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Abstract. We relate q-strict convexity of compact convex sets K ⊂ Rd

whose boundary ∂K is a differentiable manifold of class Cq to intrinsic
curvature properties of ∂K. Furthermore we prove that the set of q-
strictly convex sets is Fσ of first Baire category.

MSC 2000: 52A20, 53A05
Keywords: q-strict convexity, curvature

1. Introduction

Let C be the set of nonempty compact convex subsets of Rd endowed with the
Hausdorff metric and the induced topology. By Ck we denote the subset of C of
those convex sets whose boundary is a hypersurface of class Ck. Furthermore let
S ⊂ C be the set of strictly convex subsets of Rd, i.e. of those K ⊂ Rd whose
boundary ∂K does not contain a line segment. It is proved in [3, 5], see also [2],
that C \ (C1 ∩S) is a Fσ subset of first category and that C2 is of first category in
C. This was strengthened in [10], showing that C \ (C1 ∩ S) is σ-porous.

We are concerned with analogous questions within the spaces Ck, k ≥ 2. For
arbitrary convex sets it was shown in [12], see also [11], that the lower and upper
principal curvatures of the boundary of an arbitrary convex set are almost all 0
and ∞, respectively. Therefore, in order to have a meaningful notion of curvature,
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we impose a differentiability assumption. In place of strict convexity we have in
this setting the stronger versions given by the order of contact with the tangent
plane of the boundary: We say that K ∈ Cq is q-strictly convex if at each point
p ∈ ∂K the tangent hyperplane Tp∂K has contact of order at most q − 1 with
∂K.

We relate q-strict convexity of a set K ∈ Cq to intrinsic curvature properties of
its boundary ∂K proving that an estimate from below on the sectional curvature
of ∂K implies q-strict convexity. In contrast to the results in [3, 5, 10] for C we
obtain here that analytic strict convexity is rather exceptional, i.e. that the set
Sq ⊂ Cq of q-strictly convex sets is a Fσ-set of first category. Finally we show that
the Hausdorff topology on the space of convex sets corresponds to the compact
open topology on the set of defining functions.

2. Preliminaries

A convex set K ⊂ Rd, K ∈ Ck, can always be described by a convex function
ρ : Rd → R of class Ck with K = ρ−1((−∞, 0]) and ∂K = ρ−1(0). Such a function
ρ is called a defining function for K. A set K is said to be strictly convex if its
boundary ∂K does not contain a line segment. As in [1] we say that K ∈ Cq

is q-strictly convex if the boundary ∂K touches its tangent hyperplanes at most
with order q − 1. In terms of defining functions we may rephrase this as follows.

Definition 2.1. Let K = ρ−1((−∞, 0]) with ρ ∈ Cq(Rd) and dxρ 6= 0 for each
x ∈ ∂K = M . Then K is q-strictly convex if for each x ∈ M and each u ∈ TxM
there is l ≤ q such that dl

xρ(u) > 0.

Here we have written dl
xρ(u) = dl

xρ(u, . . . , u) for the lth derivative of ρ. Note
that dl

xρ is a symmetric l-form on Rd and thus, by polarization, all information is
contained in its value on the diagonal. We will denote by Sq the subspace of Cq

consisting of q-strictly convex sets. We have inclusions

Cq+1 ∩ Sq ⊂ Sq+1 .

Thus the present terminology slightly differs from that in [1] where the Sq were
defined to be mutually exclusive.

Proposition 2.2. Let K ∈ Cq and for x ∈ ∂K =: M denote by nx the interior
normal vector. Then K ∈ Sq if and only if for each x ∈ M there are ε, c > 0 and
a function f : TxM → R with f(v) ≥ c‖v‖q, for v ∈ TxM with ‖v‖ ≤ ε such that

M ∩Bε(x) = {x + v + f(v)nx ∈ Bε(x) | v ∈ TxM} . (2.3)

Thus ∂K locally looks like the graph of a function f : Rn−1 → R with f(0) = 0
and f(x) ≥ c‖x‖q.

Proof. By the implicit function theorem we have a smooth function f : TxM → R
such that

ρ(x + v + f(v)nx) = 0 . (2.4)
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Inductively we assume that the first (k−1) derivatives of f and ρ in the v-direction
vanish. Then

0 =
dk

dtk

∣∣∣∣
t=0

ρ(x + tv + f(tv)nx) = dkρ(x)(v) + dρ(x)(nx)d
kf(0)(v) . (2.5)

Thus the first novanishing derivatives of ρ and f in the v-direction have the same
order. Since ρ is negative on the interior of K we also get from (2.5) that dkf(0)(v)
is positive.

To prove the proposition first assume that f(v) ≥ c‖v‖q for all v ∈ TxM with
‖v‖ sufficiently small. If, for fixed v0 ∈ TxM , ‖v0‖ = 1, k is the order of the
first non-vanishing derivative of f in the v0-direction, then by Taylor’s theorem
we have

f(tv0) = c′tk + O(tk+1)

where
h(t) = O(tk+1) if lim

t→0
h(t)/tk+1 = 0 .

If k > q, then
f(tv0) = c′tk + O(tk+1) ≤ ctq

for sufficiently small t, but this contradicts the initial assumption on f . Therefore
k ≤ q is the order of the first non-vanishing derivative of f in the v0-direction,
and the same holds for ρ by the preceding remark.

Conversely, assume that K is q-strictly convex at x. Let f be defined by (2.4).
For each v ∈ TxM , ‖v‖ = 1, we have that dkf(0)(v) > 0 and dkρ(x)(v) > 0 for
the same k ≤ q by the remark above. Again by Taylor’s theorem we find c(v) > 0
depending continuously on v such that

f(tv) = c′(v)tk + O(tk+1) ≥ c(v)tq .

Hence c := minv∈TxM,‖v‖=1 mint
f(tv)

tq
> 0 and f(w) ≥ ctq for all w = tv ∈ TxM .

3. Curvature and strict convexity

For y ∈ Rd, n ∈ Rd \ {0}, q ∈ N0 let

yn = 〈y | n〉 ∈ R and yn⊥ = y − yn

‖n‖2
n ∈ Rd

denote the projections. The “q-cone” at x ∈ Rd in direction of n is then defined
as

Cq(x, n) := {y ∈ Rd | (y − x)n ≥ ‖(y − x)n⊥‖q} . (3.1)

This set is congruent to the cone at x = 0, n = (0, . . . , 0, λ), λ > 0, i.e

Cq(0, n) := {(y1, y2, . . . , yd−1, yd) ∈ Rd | yd ≥
1

λ
‖(y1, y2, . . . , yd−1)‖q} .
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For K ∈ C and x ∈ M = ∂K we define the “q-curvature” of M at x by

κq(x) = sup{‖n‖−1 | K ∩Bε(x) ⊂ Cq(x, n) for some ε > 0} .

In the case q = 2, κ2(x) is the minimal principal curvature of M at x. If κp(x) > 0
at some x ∈ M then κq(x) = ∞ for all q > p.

Theorem 3.2. A set K ∈ Cq is q-strictly convex if and only if the q-curvature of
∂K is positive, i.e. for each x ∈ ∂K = M there are nx ∈ TxM

⊥, nx 6= 0, such
that K ⊂ Cq(x, nx).

Proof. It follows from Proposition 2.2 that the assertion holds locally, i.e. K is
q-strictly convex if and only if for each point x ∈ M we find a cone Cq(x, nx) and
εx > 0 such that K ∩ Bεx(x) ⊂ Cq(x, nx). (Then automatically nx is a normal
vector to M pointing in the inward direction.) By compactness, possibly replacing
nx by a larger normal vector λnx , we get a q-cone containing all of K: By strict
convexity K is contained in the half-space Ex = x+TxM+R+

0 nx of the hyperplane
x + TxM and x + TxM ∩K = {x}. Since⋃

λ∈R+

int Cq(x, λnx) = int Ex ⊃ K \Bεx(x)

and K \ Bεx(x) is compact, this latter set is contained in int Cq(x, λnx) for some
λ > 0. Thus K ⊂ Cq(x, max{1, λ}nx).

In the case q = 2 we could have replaced the q-cones Cq(x, n) above by balls
B̄‖n‖(x + n). Thus the above proof has the immediate

Corollary 3.3. K ∈ C2 is 2-strictly convex if and only if there is r > 0 such that
for each point x ∈ ∂K there is y ∈ Rd, ‖y − x‖ = r, such that K ⊂ Br(y).

We finish this section considering the relation between the sectional curvature of
M and q-strict convexity. The minimal sectional curvature of M at x ∈ M is
defined as

K(x) := min{K(σ) | σ ⊂ TxM, dim σ = 2}

where K(σ) denotes the sectional curvature of the plane σ. If σ is spanned by
u, v ∈ TxM then K(σ) is computed by

K(σ) =
K(u, v)

‖u ∧ v‖2
where

K(u, v) = 〈R(u, v)v, u〉 = d2
xρ(u, u)d2

xρ(v, v)− (d2
xρ(u, v))2 and

‖u ∧ v‖2 = u2v2 − 〈u | v〉2 .

(3.4)

Proposition 3.5. Let ρ : Rd → R be a smooth function, ρ−1(0) = M and dxρ 6= 0
for each x ∈ M . The sectional curvature of M is positive iff ρ or −ρ is the defining
function of a 2-strictly convex set.
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Proof. Let x ∈ M and let ρ or −ρ be the defining function of a 2-strictly convex
set. Then d2

xρ(y, y) > 0 or d2
xρ(y, y) < 0 for every y ∈ TxM , i.e. d2

xρ(y, y) is a
positive or negative definite, symmetric bilinear form. Let E be a 2-dimensional
subspace of TxM and (u, v) an orthonormal basis of E. Then d2

xρ|E(y1, y2) =
〈y1, Ay2〉, where

A =

(
d2

xρ(u, u) d2
xρ(u, v)

d2
xρ(v, u) d2

xρ(v, v)

)
.

Because A is positive or negative definite

det A = d2
xρ(u, u)d2

xρ(v, v)− (d2
xρ(u, v))2 > 0 .

So from (3.4) we have K(u, v) > 0.
We now assume that M has positive sectional curvature. Let (u1, . . . , un−1) be

an orthonormal basis of eigenvectors of d2
xρ in TxM . Then d2

xρ(ui, uj) = λjδij =
〈ui, Auj〉. Because K(ui, uj) > 0 we get that K(ui, uj) = λiλj > 0. Thus all
eigenvalues have the same sign. Therefore d2

xρ is negative or positive definite.

Theorem 3.6. Let ρ : Rd → R be a smooth function such that dxρ 6= 0 for all
x ∈ M := ρ−1(0). Assume that each x ∈ M has a neighbourhood U ⊂ M such
that on U the sectional curvature K of M satisfies K(x′) ≥ Cd(x′, x)m with some
constant C = C(U) > 0 independent of x′. Then for each component M0 of M
one of the two components of Rd \M0 is strictly (m + 2)-convex.

Proof. By a theorem of Sacksteder (see [7], or [4]), M0 is convex. Assume that
M is not strictly (m + 2)-convex. Then there is a point x ∈ M and a unit vector
u ∈ TxM ⊂ Rd such that

dl
xρ(u) = 0 for all l ≤ m + 2 . (3.7)

We fix x and u from now on and choose a vector field w on M such that w(x) is
a unit vector perpendicular to u. As in Proposition 2.2 we choose f : TxM → R
satisfying (2.3) with nx := −gradxρ/‖gradxρ‖ and let α(t) := −f(tu)/‖gradxρ‖.
Thus we have α : (−ε, ε) → R such that

ρ(x + tu− α(t)gradxρ) = 0 .

It follows from (2.5) that

dl

dtl

∣∣∣∣
t=0

α(t) = 0 for l ≤ m + 2 , α(t) = O(tm+2) . (3.8)

Let γ be the curve in M given by

γ(t) := x + tu− α(t)gradxρ .

We claim that
d2

γ(t)ρ(γ̇(t)) = O(tm) . (3.9)
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To see this, we note that

0 =
d2

dt2
ρ(γ(t)) = d2

γ(t)ρ(γ̇(t)) + dγ(t)ρ(γ′′(t)) ,

hence
d2

γ(t)ρ(γ̇(t)) = −dγ(t)ρ(γ′′(t)) = α′′(t)dγ(t)ρ(gradxρ) = O(tm)

because of (3.8).
We now consider the minimal sectional curvature K along the curve γ. From

(3.4) we estimate

K(γ(t)) ≤ K(γ̇(t), w(γ(t)))

‖γ̇(t) ∧ w(γ(t))‖2

≤
d2

γ(t)ρ(γ̇(t)) d2
γ(t)ρ(w(γ(t)))

‖γ̇(t) ∧ w(γ(t))‖2

= O(tm) ,

(3.10)

since

lim
t→0

d2
γ(t)ρ(γ̇(t)) d2

γ(t)ρ(w(γ(t)))

tm ‖γ̇(t) ∧ w(γ(t)‖2
= lim

t→0

d2
γ(t)ρ(γ̇(t))

tm
lim
t→0

d2
γ(t)ρ(w(γ(t)))

‖γ̇(t) ∧ w(γ(t)‖2

= 0 · d2
xρ(w(x))

1
= 0

because of (3.9). Since the interior distance dM in M dominates the Euclidean
distance in Rd we have

dM(x, γ(t)) ≥ |tu− α(t)gradxρ| ≥ t . (3.11)

From (3.11) and (3.10) we have

K(γ(t))

dM(x, γ(t))m
≤ K(γ(t))

tm
t→0−→ 0.

Therefore there can not hold an estimate K(γ(t)) ≥ C(dM(x, γ(t))m) ≥ Ctm with
a positive constant C as in the assumption of the theorem.

The following example shows that there is no characterization of q-strict convexity,
q > 2, by an isotropic growth condition for the sectional curvature as in the
assumption of the theorem. To see this look at the function ρ : R3 → R given by

ρ(x, y, z) = x2k + y2l + z

for k ≥ l > 2. Near (0, 0, 0) this function describes a k-strictly convex set con-
tained in the half space {z ≤ 0} in R3. Gradient and Hessian of ρ are

dρ(x, y, z) = (2kx2k−1, 2ly2l−1, 1)

d2ρ(x, y, z) =

 2k(2k − 1)x2k−2 0 0
0 2l(2l − 1)y2l−2 0
0 0 0

 .
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We use the tangent vectors u = (1, 0,−2kx2k−1) and v = (0, 1,−2ly2l−1). Then
‖u∧v‖2 = 1+O(‖(x, y)‖) and the sectional curvature at K(x, y, z) = K(T(x,y,z)M)
is computed from (3.4) as

K(x, y, z) = 2k(2k − 1)x2k−22l(2l − 1)y2l−2‖u ∧ v‖2

= (2k(2k − 1)2l(2l − 1)(1 + O(‖(x, y)‖))x2k−2y2l−2 .

This vanishes on the lines {x = 0} and {y = 0}. In particular, there is no estimate
K(x, y, z) ≥ Cd((x, y, z), 0)m with C > 0.

4. Approximation by q-strictly convex sets

Among the Sq, Cq we have for q ≥ 2 inclusions

S2 ⊂ Sq ⊂ Cq ⊂ C2 . (4.1)

It is shown in [1] that S2 ⊂ C2 is dense. Hence all the inclusions in (4.1) are dense
as well. We proceed to show that Sq ⊂ Cq is Fσ of first category.

Lemma 4.2. For K ∈ Sq and x ∈ ∂K let nx denote the inward unit normal
vector of ∂K at x. Then the global q-curvature

κq(K) := sup{λ−1 | K ⊂ Cq(x, λnx) for all x } (4.3)

is positive.

Proof. Since nx depends continuously on x the function

Φ: K × ∂K → R Φ(y, x) :=
‖(y − x)n⊥‖q

〈y − x | nx〉
(4.4)

is continuous. In particular its maximum max Φ is finite since K×∂K is compact.
From the definition (3.1) we have K ⊂ Cq(x, λnx) if and only if λ ≥ Φ(y, x) for
all y ∈ K. Thus κq(K) = 1

maxΦ
> 0.

Theorem 4.5. Sq ⊂ Cq is a Fσ-set of first category.

Proof. We filter Sq by the global q-curvature κq defined in (4.3). Let

Fn := {K ⊂ Cq | κq(K) ≥ 1/n} .

Form Lemma 4.2 we have Sq =
⋃

n Fn. It remains to show that the Fn are closed
in Cq and nowhere dense.

To that end let Kν ∈ Sq be a sequence, Kν
ν→∞−→ K ∈ Cq with respect to the

Hausdorff distance. In order to show that K ∈ Sq, let x ∈ ∂K be arbitrary and
let xν ∈ ∂Kν converge to x. We also have

Kν ⊂ Cq(xν ,
1

n
nxν )
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where nxν denotes as before the inward unit normal vector.
Passing to a subsequence if necessary we may assume that nxν converges to

some vector (which must then coincide with the unit normal vector nx). We will
show that K ⊂ Cq(x, 1

n
nx): Let y ∈ K and yν ∈ Kν be a convergent sequence,

y = limν→∞ yν . From (3.1) we infer that

(yν − xν) 1
n

nxν
≥ ‖(yν − xν)nxν⊥‖

q

for each ν. By continuity we get

(y − x) 1
n

nx
≥ ‖(y − x)nx⊥‖q (4.6)

and therefore y ∈ Cq(x, 1
n
nx).

Finally, to see that Fn is nowhere dense in Cq, we show that for each K ∈ Fn

we find K ′ ∈ Cq \ Fn with arbitrarily small Hausdorff distance d(K, K ′). To that
end let ρ be a defining function for K, i.e. K = ρ−1((−∞, 0]), and pick x ∈ ∂K.
Let χ : R → R be a smooth convex function with χ(t) = 0 for t ≤ 0 and χ(t) > 0
for t > 0. For ε, λ ≥ 0, v ∈ Tx∂K and t ∈ R define ρε,λ ∈ Cq(Rn) by

ρε,λ(x + v + tnx) = ρ(x + v + tnx) + λχ(ε− t)

and let Kε,λ = ρ−1
ε,λ((−∞, 0]) be the convex set defined by ρε,λ. We also set

Kε,∞ := K ∩ (x + Tx∂K + [ε,∞)nx) =
⋂
λ≥0

Kε,λ . (4.7)

This is the intersection of K with a half space. (In view of the results of the next
Section 5, the set Kε,∞ is just the Hausdorff limit λ →∞ of the sets Kε,λ.)

We have Kε,λ ∈ Cq, K0,λ = Kε,0 = K and inclusions

Kε,∞ ⊂ Kε,λ ⊂ K .

It is immediate from (4.7) that d(K, Kε,∞) = ε, hence, for all λ,

d(K, Kε,λ) ≤ ε .

On the other hand, the Kε,λ can not be in Fn for all λ: Therefore let xε,λ ∈ ∂Kε,λ

be a sequence converging to x + εnx ∈ ∂Kε,∞ and let nε,λ denote the inward
unit normal vector of ∂Kε,λ at xε,λ. (For instance, choose tε,λ ∈ [0, ε] such that
ρ(x + tε,λnx) + λχ(ε − tε,λ) = 0 and set xε,λ = x + tε,λnx.) If we had Kε,λ ⊂
Cq(xε,λ,

1
n
nε,λ) for all λ then, by the same continuity argument as in the proof of

(4.6), we would have Kε,∞ ⊂ Cq(x+ εnx,
1
n
nε,∞) for some accumulation point nε,∞

of the nε,λ. But this is not possible since Kε,∞ contains line segments through
x + εnx in its boundary.
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5. Hausdorff convergence versus uniform convergence on compacta of
defining functions

Theorem 5.1. Let Kν , K ∈ C with int K 6= ∅, and ρν , ρ ∈ C(Rd) defining func-
tions of them. Assume that ρν

ν→∞−→ ρ uniformly on compact subsets of Rd. Then
Kν

ν→∞−→ K with respect to the Hausdorff distance.

Proof. There is the following criterion for convergence in the Hausdorff topology,
(see [8]). A sequence Kν of compact convex sets in Rd converges to a set K if and
only if

K = {x ∈ Rd | there are xν ∈ Kν , xν
ν→∞−→ x} (5.2)

and whenever xkν

ν→∞−→ x, xkν ∈ Kkν , then x ∈ K.
Let x0 ∈ int K. Then ρ(x0) < 0. As ρν(x0)

ν→∞−→ ρ(x0) we may assume that
x0 ∈ int Kν for any ν ∈ N.

For arbitrary x ∈ K we may select yν ∈ Kν such that yν
ν→∞−→ x as follows: In

case that x ∈ int K taking yν = x we have the result. In case that x ∈ ∂K we
define yν = x if x ∈ Kν and yν ∈ ∂Kν∩(x0, x) if x not in Kν . Let now a convergent
subsequence (ykν )ν∈N of it with ykν

ν→∞−→ y0 ∈ [x0, x]. As ρkν (ykν )
ν→∞−→ ρ(y0) and

ρkν (ykν ) ≤ 0 we deduce that ρ(y0) ≤ 0. If ρ(y0) < 0 then ykν ∈ int Kkν so ykν = x
for sufficiently large ν. Then y0 = x ∈ ∂K contradicts the fact ρ(y0) < 0. So
ρ(y0) = 0 which means that y0 ∈ [x0, x] ∩ ∂K = {x}. Hence any convergent
subsequence of the bounded sequence (yν) converges to x and the same is true for
(yν). We deduce that Kν

ν→∞−→ K.

As a converse, for a Hausdorff convergent sequence in C we find a sequence of
defining functions converging uniformly on compacta. For a compact convex set
A ⊂ Rd with 0 ∈ int A the Minkowski function is

λA(x) := inf{t > 0 | x ∈ tA}

for x ∈ Rd. Then λA − 1 is a defining function of A.

Lemma 5.3. Let Kν
ν→∞−→ K be a Hausdorff convergent sequence of compact con-

vex sets with 0 ∈ int K. Then λKν

ν→∞−→ λK uniformly on compact sets.

Proof. Let D ⊂ Rd an arbitrary compact set and B = B1(0) ⊂ Rd be the unit
ball. Choose R, ρ > 0 such that D ⊂ RB and ρB ⊂ int K. Let ε > 0 and λ > 1
such that (λ− 1)R/ρ < ε. If 0 < α ≤ (λ− 1)ρ and Q ∈ C with H(K, Q) ≤ α we
easily get that ρB ⊂ Q. Thus omitting the first elements of the sequence Kν we
may assume H(K, Kν) ≤ α ≤ (λ− 1)ρ for all ν. Then ρB ⊂ Kν . So we obtain

K ⊂ Kν + (λ− 1)ρB ⊂ Kν + (λ− 1)Kν = λKν

Kν ⊂ K + (λ− 1)ρB ⊂ K + (λ− 1)K = λK.

Hence K ⊂ λKν and Kν ⊂ λK and therefore

λK(x) ≥ λKν (x)

λ

λKν (x) ≥ λK(x)

λ
.
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Thus

λKν (x)− λK(x) ≤ (λ− 1)λK(x)

λK(x)− λKν (x) ≤ (λ− 1)λKν (x).
(5.4)

For x ∈ D ⊂ RB we have λRB(x) ≤ 1 and

λRB(x) = λR
ρ

ρB(x) =
ρ

R
λρB(x) ≥ ρ

R
λKν (x),

ρ

R
λK(x) .

Hence

λK(x), λKν (x) ≤ R

ρ
.

By (5.4) this gives

|λKν (x)− λK(x)| ≤ (λ− 1)
R

ρ
< ε

for x ∈ D.

Theorem 5.5. Let Kν
ν→∞−→ K be a Hausdorff convergent sequence of compact

convex sets with 0 ∈ int K and let ρ be a defining function for K. Then there are
defining functions ρν for the Kν converging uniformly to ρ on a suitable compact
neighbourhood of ∂K.

Proof. The defining function ρ for K can be divided by λK − 1,

ρ = h(λK − 1)

with some positive continuous function h in a compact neighbourhood V of ∂K
(see [6]). Then, the ρν := h(λKν −1) are defining functions for the Kν . By Lemma
5.3 λKν

ν→∞−→ λK uniformly on any compact subset of Rd and since h is bounded
away from 0 on any compact set, we deduce that ρν

ν→∞−→ ρ uniformly on V .
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