{pPol} \lambda_{p r}$,
(d) $\operatorname{Str}(L) \subseteq \mathrm{pPol} \lambda_{p r}$,
(e) $\operatorname{Op}(E) \cap \mathrm{pPol} \lambda_{p r}=L$.

Proof. To simplify the notation we write n instead of $n(r, s)$ (i.e., $n=(p \cdot r-1)$. $s+1$), τ for $\tau_{r, s}, \lambda$ for $\lambda_{p r}$ and m for $p \cdot r$.
(a) We proceed by contradiction. Assume that $\tau \notin \mathrm{pPol} \lambda$. Then there is a matrix $A:=\left(a_{i j}\right) \in E^{m \times n}$ such that

$$
\begin{gather*}
\forall i \in\{1,2, \ldots, m\}: r_{i}:=\left(a_{i 1}, a_{i 2}, \ldots, a_{i n}\right) \in \operatorname{dom}(\tau), \tag{4}\\
\forall j \in\{1,2, \ldots, n\}:\left(a_{1 j}, a_{2 j}, \ldots, a_{m j}\right) \in \lambda, \tag{5}
\end{gather*}
$$

and

$$
\begin{equation*}
\left(\tau\left(r_{1}\right), \tau\left(r_{2}\right), \ldots, \tau\left(r_{m}\right)\right) \in E^{m} \backslash \lambda \tag{6}
\end{equation*}
$$

Clearly there is a row in A of the form $(-\mathbf{1}, \mathbf{- 1}, \ldots,-\mathbf{1})$ since otherwise $r_{i} \in$ $T_{n(r, s) ; s}$ for all $i=1, \ldots, m$ and thus $\left(\tau\left(r_{1}\right), \tau\left(r_{2}\right), \ldots, \tau\left(r_{m}\right)\right)=(\mathbf{0}, \ldots, \mathbf{0}) \in \lambda$. W.l.o.g. we can assume that

$$
\begin{equation*}
r_{1}=\cdots .=r_{t}=(-\mathbf{1},-\mathbf{1}, \ldots,-\mathbf{1}) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\{\widehat{r_{t+1}}, \ldots, \widehat{r_{m}}\right\} \subseteq\{0,1\}^{n \ell} \tag{8}
\end{equation*}
$$

By (6) and (7) we have $t \neq 0(\bmod p)$.
Then by (5) and (7)

$$
\forall j \in\{1, \ldots, n\} \forall q \in\{1, \ldots, \ell\}: \sum_{i=t+1}^{m} a_{i j}[q] \geq 1,
$$

i.e.,

$$
\begin{equation*}
\sum_{j=1}^{n} \sum_{q=1}^{l} \sum_{i=t+1}^{m} a_{i j}[q] \geq n \ell=((p r-1) s+1) \ell . \tag{9}
\end{equation*}
$$

Furthermore, it follows from (4) and (8)

$$
\forall i \in\{t+1, \ldots, m\}: \sum_{j=1}^{n} \sum_{q=1}^{\ell} a_{i j}[q] \leq s \ell,
$$

thus

$$
\sum_{i=t+1}^{m} \sum_{j=1}^{n} \sum_{q=1}^{\ell} a_{i j}[q] \leq(m-t) s l \leq(p r-1) s \ell,
$$

contradicting (9) and thus proving (a).
(b) Consider the matrix with $p(r+1)$ rows $b_{1}, \ldots, b_{p(r+1)}$ and $(p r-1) s+1$ columns

Clearly all columns of B belong to $\lambda_{p(r+1)}$. However

$$
\left(\tau\left(b_{1}\right), \ldots, \tau\left(b_{p(r+1)}\right)\right)=(\mathbf{0}, \mathbf{0}, \ldots, \mathbf{0}, \mathbf{1}) \in E^{p(r+1)} \backslash \lambda_{p(r+1)},
$$

completing the proof of (b).
(c) Since

$$
\lambda_{p r}=\{\left(x_{1}, \ldots, x_{p r}\right) \in E^{p r} \mid(x_{1}, x_{2}, \ldots, x_{p r}, \underbrace{x_{p r}, x_{p r}, \ldots, x_{p r}}_{p}) \in \lambda_{p(r+1)}\}
$$

we have, by the general theory (see e.g., the Definability Lemma in [18]) that
$\operatorname{pPol} \lambda_{p(r+1)} \subseteq \mathrm{pPol} \lambda_{p r}$.
As $\tau_{r, s} \in \mathrm{pPol} \lambda_{p r} \backslash \mathrm{pPol} \lambda_{p(r+1)}$, (c) follows.
(d) As mentioned earlier $L=<L^{\prime}>$, where $L^{\prime}:=\{\oplus\} \cup\left\{c_{a} \mid a \in E\right\} \cup\left\{\otimes_{A} \mid A \in\right.$ $\left.\mathrm{p}^{\ell \times \ell}\right\}$.
It is easy to see that all functions in L^{\prime} preserve the relation λ_{m}, i.e, $L^{\prime} \subseteq \mathrm{pPol} \lambda_{m}$. Thus $L \subseteq \mathrm{pPol} \lambda_{m}$ and as $\mathrm{pPol} \lambda_{m}$ is a strong partial clone, $\operatorname{Str}(L) \subseteq \mathrm{pPol} \lambda_{m}$, proving (d).
(e) From (d) we have $L \subseteq \operatorname{Op}(E) \cap \mathrm{pPol} \lambda_{p r} \subset \mathrm{Op}(E)$. Now (e) follows from the maximality of the clone L.

We need the concept of affine spaces for the next result. For $n \geq 1$ let $\left(\{0,1\}^{n} ;+, \cdot\right)$ be the n-dimensional vector space over the field $(\{0,1\} ;+, \cdot)$ (with the two usual binary operations mod 2). A subset $T \subseteq\{0,1\}^{n}$ is an affine space of the dimension t (in symbols $t:=\operatorname{dim} T$), if

$$
T=b+U(\bmod 2):=\{b+u \mid u \in U\}
$$

where $b \in\{0,1\}^{n}$ and U is a subspace of $\{0,1\}^{n}$ of dimension t. The next three results will be used in the proof of Lemma 16. They are essentially useful for the case where $|E|$ is a power of 2 . For $1 \leq s \leq n$ let $R_{n, s}$ be the set of all $0-1 n$-vectors containing at most s ''s, that is $R_{n, s}:=\left\{\left(a_{1}, \ldots, a_{n}\right) \in\{0,1\}^{n} \mid \sum_{i=1}^{n} a_{i} \leq s\right\}$. We have:

Lemma 13. Let $1 \leq s \leq n$ and let $A \subseteq\{0,1\}^{n}$ be an affine space. Then
(a) $A \subseteq R_{n ; s} \Longrightarrow \operatorname{dim} A \leq s$;
(b) $A \subseteq\{0,1\}^{n} \backslash R_{n ; s} \Longrightarrow \operatorname{dim} A \leq n-s-1$.

Proof. The statement in (a) is shown by V. B. Alekseev and L. L. Voronenko in [1].
(b) Let $A \subseteq\{0,1\}^{n} \backslash R_{n ; s}$. Then $A^{\prime}:=(1,1, \ldots, 1)+A(\bmod 2)$ is an affine space of same dimension as A and since vectors in A have at least $s+1$ entries equal 1 and since $1+1=0$, vectors in A^{\prime} have at most $n-s-1$ entries equal 1, i.e., $A^{\prime} \subseteq T_{n ; n-s-1}$. Thus by (a) $\operatorname{dim} A=\operatorname{dim} A^{\prime} \leq n-s-1$.

From Lemma 12 we have that $\tau_{r, s} \in \mathrm{pPol} \lambda_{p r}$ and $\operatorname{Str}(L) \subseteq \mathrm{pPol} \lambda_{p r}$. We now show that if $|E|$ is a power of 2 then there are subfunctions of $\tau_{r, s}$ that belong to $\operatorname{Str}(L)$.

Lemma 14. Let $p=2, E=\{0,1\}^{\ell}, r \geq 2, n:=(2 r-1) s+1$ and $A \subseteq \operatorname{dom}\left(\tau_{r, s}\right)$ be such that $\widehat{A}:=\{\widehat{x} \mid x \in A\} \subseteq\{0,1\}^{n \ell}$ is an affine space. Then $\tau_{r, s \mid A} \in \operatorname{Str}(L)$.

Proof. If $|A|=1$ or $A \subseteq T_{n ; s}$ then by definition $\tau_{r, s \mid A}$ is a constant function and so it belongs to $\operatorname{Str}(L)$. Assume that $|A| \geq 2$ and $A \nsubseteq T_{n ; s}$, thus $a:=(\mathbf{1}, \mathbf{1}, \ldots, \mathbf{1}) \in$ A (notice that as $p=2$ we have here $-1=1$). First we deal with the case $|A|=2$. Let $A=\{a, b\}$ with $b:=\left(b_{1}, \ldots, b_{n}\right) \in\left(\{0,1\}^{\ell}\right)^{n} \backslash\{a\}$. As $b \neq a$ there is an $1 \leq i \leq n$ with $b_{i} \neq \mathbf{1}$; say $b_{1} \neq \mathbf{1}$. Then there is a matrix $D \in\{0,1\}^{\ell \times \ell}$ with
$b_{1} \otimes D=\mathbf{0}(\bmod 2)$ and $\mathbf{1} \otimes D=\mathbf{1}(\bmod 2)$, i.e., $\tau_{r, s \mid A}\left(b_{1}, \ldots, b_{n}\right)=b_{1} \otimes D$ and $\tau_{r, s \mid A}(\mathbf{1}, \mathbf{1}, \ldots, \mathbf{1})=\mathbf{1} \otimes D$. Thus $\tau_{r, s \mid A} \in \operatorname{Str}\left(L^{(1)}\right)$ follows from Proposition 11.
Next we show that $|A| \geq 3$ is impossible. Indeed if $|A| \geq 3$, then there are two vectors $b, c \in A \cap T_{n, s}$ with $b \neq c$. Therefore $\widehat{b} \oplus \widehat{c} \in \widehat{T_{n ; 2 s}} \backslash\{(\underbrace{0,0, \ldots, 0}_{n \ell})\}$ and $\widehat{a} \oplus \widehat{b} \oplus \widehat{c} \in \widehat{T_{n ; n-1}} \backslash \widehat{T_{n ; n-2 s}}$. Furthermore, since \widehat{A} is an affine space, we have $\widehat{d}:=\left(d_{1}, \ldots, d_{n}\right):=\widehat{a} \oplus \widehat{b} \oplus \widehat{c} \in \widehat{A}$ and satisfies $\widehat{d} \notin \widehat{T_{n ; n-2 s}}$. Since $n-2 s=$ $(2 r-3) s+1 \geq s+1$, we obtain $\sum_{i=1}^{n} \sum_{j=1}^{\ell} d_{i j} \geq(s+1) \ell$, contradicting $d \in A \cap T_{n, s}$. Put

$$
\begin{aligned}
& s_{1}:=1, \\
& s_{j}:=(p \cdot j-1) \cdot s_{j-1}+1 \text { for } j \geq 2, \\
& \alpha_{j}:=\tau_{j+1, s_{j}} \text { for } j \geq 2,
\end{aligned}
$$

i.e., the function α_{j} has the arity $N:=n\left(j+1, s_{j}\right)=(p \cdot(j+1)-1) \cdot s_{j}+1$ and

x_{1}	.	$x_{i}:=\left(x_{i 1}, \ldots, x_{i \ell}\right)$.	x_{N}	$\alpha_{j}\left(x_{1}, \ldots, x_{N}\right)$
0		0		0	0
a_{1}		$\begin{gathered} a_{i}:=\left(a_{i 1}, \ldots, a_{i \ell}\right) \\ a_{i} \in\{0,1\}^{\ell} \\ \sum_{i=1}^{N} \sum_{t=1}^{\ell} a_{i t} \leq s_{j} . \end{gathered}$		a_{N}	0
-1	.	-1	...	-1	-1
otherwise					not defined

We remark that α_{j} was already in [1] defined for $p=2$ and $\ell=1$.
Lemma 15. Let $p \geq 3, i<j, n:=(p(j+1)-1) s_{j}+1, m:=(p(i+1)-1) s_{i}+1$, $b \in \mathbf{p}^{m \ell}$ and let $A \in \mathbf{p}^{n \ell \times m \ell}$ be a matrix which is not the zero matrix. Furthermore for $(\gamma, q) \in\{(n, j),(m, i)\}$ let

$$
D_{\gamma, q}:=\{(\underbrace{-1,-1, \ldots,-1}_{\gamma \ell})\} \cup\left\{\left(x_{1}, \ldots, x_{\gamma \ell}\right) \in\{0,1\}^{\gamma \ell} \mid \sum_{t=1}^{\gamma \ell} x_{t} \leq s_{q} \ell\right\} .
$$

Then

$$
\exists x \in D_{n, j}: b+x \cdot A(\bmod p) \notin D_{m, i} .
$$

Proof. In the proof below + and \cdot denote the addition and multiplication modulo p.
Let $A:=\left(a_{u v}\right)$. For $1 \leq u \leq n \ell$ and $1 \leq v \leq m \ell$ let
$r_{u}:=\left(a_{u 1}, a_{u 2}, \ldots, a_{u, m \ell}\right)$ and $c_{v}:=\left(a_{1 v}, a_{2 v}, \ldots, a_{n \ell, v}\right)$
be the u-th row and v-th column of A respectively. Furthermore for $t \geq 2$ let

$$
(a)_{t}:=(\underbrace{a, a, \ldots, a}_{t})
$$

where $a \in E$, and for $1 \leq u<v \leq t$ let
$e_{t ; u}:=(\underbrace{0,0, \ldots, 0}_{u-1}, 1, \underbrace{0,0, \ldots, 0}_{t-u})$ and $e_{t ; u, v}:=(\underbrace{0,0, \ldots, 0}_{u-1}, 1, \underbrace{0,0, \ldots, 0}_{v-u-1}, 1, \underbrace{0,0, \ldots, 0}_{t-v})$
and finally let $e_{t ; v, u}:=e_{t ; u, v}$. Thus $e_{t ; u, v}$ is the t-vector consisting of 1 's at the u and v positions and 0 's elsewhere. We proceed by contradiction. Assume that

$$
\begin{equation*}
\forall x \in D_{n, j}: b+x \cdot A \in D_{m, i} . \tag{10}
\end{equation*}
$$

As $(0)_{n \ell} \in D_{n, j}$ we have $b \in D_{m, i}$ and so one of the following three cases occurs:
(1) b is a zero vector, (2) b is a nonzero $0-1$ vector or (3) all entries of b are -1 .

Case 1: $b=(0)_{m \ell}$.
Since $e_{n \ell ; t} \in D_{n, j}$ and $e_{n \ell ; t} \cdot A=r_{t}$, we deduce from (10)

$$
\begin{equation*}
\forall t \in\{1,2, \ldots, n \ell\}: r_{t} \in D_{m, i}, \tag{11}
\end{equation*}
$$

and so one of the following 2 cases is possible:
Case 1.1: $\exists q \in\{1,2, \ldots, n \ell\}: r_{q}=(-1)_{m \ell}$.
If $r_{t}=(0)_{m \ell}$ for all $t \in\{1,2, \ldots, n \ell\} \backslash\{q\}$ then $(-1)_{n \ell} \cdot A=(1)_{m \ell} \notin D_{m, i}$. On the other hand if there is a $t \in\{1,2, \ldots, n\} \backslash\{q\}$ with $r_{t} \in D_{m, i} \backslash\left\{(0)_{m \ell}\right\}$, then $e_{n \ell ; q, t} \cdot A \notin D_{m, i}$.
Since the Case 1.1 leads to a contradiction we have:
Case 1.2: $\forall q \in\{1,2, \ldots, n \ell\}: r_{q} \in\{0,1\}^{m \ell} \backslash\left\{(-1)_{m \ell}\right\}$. We distinguish three subcases here:
Case 1.2.1: $\exists t \in\{1,2, \ldots, m \ell\} \exists u \neq v \in\{1,2, \ldots, n \ell\}: a_{u t}=a_{v t}=1$. Thus the t-th column of A has the form $\left(\ldots, c_{u-1, t}, 1, c_{u+1, t}, \ldots, c_{u-1, t}, 1, c_{u+1, t}, \ldots\right)$ and so

$$
e_{n \ell ; u, v} \cdot A=r_{u}+r_{v}=\left(\ldots, a_{u, t-1}+a_{v, t-1}, 2, a_{u, t+1}+a_{v, t+1}, \ldots\right) .
$$

Now if $p \geq 5$ then $2 \neq-1(\bmod p)$ and thus $e_{n \ell ; u, v} \cdot A \notin D_{m, i}$. On the other hand if $p=3$, then $e_{n \ell ; u, v} \cdot A$ belongs to $D_{m, i}$ only if $r_{u}=r_{v}=(1)_{m \ell}$, but then $r_{u} \notin D_{m, i}$, contradicting (11).
Case 1.2.2: Every column in A contains exactly one nonzero entry equal to 1 , i.e., $\left\{c_{1}, c_{2}, \ldots, c_{m \ell}\right\} \subseteq\left\{e_{m \ell ; 1}, e_{m \ell ; 2}, \ldots, e_{m \ell ; m \ell}\right\}$. Since $s_{j}=(p(j+1)-1) s_{j-1}+1$ (notice that the addition and multiplication are over the integers here), and since $i<j$ we have:

$$
s_{j} \geq(p(i+1)-1) \cdot s_{i}+1=m .
$$

Therefore there is an $x \in D_{n, j}$ with $x \cdot A=(1)_{m \ell} \notin D_{m, i}$, a contradiction.
Case 1.2.3: A has a zero column and every column in A has at most one nonzero entry equal to 1 . Then $(-1)_{n \ell} \cdot A \notin D_{m, i}$. This contradiction completes the proof for the Case 1.
Case 2: $b \neq(0)_{m \ell}$ is a $0-1$ vector. Then w.l.o.g we may assume that all 1's in b are consecutive and occur to the left of the 0 's, i.e., $b=(\underbrace{1,1, \ldots, 1}_{t}, 0, \ldots, 0)$ and as $b \in D_{m, i}$ we have $1 \leq t \leq s_{i} \ell$.

Since $e_{n \ell ; q} \in D_{n, j}$ and $e_{n \ell ; q} \cdot A=r_{q}$ we have by (10) that $\forall q \in\{1,2, \ldots, n \ell\}$:
either $\quad r_{q}=(\underbrace{-2,-2, \ldots,-2}_{t}, \underbrace{-1,-1, \ldots,-1}_{m \ell-t})$
or $\left(a_{q 1}, \ldots, a_{q t}\right) \in\{0,-1\}^{t}$ and $\left(a_{q, t+1}, \ldots, a_{q, m \ell}\right) \in\{0,1\}^{m \ell-t}$ and
the number of 0's in $\left(a_{q 1}, \ldots, a_{q t}\right)$ plus the number of 1 's in
$\left(a_{q, t+1}, \ldots, a_{q, m \ell}\right)$ is less or equal to $s_{i} \ell$.
Then we have four possible cases:
Case 2.1: $\exists q \in\{1, \ldots, n \ell\} \forall u \in\{1, \ldots, n \ell\} \backslash\{q\}: r_{u}=(0)_{m \ell}$.
If A has a zero column, then, since A is not the zero matrix, it is easy to check that $b+x \cdot A \notin D_{m, i}$ for certain $x \in D_{m, j}$. Consequently, we can assume that A does not have any zero column.
First we show that

$$
\begin{equation*}
m \ell-t>s_{i} \ell \tag{13}
\end{equation*}
$$

Indeed

$$
\begin{aligned}
m \ell-t \geq \ell\left(m-s_{i}\right) & =\ell\left((p(i+1)-1) s_{i}+1-s_{i}\right) \\
& =\ell\left((p(i+1)-2) s_{i}+1\right) \\
& \geq \ell\left((3 \times 2-2) s_{i}+1\right) \\
& >\ell s_{i} .
\end{aligned}
$$

Combining this with the fact that A has no zero columns we obtain

$$
r_{q}=(\underbrace{-2,-2, \ldots,-2}_{t}, \underbrace{-1,-1, \ldots,-1}_{m \ell-t}) .
$$

But this is a contradiction with (10), since

$$
\begin{aligned}
b+(-1)_{n \ell} \cdot A & =(\underbrace{1,1, \ldots, 1}_{t}, \underbrace{0,0, \ldots, 0}_{m \ell-t})+(\underbrace{2,2, \ldots, 2}_{t}, \underbrace{1,1, \ldots, 1}_{m \ell-t}) \\
& =(\underbrace{3,3, \ldots, 3}_{t}, \underbrace{1,1, \ldots, 1}_{m \ell-t>s_{i} \ell}) \\
& \notin D_{m, i} .
\end{aligned}
$$

Case 2.2: $\exists u \neq v \in\{1,2, \ldots, n \ell\}: r_{u}=r_{v}=(\underbrace{-2,-2, \ldots,-2}_{t}, \underbrace{-1,-1, \ldots,-1}_{m \ell-t})$.
Here

$$
b+e_{n \ell ; u, v} \cdot A=(\underbrace{-3,-3, \ldots,-3}_{t}, \underbrace{-2,-2, \ldots,-2}_{m \ell-t>s_{i} \ell}) \notin D_{m, i}
$$

a contradiction.
Case 2.3: $\exists u \neq v \in\{1,2, \ldots, n \ell\} \exists w \in\{1, \ldots, t\}: a_{u w}=a_{v w}=-1$.
By (12) and (13) we have

$$
\left(a_{u, t+1}, \ldots, a_{u, m \ell}\right) \neq(1)_{m \ell-t} \neq\left(a_{v, t+1}, \ldots, a_{v, m \ell}\right)
$$

Therefore

$$
\begin{aligned}
& b+e_{n \ell ; u, v} \cdot A=(\underbrace{1,1, \ldots, 1}_{t}, \underbrace{0,0, \ldots, 0}_{m \ell-t})+(\underbrace{\ldots,}_{w-1},-2, \underbrace{\ldots}_{t-w}, \underbrace{\ldots j}_{\neq(2, \ldots, 2)})= \\
& (\underbrace{\ldots}_{w-1},-1, \underbrace{\ldots}_{t-w}, \underbrace{\ldots}_{\neq(2, \ldots, 2)}) \notin D_{m, i} .
\end{aligned}
$$

Case 2.4: $\forall u, v \in\{1,2, \ldots, n \ell\} \forall w \in\{1,2, \ldots, t\}$:

$$
u \neq v \Longrightarrow\left(a_{u w}, a_{v w}\right) \in\{(0,0),(0,-1),(-1,0)\} .
$$

Here we distinguish two subcases:
Case 2.4.1: $\exists u \neq v \in\{1,2, \ldots, n \ell\} \exists q \in\{t+1, \ldots, m \ell\}: a_{u q}=a_{v q}=1$.
Then this leads to the contradiction

$$
b+\underbrace{e_{n \ell ; u, v} \cdot A}_{(\ldots,-1, \ldots, 2, \ldots)}=(\ldots, 0, \ldots, 2, \ldots) \notin D_{m, i} .
$$

Case 2.4.2: $\forall u, v \in\{1,2, \ldots, n \ell\} \forall q \in\{t+1, \ldots, m \ell\}$:

$$
u \neq v \Longrightarrow\left(a_{u q}, a_{v q}\right) \in\{(0,0),(0,1),(1,0)\} .
$$

Obviously, in this case we have

$$
(0)_{n \ell} \neq\left\{-c_{1}, \ldots,-c_{t}, c_{t+1}, \ldots, c_{m \ell}\right\} \subseteq\left\{(0)_{n l}, e_{n \ell ; 1}, e_{n \ell ; 2}, \ldots, e_{n \ell ; n \ell}\right\} .
$$

Hence, there is an $n \ell$-vector $y \in T_{n \ell ; s_{j}}$ with $b+y \cdot A \notin D_{m, i}$, contradicting (10).
Case 3: $b=(-1)_{m \ell}$.
Since $b+r_{q} \in D_{m, i}$ for all $q \in\{1,2, \ldots, n \ell\}$, we have $\forall q \in\{1,2, \ldots, n \ell\}$:

$$
\begin{align*}
r_{q} \neq(0)_{m \ell} \Longrightarrow & r_{q} \in\{1,2\}^{m \ell} \text { and the number of } 2 \text { 's in } r_{q} \\
& \text { is not greater than } s_{i} \ell . \tag{14}
\end{align*}
$$

Here one of the following two cases is possible:
Case 3.1: $\exists q \in\{1, \ldots, n \ell\}:\left(r_{q} \neq(0)_{m \ell}\right)$ and $\left(\forall u \in\{1, \ldots, n \ell\} \backslash\{q\}: r_{u}=\right.$ $\left.(0)_{m \ell}\right)$.
It is easy to see that in such a case we have $b+(-1)_{n \ell} \cdot A=b-r_{q} \notin D_{m, i}$, contradicting (10).
Case 3.2: $\exists u \neq v \in\{1, \ldots, n \ell\}:\left\{r_{u}, r_{v}\right\} \subseteq\{1,2\}^{m \ell}$.
Then $r_{u}+r_{v} \in\{2,3(\bmod p), 4(\bmod p)\}^{m \ell}$, i.e., $b+r_{u}+r_{v} \in\{1,2,3(\bmod p)\}^{m \ell}$. Clearly $b+r_{u}+r_{v} \notin D_{m, i}$ for $p \geq 5$ and so let $p=3$. By definition of m we have $m>2 s_{i}$ and thus $m \ell>2 s_{i} \ell$. Combining this with (14) we get that the vector $b+r_{u}+r_{v}$ contains at least one symbol 1 and one symbol $2(=-1)$ and so $b+r_{u}+r_{v} \notin D_{m, i}$. This completes the proof of Lemma 15 .

Lemma 16. Let $i \neq j, n:=(p(j+1)-1) s_{j}+1, m:=(p(i+1)-1) s_{i}+1$, $\left\{g_{1}, g_{2}, \ldots, g_{m}\right\} \subseteq(\operatorname{Str}(L))^{(n)}$ and

$$
f\left(x_{1}, \ldots, x_{n}\right):=\alpha_{i}\left(g_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, g_{m}\left(x_{1}, \ldots, x_{n}\right)\right)
$$

Then either

$$
\begin{equation*}
\operatorname{dom}\left(\alpha_{j}\right) \nsubseteq \operatorname{dom}(f) \tag{15}
\end{equation*}
$$

or

$$
\begin{equation*}
f_{\mid \operatorname{dom}\left(\alpha_{j}\right)} \in \operatorname{Str}(L) . \tag{16}
\end{equation*}
$$

Proof. We proceed by cases.
Case 1: $i<j$.
Since $g_{1}, \ldots, g_{m} \in \operatorname{Str}(L)$, there are $h_{1}, \ldots, h_{m} \in L$ such that $g_{t} \leq h_{t}$ for $t=$ $1,2, \ldots, m$.
Now as $h_{t} \in L$, in view of Proposition 11, there are for every $t=1, \ldots, m$, a vector $B_{t} \in \mathbf{p}^{\ell}$ and n matrices $A_{u t} \in \mathbf{p}^{\ell \times \ell}, u=1, \ldots, n$ such that

$$
\forall X_{1}, \ldots, X_{n} \in E: h_{t}\left(X_{1}, \ldots, X_{n}\right)=B_{t} \oplus \sum_{u=1}^{n} X_{u} \cdot A_{u t} .
$$

Let

$$
\begin{aligned}
& B_{t}:=\left(b_{(t-1) \ell+1}, b_{(t-1) \ell+2}, \ldots, b_{t \ell}\right), \\
& b:=\left(b_{1}, \ldots, b_{\ell}, b_{\ell+1}, \ldots, b_{2 \ell}, \ldots, b_{(m-1) \ell+1}, \ldots, b_{m \ell}\right), \\
& A_{u t}:=\left(\begin{array}{cccc}
a_{(u-1) \ell+1,(t-1) \ell+1} & a_{(u-1) \ell+1,(t-1) \ell+2} & \ldots & a_{(u-1) \ell+1, t \ell} \\
a_{(u-1) \ell+2,(t-1) \ell+1} & a_{(u-1) \ell+2,(t-1) \ell+2} & \ldots & a_{(u-1) \ell+2, t \ell} \\
\vdots & \vdots & & \vdots \\
a_{u \ell,(t-1) \ell+1} & a_{u \ell,(t-1) \ell+2} & \ldots & a_{u \ell, t \ell}
\end{array}\right), \\
& A:=\left(a_{i j}\right) \text { where } 1 \leq i \leq n \ell, 1 \leq j \leq m \ell, \\
& X_{u}:=\left(x_{(u-1) \ell+1}, \ldots, x_{u \ell}\right), u=1, \ldots, n, \\
& X:=\left(X_{1}, \ldots, X_{n}\right), \\
& x:=\left(x_{1}, x_{2} \ldots, x_{n \ell}\right) .
\end{aligned}
$$

Then, for

$$
b+x \cdot A(\bmod p)=\left(y_{1}, \ldots, y_{m \ell}\right),
$$

we have

$$
\begin{aligned}
& \left(h_{1}(X), h_{2}(X), \ldots, h_{m}(X)\right) \\
& =\left(\left(y_{1}, \ldots, y_{\ell}\right),\left(y_{\ell+1}, \ldots, y_{2 \ell}\right), \ldots,\left(y_{(m-1) \ell+1}, \ldots, y_{m \ell}\right)\right) .
\end{aligned}
$$

If A is a zero matrix, then (16) holds by definition of α_{i}. So assume that A is not the zero matrix. We distinguish the two subcases $p=2$ and p is an odd prime number.
Case 1.1: $p \geq 3$.
By Lemma 15 there is an $x \in D_{n, j}$ with $b+x \cdot A \notin D_{m, i}$, i.e., $x \notin \operatorname{dom}(f)$ and so the non-inclusion (15) holds.
Case 1.2: $p=2$.
The map

$$
\varphi:\{0,1\}^{n \ell} \longrightarrow\{0,1\}^{m \ell}, x \mapsto b+x \cdot A
$$

is an affine map and the set

$$
W:=\varphi\left(\{0,1\}^{n \ell}\right):=\left\{y \in\{0,1\}^{m \ell} \mid \exists x \in\{0,1\}^{n \ell}: y=b+x \cdot A\right\}
$$

is an affine space with

$$
\operatorname{dim} W=\operatorname{rank} A \leq m \ell .
$$

First we show, by contradiction, that

$$
W \subseteq D_{m, i}
$$

Assume that there is a $\widehat{w} \in W$ with $w \notin \operatorname{dom}\left(\alpha_{i}\right)$. Now clearly

$$
\varphi^{-1}(w):=\left\{x \in\{0,1\}^{n \ell} \mid \varphi(x)=w\right\}
$$

is an affine space with

$$
\operatorname{dim} \varphi^{-1}(w)=n \ell-\operatorname{dim} W
$$

and as $\operatorname{dim} W \leq m \ell$ and $s_{j} \geq m$ (see Lemma 15, Case 1.2.2) we have

$$
\begin{equation*}
n \ell-\operatorname{dim} W \geq n \ell-m \ell \geq n \ell-s_{j} \ell . \tag{17}
\end{equation*}
$$

On the other hand we have

$$
\varphi^{-1}(w) \subseteq\{0,1\}^{n \ell} \backslash D_{n, j} \subset\{0,1\}^{n \ell} \backslash R_{n \ell ; s_{j} \ell}
$$

and by Lemma 13 (b)

$$
\operatorname{dim} \varphi^{-1}(w) \leq n \ell-s_{j} \ell-1,
$$

contradicting (17). This shows that $W \subseteq D_{m, i}$ and thus (16) follows from Lemma 14.

Case 2: $i>j$.
Let dom $\left(\alpha_{j}\right) \subseteq \operatorname{dom}(f)$, we show that (16) holds. By definition of α_{i} we have $\alpha_{i}:=\tau_{i+1, s_{i}}$, where $s_{1}:=1$ and $s_{t}:=(p t-1) s_{t-1}+1$ for $t \geq 2$. Now by Lemma $12 \alpha_{i} \in \operatorname{pPol} \lambda_{p(i+1)}$ and $\operatorname{Str}(L) \subseteq \mathrm{pPol} \lambda_{p \cdot(i+1)} \subset \mathrm{pPol} \lambda_{p(j+1)}($ as $1 \leq j<i)$, therefore

$$
\begin{equation*}
f \in \mathrm{pPol} \lambda_{p(i+1)} \subset \mathrm{pPol} \lambda_{p(j+1)} \subseteq \mathrm{pPol} \lambda_{2 p} . \tag{18}
\end{equation*}
$$

For $1 \leq u \leq \ell$ let e_{u} denote the vector in $\{0,1\}^{\ell}$ consisting of a 1 on the position u and 0 's elsewhere, i.e., $e_{u}:=(0, \ldots, 0,1,0, \ldots, 0)$. Furthermore, let $e_{0}:=(\mathbf{0}, \mathbf{0}, \ldots, \mathbf{0}), e_{q, u}:=(\mathbf{0}, \mathbf{0}, \ldots, \underbrace{e_{u}}_{q}, \mathbf{0}, \ldots, \mathbf{0})$ be n-vectors in E^{n} and, for $q \in$ $\{1, \ldots, n\}$, let $A_{q} \in\{0,1\}^{\ell \times \ell}$ be the matrix whose columns are $\left(f\left(e_{0}\right) \ominus f\left(e_{q, v}\right)\right)^{T}$, $1 \leq v \leq \ell$, i.e.,

$$
A_{q}:=\left(\begin{array}{c}
f\left(e_{0}\right) \ominus f\left(e_{q, 1}\right) \\
f\left(e_{0}\right) \ominus f\left(e_{q, 2}\right) \\
\ldots \ldots \ldots \ldots \\
f\left(e_{0}\right) \ominus f\left(e_{q, \ell}\right)
\end{array}\right)^{T} .
$$

Define the function f_{1} by setting

$$
f_{1}\left(x_{1}, \ldots, x_{n}\right):=f\left(x_{1}, \ldots, x_{n}\right) \ominus f\left(e_{0}\right) \oplus \sum_{q=1}^{n} x_{q} \otimes A_{q} .
$$

Then f_{1} has the following properties:

$$
\begin{equation*}
f_{1}\left(e_{0}\right)=f_{1}\left(e_{q, v}\right)=0 \text { for all } q \in\{1, \ldots, n\} \text { and all } v \in\{1, \ldots, \ell\}, \tag{19}
\end{equation*}
$$

and

$$
\operatorname{dom}\left(\alpha_{j}\right) \subseteq \operatorname{dom}\left(f_{1}\right)=\operatorname{dom}(f)
$$

Combining this with Lemma 12 and (18) above we obtain:

$$
\begin{equation*}
f_{1} \in \operatorname{pPol} \lambda_{p(i+1)} \subset \mathrm{pPol} \lambda_{p(j+1)} \subseteq \mathrm{pPol} \lambda_{2 p} \tag{20}
\end{equation*}
$$

Furthermore it holds

$$
\begin{equation*}
f_{1 \mid \operatorname{dom}\left(\alpha_{j}\right)} \in \operatorname{Str}(L) \Longleftrightarrow f_{\mid \operatorname{dom}\left(\alpha_{j}\right)} \in \operatorname{Str}(L) . \tag{21}
\end{equation*}
$$

We now show that $f_{1 \mid \operatorname{dom}\left(\alpha_{j}\right)}$ is a constant function. Assume that there is an $a \in E^{n}$ with $\widehat{a}:=\left(a_{1}, \ldots, a_{n \ell}\right) \in\{0,1\}^{n \ell}, \sum_{u=1}^{n \ell} a_{u} \leq s_{j} \ell$ and $f_{1}(a) \neq \mathbf{0}$. Then we may choose a such that the number of 1's in the vector \widehat{a} is minimal, let t be that number. Then $t \geq 2$ by (19) and w.l.o.g. let $\widehat{a}:=(\underbrace{1,1, \ldots, 1}_{t}, 0,0, \ldots, 0)$. By the minimality of t we have $f_{1}\left(a^{\prime}\right)=f\left(a^{\prime \prime}\right)=\mathbf{0}$, where $a^{\prime}, a^{\prime \prime} \in E^{n}, \widehat{a^{\prime}}:=$ $(0, \underbrace{1, \ldots, 1}_{t-1}, 0, \ldots, 0)$ and $\widehat{a^{\prime \prime}}:=(1,0,0, \ldots, 0)$. Here

$$
a \oplus e_{0} \oplus \underbrace{a^{\prime} \oplus \cdots \oplus a^{\prime}}_{p-1} \oplus \underbrace{a^{\prime \prime} \oplus \cdots \oplus a^{\prime \prime}}_{p-1}=e_{0}
$$

and thus the matrix in $E^{2 p \times n}$ whose rows are

$$
r_{1}=a, r_{2}=e_{0}, r_{3}=\cdots=r_{p+1}=a^{\prime} \text { and } r_{p+2}=\cdots=r_{2 p}=a^{\prime \prime}
$$

has all its columns in $\lambda_{2 p}$ while

$$
(f_{1}(a), f_{1}\left(e_{0}\right), \underbrace{f_{1}\left(a^{\prime}\right), \ldots, f_{1}\left(a^{\prime}\right)}_{p-1}, \underbrace{f_{1}\left(a^{\prime}\right), \ldots, f_{1}\left(a^{\prime}\right)}_{p-1}) \notin \lambda_{2 p}
$$

contradicting (20). This shows that

$$
\forall b \in \operatorname{dom}\left(\alpha_{j}\right) \backslash\{(\underbrace{-1, \ldots,-1}_{n})\}: f_{1}(b)=\mathbf{0} .
$$

Finally we show that $f_{1}(-\mathbf{1}, \mathbf{- 1}, \ldots-\mathbf{1})=\mathbf{0}$. Assume that $f_{1}(-\mathbf{1},-\mathbf{1}, \ldots-\mathbf{1}) \neq$ $\mathbf{0}$ and consider the following matrix C with $p(i+1)$ rows $c_{1}, \ldots, c_{p(i+1)}$ and $n=$ $(p(j+1)-1) s_{j}+1$ columns :

Then the columns of C belong to $\lambda_{p(i+1)}$, but
$\left(f_{1}\left(c_{1}\right), f_{1}\left(c_{2}\right), \ldots, f_{1}\left(c_{p(i+1)}\right)=\left(\mathbf{0}, \ldots, \mathbf{0}, f_{1}(-\mathbf{1},-\mathbf{1}, \ldots-\mathbf{1})\right) \in E^{p(i+1)} \backslash \lambda_{p(i+1)}\right.$, contradicting (20).
Thus, we have shown that

$$
\forall b \in \operatorname{dom}\left(\alpha_{j}\right): f_{1}(b)=\mathbf{0},
$$

i.e., $f_{1 \mid \operatorname{dom}\left(\alpha_{j}\right)}$ is a constant function with value $\mathbf{0}$, and so $f_{1 \mid \operatorname{dom}\left(\alpha_{j}\right)} \in \operatorname{Str}(L)$. Then (16) follows from (21) and this completes the proof of the lemma.

We need to recall the following statement shown in [3] (Lemma 2.10):
Lemma 17. ([3]) Let $F \subset \operatorname{Par}(\mathbf{k})$ and $D_{0}:=F \cup J_{\mathbf{k}}$. Moreover for $\ell \geq 0$ set

$$
D_{\ell+1}:=\left\{h\left[g_{1}, \ldots, g_{m}\right] \mid h \in D_{0}^{(m)} \text { and } g_{1}, \ldots, g_{m} \in D_{\ell} \text { for some } m \geq 1\right\}
$$

Then $\langle F\rangle=\bigcup_{\ell \geq 0} D_{\ell}$.

We use Lemma 16 and Lemma 17 to show:
Theorem 18. For every $j \geq 1$

$$
\alpha_{j} \notin\left\langle\left\{\alpha_{1}, \ldots, \alpha_{j-1}, \alpha_{j+1}, \ldots\right\} \cup \operatorname{Str}(L)\right\rangle .
$$

Proof. Let $F:=\left\{\alpha_{1}, \ldots, \alpha_{j-1}, \alpha_{j+1}, \ldots\right\} \cup \operatorname{Str}(L), D_{0}:=F$ (notice that D_{0} contains $J_{\mathbf{k}}$) and let $D_{\ell+1}$ be defined from D_{ℓ} as in Lemma 17. We show by induction on $\ell \geq 0$ that

$$
\begin{equation*}
\forall f \in D_{\ell}\left(\operatorname{dom}\left(\alpha_{j}\right) \subseteq \operatorname{dom}(f) \Longrightarrow f_{\mid \operatorname{dom}\left(\alpha_{j}\right)} \in \operatorname{Str}(L)\right) . \tag{22}
\end{equation*}
$$

The above statement clearly holds for $\ell=0$ as $\operatorname{dom}\left(\alpha_{j}\right) \not \subset \operatorname{dom}\left(\alpha_{i}\right)$ for $i \neq j$. So assume that (22) holds for all $0 \leq t \leq \ell$ and consider $f \in D_{\ell+1} \backslash D_{\ell}$ with $\operatorname{dom}\left(\alpha_{j}\right) \subseteq \operatorname{dom}(f)$. Then there are $m \geq 1, h \in D_{0}^{(m)}$ and $g_{1}, \ldots, g_{m} \in D_{\ell}^{(n)}$ such that $f=h\left[g_{1}, \ldots, g_{m}\right]$, where $n:=(p(j+1)-1) s_{j}+1$ and s_{j} is as in Lemma 15. As $\operatorname{dom}\left(\alpha_{j}\right) \subseteq \operatorname{dom}(f)$ we have dom $\left(\alpha_{j}\right) \subseteq \operatorname{dom}\left(g_{t}\right)$ for all $t=1, \ldots, m$. Thus by the induction hypothesis the partial functions $\overline{g_{t}}:=g_{t \mid \mathrm{dom}\left(\alpha_{j}\right)}$ satisfy $\overline{g_{t}} \in \operatorname{Str}(L)$ for all $t=1, \ldots, m$. Obviously, $f_{\mid \text {dom }\left(\alpha_{j}\right)}=h\left[\overline{g_{1}}, \ldots, \overline{g_{m}}\right]$. If $h \in \operatorname{Str}(L)$ then $f_{\text {dom }\left(\alpha_{j}\right)} \in \operatorname{Str}(L)$, since $\operatorname{Str}(L)$ is a partial clone. Thus we can assume that there is $i \in N^{+} \backslash\{j\}$ with $h=\alpha_{i}$. As $\overline{g_{t}} \in \operatorname{Str}(L)$ for all $t=1, \ldots, m$ we have by Lemma 16 that $f_{\mid \text {dom }\left(\alpha_{j}\right)}=\alpha_{i}\left[\overline{g_{1}}, \ldots, \overline{g_{m}}\right] \in \operatorname{Str}(L)$, i.e. (22) holds.
Finally if $\alpha_{j} \in\left\langle\left\{\alpha_{1}, \ldots, \alpha_{j-1}, \alpha_{j+1}, \ldots\right\} \cup \operatorname{Str}(L)\right\rangle$, then there is an $\ell \geq 0$ such that $\alpha_{j} \in D_{\ell}$ and by (22) $\alpha_{j} \in \operatorname{Str}(L)$, a contradiction.

For $j=1,2, \ldots$ let C_{j} denote the partial clone $\left\langle\left\{\alpha_{1}, \ldots, \alpha_{j-1}, \alpha_{j+1}, \ldots\right\} \cup \operatorname{Str}(L)\right\rangle$. By Theorem 18

$$
\alpha_{j} \in C_{i} \Longleftrightarrow i \neq j
$$

and thus the correspondence

$$
\chi: \mathcal{P}\left(N^{+}\right) \longrightarrow[\operatorname{Str}(L), \operatorname{Par}(E)]
$$

defined by

$$
\chi(X):=\bigcap_{n \in N^{+} \backslash X} C_{n}
$$

is a one-to-one mapping. We have shown that
Theorem 19. Let $E=\mathbf{p}^{\ell}$ where p is a prime number and $\ell \geq 1$ and let L be the maximal clone on E defined in Proposition 11. Then the interval of partial clones $[\operatorname{Str}(L), \operatorname{Par}(E)]$ is of continuum cardinality on E.

References

[1] Alekseev, V. B.; Voronenko, A. A.: On some closed classes in partial twovalued logic. (Russian, English) Discrete Math. Appl. 4(5) (1994), 401-419; translation from Diskretn. Mat. 6(4) (1994), 58-79. Zbl 0818.06013
[2] Börner, F.; Haddad L.; Pöschel R.: Minimal partial clones. Bull. Aust. Math. Soc. 44 (1991), 405-415.

Zbl 0731.08005
[3] Börner, F.; Haddad, L.: Maximal partial clones with no finite basis. Algebra Univers. 40 (1998), 453-476. Zbl 0936.08004
[4] Frejvald, R. V.: A completeness criterion for partial functions of logic and many-valued logic algebras. (Russian, English) Sov. Phys. Dokl. 11 (1966), 288-289, translation from Dokl. Akad. Nauk. SSSR 167 (1966), 1249-1250.

Zbl 0149.24405
[5] Haddad, L.; Rosenberg, I. G.: Maximal partial clones determined by areflexive relations. Discrete Appl. Math. 24 (1989), 133-143. Zbl 0695.08010
[6] Haddad, L.; Rosenberg, I. G.: Partial Sheffer operations. Eur. J. Comb. 12 (1991), 375-379.

Zbl 0724.08005
[7] Haddad, L.; Rosenberg, I. G.: Completeness theory for finite partial algebras. Algebra Univers. 29 (1992), 378-401. Zbl 0771.08001
[8] Haddad, L.: On the depth of the intersection of two maximal partial clones. Mult.- Valued Log. 3 (1998), 259-270. Zbl 0939.08001
[9] Haddad, L.; Lau, D.: Families of finitely generated maximal partial clones. Mult. Valued Log. 5 (2000), 201-228. Zbl 0992.08004
[10] Haddad, L.; Lau, D.: Pairwise intersections of Slupecki type maximal partial clones. Beitr. Algebra Geom. 41(2) (2000), 537-555. Zbl 0992.08003
[11] Haddad, L.; Lau, D.; Rosenberg, I. G.: Intervals of partial clones containing maximal clones. Journal of Automata, Languages and Combinatorics (submitted)
[12] Janov, Yu.; Mucnik, A. A.: On the existence of k-valued closed classes having no finite basis. (Russian) Dokl. Akad. Nauk SSSR 127 (1959), 44-46.

Zbl 0100.01001
[13] Lau, D.: Bestimmung der Ordnung maximaler Klassen von Funktionen der k-wertigen Logik. Z. Math. Logik Grundlagen Math. 24 (1978), 79-96.

Zbl 0401.03008
[14] Lau, D.: Über partielle Funktionenalgebren. Rostocker Math. Kolloq. 33 (1988), 23-48.

Zbl 0659.08001
[15] Lau, D.: Function algebras on finite sets. A basic course on many-valued logic and clone theory. Springer Monographs in Mathematics. Springer-Verlag Berlin-Heidelberg 2006. Zbl pre05066368
[16] Pöschel, R.; Kalužnin, L. A.: Funktionen- und Relationenalgebren. Birkhäuser Verlag, Basel, Stuttgart 1979.

Zbl 0421.03049
[17] Post, E.: The two-valued iterative systems of mathematical logic. Annals of Mathematics Studies 5, Princeton University Press, Princeton, N.J. 1941.

Zbl 0063.06326
[18] Romov, B. A.: Maximal subalgebras of algebras of partial multivalued logic functions. Kibernatika; English translation in: Cybernetics 16 (1980), 31-41. Zbl 0453.03068
[19] Romov, B. A.: The algebras of partial functions and their invariants. Kibernetika; English translation in: Cybernetics 17 (1981), 157-167.

Zbl 0466.03026
[20] Romov, B. A.: The completeness problem in the algebra of partial functions of finite-valued logic. Kibernetika, English translation in: Cybernetics 26 (1990), 133-138.

Zbl 0752.03010
[21] Rosenberg, I. G.: Über die funktionale Vollständigkeit in den mehrwertigen Logiken. Rozpr. Cesk. Akad. Ved, Rada Mat. Přír. Ved 80 (1970), 3-93.

Zbl 0199.30201
[22] Rosenberg I. G.: Composition of functions on finite sets, completeness and relations, a short survey. In: D. Rine (ed.), Computer science and multiplevalued logic. 2nd edition, North-Holland, Amsterdam 1984, 150-192.

Zbl 0546.94020
[23] Rosenberg, I. G.: Partial algebras and clones via one-point extension. Contrib. Gen. Algebra 6, 227-242.

Zbl 0695.08009
[24] Strauch, B.: On partial classes containing all monotone and zero-preserving total Boolean functions. Math. Log. Q. 43 (1997), 510-524. Zbl 0885.06006
[25] Strauch, B.: The classes which contain all monotone and idempotent total Boolean functions. Universität Rostock, preprint 1996.

Received May 3, 2006

[^0]: ${ }^{1}$ The results from [11] are explained also in [15].

