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1. Introduction

Let k ≥ 2 and k be a k-element set. Denote by Par(k) the set of all partial
functions on k and let Op(k) be the set of all everywhere defined functions on k.
A partial clone on k is a subset of Par(k) closed under composition and containing
all the projections on k. A partial clone contained in Op(k) is called a clone on
k. The partial clones on k, ordered by inclusion, form an algebraic dually atomic
lattice Pk (see e.g., [2, 7]). The set of all clones on k, ordered by inclusion, forms
a dually atomic sublattice Ok of Pk (see [16], p. 80). In 1941 E. L. Post fully
described the lattice O2 ([17]), which is countably infinite and quite exceptional
among the lattices Ok; indeed Ok is of continuum cardinality whenever k ≥ 3
([12]). The study of partial clones on a 2-element set was initiated by Freivald in
1966 who described all 8 maximal elements of P2 and showed that this lattice is
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of continuum cardinality ([4]). The lattices Ok (k ≥ 3) and Pk(k ≥ 2) are quite
unknown, and so a significant effort was concentrated on special parts of them,
mainly the upper and lower parts (for lists of references see [22] for the total case
and [3, 9, 14, 23] for the partial case). A remarkable result in Universal Algebra
is the classification of all maximal elements of Ok due to Ivo G. Rosenberg for
arbitrary k ≥ 3. His result will be discussed and used in part in this paper.

The total component of a partial clone C is the clone C ∩ Op(k). A natural

problem arises here: given a total clone M , describe the set M̃ of all partial clones
whose total component is M . This problem was first considered by Alekseev and
Voronenko in [1], followed by Strauch in [24, 25] for some maximal clones over
{0, 1}. Implicit results in this direction can be found in [8, 10, 19]. The same
problem has been studied in depth in the paper [11] for maximal clones in the
general case. It is well known that the maximal clones on k (k ≥ 3), as classified
by Rosenberg, are grouped into six different families (see Theorem 1 below or,
e.g., [21, 22]). Maximal clones from four of these families are considered in [11]1.

The interval M̃ is completely described if M is a maximal clone determined by
either a central or equivalence relation on k. In both cases the interval M̃ is
finite. Now if the maximal clone M is determined by a bounded order, then a
finite subinterval of M̃ contained in the strong closure of M (see section 2 for the

definition) is described in [11]. We point out here that describing the interval M̃
for a maximal clone M determined by a bounded order may turn out to be a very
difficult task. Finally it is shown in [11] that M̃ is finite if M is a maximal clone
determined by a fixed-point-free permutation consisting of cycles of same length
p, where p is a prime divisor of k. A complete description of M̃ is given for the
two cases p = 2, 3.

In this paper we consider the two families of maximal clones not studied in [11],
namely the families of maximal clones determined by prime affine relations and
by h-universal relations on k. We show that if M is a maximal clone in either
family, then the strong closure of M is contained in uncountably many partial
clones. Thus the interval of partial clones M̃ is of continuum cardinality. We
point out here that our result for the prime affine case generalizes one of the main
results established in [1], namely that if L denotes the maximal clone of all linear

functions on {0, 1}, then the interval of partial clones L̃ is of continuum cardinality
over {0, 1}.

2. Basic definitions and notations

Let k ≥ 2 be an integer and k := {0, 1, . . . , k−1}. For a positive integer n, an n-ary
partial function on k is a map f : dom (f) → k where dom (f) ⊆ kn is called the
domain of f . Let Par(n)(k) denote the set of all n-ary partial functions on k and

let Par(k) :=
⋃
n≥1

Par(n)(k). Moreover set Op(n)(k) := {f ∈ Par(n)(k) | dom (f) =

1The results from [11] are explained also in [15].
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kn} and let Op(k) :=
⋃
n≥1

Op(n)(k), i.e., Op(k) is the set of all total functions on

k. In the sequel we will say “function” for “total function”.

A partial function g ∈ Par(n)(k) is a subfunction of f ∈ Par(n)(k) (in symbols
g ≤ f or g = f |dom (g)) if dom (g) ⊆ dom (f) and g(a) = f(a) for all a ∈ dom (g).

For every positive integer n, and every 1 ≤ i ≤ n, we denote by en
i the n-ary

function i-th projection defined by en
i (x1, . . . , xn) := xi for all (x1, . . . , xn) ∈ kn.

Furthermore let
Jk := {en

i | 1 ≤ i ≤ n < ∞}
be the set of all projections on k.

For n,m ≥ 1, f ∈ Par(n)(k) and g1, . . . , gn ∈ Par(m)(k), the composition of f and
g1, . . . , gn, denoted f [g1, . . . , gn] is the m-ary partial function on k defined by

dom (f [g1, . . . , gn]) :={v∈km | v∈
n⋂

i=1

dom (gi) and (g1(v), . . . , gn(v))∈dom (f)};

and
f [g1, . . . , gn](v) := f(g1(v), . . . , gn(v))

for all v ∈ dom (f [g1, . . . , gn]).

Definitions.

1. A partial clone on k is a composition closed subset of Par(k) containing Jk. A
partial clone contained in Op(k) is called a clone on k.

As mentioned earlier, the set of partial clones on k, ordered by inclusion, form an
algebraic dually atomic lattice Pk in which arbitrary infimum is the set-theoretical
intersection. For F ⊆ Par(k), we denote by 〈F 〉 the partial clone generated by F ,
i.e., 〈F 〉 is the intersection of all partial clones containing the set F .

2. A partial clone C is strong if it contains all subfunctions of its functions.
Furthermore, if C is a clone on k, then we denote by Str(C) the strong closure of
C, i.e.,

Str(C) := {g ∈ Par(k) | g ≤ f for some f ∈ C}.
It is easy to see that for every clone C the strong closure Str(C) of C is a strong
partial clone on k containing C (see e.g., [3, 16, 18, 19]).

3. We introduce the concept of partial polymorphisms of a relation. We use the
same notation as in [10]. Let h ≥ 1 and % be an h-ary relation on k, (i.e., % ⊆ kh),
and let f be an n-ary partial function on k. Denote by M(%, dom(f)) (% 6= ∅)
the set of all h × n matrices M whose columns M∗j ∈ %, for j = 1, . . . , n and
whose rows Mi∗ ∈ dom (f) for i = 1, . . . , h. We say that f preserves % if for
every M ∈ M(%, dom(f)), the h-tuple f(M) := (f(M1∗), . . . , f(Mh∗)) ∈ %. Set
pPol % := {f ∈ Par(k) | f preserves %} and Pol % = pPol % ∩ Op(k) (i.e., Pol % is
the set of all (total) functions that preserve the relation %). It is well-known that
for every relation %, Pol % is a clone (see e.g. [16]), while pPol % is a strong partial
clone called the (partial) clone determined by % (see e.g. [18, 19, 14, 3]), (by the
results of [18] and [19]), we know even more: a partial clone is strong if and only
if it is of the form pPol Q for some set Q of finitary relations).
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Notice that partial clones determined by relations are defined in a different
but equivalent way in [11].

4. The partial clones on k, ordered by inclusion, form an algebraic lattice ([19])
in which every meet is the set-theoretical intersection. A partial clone C covers
a partial clone D if D ⊂ C and the strict inclusions D ⊂ C ′ ⊂ C hold for no
partial clone C ′ on k. Notice that this holds if and only if 〈D∪{g}〉 = C for each
g ∈ C \D. Furthermore a partial clone (a clone) M is a maximal partial clone (a
maximal clone) if M is covered by Par(k) (is covered by Op(k)).

The main goal of this paper is to study families of partial clones containing some
maximal clones on k. We introduce some family of relations on k for the purpose
recalling the Rosenberg classification of all maximal clones over k. For 1 ≤ h ≤ k
set

ιhk := {(a1, . . . , ah) ∈ kh | ai = aj for some 1 ≤ i < j ≤ n}.

Let h ≥ 1, % be an h-ary relation on k and denote by Sh the set of all permutations
on {1, . . . , h}. For π ∈ Sh set

%(π) := {(xπ(1), . . . , xπ(h)) | (x1, . . . , xh) ∈ %}.

The h-ary relation % is said to be

1) totally symmetric (in case h = 2 symmetric) if ρ(π) = ρ for every π ∈ Sh,

2) totally reflexive (in case h = 2 reflexive) if ιhk ⊆ %,

3) prime affine if h = 4, k = pm where p is a prime number, m ≥ 1, p :=
{0, . . . , p − 1} and we can define an elementary Abelian p-group < k, + >
on k so that

ρ := {(a, b, c, d) ∈ k4 | a + b = c + d}.
4) central, if % 6= kh, % is totally symmetric, totally reflexive and {c}×kh−1 ⊆ %

for some c ∈ k. Notice that for h = 1 each ∅ 6= % ⊂ k is central and for
h ≥ 2 such c is called a central element of %,

5) elementary, if k = hm, h ≥ 3, m ≥ 1 and

(a1, a2, . . . , ah) ∈ ρ ⇐⇒ (∀i ∈ {0, . . . ,m− 1} (a
[i]
1 , a

[i]
2 , . . . , a

[i]
h ) ∈ ιhh),

where a[i] (a ∈ {0, 1, . . . , hm−1}) denotes the i-th digit in the h-adic expan-
sion

a = a[m−1] · hm−1 + a[m−2] · hm−2 + · · ·+ a[1] · h + a[0],

6) a homomorphic inverse image of an h-ary relation %′ on k′, if there exists a
surjective mapping q : k −→ k′ with

(a1, . . . , ah) ∈ % ⇐⇒ (q(a1), . . . , q(ah)) ∈ %′

for all a1, . . . , ah ∈ k,

7) h-universal, if % is a homomorphic inverse image of an h-ary elementary
relation.
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Denote by

Ck the set of all central relations on k;

Ch
k the set of all h-ary central relations on k;

Uk the set of all non-trivial equivalence relations on k;

Pk,p the set of all fixed point-free permutations on k consisting of cycles of
the same prime length p ;

Sk,p := {s0 | s ∈ Pk,p}, where s0 := {(x, s(x)) | x ∈ k} is the graph of s;

Sk :=
⋃
{Sk,p | p is a prime divisor of k};

Mk the set of all order relations on k with a least and a greatest element;

M?
k the set of all lattice orders on k;

Lk the set of all prime affine relations on k;

Bk the set of all h-universal relations, 3 ≤ h ≤ k − 1.

The Rosenberg classification of all maximal clones on k is based on the above
relations. We have:

Theorem 1. ([21]) Let k ≥ 2. Every proper clone on k is contained in a maximal
one. Moreover a clone M is a maximal clone over k if and only if M = Pol ρ for
some relation ρ ∈ Ck ∪Mk ∪ Sk ∪ Uk ∪ Lk ∪ Bk.

We say that a partial clone C over k is of type X ∈ {C,M,S,U ,L,B} if C ∩
Op(k) = Pol % for some % ∈ Xk. As mentioned earlier, the two authors together
with I. G. Rosenberg studied partial clones of type C,M,S,U in [11] and the
present paper is devoted to the study of partial clones of type B,L . Our goal is
to show the following:

Theorem 2. Let k ≥ 3 and M be a maximal clone determined by either an h-
universal or prime affine relation or on k. Then the set of partial clones containing
M has the cardinality of continuum on k.

It is shown in [9] that every maximal clone is contained in exactly one maximal
partial clone over k. Moreover maximal partial clones containing maximal clones
are all described in [9]. In particular it is shown that:

Proposition 3. ([9]) Let k ≥ 2. Every maximal clone is contained in exactly one
maximal partial clone over k. Let M = Pol ρ be a maximal clone over k, then

(i) if ρ is an h-universal relation, then pPol ρ is the unique maximal partial
clone over k that contains M .

(ii) if ρ is prime affine then k = pm where p is prime, m ≥ 1 and

ρ = {(a, b, c, d) ∈ (pm)4 | a + b = c + d}.

Let λp be the p-ary relation on pm defined by

λp := {(a, a + b, a + 2 · b, . . . , a + (p− 1) · b) | a, b ∈ pm},

where + and · are the operations of the vector space pm on the field p. Then
pPol λp is the maximal partial clone on k that properly contains the partial clone
pPol % (and consequently contains the maximal clone Pol %). �
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3. Intervals of partial clones of type B

Let h ≥ 3, m ≥ 1 and k be such that 3 ≤ hm ≤ k. Let m := {0, . . . ,m− 1} and
hm := {0, 1, . . . , hm − 1}. In the sequel ζm denotes an h-ary elementary relation
on hm, i.e.,

(a0, a1, . . . , ah−1) ∈ ζm ⇐⇒ ∀i ∈ m : (a
[i]
0 , a

[i]
1 , . . . , a

[i]
h−1) ∈ ιhh

for all a0, . . . , ah−1 ∈ hm.

Furthermore let ρ ∈ Bk be an h-ary universal relation that is a homomorphic
inverse image of ζm, i.e., there is a surjective mapping q : k −→ hm with

(a1, . . . , ah) ∈ % ⇐⇒ (q(a1), . . . , q(ah)) ∈ ζm

for all a1, . . . , ah ∈ k.

We need the following characterization of functions preserving ζm and ρ given by
the second author in [13] (see also [15], Theorem 5.2.6.1).

Lemma 4. 1) Let f ∈ Op(n)(hm) and f0, . . . , fm−1 be the n-ary functions in
Op(hm) defined by

fi(x1, . . . , xn) := (f(x1, . . . , xn))[i]

for all i = 0, 1, . . . ,m− 1, i.e.,

f(x1, . . . , xn) =
m−1∑
i=0

fi(x1, . . . , xn) · hi

holds for all x1, . . . , xn ∈ hm. Then

f ∈ Pol ζm ⇐⇒ ∀i∈{0, 1, . . . ,m− 1} :

either |im(fi)| ≤ h− 1
or there are j∈{1, . . . , n}, v∈m, a permutation s on h
such that fi(x1, . . . , xn) = s((xj)

[v]).

2) Let f ∈ Op(n)(k) and f0, . . . , fm−1 be the n-ary functions in Op(k) defined
by

fi(x1, . . . , xn) := (q(f(x1, . . . , xn)))[i]

for all i = 0, 1, . . . ,m− 1. Then

f ∈ Pol ρ ⇐⇒ ∀i∈{0, 1, . . . ,m− 1} : (1)

either |im(fi)| ≤ h− 1

or there are j∈{1, . . . , n}, v∈m, a permutation s on h

such that fi(x1, . . . , xn)=s((q(xj))
[v]) �



L. Haddad, D. Lau: Uncountable Families of Partial Clones . . . 263

We illustrate this with the following

Examples. Let h = 3, m = 2, k = 11, q : 11 −→ 9 be defined by q(x) :=
x + 1 (mod 9) for x ∈ 9, q(9) = 4 and q(10) = 1. Furthermore let the two
permutations s1 and s2 be defined by

x s1(x) s2(x)

0 1 2

1 0 0

2 2 1

For x = x[1] · 3 + x[0] ∈ 9, let g(x) := s1(x
[0]) and g′(x) := s2(x

[1]), i.e.,

x x[1] x[0] g(x) g′(x)

0 0 0 1 2

1 0 1 0 2

2 0 2 2 2

3 1 0 1 0

4 1 1 0 0

5 1 2 2 0

6 2 0 1 1

7 2 1 0 1

8 2 2 2 1

Then the ternary functions f, h ∈ Op(9) defined by

f(x1, x2, x3) := g(x1) · 3 + g′(x3)

(here f0(x1, x2, x3) = g′(x3) = s2(x
[1]
3 ) and f1(x1, x2, x3) = g(x1) = s1(x

[0]
1 )) and

h(x1, x2, x3) := g(x2) · 3 + f ′(x1, x2, x3),

where im(f ′) ⊂ {0, 1, 2} and |im(f)| ≤ 2, both belong to Pol ζ2.

The following is an example of a unary function f ∈ Op(11) (see last column
below) that preserves the relation ρ :
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x q(x) (q(x))[1] (q(x))[0] s1((q(x))[1]) r(x) q(f(x)) f(x)

0 1 0 1 1 1 4 3

1 2 0 2 1 1 4 9

2 3 1 0 0 1 1 10

3 4 1 1 0 1 1 0

4 5 1 2 0 0 0 8

5 6 2 0 2 0 6 5

6 7 2 1 2 0 6 5

7 8 2 2 2 1 7 6

8 0 0 0 1 1 4 3

9 4 1 1 0 1 1 0

10 1 0 1 1 1 4 9

since
q(f(x)) = s1((q(x))[1]) · 3 + r(x).

Now let ζm, ρ and q be as discussed in the beginning of this section. As the
mapping q : k → hm is surjective and m ≥ 1, we have |im(q)| ≥ h and so there
are i0, . . . , ih−1 ∈ k such that {q(i0), . . . , q(ih−1)} = h. For notational ease we
may assume that

∀i ∈ {0, 1, . . . , h− 1} : q(i) = i, (2)

and as (0, 1, . . . , h− 1) 6∈ ζm we have (0, 1, . . . , h− 1) 6∈ ρ. For n ≥ 2 set

ι2n+h := {(a1, . . . , a2n+h) ∈ h2n+h | |{a1, . . . , a2n+h}| ≤ h− 1},

χ2n+h := {(a1, . . . , a2n+h) ∈ h2n+h | |{a1, . . . , a2n+h}| = h with

1) h− 2 symbols occurring each once and

2) one symbol occurring twice and

3) one symbol occurring 2n times in a1, . . . , a2n+h }

and
σ2n+h := ι2n+h ∪ χ2n+h.

The relations σ2n+h have been defined in Theorem 11 of [10], and were combined
with an infinite family of partial functions to exhibit a family of partial clones of
continuum cardinality. We will use some of the results related to these relations
and established in [10] later on in Lemma 8.

Now using the mapping q and the relations σ2n+h we define the family of relations
σ?

2n+h as follows :

(a1, . . . , ah) ∈ σ?
2n+h :⇐⇒ ∀i ∈ {0, 1, . . . ,m− 1} :

((q(a1))
[i], (q(a2))

[i], . . . , (q(ah))
[i]) ∈ σ2n+h.

The relations σ?
2n+h and σ2n+h are closely related. First we show that they have

same restrictions on the set h:
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Lemma 5.
σ?

2n+h ∩ h2n+h = σ2n+h ∩ h2n+h. (3)

Proof. Obviously, by (2), we have

(a1, . . . , a2n+h) ∈ σ?
2n+h ∩ h2n+h =⇒

( (a
[0]
1 , . . . ., a

[0]
2n+h) = (a1, . . . , a2n+h) ∈ σ2n+h ) ∧

(∀i ∈ {1, 2, . . . ,m− 1} : a
[i]
1 = · · · = a

[i]
2n+h = 0).

On the other hand, if (a1, . . . , a2n+h) ∈ σ2n+h ∩ h2n+h, then (a
[i]
1 , . . . ., a

[i]
2n+h) ∈

σ2n+h for all i ∈ m and, by the definition of σ?
2n+h, (a1, . . . , a2n+h) ∈ σ?

2n+h∩h2n+h

holds. �

Our next result shows that pPol σ?
2n+h is a partial clone of type B for all h ≥ 3

and all n ≥ 2.

Lemma 6. Let n ≥ 2. Then Pol ρ ⊆ pPol σ?
2n+h ⊆ pPol ρ.

Proof. First we show that Pol ρ ⊆ pPol σ?
2n+h. Let f ∈ Pol ρ be n-ary and as in

Lemma 4 let f0, . . . , fm−1 be the n-ary functions defined by
fi(x1, . . . , xn) := (q(f(x1, . . . , xn)))[i]

for all i = 0, 1, . . . ,m− 1. Thus

q(f(x1, . . . , xn)) =
m−1∑
i=0

fi(x1, . . . , xn) · hi

for all (x1, . . . , xn) ∈ kn. As f ∈ Pol ρ, the functions f0, . . . , fm−1 satisfy (4)
(Lemma 4). We show that f ∈ Pol σ?

2n+h. Let (rt,i) be a (2n+h)×n matrix with
all columns (r1i, r2i, . . . , r2n+h,i) ∈ σ?

2n+h, i = 1, . . . , n. We show that
(f(r11, r12, . . . , r1n), . . . , f(r2n+h,1, r2n+h,2, . . . , r2n+h,n)) ∈ σ?

2n+h

and this holds if and only if
(q(f(r11, r12, . . . , r1n))[i], . . . , q(f(r2n+h,1, r2n+h,2, . . . , r2n+h,n))[i]) ∈ σ2n+h

for all i = 0, 1, . . . ,m− 1. But

(q(f(r11, r12, . . . , r1n))[i], . . . , q(f(r2n+h,1, r2n+h,2, . . . , r2n+h,n))[i])

= (fi(r11, . . . , r1n), . . . , fi(r2n+h,1, . . . , r2n+h,n))

∈

{
ι2n+h if |im(fi)| ≤ h− 1,

σ2n+h if fi(x1, . . . , xn) = s((q(xj))
[v]),

for all i = 0, 1, . . . ,m− 1. Thus f preserves the relation σ?
2n+h.

We use Proposition 3 to prove that pPol σ?
2n+h ⊆ pPol ρ. Since the lattice Pk

is dually atomic, each of the partial clones pPol σ?
2n+h is contained in at least

one maximal partial clone. Now by Proposition 3 the maximal clone Pol % is
contained in a unique maximal partial clone over k, namely pPol ρ. If the inclu-
sion pPol σ?

2n+h ⊆ pPol ρ does not hold for some n ≥ 2 and some h ≥ 3, then
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pPol σ?
2n+h would be contained in a maximal partial clone distinct from pPol %,

and so Pol ρ would be contained in two distinct maximal partial clones, contra-
dicting Proposition 3. �

We need an infinite family of partial functions ϕ2n+h defined in [10]. Let

v0 = (x0, x1, . . . , x2n+h−1)
:= (0, 1, 2, . . . , h− 3, h− 2, h− 2, h− 1, h− 1, . . . , h− 1︸ ︷︷ ︸

2n times

)

and, for j = 0, . . . , 2n + h− 1, let

vj := (xj, x1+j (mod 2n+h), x2+j (mod 2n+h), . . . , x2n+h−1+j (mod 2n+h)).

For n ≥ 2 let ϕ2n+h be the (2n + h)-ary function defined by

dom (ϕ2n+h) := {v0, v1, . . . , v2n+h−1}
and

ϕ2n+h(x1, . . . , x2n+h) :=


h− 1 if (x1, . . . , x2n+h) = vh−1,

x1 if (x1, . . . , x2n+h)
∈ {v1, . . . , vh−2, vh, . . . , v2n+h−1}.

Lemma 7. Let n, m ≥ 2. Then
ϕ2n+h ∈ pPol σ?

2m+h ⇐⇒ ϕ2n+h ∈ pPol σ2m+h.

Proof. This follows from (3) and

∀(r11, . . . , r2m+h,1), . . . , (r1,2n+h, . . . , r2m+h,2n+h) ∈ (σ?
2m+h ∪ σ2m+h)\h2m+h :

{(r11, . . . , r1,2n+h), . . . , (r2m+h,1, . . . , r2m+h,2n+h)} 6⊆ dom (ϕ2n+h). �

The following result comes from the proof of Theorem 11 in [10]:

Lemma 8. Let n, m ≥ 2. Then

ϕ2m+h ∈ pPol σ2n+h ⇐⇒ n 6= m. �

We combine Lemmas 7, 8 to obtain

Lemma 9. Let n, m ≥ 2. Then

ϕ2m+h ∈ pPol σ?
2n+h ⇐⇒ n 6= m. �

Let P(N≥2) be the power set of N≥2 := {2, 3, . . .}. From Lemma 9, the correspon-
dence

χ : P(N≥2) −→ [Str (Pol ρ), pPol ρ]

defined by

χ(X) :=
⋂

n∈N≥2\X

pPol σ?
2n+h

(X ∈ P(N≥2)) is a one-to-one mapping. We have shown

Theorem 10. Let k ≥ 3 and ρ ∈ Bk. Then the interval of partial clones
[Str(Pol ρ), pPol ρ] is of continuum cardinality on k. �
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4. Intervals of partial clones of type L

In this section we consider a maximal clone L = Pol % where ρ ∈ Lk is a prime
affine relation on k. Thus k = p` for some ` ≥ 1, p is a prime number and
% = {(x, y, z, t) ∈ k4 | x + y = z + t}, where 〈k, +〉 is an elementary Abelian
p-group. Choose the notation so that 〈k, +〉 = 〈p`,⊕〉 = 〈p, +〉 × . . .× 〈p, +〉︸ ︷︷ ︸

`

where 〈p, +〉 is the cyclic group mod p on p := {0, . . . , p − 1}. We will use the
description given in [21] of the maximal clone L (see also [9]). Let p`×` be the set
of all square matrices of size ` with entries from p.

Proposition 11. [21] Let k = p`, ρ ∈ Lk and L = Pol ρ be as defined above.
Then

L =
⋃
n≥1

{f ∈ Op(n)(p`) | ∃ a ∈ p`, ∃ A1, . . . , An ∈ p`×` such that

∀ x1, . . . , xn ∈ p` ( f(x1, . . . , xn) = a⊕
n∑

i=1

xi ⊗ Ai )},

where ⊕ and ⊗ are the usual matrix operations over the finite field (p; +, ·). �

In the sequel we write E for p`.

Remark. The binary sum of the elementary Abelian p-group E is denoted by
⊕. For every a ∈ E denote by ca ∈ Op(1)(E) the unary constant function defined
by ca(x) := a for all x ∈ E. Moreover for every square matrix A ∈ p`×` let
⊗A ∈ Op(1)(E) denote the unary function defined by ⊗A(x) := x ⊗ A for all
x ∈ E. Put

L′ := {⊕} ∪ {ca | a ∈ E} ∪ {⊗A | A ∈ p`×`},

then using Proposition 11 one can easily verify that L′ is a generating set for the
maximal clone L, i.e., L = 〈L′〉. This fact will be used in the proof of Lemma
12. We will also use the Definability Lemma shown in [18] and used in [5, 7, 10].
It gives necessary and sufficient conditions under which pPol λ1 is contained in
pPol λ2 for two relations λ1 and λ2.

We need to introduce some notations that will be used later on. For x :=
(x1, . . . , x`) ∈ E and y ∈ E, let 	x := (p − x1 (mod p), . . . , p − x` (mod p))
and x	 y := x⊕ (	y). Furthermore let −1 := p− 1, and

0 := (0, 0, . . . , 0), 1 := (1, 1, . . . , 1), −1 := (−1,−1, . . . ,−1) ∈ E.
If M is a nonempty set, then by M r×s we denote the set of all r× s matrices with
entries from M .

If a := (a1, a2, . . . , a`) ∈ E, then we denote by a[i] the i-th coordinate of a, i.e.,
a[i] := ai for all i ∈ {1, . . . , `}. For r ≥ 2p let

λr := {(x1, x2, . . . , xr) ∈ Er | x1 ⊕ x2 ⊕ . . .⊕ xr = 0}.
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For x := (x1, . . . , xn) ∈ En where xi := (xi1, . . . , xi`) ∈ E, for all 1 ≤ i ≤ n, let

x̂ := (x11, . . . , x1`, x21, . . . , x2`, . . . , xn1, . . . , xn`) ∈ pn`.

For 1 ≤ s ≤ n let

Tn;s := {(x1, . . . , xn) ∈ En | ̂(x1, . . . , xn) ∈ {0, 1}n` and
n∑

i=1

∑̀
j=1

xij ≤ s `},

thus (x1, . . . , xn) ∈ Tn;s iff ̂(x1, . . . , xn) ∈ {0, 1}n` and the number of 1’s in
̂(x1, . . . , xn) is at most s`.

For 2p ≤ r and 1 ≤ s ≤ pr − 1 let τr,s ∈ Par(E) denote the partial function with
the arity

n(r, s) := (pr − 1)s + 1

and defined by
dom (τr,s) := Tn(r,s);s ∪ {(−1, . . . ,−1)}

and

τr,s(x) :=

{
0 for x ∈ Tn(r,s);s,

1 for x1 = · · · = xn(r,s) = −1.

Lemma 12. Let 2p ≤ r and 1 ≤ s ≤ p r − 1. Then
(a) τr,s ∈ pPol λpr,

(b) τr,s 6∈ pPol λp(r+1),

(c) pPol λp(r+1) ⊂ pPol λpr,

(d) Str (L) ⊆ pPol λpr,

(e) Op(E) ∩ pPol λpr = L.

Proof. To simplify the notation we write n instead of n(r, s) (i.e., n = (p · r− 1) ·
s + 1), τ for τr,s, λ for λpr and m for p · r.
(a) We proceed by contradiction. Assume that τ 6∈ pPol λ. Then there is a matrix
A := (aij) ∈ Em×n such that

∀i ∈ {1, 2, . . . ,m} : ri := (ai1, ai2, . . . , ain) ∈ dom (τ), (4)

∀j ∈ {1, 2, . . . , n} : (a1j, a2j, . . . , amj) ∈ λ, (5)

and
(τ(r1), τ(r2), . . . , τ(rm)) ∈ Em \ λ. (6)

Clearly there is a row in A of the form (−1,−1, . . . .,−1) since otherwise ri ∈
Tn(r,s);s for all i = 1, . . . ,m and thus (τ(r1), τ(r2), . . . , τ(rm)) = (0, . . . ,0) ∈ λ.
W.l.o.g. we can assume that

r1 = · · · . = rt = (−1,−1, . . . ,−1) (7)
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and
{r̂t+1, . . . , r̂m} ⊆ {0, 1}n`. (8)

By (6) and (7) we have t 6= 0 (mod p).
Then by (5) and (7)

∀j ∈ {1, . . . , n} ∀q ∈ {1, . . . , `} :
m∑

i=t+1

aij[q] ≥ 1,

i.e.,
n∑

j=1

l∑
q=1

m∑
i=t+1

aij[q] ≥ n` = ((pr − 1)s + 1)`. (9)

Furthermore, it follows from (4) and (8)

∀i ∈ {t + 1, . . . ,m} :
n∑

j=1

∑̀
q=1

aij[q] ≤ s`,

thus
m∑

i=t+1

n∑
j=1

∑̀
q=1

aij[q] ≤ (m− t)sl ≤ (pr − 1)s`,

contradicting (9) and thus proving (a).

(b) Consider the matrix with p(r+1) rows b1, . . . , bp(r+1) and (pr−1)s+1 columns

B =



1 1 . . . 1︸ ︷︷ ︸
s

0 0 . . . 0 . . . . . . 0 0 . . . 0 0

0 0 . . . 0 1 1 . . . 1︸ ︷︷ ︸
s

. . . . . . 0 0 . . . 0 0

...
...

0 0 . . . 0 0 0 . . . 0 . . . . . . 1 1 . . . 1︸ ︷︷ ︸
s

0

0 0 . . . 0 0 0 . . . 0 . . . . . . 0 0 . . . 0 1
0 0 . . . 0 0 0 . . . 0 . . . . . . 0 0 . . . 0 0
...

...
0 0 . . . 0 0 0 . . . 0 . . . . . . 0 0 . . . 0 0

−1 . . . −1 . . . . . . . . . −1 . . .−1 −1


Clearly all columns of B belong to λp(r+1). However

(τ(b1), . . . , τ(bp(r+1))) = (0,0, . . . ,0,1) ∈ Ep(r+1) \ λp(r+1),
completing the proof of (b).

(c) Since

λpr = {(x1, . . . , xpr) ∈ Epr | (x1, x2, . . . , xpr, xpr, xpr, . . . , xpr︸ ︷︷ ︸
p

) ∈ λp(r+1)}

we have, by the general theory (see e.g., the Definability Lemma in [18]) that
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pPol λp(r+1) ⊆ pPol λpr.
As τr,s ∈ pPol λpr \ pPol λp(r+1), (c) follows.

(d) As mentioned earlier L =< L′ >, where L′ := {⊕}∪ {ca | a ∈ E}∪ {⊗A | A ∈
p`×`}.
It is easy to see that all functions in L′ preserve the relation λm, i.e, L′ ⊆ pPol λm.
Thus L ⊆ pPol λm and as pPol λm is a strong partial clone, Str (L) ⊆ pPol λm,
proving (d).

(e) From (d) we have L ⊆ Op(E)∩ pPol λpr ⊂ Op(E). Now (e) follows from the
maximality of the clone L. �

We need the concept of affine spaces for the next result. For n ≥ 1 let ({0, 1}n; +, ·)
be the n-dimensional vector space over the field ({0, 1}; +, ·) (with the two usual
binary operations mod 2). A subset T ⊆ {0, 1}n is an affine space of the dimension
t (in symbols t := dim T ), if

T = b + U (mod 2) := {b + u | u ∈ U}

where b ∈ {0, 1}n and U is a subspace of {0, 1}n of dimension t. The next three
results will be used in the proof of Lemma 16. They are essentially useful for the
case where |E| is a power of 2. For 1 ≤ s ≤ n let Rn,s be the set of all 0-1 n-vectors
containing at most s 1’s, that is Rn,s := {(a1, . . . , an) ∈ {0, 1}n |

∑n
i=1 ai ≤ s}.

We have:

Lemma 13. Let 1 ≤ s ≤ n and let A ⊆ {0, 1}n be an affine space. Then
(a) A ⊆ Rn;s =⇒ dim A ≤ s;

(b) A ⊆ {0, 1}n \Rn;s =⇒ dim A ≤ n− s− 1.

Proof. The statement in (a) is shown by V. B. Alekseev and L. L. Voronenko in
[1].

(b) Let A ⊆ {0, 1}n \Rn;s. Then A′ := (1, 1, . . . , 1) + A (mod 2) is an affine space
of same dimension as A and since vectors in A have at least s + 1 entries equal
1 and since 1 + 1 = 0, vectors in A′ have at most n − s − 1 entries equal 1, i.e.,
A′ ⊆ Tn;n−s−1. Thus by (a) dim A = dim A′ ≤ n− s− 1. �

From Lemma 12 we have that τr,s ∈ pPol λpr and Str (L) ⊆ pPol λpr. We now
show that if |E| is a power of 2 then there are subfunctions of τr,s that belong to
Str (L).

Lemma 14. Let p = 2, E = {0, 1}`, r ≥ 2, n := (2r−1)s+1 and A ⊆ dom (τr,s)

be such that Â := {x̂ | x ∈ A} ⊆ {0, 1}n` is an affine space. Then τr,s|A ∈ Str (L).

Proof. If |A| = 1 or A ⊆ Tn;s then by definition τr,s|A is a constant function and so

it belongs to Str (L). Assume that |A| ≥ 2 and A 6⊆ Tn;s, thus a := (1,1, . . . ,1) ∈
A (notice that as p = 2 we have here −1 = 1). First we deal with the case
|A| = 2. Let A = {a, b} with b := (b1, . . . , bn) ∈ ({0, 1}`)n \ {a}. As b 6= a there is
an 1 ≤ i ≤ n with bi 6= 1; say b1 6= 1. Then there is a matrix D ∈ {0, 1}`×` with
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b1 ⊗D = 0 (mod 2) and 1 ⊗D = 1 (mod 2), i.e., τr,s|A(b1, . . . , bn) = b1 ⊗D and

τr,s|A(1,1, . . . ,1) = 1⊗D. Thus τr,s|A ∈ Str (L(1)) follows from Proposition 11.

Next we show that |A| ≥ 3 is impossible. Indeed if |A| ≥ 3, then there are

two vectors b, c ∈ A ∩ Tn,s with b 6= c. Therefore b̂ ⊕ ĉ ∈ T̂n;2s \ {(0, 0, . . . , 0︸ ︷︷ ︸
n`

)}

and â ⊕ b̂ ⊕ ĉ ∈ T̂n;n−1 \ T̂n;n−2s. Furthermore, since Â is an affine space, we

have d̂ := (d1, . . . , dn) := â ⊕ b̂ ⊕ ĉ ∈ Â and satisfies d̂ 6∈ T̂n;n−2s. Since n − 2s =

(2r−3)s+1 ≥ s+1, we obtain
n∑

i=1

∑̀
j=1

dij ≥ (s+1)`, contradicting d ∈ A∩Tn,s. �

Put
s1 := 1,

sj := (p · j − 1) · sj−1 + 1 for j ≥ 2,

αj := τj+1,sj
for j ≥ 2,

i.e., the function αj has the arity N := n(j + 1, sj) = (p · (j + 1)− 1) · sj + 1 and

x1 · · · xi := (xi1, . . . , xi`) · · · xN αj(x1, . . . , xN)
0 · · · 0 · · · 0 0
a1 · · · ai := (ai1, . . . , ai`) · · · aN 0

ai ∈ {0, 1}`∑N
i=1

∑`
t=1 ait ≤ sj · `

−1 · · · −1 · · · −1 −1
otherwise not defined

We remark that αj was already in [1] defined for p = 2 and ` = 1.

Lemma 15. Let p ≥ 3, i < j, n := (p(j +1)− 1)sj +1, m := (p(i+1)− 1)si +1,
b ∈ pm` and let A ∈ pn`×m` be a matrix which is not the zero matrix. Furthermore
for (γ, q) ∈ {(n, j), (m, i)} let

Dγ,q := {(−1,−1, . . . ,−1︸ ︷︷ ︸
γ`

)} ∪ {(x1, . . . , xγ`) ∈ {0, 1}γ` |
γ`∑

t=1

xt ≤ sq`}.

Then
∃ x ∈ Dn,j : b + x · A (mod p) 6∈ Dm,i.

Proof. In the proof below + and · denote the addition and multiplication modulo
p.

Let A := (auv). For 1 ≤ u ≤ n` and 1 ≤ v ≤ m` let

ru := (au1, au2, . . . , au,m`) and cv := (a1v, a2v, . . . , an`,v)

be the u-th row and v-th column of A respectively. Furthermore for t ≥ 2 let

(a)t := (a, a, . . . , a︸ ︷︷ ︸
t

)
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where a ∈ E, and for 1 ≤ u < v ≤ t let

et;u := (0, 0, . . . , 0︸ ︷︷ ︸
u−1

, 1, 0, 0, . . . , 0︸ ︷︷ ︸
t−u

) and et;u,v := (0, 0, . . . , 0︸ ︷︷ ︸
u−1

, 1, 0, 0, . . . , 0︸ ︷︷ ︸
v−u−1

, 1, 0, 0, . . . , 0︸ ︷︷ ︸
t−v

)

and finally let et;v,u := et;u,v. Thus et;u,v is the t-vector consisting of 1’s at the u
and v positions and 0’s elsewhere. We proceed by contradiction. Assume that

∀ x ∈ Dn,j : b + x · A ∈ Dm,i. (10)

As (0)n` ∈ Dn,j we have b ∈ Dm,i and so one of the following three cases occurs:
(1) b is a zero vector, (2) b is a nonzero 0-1 vector or (3) all entries of b are −1.

Case 1: b = (0)m`.
Since en`;t ∈ Dn,j and en`;t · A = rt, we deduce from (10)

∀ t ∈ {1, 2, . . . , n`} : rt ∈ Dm,i, (11)

and so one of the following 2 cases is possible:

Case 1.1: ∃ q ∈ {1, 2, . . . , n`} : rq = (−1)m`.
If rt = (0)m` for all t ∈ {1, 2, . . . , n`}\{q} then (−1)n` · A = (1)m` 6∈ Dm,i. On
the other hand if there is a t ∈ {1, 2, . . . , n} \ {q} with rt ∈ Dm,i \ {(0)m`}, then
en`;q,t · A 6∈ Dm,i.

Since the Case 1.1 leads to a contradiction we have:

Case 1.2: ∀ q ∈ {1, 2, . . . , n`} : rq ∈ {0, 1}m` \ {(−1)m`}. We distinguish three
subcases here:

Case 1.2.1: ∃ t ∈ {1, 2, . . . ,m`} ∃ u 6= v ∈ {1, 2, . . . , n`} : aut = avt = 1. Thus
the t-th column of A has the form (. . . , cu−1,t, 1, cu+1,t, . . . , cu−1,t, 1, cu+1,t, . . .) and
so

en`;u,v · A = ru + rv = (. . . , au,t−1 + av,t−1, 2, au,t+1 + av,t+1, . . .).

Now if p ≥ 5 then 2 6= −1 (mod p) and thus en`;u,v · A 6∈ Dm,i. On the other
hand if p = 3, then en`;u,v · A belongs to Dm,i only if ru = rv = (1)m`, but then
ru 6∈ Dm,i, contradicting (11).

Case 1.2.2: Every column in A contains exactly one nonzero entry equal to 1,
i.e., {c1, c2, . . . , cm`} ⊆ {em`;1, em`;2, . . . , em`;m`}. Since sj = (p(j + 1)− 1)sj−1 + 1
(notice that the addition and multiplication are over the integers here), and since
i < j we have:

sj ≥ (p(i + 1)− 1) · si + 1 = m.

Therefore there is an x ∈ Dn,j with x · A = (1)m` 6∈ Dm,i, a contradiction.

Case 1.2.3: A has a zero column and every column in A has at most one nonzero
entry equal to 1. Then (−1)n` ·A 6∈ Dm,i. This contradiction completes the proof
for the Case 1.

Case 2: b 6= (0)m` is a 0-1 vector. Then w.l.o.g we may assume that all 1’s in b
are consecutive and occur to the left of the 0’s, i.e., b = (1, 1, . . . , 1︸ ︷︷ ︸

t

, 0, . . . , 0) and

as b ∈ Dm,i we have 1 ≤ t ≤ si`.
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Since en`;q ∈ Dn,j and en`;q · A = rq we have by (10) that ∀q ∈ {1, 2, . . . , n`}:

either rq = (−2,−2, . . . ,−2︸ ︷︷ ︸
t

,−1,−1, . . . ,−1︸ ︷︷ ︸
m`−t

)

or (aq1, . . . , aqt) ∈ {0,−1}t and (aq,t+1, . . . , aq,m`) ∈ {0, 1}m`−t and
the number of 0’s in (aq1, . . . , aqt) plus the number of 1’s in
(aq,t+1, . . . , aq,m`) is less or equal to si`.

(12)

Then we have four possible cases :

Case 2.1: ∃q ∈ {1, . . . , n`} ∀u ∈ {1, . . . , n`} \ {q} : ru = (0)m`.
If A has a zero column, then, since A is not the zero matrix, it is easy to check
that b + x · A 6∈ Dm,i for certain x ∈ Dm,j. Consequently, we can assume that A
does not have any zero column.

First we show that
m`− t > si`. (13)

Indeed
m`− t ≥ `(m− si) = `((p(i + 1)− 1)si + 1− si)

= `((p(i + 1)− 2)si + 1)
≥ `((3× 2− 2)si + 1)
> `si.

Combining this with the fact that A has no zero columns we obtain

rq = (−2,−2, . . . ,−2︸ ︷︷ ︸
t

,−1,−1, . . . ,−1︸ ︷︷ ︸
m`−t

).

But this is a contradiction with (10), since

b + (−1)n` · A = (1, 1, . . . , 1︸ ︷︷ ︸
t

, 0, 0, . . . , 0︸ ︷︷ ︸
m`−t

) + (2, 2, . . . , 2︸ ︷︷ ︸
t

, 1, 1, . . . , 1︸ ︷︷ ︸
m`−t

)

= (3, 3, . . . , 3︸ ︷︷ ︸
t

, 1, 1, . . . , 1︸ ︷︷ ︸
m`−t>si`

)

6∈ Dm,i.

Case 2.2: ∃u 6= v ∈ {1, 2, . . . , n`}: ru = rv = (−2,−2, . . . ,−2︸ ︷︷ ︸
t

,−1,−1, . . . ,−1︸ ︷︷ ︸
m`−t

).

Here
b + en`;u,v · A = (−3,−3, . . . ,−3︸ ︷︷ ︸

t

,−2,−2, . . . ,−2︸ ︷︷ ︸
m`−t>si`

) 6∈ Dm,i

a contradiction.

Case 2.3: ∃u 6= v ∈ {1, 2, . . . , n`} ∃w ∈ {1, . . . , t} : auw = avw = −1.

By (12) and (13) we have
(au,t+1, . . . , au,m`) 6= (1)m`−t 6= (av,t+1, . . . , av,m`).

Therefore

b + en`;u,v · A = (1, 1, . . . , 1︸ ︷︷ ︸
t

, 0, 0, . . . , 0︸ ︷︷ ︸
m`−t

) + ( . . .︸︷︷︸
w−1

,−2, . . .︸︷︷︸
t−w

, . . .︸︷︷︸
6=(2,...,2)

) =

( . . .︸︷︷︸
w−1

,−1, . . .︸︷︷︸
t−w

, . . .︸︷︷︸
6=(2,...,2)

) 6∈ Dm,i.
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Case 2.4: ∀u, v ∈ {1, 2, . . . , n`} ∀w ∈ {1, 2, . . . , t} :
u 6= v =⇒ (auw, avw) ∈ {(0, 0), (0,−1), (−1, 0)}.

Here we distinguish two subcases:

Case 2.4.1: ∃u 6= v ∈ {1, 2, . . . , n`} ∃q ∈ {t + 1, . . . ,m`} : auq = avq = 1.
Then this leads to the contradiction

b + en`;u,v · A︸ ︷︷ ︸
(...,−1,...,2,...)

= (. . . , 0, . . . , 2, . . .) 6∈ Dm,i.

Case 2.4.2: ∀u, v ∈ {1, 2, . . . , n`} ∀q ∈ {t + 1, . . . ,m`} :

u 6= v =⇒ (auq, avq) ∈ {(0, 0), (0, 1), (1, 0)}.
Obviously, in this case we have

(0)n` 6= {−c1, . . . ,−ct, ct+1, . . . , cm`} ⊆ {(0)nl, en`;1, en`;2, . . . , en`;n`}.
Hence, there is an n`-vector y ∈ Tn`;sj

with b + y · A 6∈ Dm,i, contradicting (10).

Case 3: b = (−1)m`.

Since b + rq ∈ Dm,i for all q ∈ {1, 2, . . . , n`}, we have ∀q ∈ {1, 2, . . . , n`} :

rq 6=(0)m` =⇒ rq ∈ {1, 2}m` and the number of 2’s in rq

is not greater than si`.
(14)

Here one of the following two cases is possible:

Case 3.1: ∃q ∈ {1, . . . , n`} : (rq 6= (0)m`) and (∀u ∈ {1, . . . , n`} \ {q} : ru =
(0)m`).
It is easy to see that in such a case we have b + (−1)n` · A = b − rq 6∈ Dm,i,
contradicting (10).

Case 3.2: ∃u 6= v ∈ {1, . . . , n`} : {ru, rv} ⊆ {1, 2}m`.
Then ru + rv ∈ {2, 3 (mod p), 4 (mod p)}m`, i.e., b + ru + rv ∈ {1, 2, 3 (mod p)}m`.
Clearly b + ru + rv 6∈ Dm,i for p ≥ 5 and so let p = 3. By definition of m we
have m > 2si and thus m` > 2si`. Combining this with (14) we get that the
vector b + ru + rv contains at least one symbol 1 and one symbol 2 (= −1) and so
b + ru + rv 6∈ Dm,i. This completes the proof of Lemma 15. �

Lemma 16. Let i 6= j, n := (p(j + 1) − 1)sj + 1, m := (p(i + 1) − 1)si + 1,
{g1, g2, . . . , gm} ⊆ (Str (L))(n) and

f(x1, . . . , xn) := αi(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)).

Then either
dom (αj) 6⊆ dom (f) (15)

or
f|dom (αj) ∈ Str (L). (16)
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Proof. We proceed by cases.

Case 1: i < j.

Since g1, . . . , gm ∈ Str (L), there are h1, . . . , hm ∈ L such that gt ≤ ht for t =
1, 2, . . . ,m.
Now as ht ∈ L, in view of Proposition 11, there are for every t = 1, . . . ,m, a
vector Bt ∈ p` and n matrices Aut ∈ p`×`, u = 1, . . . , n such that

∀X1, . . . , Xn ∈ E : ht(X1, . . . , Xn) = Bt ⊕
∑n

u=1 Xu · Aut.

Let

Bt := (b(t−1)`+1, b(t−1)`+2, . . . , bt`),

b := (b1, . . . , b`, b`+1, . . . , b2`, . . . , b(m−1)`+1, . . . , bm`),

Aut :=


a(u−1)`+1,(t−1)`+1 a(u−1)`+1,(t−1)`+2 . . . a(u−1)`+1,t`

a(u−1)`+2,(t−1)`+1 a(u−1)`+2,(t−1)`+2 . . . a(u−1)`+2,t`
...

...
...

au`,(t−1)`+1 au`,(t−1)`+2 . . . au`,t`

 ,

A := (aij) where 1 ≤ i ≤ n`, 1 ≤ j ≤ m`,

Xu := (x(u−1)`+1, . . . , xu`), u = 1, . . . , n,

X := (X1, . . . , Xn),

x := (x1, x2 . . . , xn`).

Then, for
b + x · A (mod p) = (y1, . . . , ym`),

we have

(h1(X), h2(X), . . . , hm(X))
= ((y1, . . . , y`), (y`+1, . . . , y2`), . . . , (y(m−1)`+1, . . . , ym`)).

If A is a zero matrix, then (16) holds by definition of αi. So assume that A is not
the zero matrix. We distinguish the two subcases p = 2 and p is an odd prime
number.

Case 1.1: p ≥ 3.
By Lemma 15 there is an x ∈ Dn,j with b + x ·A 6∈ Dm,i, i.e., x 6∈ dom (f) and so
the non-inclusion (15) holds.

Case 1.2: p = 2.
The map

ϕ : {0, 1}n` −→ {0, 1}m`, x 7→ b + x · A

is an affine map and the set

W := ϕ({0, 1}n`) := {y ∈ {0, 1}m` | ∃ x ∈ {0, 1}n` : y = b + x · A}

is an affine space with
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dim W = rank A ≤ m`.
First we show, by contradiction, that

W ⊆ Dm,i.
Assume that there is a ŵ ∈ W with w 6∈ dom (αi). Now clearly

ϕ−1(w) := {x ∈ {0, 1}n` | ϕ(x) = w}

is an affine space with
dim ϕ−1(w) = n`− dim W

and as dim W ≤ m` and sj ≥ m (see Lemma 15, Case 1.2.2) we have

n`− dim W ≥ n`−m` ≥ n`− sj`. (17)

On the other hand we have

ϕ−1(w) ⊆ {0, 1}n` \Dn,j ⊂ {0, 1}n` \Rn`;sj`

and by Lemma 13 (b)
dim ϕ−1(w) ≤ n`− sj`− 1,

contradicting (17). This shows that W ⊆ Dm,i and thus (16) follows from Lemma
14.

Case 2: i > j.
Let dom (αj) ⊆ dom (f), we show that (16) holds. By definition of αi we have
αi := τi+1,si

, where s1 := 1 and st := (pt − 1)st−1 + 1 for t ≥ 2. Now by Lemma
12 αi ∈ pPol λp(i+1) and Str (L) ⊆ pPol λp·(i+1) ⊂ pPol λp(j+1) (as 1 ≤ j < i),
therefore

f ∈ pPol λp(i+1) ⊂ pPol λp(j+1) ⊆ pPol λ2p. (18)

For 1 ≤ u ≤ ` let eu denote the vector in {0, 1}` consisting of a 1 on the po-
sition u and 0’s elsewhere, i.e., eu := (0, . . . , 0, 1, 0, . . . , 0). Furthermore, let
e0 := (0,0, . . . ,0), eq,u := (0,0, . . . , eu︸︷︷︸

q

,0, . . . ,0) be n-vectors in En and, for q ∈

{1, . . . , n}, let Aq ∈ {0, 1}`×` be the matrix whose columns are (f(e0)	 f(eq,v))
T ,

1 ≤ v ≤ `, i.e.,

Aq :=


f(e0)	 f(eq,1)
f(e0)	 f(eq,2)
. . . . . . . . . . . .

f(e0)	 f(eq,`)


T

.

Define the function f1 by setting

f1(x1, . . . , xn) := f(x1, . . . , xn)	 f(e0)⊕
n∑

q=1

xq ⊗ Aq.

Then f1 has the following properties:

f1(e0) = f1(eq,v) = 0 for all q ∈ {1, . . . , n} and all v ∈ {1, . . . , `}, (19)
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and
dom (αj) ⊆ dom (f1) = dom (f).

Combining this with Lemma 12 and (18) above we obtain:

f1 ∈ pPol λp(i+1) ⊂ pPol λp(j+1) ⊆ pPol λ2p. (20)

Furthermore it holds

f1|dom (αj) ∈ Str (L) ⇐⇒ f|dom (αj) ∈ Str (L). (21)

We now show that f1|dom (αj) is a constant function. Assume that there is an

a ∈ En with â := (a1, . . . , an`) ∈ {0, 1}n`,
∑n`

u=1 au ≤ sj` and f1(a) 6= 0. Then
we may choose a such that the number of 1’s in the vector â is minimal, let t be
that number. Then t ≥ 2 by (19) and w.l.o.g. let â := (1, 1, . . . , 1︸ ︷︷ ︸

t

, 0, 0, . . . , 0).

By the minimality of t we have f1(a
′) = f(a′′) = 0, where a′, a′′ ∈ En, â′ :=

(0, 1, . . . , 1︸ ︷︷ ︸
t−1

, 0, . . . , 0) and â′′ := (1, 0, 0, . . . , 0). Here

a⊕ e0 ⊕ a′ ⊕ · · · ⊕ a′︸ ︷︷ ︸
p−1

⊕ a′′ ⊕ · · · ⊕ a′′︸ ︷︷ ︸
p−1

= e0

and thus the matrix in E2p×n whose rows are
r1 = a, r2 = e0, r3 = · · · = rp+1 = a′ and rp+2 = · · · = r2p = a′′

has all its columns in λ2p while

(f1(a), f1(e0), f1(a
′), . . . , f1(a

′)︸ ︷︷ ︸
p−1

, f1(a
′), . . . , f1(a

′)︸ ︷︷ ︸
p−1

) 6∈ λ2p

contradicting (20). This shows that

∀ b ∈ dom (αj) \ {(−1, . . . ,−1︸ ︷︷ ︸
n

)} : f1(b) = 0.

Finally we show that f1(−1,−1, . . .− 1) = 0. Assume that f1(−1,−1, . . .− 1) 6=
0 and consider the following matrix C with p(i + 1) rows c1, . . . , cp(i+1) and n =
(p(j + 1)− 1)sj + 1 columns :

C :=



1 1 . . . 1︸ ︷︷ ︸
sj

0 0 . . . 0 . . . . . . 0 0 . . . 0 0

0 0 . . . 0 1 1 . . . 1︸ ︷︷ ︸
sj

. . . . . . 0 0 . . . 0 0

...
...

0 0 . . . 0 0 0 . . . 0 . . . . . . 1 1 . . . 1︸ ︷︷ ︸
sj

0

0 0 . . . 0 0 0 . . . 0 . . . . . . 0 0 . . . 0 1
0 0 . . . 0 0 0 . . . 0 . . . . . . 0 0 . . . 0 0
...

...
0 0 . . . 0 0 0 . . . 0 . . . . . . 0 0 . . . 0 0

−1 . . . −1 . . . . . . . . . −1 . . .−1 −1
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Then the columns of C belong to λp(i+1), but
(f1(c1), f1(c2), . . . , f1(cp(i+1)) = (0, . . . ,0, f1(−1,−1, . . .− 1)) ∈ Ep(i+1) \ λp(i+1),
contradicting (20).

Thus, we have shown that

∀ b ∈ dom (αj) : f1(b) = 0,

i.e., f1|dom (αj) is a constant function with value 0, and so f1|dom (αj) ∈ Str (L).
Then (16) follows from (21) and this completes the proof of the lemma. �

We need to recall the following statement shown in [3] (Lemma 2.10):

Lemma 17. ([3]) Let F ⊂ Par(k) and D0 := F ∪ Jk. Moreover for ` ≥ 0 set

D`+1 := {h[g1, . . . , gm] | h ∈ D
(m)
0 and g1, . . . , gm ∈ D` for some m ≥ 1} .

Then 〈F 〉 =
⋃

` ≥ 0

D` . �

We use Lemma 16 and Lemma 17 to show:

Theorem 18. For every j ≥ 1

αj 6∈ 〈{α1, . . . , αj−1, αj+1, . . .} ∪ Str (L)〉.

Proof. Let F := {α1, . . . , αj−1, αj+1, . . .} ∪ Str (L), D0 := F (notice that D0 con-
tains Jk) and let D`+1 be defined from D` as in Lemma 17. We show by induction
on ` ≥ 0 that

∀ f ∈ D` (dom (αj) ⊆ dom (f) =⇒ f|dom (αj) ∈ Str (L)). (22)

The above statement clearly holds for ` = 0 as dom (αj) 6⊂ dom (αi) for i 6= j.
So assume that (22) holds for all 0 ≤ t ≤ ` and consider f ∈ D`+1 \ D` with

dom (αj) ⊆ dom (f). Then there are m ≥ 1, h ∈ D
(m)
0 and g1, . . . , gm ∈ D

(n)
` such

that f = h[g1, . . . , gm], where n := (p(j+1)−1)sj +1 and sj is as in Lemma 15. As
dom (αj) ⊆ dom (f) we have dom (αj) ⊆ dom (gt) for all t = 1, . . . ,m. Thus by
the induction hypothesis the partial functions gt := gt|dom (αj) satisfy gt ∈ Str (L)
for all t = 1, . . . ,m. Obviously, f|dom (αj) = h[g1, . . . , gm]. If h ∈ Str (L) then
f|dom (αj) ∈ Str (L), since Str (L) is a partial clone. Thus we can assume that
there is i ∈ N+ \ {j} with h = αi. As gt ∈ Str (L) for all t = 1, . . . ,m we have by
Lemma 16 that f|dom (αj) = αi[g1, . . . , gm] ∈ Str (L), i.e. (22) holds.
Finally if αj ∈ 〈{α1, . . . , αj−1, αj+1, . . .} ∪ Str (L)〉, then there is an ` ≥ 0 such
that αj ∈ D` and by (22) αj ∈ Str (L), a contradiction. �

For j = 1, 2, . . . let Cj denote the partial clone 〈{α1, . . . , αj−1, αj+1, . . .}∪Str(L)〉.
By Theorem 18

αj ∈ Ci ⇐⇒ i 6= j
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and thus the correspondence

χ : P(N+) −→ [Str (L), Par(E)]

defined by

χ(X) :=
⋂

n∈N+\X

Cn

is a one-to-one mapping. We have shown that

Theorem 19. Let E = p` where p is a prime number and ` ≥ 1 and let L be the
maximal clone on E defined in Proposition 11. Then the interval of partial clones
[Str(L), Par(E)] is of continuum cardinality on E. �
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