Weyl Quantization for Principal Series

Benjamin Cahen

Université de Metz, UFR-MIM, Département de mathématiques LMMAS, ISGMP-Bât. A, Ile du Saulcy 57045, Metz cedex 01, France
e-mail: cahen@univ-metz.fr.

Abstract

Let G be a connected semisimple non-compact Lie group and π a principal series representation of G. Let \mathcal{O} be the coadjoint orbit of G associated by the Kirillov-Kostant method of orbits to the representation π. By dequantizing π we construct an explicit symplectomorphism between a dense open set of \mathcal{O} and a symplectic product $\mathbb{R}^{2 n} \times \mathcal{O}^{\prime}$ where \mathcal{O}^{\prime} is a coadjoint orbit of a compact subgroup of G. This allows us to obtain a Weyl correspondence on \mathcal{O} which is adapted to the representation π in the sense of [6].

MSC 2000: 81S10, 22E46
Keywords: principal series representations, coadjoint orbits, Weyl quantization, Berezin quantization, dequantization

1. Introduction

Let G be a connected Lie group, \mathfrak{g} the Lie algebra of G and \mathfrak{g}^{*} the dual space of \mathfrak{g}. Let π be a unitary irreducible representation of G on a Hilbert space H. We suppose that the representation π is associated to a coadjoint orbit \mathcal{O} of G by the Kirillov-Kostant method of orbits [21], [25]. The notion of adapted Weyl correspondence was introduced in [4] (see also [5] and [6]) in order to generalize the usual quantization rules [1], [15].

Definition 1.1. An adapted Weyl correspondence is an isomorphism W from a vector space \mathcal{A} of complex-valued (or real-valued) smooth functions on the orbit \mathcal{O} (called symbols) to a vector space \mathcal{B} of (not necessarily bounded) linear operators on H satisfying the following properties:
(i) the elements of \mathcal{B} preserve a fixed dense domain D of H;
(ii) the constant function 1 belongs to \mathcal{A}, the identity operator I belongs to \mathcal{B} and $W(1)=I$;
(iii) $A \in \mathcal{B}$ and $B \in \mathcal{B}$ implies $A B \in \mathcal{B}$;
(iv) for each f in \mathcal{A} the complex conjugate \bar{f} of f belongs to \mathcal{A} and the adjoint of $W(f)$ is an extension of $W(\bar{f})$ (in the real case: for each f in \mathcal{A} the operator $W(f)$ is symmetric);
(v) the elements of D are C^{∞}-vectors for the representation π, the functions \tilde{X} $(X \in \mathfrak{g})$ defined on \mathcal{O} by $\tilde{X}(\xi)=<\xi, X>$ are in \mathcal{A} and $W(i \tilde{X}) v=d \pi(X) v$ for each $X \in \mathfrak{g}$ and each $v \in D$.

Let us illustrate this definition by two important examples, the nilpotent case and the compact case. Suppose first that G is a connected simply-connected nilpotent Lie group and \mathcal{O} is an arbitrary coadjoint orbit of G. Let $n=1 / 2 \operatorname{dim} \mathcal{O}$. There exists a symplectomorphism from $\mathbb{R}^{2 n}$ endowed with its natural symplectic structure onto the orbit \mathcal{O} endowed with its Kostant-Kirillov symplectic 2-form [3], [29]. The representation π associated to \mathcal{O} can be realized on the Hilbert space $L^{2}\left(\mathbb{R}^{n}\right)$. Then, the usual Weyl correspondence from the space of polynomial functions on $\mathcal{O} \simeq \mathbb{R}^{2 n}$ onto the space of polynomial differential operators acting on the Schwartz space $D=S\left(\mathbb{R}^{n}\right)$ is an adapted Weyl correspondence [29]. Suppose now that G is a connected simply-connected semisimple compact Lie group and \mathcal{O} is an integral coadjoint orbit of G. The unitary irreducible representation of G associated to the orbit \mathcal{O} is usually realized on a finite-dimensional complex vector space E whose elements are the holomorphic sections of a Hermitian line bundle on the orbit \mathcal{O}. The Berezin calculus is a map which associates to any operator on E a function on \mathcal{O} [1], [10]. Its inverse map is an adapted Weyl correspondence on the orbit \mathcal{O} defined on a finite-dimensional space of functions on \mathcal{O} [4], [5].

The relationship between adapted Weyl correspondences and the notions of prequantization and quantization introduced by Mark Gotay [16] is briefly described in [10]. In fact, our original motivation for constructing adapted Weyl correspondences was to build covariant star-products on coadjoint orbits [5]. A more recent motivation is that adapted Weyl correspondences can be used to study contractions of representations of Lie groups in the setting of the Kirillov-Kostant method of orbits [7], [8], [9], [12].

In [5], adapted Weyl correspondences on the coadjoint orbits associated to the principal series representations of a connected semisimple non-compact Lie group were constructed by combining the Berezin calculus and a symbolic calculus on the cotangent bundle of a nilpotent Lie group (see also Section 5). In [10], we have considered the case when G is the semidirect product $V \rtimes K$ where K is a connected semisimple non-compact Lie group acting linearly on a finite-dimensional real vector space V and \mathcal{O} is a coadjoint orbit of G associated by the method of orbits to a unitary irreducible representation π of G. Under the assumption that the corresponding little group K_{0} is a maximal compact subgroup of K, we have shown that the orbit \mathcal{O} is symplectomorphic to the symplectic product $\mathbb{R}^{2 n} \times \mathcal{O}^{\prime}$ where $n=\operatorname{dim}(K)-\operatorname{dim}\left(K_{0}\right)$ and \mathcal{O}^{\prime} is a coadjoint orbit of K_{0}. Thus we have
obtained an adapted Weyl correspondence on \mathcal{O} by combining the usual Weyl correspondence on $\mathbb{R}^{2 n}$ and the Berezin calculus on \mathcal{O}^{\prime} (see also [6] and [7] for earlier results concerning the Poincaré group).

In the present paper, we revisit the case when G is a connected semisimple noncompact Lie group and \mathcal{O} is a coadjoint orbit of G associated to a principal series representation π of G. We use the dequantization procedure introduced in [10] in order to obtain an adapted Weyl correspondence on \mathcal{O} using only the usual Weyl correspondence and the Berezin calculus. In Section 2, we introduce a principal series representation π and the associated coadjoint orbit \mathcal{O}. In particular, we realize the representation π on a Hilbert space of functions on \mathbb{R}^{n}. In Section 3, we give an explicit formula for the derived representation $d \pi$ and we dequantize the representation $d \pi$ by means of the usual Weyl correspondence on $\mathbb{R}^{2 n}$ and the Berezin calculus on a coadjoint orbit \mathcal{O}^{\prime} of a compact subgroup of G. Then we obtain in Section 4 an explicit symplectomorphism from the symplectic product $\mathbb{R}^{2 n} \times \mathcal{O}^{\prime}$ onto a dense open set of \mathcal{O} (Theorem 4.6) and the desired adapted Weyl correspondence on \mathcal{O} (Theorem 4.7). Finally, in Section 5, we compare this adapted Weyl correspondence to the symbolic calculus introduced in [5]. We could hope for further applications of these results to the study in the spirit of [7] and [12] of the contractions of the principal series representations of G to the unitary irreducible representations of its Cartan motion group (see [13]).

2. Preliminaries

Let G be a connected non-compact semisimple real Lie group with finite center. Let \mathfrak{g} be the Lie algebra of G. We identify G-equivariantly \mathfrak{g} to its dual space \mathfrak{g}^{*} using the Killing form of \mathfrak{g} defined by $\langle X, Y\rangle=\operatorname{Tr}(\operatorname{ad} X \operatorname{ad} Y)$ for X and Y in \mathfrak{g}. Let θ be a Cartan involution of \mathfrak{g} and $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}$ the corresponding Cartan decomposition of \mathfrak{g}. Let K be the connected compact subgroup of G with Lie algebra \mathfrak{k}. Let \mathfrak{a} be a maximal abelian subalgebra of \mathfrak{p} and M be the centralizer of \mathfrak{a} in K. Let \mathfrak{m} denote the Lie algebra of M. We can decompose \mathfrak{g} under the adjoint action of \mathfrak{a} :

$$
\mathfrak{g}=\mathfrak{a} \oplus \mathfrak{m} \oplus \sum_{\lambda \in \Delta} \mathfrak{g}_{\lambda}
$$

where $\mathfrak{g}_{\lambda}=\{X \in \mathfrak{g}: \quad[H, X]=\lambda(H) X \quad \forall H \in \mathfrak{a}\}$ for $\lambda \in \mathfrak{a}^{*}$ and $\Delta=\{\lambda \in$ $\left.\mathfrak{a}^{*} \backslash(0): \mathfrak{g}_{\lambda} \neq(0)\right\}$ is the set of restricted roots. We fix a Weyl chamber in \mathfrak{a} and we set $\mathfrak{n}=\sum_{\lambda>o} \mathfrak{g}_{\lambda}$ and $\overline{\mathfrak{n}}=\sum_{\lambda<o} \mathfrak{g}_{\lambda}$. Then $\overline{\mathfrak{n}}=\theta(\mathfrak{n})$. Let A, N and \bar{N} denote the analytic subgroups of G with algebras $\mathfrak{a}, \mathfrak{n}, \overline{\mathfrak{n}}$, respectively. We fix a regular element ξ_{1} in \mathfrak{a} (i.e. $\lambda\left(\xi_{1}\right) \neq 0$ for each $\lambda \in \Delta$) and an element ξ_{2} in \mathfrak{m}. Let $\xi_{0}=\xi_{1}+\xi_{2}$ and denote by $O\left(\xi_{0}\right)$ the orbit of ξ_{0} in $\mathfrak{g}^{*} \simeq \mathfrak{g}$ under the (co)adjoint action of G and by $O\left(\xi_{2}\right)$ the orbit of ξ_{2} in \mathfrak{m} under the adjoint action of M.

Let M_{0} be the connected component of the identity of M and let σ_{0} be a unitary irreducible representation of M_{0}. We have $M=M_{0} . Z^{\prime}$ where Z^{\prime} is a central finite abelian subgroup of M [24, Lemma 9.13]. Then the unitary irreducible representations σ of M such that $\left.\sigma\right|_{M_{0}}=\sigma_{0}$ constitute (up to unitary equivalence) a finite family (σ_{χ}) parametrized by the characters χ of Z^{\prime} satisfying $\chi_{\mid Z^{\prime} \cap M_{0}}=\sigma_{0 \mid Z^{\prime} \cap M_{0}}$.

Henceforth we assume that the orbit $O\left(\xi_{2}\right)$ is associated to a unitary irreducible representation σ_{0} of M_{0} as in [30], Section 4 (see also [26]) and we fix a unitary irreducible representation σ of M realized in a finite dimensional complex vector space E such that $\left.\sigma\right|_{M_{0}}=\sigma_{0}$.

The Berezin calculus associates to each operator A on the finite-dimensional complex vector space E a complex-valued function $s(A)$ on the orbit $\mathcal{O}\left(\xi_{2}\right)$ called the symbol of the operator A (see [2], [11]). The following properties of the Berezin calculus can be found in [2], [4], [5].

Proposition 2.1.

1) The map $A \rightarrow s(A)$ is injective.
2) For each operator A on E, we have $s\left(A^{*}\right)=\overline{s(A)}$.
3) For $\varphi \in \mathcal{O}\left(\xi_{2}\right), k \in K$ and for an operator A on E, we have

$$
s(A)(\operatorname{Ad}(k) \varphi)=s\left(\sigma(k)^{-1} A \sigma(k)\right)(\varphi) .
$$

4) For $X \in \mathfrak{m}$ and $\varphi \in \mathcal{O}\left(\xi_{2}\right)$, we have $s(d \sigma(X))(\varphi)=i<\varphi, X>$ where $d \sigma$ denotes the derived representation of σ.
5) There exists a constant ε (which depends only on the orbit $\mathcal{O}\left(\xi_{2}\right)$) such that, for each operator A on E,

$$
\operatorname{Tr}(A)=\varepsilon \int_{\mathcal{O}\left(\xi_{2}\right)} s(A)(\varphi) d \mu_{0}(\varphi)
$$

where $d \mu_{0}(\varphi)$ is the Liouville measure on $\mathcal{O}\left(\xi_{2}\right)$.
Now we consider the unitarily induced representation

$$
\hat{\pi}=\operatorname{Ind}_{M A N}^{G}\left(\sigma \otimes \exp (i \nu) \otimes 1_{N}\right)
$$

where $\nu=<\xi_{1}, \cdot>\in \mathfrak{a}^{*}$. The representation $\hat{\pi}$ belongs to the unitary principal series of G and is usually realized on the space $L^{2}(\bar{N}, E)$ which is the Hilbert space completion of the space of compactly supported smooth functions $\psi: \bar{N} \rightarrow E$ relative to the norm

$$
\|\psi\|^{2}=\int_{\bar{N}}<\psi(y), \psi(y)>_{E} d y
$$

where $d y$ is the Haar measure on \bar{N} normalized as follows. Let $\left(E_{1}, E_{2}, \ldots, E_{n}\right)$ be an orthonormal basis for $\overline{\mathfrak{n}}$ with respect to the scalar product $(Y, Z):=$ $-<Y, \theta(Z)>$. Denote by $\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)$ the coordinates of $Y \in \overline{\mathfrak{n}}$ in this basis and let $d Y=d Y_{1} d Y_{2} \ldots d Y_{n}$ be the Euclidian measure on $\overline{\mathfrak{n}}$. The exponential map exp is a diffeomorphism from $\overline{\mathfrak{n}}$ onto \bar{N} and we set $d y=\log ^{*}(d Y)$ where $\log =\exp ^{-1}$. For $g \in G$ the action of the operator $\hat{\pi}(g)$ is given by (see [24], [28])

$$
\begin{equation*}
(\hat{\pi}(g) \psi)(y)=e^{-(\rho+i \nu) \log a\left(g^{-1} y\right)} \sigma\left(m\left(g^{-1} y\right)\right)^{-1} \quad \psi\left(\bar{n}\left(g^{-1} y\right)\right) \tag{2.1}
\end{equation*}
$$

where $\rho(H):=\frac{1}{2} \operatorname{Tr}\left(\left.\operatorname{ad} H\right|_{\overline{\mathfrak{n}}}\right)$ for $H \in \mathfrak{a}$ and $h=\bar{n}(h) m(h) a(h) n(h)$ is the decomposition of $h \in N M A N$, so the functions \bar{n}, m, a and n are defined on an open
dense subset of G (see [28]). For our purpose, it is more convenient to realize $\hat{\pi}$ on the Hilbert space $L^{2}(\overline{\mathfrak{n}}, E)$ defined as the completion of the space $C_{0}(\overline{\mathfrak{n}}, E)$ of compactly supported smooth functions $\phi: \overline{\mathfrak{n}} \rightarrow E$ with respect to the norm

$$
\|\phi\|^{2}=\int_{\overline{\mathfrak{n}}}<\phi(Y), \phi(Y)>_{E} d Y .
$$

To this end, we use the isometry B from $L^{2}(\overline{\mathfrak{n}}, E)$ to $L^{2}(\bar{N}, E)$ defined by $B(\phi)$ $(\exp Y)=\phi(Y)$ and we put $\pi(g)=B^{-1} \hat{\pi}(g) B$ for $g \in G$. We immediately obtain, for $g \in G$

$$
\begin{equation*}
(\hat{\pi}(g) \phi)(Y)=e^{-(\rho+i \nu) \log a\left(g^{-1} \exp Y\right)} \sigma\left(m\left(g^{-1} \exp Y\right)\right)^{-1} \quad \phi\left(\log \bar{n}\left(g^{-1} \exp Y\right)\right) . \tag{2.2}
\end{equation*}
$$

3. Dequantization of the derived representation

In this section, we first give an explicit formula for the differential $d \pi$ of the representation π of G. Then we dequantize $d \pi$ by means of the Berezin-Weyl calculus on $\overline{\mathfrak{n}} \times \overline{\mathfrak{n}} \times \mathcal{O}\left(\xi_{2}\right)$. For $X \in \overline{\mathfrak{n}}$ we denote by X^{+}the right invariant vector field on \bar{N} generated by X, that is, $X^{+}(y)=\left.\frac{d}{d t}(\exp t X) y\right|_{t=0}$ for $y \in \bar{N}$.

Lemma 3.1.

1) For $X \in \overline{\mathfrak{n}}$ and $Y \in \overline{\mathfrak{n}}$, we have

$$
d \log (\exp Y)\left(X^{+}(\exp Y)\right)=\frac{\operatorname{ad} Y}{e^{\text {ad } Y}-1}(X)
$$

2) Let $p_{\mathfrak{a}}, p_{\mathfrak{m}}$ and $p_{\overline{\mathfrak{n}}}$ be the projections of \mathfrak{g} onto \mathfrak{a}, \mathfrak{m} and $\overline{\mathfrak{n}}$ associated with the direct decomposition $\mathfrak{g}=\mathfrak{a} \oplus \mathfrak{m} \oplus \mathfrak{n} \oplus \overline{\mathfrak{n}}$. For $X \in \mathfrak{g}$ and $y \in \bar{N}$, we have

$$
\begin{aligned}
\left.\frac{d}{d t} a(\exp (t X) y)\right|_{t=0} & =p_{\mathfrak{a}}\left(\operatorname{Ad}\left(y^{-1}\right) X\right) \\
\left.\frac{d}{d t} m(\exp (t X) y)\right|_{t=0} & =p_{\mathfrak{m}}\left(\operatorname{Ad}\left(y^{-1}\right) X\right) \\
\left.\frac{d}{d t} \bar{n}(\exp (t X) y)\right|_{t=0} & =\left(\operatorname{Ad}(y) p_{\overline{\mathfrak{n}}}\left(\operatorname{Ad}\left(y^{-1}\right) X\right)\right)^{+}(y)
\end{aligned}
$$

Proof. 1) is an immediate consequence of the well-known expression for the derivative of the exponential map (see [17], for instance).
To prove 2), we consider the diffeomorphism $\mu: \bar{N} \times M \times A \times N \rightarrow \bar{N} M A N$ defined by $\mu(y, m, a, n)=$ yman. We have, for $y \in \bar{N}, Y \in \overline{\mathfrak{n}}, U \in \mathfrak{m}, H \in \mathfrak{a}$ and $Z \in \mathfrak{n}$:

$$
\begin{aligned}
d \mu(y, e, e, e)\left(Y^{+}(y), U, H, Z\right) & =\left.\frac{d}{d t} \exp (t Y) y \exp (t U) \exp (t H) \exp (t Z)\right|_{t=0} \\
& =(Y+\operatorname{Ad} y(U+H+Z))^{+}(y)
\end{aligned}
$$

Now, let $X \in \mathfrak{g}$. We write $\operatorname{Ad} y^{-1} X=Y_{0}+U+H+Z$ where $Y_{0} \in \overline{\mathfrak{n}}, U \in \mathfrak{m}$, $H \in \mathfrak{a}$ and $Z \in \mathfrak{n}$. Then the previous equality implies that $d \bar{n}(y)\left(X^{+}(y)\right)=$
$\left(\operatorname{Ad}(y) Y_{0}\right)^{+}(y)$. This proves the last equality of 2). The other equalities are proved similarly.

From Lemma 3.1 we deduce immediately:
Proposition 3.2. For $X \in \mathfrak{g}$ we have

$$
\begin{align*}
(d \pi(X) \phi)(Y) & =(\rho+i \nu)\left(p_{\mathfrak{a}}\left(\operatorname{Ad}\left(y^{-1}\right) X\right)\right) \phi(y) \\
& +d \sigma\left(p_{\mathfrak{m}}\left(\operatorname{Ad}\left(y^{-1}\right) X\right)\right) \phi(Y) \tag{3.1}\\
& -d \phi(Y)\left(\frac{\operatorname{ad} Y}{e^{\operatorname{ad} Y}-1} \operatorname{Ad}(y) p_{\overline{\mathfrak{n}}}\left(\operatorname{Ad}\left(y^{-1}\right) X\right)\right)
\end{align*}
$$

where $\phi \in C_{0}(\overline{\mathfrak{n}}, E), Y \in \overline{\mathfrak{n}}$ and $y=\exp Y$.
Now we introduce the Berezin-Weyl calculus on $\overline{\mathfrak{n}} \times \overline{\mathfrak{n}} \times \mathcal{O}\left(\xi_{2}\right)$. We say that a complex-valued smooth function $f:(Y, Z, \varphi) \rightarrow f(Y, Z, \varphi)$ is a symbol on $\overline{\mathfrak{n}} \times \overline{\mathfrak{n}} \times \mathcal{O}\left(\xi_{2}\right)$ if for each $(Y, Z) \in \overline{\mathfrak{n}} \times \overline{\mathfrak{n}}$ the function $\varphi \rightarrow f(Y, Z, \varphi)$ is the symbol in the Berezin calculus on $\mathcal{O}\left(\xi_{2}\right)$ of an operator on E denoted by $\hat{f}(Y, Z)$. A symbol f on $\overline{\mathfrak{n}} \times \overline{\mathfrak{n}} \times \mathcal{O}\left(\xi_{2}\right)$ is called an S-symbol if the function \hat{f} belongs to the Schwartz space of rapidly decreasing smooth functions on $\overline{\mathfrak{n}} \times \overline{\mathfrak{n}}$ with values in $\operatorname{End}(E)$. Here we consider the Weyl calculus for $\operatorname{End}(E)$-valued functions. This is a slight refinement of the usual Weyl calculus for complex-valued functions [15], [19], [20]. For any S-symbol on $\overline{\mathfrak{n}} \times \overline{\mathfrak{n}} \times \mathcal{O}\left(\xi_{2}\right)$ we define an operator $\mathcal{W}(f)$ on the Hilbert space $L^{2}(\overline{\mathfrak{n}}, E)$ by

$$
\begin{equation*}
(\mathcal{W}(f) \phi)(Y)=(2 \pi)^{-n} \int_{\bar{n} \times \bar{n}} e^{i(T, Z)} \hat{f}\left(Y+\frac{1}{2} T, Z\right) \phi(Y+T) d T d Z \tag{3.2}
\end{equation*}
$$

for $\phi \in C_{0}(\overline{\mathfrak{n}}, E)$.
In fact the Weyl calculus can be extended to much larger classes of symbols (see for instance [20]). Here we only consider a class of polynomial symbols. We say that a symbol f on $\overline{\mathfrak{n}} \times \overline{\mathfrak{n}} \times \mathcal{O}\left(\xi_{2}\right)$ is a P-symbol if the function $\hat{f}(Y, Z)$ is polynomial in Z. Let f be the P-symbol defined by $f(Y, Z, \varphi)=u(Y) Z^{\alpha}$ where $u \in C^{\infty}(\overline{\mathfrak{n}}, E)$ and $Z^{\alpha}:=Z^{\alpha_{1}} Z^{\alpha_{2}} \cdots Z^{\alpha_{n}}$ for each multi-index $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$. Then

$$
\begin{equation*}
(\mathcal{W}(f) \phi)(Y)=\left.\left(i \frac{\partial}{\partial Z}\right)^{\alpha}\left(u\left(Y+\frac{1}{2} Z\right) \phi(Y+Z)\right)\right|_{Z=0} \tag{3.3}
\end{equation*}
$$

(see [27]). In particular, if $f(Y, Z, \varphi)=u(Y)$ then

$$
\begin{equation*}
(\mathcal{W}(f) \phi)(Y)=u(Y) \phi(Y) \tag{3.4}
\end{equation*}
$$

and if $f(Y, Z, \varphi)=u(Y) Z_{k}$ then

$$
\begin{equation*}
(\mathcal{W}(f) \phi)(Y)=i\left(\frac{1}{2} \partial_{k} u(Y) \phi(Y)+u(Y) \partial_{k} \phi(Y)\right) \tag{3.5}
\end{equation*}
$$

where ∂_{k} denotes the partial derivative with respect to the variable Y_{k}.

The correspondence $f \rightarrow \mathcal{W}(f)$ is called the Berezin-Weyl calculus on $\overline{\mathfrak{n}} \times \overline{\mathfrak{n}} \times$ $\mathcal{O}\left(\xi_{2}\right)$. In order to dequantize the derived representation $d \pi$, that is, to calculate the Berezin-Weyl symbol of the operators $d \pi(X)(X \in \mathfrak{g})$, we need the following lemma. The trace of an endomorphism u of $\overline{\mathfrak{n}}$ is denoted by $\operatorname{Tr}_{\overline{\mathfrak{n}}} u$.

Lemma 3.3. For $X \in \mathfrak{g}$ let $c_{X}: \overline{\mathfrak{n}} \rightarrow \overline{\mathfrak{n}}$ be the map defined by

$$
c_{X}(Y)=s(\operatorname{ad} Y) p_{\overline{\mathfrak{n}}}\left(\operatorname{Ad}\left(y^{-1}\right) X\right)
$$

where s is the function defined by $s(z)=\frac{z e^{z}}{e^{z}-1}$ for $z \neq 0$ and $s(0)=1$. Then we have

$$
\begin{equation*}
\operatorname{Tr}_{\overline{\mathfrak{n}}} d c_{X}(Y)=-2 \rho\left(p_{\mathfrak{a}}\left(\operatorname{Ad}\left(y^{-1}\right) X\right)\right) . \tag{3.6}
\end{equation*}
$$

Proof. Let $s(z)=\sum_{k \geq 0} a_{k} z^{k}$ be the power-series expansion of the function s. Note that for $Y \in \overline{\mathfrak{n}}$ the sum $s(\operatorname{ad} Y)=\sum_{k \geq 0} a_{k}(\operatorname{ad} Y)^{k}$ is finite since ad Y is a nilpotent endomorphism of $\overline{\mathfrak{n}}$. We have, for \bar{Y} and Z in $\overline{\mathfrak{n}}$

$$
\begin{align*}
d c_{X}(Y)= & \left.\frac{d}{d t} s(\operatorname{ad}(Y+t Z))\right|_{t=0} p_{\overline{\mathfrak{n}}}\left(\operatorname{Ad}\left(y^{-1}\right) X\right)+ \\
& s(\operatorname{ad} Y) p_{\overline{\mathfrak{n}}}\left(\left.\frac{d}{d t} \operatorname{Ad}(\exp (-Y-t Z)) X\right|_{t=0}\right) . \tag{3.7}
\end{align*}
$$

Now

$$
\begin{aligned}
\left.\frac{d}{d t} s(\operatorname{ad}(Y+t Z))\right|_{t=0} & =\left.\sum_{k \geq 0} a_{k} \frac{d}{d t}(\operatorname{ad} Y+t \operatorname{ad} Z)^{k}\right|_{t=0} \\
& =\sum_{k \geq 0} a_{k}\left(\sum_{r=0}^{k-1}(\operatorname{ad} Y)^{r} \operatorname{ad} Z(\operatorname{ad} Y)^{k-r-1}\right)
\end{aligned}
$$

Then, since the endomorphism of $\overline{\mathfrak{n}}$ defined by

$$
\begin{aligned}
& Z \rightarrow \quad(\operatorname{ad} Y)^{r} \operatorname{ad} Z(\operatorname{ad} Y)^{k-r-1} p_{\overline{\mathfrak{n}}}\left(\operatorname{Ad}\left(y^{-1}\right) X\right) \\
&=-(\operatorname{ad} Y)^{r} \operatorname{ad}\left((\operatorname{ad} Y)^{k-r-1} p_{\overline{\mathfrak{n}}}\left(\operatorname{Ad}\left(y^{-1}\right) X\right)\right)(Z)
\end{aligned}
$$

is clearly nilpotent, the endomorphism of $\overline{\mathfrak{n}}$ given by

$$
\left.Z \rightarrow \frac{d}{d t} s(\operatorname{ad}(Y+t Z))\right|_{t=0} p_{\overline{\mathfrak{n}}}\left(\operatorname{Ad}\left(y^{-1}\right) X\right)
$$

has trace zero. Now we also have

$$
\begin{aligned}
\left.\frac{d}{d t} \operatorname{Ad}(\exp (-Y-t Z)) X\right|_{t=0} & =\left.\frac{d}{d t} \operatorname{Ad}(\exp (-Y) \exp (Y+t Z))^{-1} \operatorname{Ad}(\exp (-Y)) X\right|_{t=0} \\
& =-\operatorname{ad}\left(\frac{1-e^{-\operatorname{ad} Y}}{\operatorname{ad} Y} Z\right) \operatorname{Ad}(\exp Y)^{-1} X \\
& =\operatorname{ad}\left(\operatorname{Ad}(\exp Y)^{-1} X\right)\left(\frac{1-e^{-\operatorname{ad} Y}}{\operatorname{ad} Y}\right) Z
\end{aligned}
$$

Then the trace of the endomorphism of $\overline{\mathfrak{n}}$ defined by

$$
Z \rightarrow s(\operatorname{ad} Y) p_{\bar{n}}\left(\left.\frac{d}{d t} \operatorname{Ad}(\exp (-Y-t Z)) X\right|_{t=0}\right)
$$

is

$$
\begin{aligned}
& \operatorname{Tr}_{\bar{n}}\left(s(\operatorname{ad} Y) p_{\overline{\mathfrak{n}}} \circ \operatorname{ad}\left(\operatorname{Ad}(\exp Y)^{-1} X\right) \frac{1-e^{-\operatorname{ad} Y}}{\operatorname{ad} Y}\right) \\
= & \operatorname{Tr}_{\bar{n}}\left(\frac{1-e^{-\operatorname{ad} Y}}{\operatorname{ad} Y} s(\operatorname{ad} Y) p_{\bar{n}} \circ \operatorname{ad}\left(\operatorname{Ad}(\exp Y)^{-1} X\right)\right) \\
= & \operatorname{Tr}_{\bar{n}}\left(\frac{1-e^{-\operatorname{ad} Y}}{\operatorname{ad} Y} \frac{\operatorname{ad} Y}{e^{\operatorname{ad} Y}-1} \exp (\operatorname{ad} Y) p_{\overline{\mathfrak{n}}} \circ \operatorname{ad}\left(\operatorname{Ad}(\exp Y)^{-1} X\right)\right) \\
= & \operatorname{Tr}_{\bar{n}}\left(p_{\bar{n}} \circ \operatorname{ad}\left(\operatorname{Ad}(\exp Y)^{-1} X\right)\right) .
\end{aligned}
$$

Thus the lemma will be proved if we can show that, for each $X \in \mathfrak{g}$,

$$
\operatorname{Tr}_{\bar{n}}\left(p_{\overline{\mathfrak{n}}} \circ \operatorname{ad} X\right)=-2 \rho\left(p_{\mathfrak{a}}(X)\right) .
$$

If $X \in \overline{\mathfrak{n}}$ then $p_{\overline{\mathfrak{n}}} \circ \operatorname{ad} X=\operatorname{ad} X$ is a nilpotent endomorphism of $\overline{\mathfrak{n}}$. Thus $\operatorname{Tr}_{\overline{\mathfrak{n}}}\left(p_{\overline{\mathfrak{n}}} \circ\right.$ ad $\left.X\right)=0$. If $X \in \mathfrak{n}$ then, noting that $\left[\mathfrak{n}, \mathfrak{g}_{\lambda}\right] \subset \mathfrak{a}+\sum_{\mu>\lambda} \mathfrak{g}_{\mu}$ for each $\lambda<0$, we also obtain that $\operatorname{Tr}_{\bar{n}}\left(p_{\overline{\mathfrak{n}}} \circ \operatorname{ad} X\right)=0$. If $X \in \mathfrak{m}$ then $p_{\bar{n}} \circ \operatorname{ad} X=\operatorname{ad} X$ is an endomorphism of $\overline{\mathfrak{n}}$ which is skew-symmetric with respect to (\cdot, \cdot) [17]. Thus $\operatorname{Tr}_{\bar{n}}\left(p_{\bar{n}} \circ\right.$ ad $\left.X\right)=0$. Finally, if $X \in \mathfrak{a}$ then $\operatorname{Tr}_{\bar{n}}\left(p_{\bar{n}} \circ\right.$ ad $\left.X\right)=\operatorname{Tr}_{\bar{n}}(\operatorname{ad} X)=$ $-2 \rho(X)$. This ends the proof of the lemma.

Proposition 3.4. For each $X \in \mathfrak{g}$, the Berezin-Weyl symbol of the operator $-i d \pi(X)$ is the P-symbol f_{X} on $\overline{\mathfrak{n}} \times \overline{\mathfrak{n}} \times \mathcal{O}\left(\xi_{2}\right)$ given by

$$
\begin{equation*}
f_{X}(Y, Z, \varphi)=\nu\left(p_{\mathfrak{a}}\left(\operatorname{Ad}\left(y^{-1}\right) X\right)\right)+<\varphi, p_{\mathfrak{m}}\left(\operatorname{Ad}\left(y^{-1}\right) X\right)>+\left(c_{X}(Y), Z\right) \tag{3.8}
\end{equation*}
$$

where $y=\exp Y$.
Proof. If we put $c_{X}^{k}(Y)=\left(c_{X}(Y), E_{k}\right)$ for $k=1, \ldots, n$ then we can write (3.1) as

$$
\begin{align*}
(-i d \pi(X) \phi)(Y)= & (-i \rho+\nu)\left(p_{\mathfrak{a}}\left(\operatorname{Ad}\left(y^{-1}\right) X\right)\right) \phi(y) \\
& -i d \sigma\left(p_{\mathfrak{m}}\left(\operatorname{Ad}\left(y^{-1}\right) X\right)\right) \phi(Y) \tag{3.9}\\
& +i \sum_{k=1}^{n}\left(\partial_{k} \phi\right)(Y) c_{X}^{k}(Y) .
\end{align*}
$$

Using Proposition 2.14) and the properties (3.3) and (3.4) of the Weyl calculus, we see that the symbol of $-i d \pi(X)$ is

$$
\begin{aligned}
f_{X}(Y, Z, \varphi)= & (-i \rho+\nu)\left(p_{\mathfrak{a}}\left(\operatorname{Ad}\left(y^{-1}\right) X\right)\right)+<\varphi, p_{\mathfrak{m}}\left(\operatorname{Ad}\left(y^{-1}\right) X\right)> \\
& +\sum_{k=1}^{n} c_{X}^{k}(Y) Z_{k}-\frac{i}{2} \sum_{k=1}^{n} \partial_{k} c_{X}^{k}(Y) .
\end{aligned}
$$

By Lemma 3.3

$$
-\frac{i}{2} \sum_{k=1}^{n} \partial_{k} c_{X}^{k}(Y)=-\frac{i}{2} \operatorname{Tr}_{\tilde{n}}\left(d c_{X}(Y)\right)=i \rho\left(p_{\mathfrak{a}}\left(\operatorname{Ad}\left(y^{-1}\right) X\right)\right) .
$$

The result follows.

4. Adapted Weyl correspondence

In this section, we show that the dequantization procedure introduced in Section 3 allows us to obtain an explicit diffeomorphism from $\overline{\mathfrak{n}}^{2} \times \mathcal{O}\left(\xi_{2}\right)$ onto the dense open set $\tilde{\mathcal{O}}\left(\xi_{0}\right):=\operatorname{Ad}(\bar{N} M A N) \xi_{0}$ of $\mathcal{O}\left(\xi_{0}\right)$. This diffeomorphism is a symplectomorphism for the natural symplectic structures. Using this symplectomorphism, we then construct an adapted Weyl correspondence on $\mathcal{O}\left(\xi_{0}\right)$. We retain the notation of the previous sections.

Recall that f_{X} denotes the Berezin-Weyl symbol of the operator $-i d \pi(X)$ for $X \in \mathfrak{g}$. Since the map $X \rightarrow f_{X}(T, S, \varphi)$ is linear there exists a map Ψ from $\overline{\mathfrak{n}}^{2} \times \mathcal{O}\left(\xi_{2}\right)$ to \mathfrak{g}^{*} such that

$$
f_{X}(Y, Z, \varphi)=<\Psi(Y, Z, \varphi), X>
$$

for each $X \in \mathfrak{g}$ and each $(Y, Z, \varphi) \in \overline{\mathfrak{n}} \times \overline{\mathfrak{n}} \times \mathcal{O}\left(\xi_{2}\right)$. From Proposition 3.4 we can deduce a precise expression for Ψ.

Proposition 4.1. For $(Y, Z, \varphi) \in \overline{\mathfrak{n}} \times \overline{\mathfrak{n}} \times \mathcal{O}\left(\xi_{2}\right)$ we have

$$
\begin{equation*}
\Psi(Y, Z, \varphi)=\operatorname{Ad}(\exp Y)\left(\xi_{1}+\varphi+p_{\mathfrak{n}}\left(\frac{\operatorname{ad} Y}{e^{\operatorname{ad} Y}-1} \theta(Z)\right)\right) \tag{4.1}
\end{equation*}
$$

Proof. Recall that

$$
f_{X}(Y, Z, \varphi)=\nu\left(p_{\overline{\mathfrak{a}}}\left(\operatorname{Ad}\left(y^{-1}\right) X\right)\right)+<\varphi, p_{\mathfrak{m}}\left(\operatorname{Ad}\left(y^{-1}\right) X\right)>+<c_{X}(Y), \theta(Z)>
$$

where $y=\exp Y$. We have

$$
\begin{aligned}
<c_{X}(Y), \theta(Z)> & <\frac{\operatorname{ad} Y}{e^{\text {ad } Y}-1} \operatorname{Ad}(y) p_{\overline{\mathfrak{n}}}\left(\operatorname{Ad}\left(y^{-1}\right) X\right), \theta(Z)> \\
= & <p_{\overline{\mathfrak{n}}}\left(\operatorname{Ad}\left(y^{-1}\right) X\right), \frac{\operatorname{ad} Y}{e^{\text {ad } Y}-1} \theta(Z)> \\
= & <p_{\overline{\mathfrak{n}}}\left(\operatorname{Ad}\left(y^{-1}\right) X\right), p_{\mathfrak{n}}\left(\frac{\text { dd } Y}{e^{\text {ad } Y}-1} \theta(Z)\right)> \\
= & <\operatorname{Ad}\left(y^{-1}\right) X, p_{\mathfrak{n}}\left(\frac{\operatorname{ad} Y}{e^{\text {ad } Y}-1} \theta(Z)\right)> \\
= & <X, \operatorname{Ad}(y) p_{\mathfrak{n}}\left(\frac{\operatorname{ad} Y}{e^{\text {ad } Y}-1} \theta(Z)\right)>
\end{aligned}
$$

Here we have used that $\langle\mathfrak{a}+\mathfrak{m}, \mathfrak{n}+\overline{\mathfrak{n}}\rangle=(0),\langle\mathfrak{n}, \mathfrak{n}\rangle=(0)$ and $\langle\overline{\mathfrak{n}}, \overline{\mathfrak{n}}\rangle=(0)$.
Similarly, we have

$$
\begin{aligned}
\nu\left(p_{\mathfrak{a}}\left(\operatorname{Ad}\left(y^{-1}\right) X\right)\right) & =<\xi_{1}, p_{\mathfrak{a}}\left(\operatorname{Ad}\left(y^{-1}\right) X\right)> \\
& =<\xi_{1}, \operatorname{Ad}\left(y^{-1}\right) X>=<\operatorname{Ad}(y) \xi_{1}, X>
\end{aligned}
$$

and

$$
<\varphi, p_{\mathfrak{m}}\left(\operatorname{Ad}\left(y^{-1}\right) X\right)>=<\varphi, \operatorname{Ad}\left(y^{-1}\right) X>=<\operatorname{Ad}(y) \varphi, X>.
$$

The result then follows.
An element $V \in \mathfrak{a}+\mathfrak{m}$ is called regular if $\operatorname{Det}\left(\left.\operatorname{ad} V\right|_{\mathfrak{n}}\right) \neq 0$. If $V \in \mathfrak{a}$ then the condition that V is regular is just that $\lambda(V) \neq 0$ for each $\lambda>0$.

Lemma 4.2.

1) If V_{1} is a regular element of \mathfrak{a} and $V_{2} \in \mathfrak{m}$ then $V=V_{1}+V_{2}$ is regular.
2) Let $G\left(\xi_{0}\right)$ be the stabilizer of ξ_{0} in G. Then $G\left(\xi_{0}\right)=A M\left(\xi_{2}\right)$ where $M\left(\xi_{2}\right)$ is the stabilizer of ξ_{2} in M.

Proof. 1) For each $\lambda>0$, we have $(\operatorname{ad} V)\left(\mathfrak{g}_{\lambda}\right) \subset \mathfrak{g}_{\lambda}$. Set $v_{\lambda}=\left.(\operatorname{ad} V)\right|_{\mathfrak{g}_{\lambda}}$. Then, for each $X \in \mathfrak{g}_{\lambda}$, we have $v_{\lambda}(X)=\lambda\left(V_{1}\right) X+\left(\operatorname{ad} V_{2}\right)(X)$. Thus, since ad V_{2} is skew-symmetric with respect to $(X, Y)=<X, \theta(Y)>$, the eigenvalues of v_{λ} are of the form $\lambda\left(V_{1}\right)+i r$ where $\lambda\left(V_{1}\right) \in \mathbb{R} \backslash(0)$ and $r \in \mathbb{R}$. Then $\operatorname{Det}\left(v_{\lambda}\right) \neq 0$ for each $\lambda>0$. Hence $\operatorname{Det}\left(\left.\operatorname{ad} V\right|_{\mathfrak{n}}\right) \neq 0$.
2) We argue as in [24], p. 126, Remark (2). Let \hat{M} be the normalizer of \mathfrak{a} in K. Let $g \in G\left(\xi_{0}\right)$. We can write $g=k \exp X$ with $k \in K, X \in \mathfrak{p}$. Applying θ, we see that $k \exp (-X) \in \hat{M}$. Then $\exp (2 X) \in \hat{M}$ i.e. $\operatorname{Ad}(\exp (2 X))(\mathfrak{a}) \subset \mathfrak{a}$. Since $\operatorname{Ad}(\exp (2 X))$ is positive definite on \mathfrak{g}, its Hermitian logarithm $\operatorname{ad}(2 X)$ is a polynomial in $\operatorname{Ad}(\exp (2 X))$. Thus $\operatorname{ad}(2 X)(\mathfrak{a}) \subset \mathfrak{a}$ and we easily verify that $X \in \mathfrak{a}$. Then $\operatorname{Ad}(k)\left(\xi_{0}\right)=\xi_{0}$ or, equivalently, $\operatorname{Ad}(k)\left(\xi_{1}+\xi_{2}\right)=\xi_{1}+\xi_{2}$. Since $\operatorname{Ad}(k) \xi_{1} \in \mathfrak{k}$ and $\operatorname{Ad}(k) \xi_{2} \in \mathfrak{p}$, this gives $\operatorname{Ad}(k) \xi_{1}=\xi_{1}$ and $\operatorname{Ad}(k) \xi_{2}=\xi_{2}$. But $\operatorname{Ad}(k) \xi_{1}=\xi_{1}$ implies that $\operatorname{Ad}(k) \mathfrak{a} \subset \mathfrak{a}$. In other words, k lies in the normalizer \hat{M} of \mathfrak{a} in K. Let $C\left(\xi_{1}\right)$ the Weyl chamber of \mathfrak{a} containing ξ_{1}. We have $\operatorname{Ad}(k) C\left(\xi_{1}\right)=C\left(\xi_{1}\right)$. Since the Weyl group \hat{M} / M acts simply transitively on the set of the Weyl chambers of \mathfrak{a}, we obtain $k \in M$. Hence $k \in M\left(\xi_{2}\right)$.

The following proposition can be found in [14] (see also [4]). Here we present an elementary proof.

Proposition 4.3. The map Ψ_{0} defined by $\Psi_{0}(y, Z, \varphi)=\operatorname{Ad}(y)\left(\xi_{1}+\varphi+\theta(Z)\right)$ is a diffeomorphism from $\bar{N} \times \overline{\mathfrak{n}} \times \mathcal{O}\left(\xi_{2}\right)$ onto $\tilde{\mathcal{O}}\left(\xi_{0}\right)$.

Proof. Recall that if $V \in \mathfrak{a}+\mathfrak{m}$ is regular then the map $Y \rightarrow \operatorname{Ad}(\exp Y) V-V$ is a diffeomorphism of $\mathfrak{n}[28]$. Let $(y, Z, \varphi) \in \bar{N} \times \overline{\mathfrak{n}} \times \mathcal{O}\left(\xi_{2}\right)$. Write $\varphi=\operatorname{Ad}(m) \xi_{2}$ with $m \in M$. Since the element $\xi_{1}+\varphi=\operatorname{Ad}(m) \xi_{0}$ is regular, there exists an element $z \in N$ such that $\xi_{1}+\varphi+\theta(Z)=\operatorname{Ad}(z m) \xi_{0}$. Then $\Psi_{0}(y, Z, \varphi)=\operatorname{Ad}(y z m)\left(\xi_{0}\right)$. Thus Ψ_{0} takes values in $\tilde{\mathcal{O}}\left(\xi_{0}\right)$. By the same arguments, we show that Ψ_{0} is onto. Now, suppose that $\Psi_{0}(y, Z, \varphi)=\Psi_{0}\left(y^{\prime}, Z^{\prime}, \varphi^{\prime}\right)$. As before, we write $\Psi_{0}(y, Z, \varphi)=$ $\operatorname{Ad}(y z m)\left(\xi_{0}\right)$ and $\Psi_{0}\left(y^{\prime}, Z^{\prime}, \varphi^{\prime}\right)=\operatorname{Ad}\left(y^{\prime} z^{\prime} m^{\prime}\right)\left(\xi_{0}\right)$ with $m \in M, m^{\prime} \in M, z \in N$ and $z^{\prime} \in N$. Then $\left(z^{\prime} m^{\prime}\right)^{-1}\left(y^{\prime-1} y\right) z m$ lies in $G\left(\xi_{0}\right)$. By Lemma 4.2., there exists $m_{0} \in M\left(\xi_{2}\right)$ and $a \in A$ such that $\left(z^{\prime} m^{\prime}\right)^{-1}\left(y^{\prime-1} y\right) z m=m_{0} a$. By unicity in the $\bar{N} M A N$-decomposition, we have $y^{\prime-1} y=e$ and $m=m^{\prime} m_{0}$. Then $y=y^{\prime}, \varphi=\varphi^{\prime}$ and $Z=Z^{\prime}$. This shows that Ψ_{0} is injective.

Now we show that Ψ_{0} is regular. Let $Y \in \overline{\mathfrak{n}}, T \in \overline{\mathfrak{n}}$ and $\phi \in \mathfrak{m}$ such that

$$
d \Psi_{0}(y, Z, \varphi)\left(Y^{+}(y), T, \phi^{+}(\varphi)\right)=0
$$

Since

$$
\begin{aligned}
d \Psi_{0}(y, Z, \varphi)\left(Y^{+}(y), T, \phi^{+}(\varphi)\right) & =\left.\frac{d}{d t}\left(\operatorname{Ad}(\exp (t Y) y)\left(\xi_{1}+\exp (t \phi) \varphi+\theta(Z+t T)\right)\right)\right|_{t=0} \\
& =\operatorname{Ad}(y)\left([\phi, \varphi]+\theta(T)+\left[Y, \Psi_{0}(y, Z, \varphi)\right]\right)
\end{aligned}
$$

we have

$$
\begin{equation*}
[\phi, \varphi]+\theta(T)+\left[\operatorname{Ad}\left(y^{-1}\right) Y, \xi_{1}+\varphi+\theta(Z)\right]=0 \tag{4.2}
\end{equation*}
$$

Since $[\mathfrak{n}, \mathfrak{a}+\mathfrak{m}+\mathfrak{n}] \subset \mathfrak{a}+\mathfrak{n}+\overline{\mathfrak{n}}$, we get $\phi^{+}(\varphi)=[\phi, \varphi]=0$. Write $\varphi=\operatorname{Ad}(m) \xi_{2}$ with $m \in M$ and set $T^{\prime}=\operatorname{Ad}\left(m^{-1}\right) T \in \mathfrak{m}, Y^{\prime}=\operatorname{Ad}\left(m^{-1}\right) \operatorname{Ad}\left(y^{-1}\right) Y \in \overline{\mathfrak{n}}$ and $Z^{\prime}=\operatorname{Ad}\left(m^{-1}\right) Z \in \overline{\mathfrak{n}}$. Then (4.2) can be rewritten as

$$
\begin{equation*}
\theta\left(T^{\prime}\right)+\left[Y^{\prime}, \xi_{0}\right]+\left[Y^{\prime}, \theta\left(Z^{\prime}\right)\right]=0 \tag{4.3}
\end{equation*}
$$

If $Y^{\prime} \neq 0$ then we can write $Y^{\prime}=Y_{\lambda}^{\prime}+\sum_{\mu>\lambda} Y_{\mu}^{\prime}$ where $Y_{\lambda}^{\prime} \in \mathfrak{g}_{\lambda} \backslash(0)$ and $Y_{\mu}^{\prime} \in \mathfrak{g}_{\mu}$ for each $\mu>\lambda$. But the first member of (4.3) lies in $\mathfrak{a}+\mathfrak{g}_{\lambda}+\sum_{\mu>\lambda} \mathfrak{g}_{\mu}$ (direct sum) and its component on \mathfrak{g}_{λ} is $\left[Y_{\lambda}^{\prime}, \xi_{0}\right]=-\lambda\left(\xi_{0}\right) Y_{\lambda}^{\prime}$. This is a contradiction because ξ_{0} is regular. Then $Y=0$. Hence $T=0$.

Lemma 4.4. Let $Y \in \overline{\mathfrak{n}}$. Then the map

$$
\eta: \quad Z \rightarrow p_{\mathfrak{n}}\left(\frac{\operatorname{ad} Y}{e^{\operatorname{ad} Y}-1}(Z)\right)
$$

is a diffeomorphism of \mathfrak{n}.
Proof. By using the decomposition $\mathfrak{g}=\mathfrak{a} \oplus \mathfrak{m} \oplus \mathfrak{n} \oplus \overline{\mathfrak{n}}$, we easily show that the inverse map of η is $Z \rightarrow p_{\mathfrak{n}}\left(\frac{e^{\text {ad } Y}-1}{\operatorname{ad} Y}(Z)\right)$.

Let ω_{0} and ω_{2} be the Kirillov 2-forms on $\mathcal{O}\left(\xi_{0}\right)$ and $\mathcal{O}\left(\xi_{2}\right)$, respectively. Denote by $\{\cdot, \cdot\}_{0}$ and $\{\cdot, \cdot\}_{2}$ the Poisson brackets associated with ω_{0} and ω_{2}. We equip $\overline{\mathfrak{n}}^{2}$ with the symplectic form $d Y \wedge d Z:=\sum_{k=1}^{n} d Y_{k} \wedge d Z_{k}$. The corresponding Poisson bracket on $C^{\infty}\left(\overline{\mathfrak{n}}^{2}\right)$ is

$$
\begin{equation*}
\{f, g\}=\sum_{k=1}^{n}\left(\frac{\partial f}{\partial Y_{k}} \frac{\partial g}{\partial Z_{k}}-\frac{\partial f}{\partial Z_{k}} \frac{\partial g}{\partial Y_{k}}\right) \tag{4.4}
\end{equation*}
$$

We form the symplectic product $\overline{\mathfrak{n}}^{2} \times \mathcal{O}\left(\xi_{2}\right)$. We denote by $\{\cdot, \cdot\}_{1}$ the Poisson bracket associated with the symplectic form $\omega_{1}:=(d T \wedge d S) \otimes \omega_{2}$. Let $u, v \in$ $C^{\infty}\left(\overline{\mathfrak{n}}^{2}\right)$ and $a, b \in C^{\infty}\left(\mathcal{O}\left(\xi_{2}\right)\right)$. Observe that for $f(Y, Z, \varphi)=u(Y, Z) a(\varphi)$ and $g(Y, Z, \varphi)=v(Y, Z) b(\varphi)$ we have

$$
\begin{equation*}
\{f, g\}_{1}=u(Y, Z) v(Y, Z)\{a, b\}_{2}+a(\varphi) b(\varphi)\{u, v\} \tag{4.5}
\end{equation*}
$$

Lemma 4.5. Suppose that f and g are two P-symbols on $\overline{\mathfrak{n}}^{2} \times \mathcal{O}\left(\xi_{2}\right)$ of the form

$$
u(Y)+<v(Y), \varphi>+\sum_{k=1}^{n} w_{k}(Y) Z_{k}
$$

where $u \in C^{\infty}(\overline{\mathfrak{n}}), v \in C^{\infty}(\overline{\mathfrak{n}}, \mathfrak{m})$ and $w_{k} \in C^{\infty}(\overline{\mathfrak{n}})$ for $k=1,2, \ldots, n$. Then

$$
\begin{equation*}
[\mathcal{W}(f), \mathcal{W}(g)]=-i \mathcal{W}\left(\{f, g\}_{1}\right) \tag{4.6}
\end{equation*}
$$

Proof. Direct computation using (3.4), (3.5) and the fact that if $f=\langle v(Y), \varphi\rangle$ then $(W(f) \phi)(Y)=-i d \rho(v(Y)) \phi(Y)$.

Theorem 4.6. The map Ψ introduced in Proposition 4.1 is a symplectomorphism from $\left(\overline{\mathfrak{n}}^{2} \times \mathcal{O}\left(\xi_{2}\right), \omega_{1}\right)$ onto $\left(\tilde{\mathcal{O}}\left(\xi_{0}\right),\left.\omega_{0}\right|_{\tilde{\mathcal{O}}\left(\xi_{0}\right)}\right)$.

Proof. By combining Proposition 4.3 and Lemma 4.4, we see that Ψ is a diffeomorphism from $\overline{\mathfrak{n}}^{2} \times \mathcal{O}\left(\xi_{2}\right)$ onto $\tilde{\mathcal{O}}\left(\xi_{0}\right)$. Recall that for $X \in \mathfrak{g}, \tilde{X}$ denotes the function on $\mathcal{O}\left(\xi_{0}\right)$ defined by $\tilde{X}(\xi)=\langle\xi, X\rangle$. Observe that $f_{X}=\tilde{X} \circ \Psi$.

Let X and Y in \mathfrak{g}. Then by Proposition 3.4 and Lemma 4.5 we have

$$
\left[\mathcal{W}\left(f_{X}\right), \mathcal{W}\left(f_{Y}\right)\right]=-i \mathcal{W}\left(\left\{f_{X}, f_{Y}\right\}_{1}\right)
$$

On the other hand

$$
\left[\mathcal{W}\left(f_{X}\right), \mathcal{W}\left(f_{Y}\right)\right]=[-i d \pi(X),-i d \pi(Y)]=-d \pi([X, Y])=-i \mathcal{W}\left(f_{[X, Y]}\right)
$$

Hence we obtain $f_{[X, Y]}=\left\{f_{X}, f_{Y}\right\}_{1}$. Since $[\tilde{X}, Y]=\{\tilde{X}, \tilde{Y}\}_{0}$ we have finally

$$
\{\tilde{X}, \tilde{Y}\}_{0} \circ \Psi=\{\tilde{X} \circ \Psi, \tilde{Y} \circ \Psi\}_{1}
$$

This implies that Ψ is a symplectomorphism.
In order to construct an adapted Weyl transform on $\mathcal{O}\left(\xi_{0}\right)$ we transfer to $\mathcal{O}\left(\xi_{0}\right)$ the Berezin-Weyl calculus on $\overline{\mathfrak{n}}^{2} \times \mathcal{O}\left(\xi_{2}\right)$. We say that a smooth function f on $\mathcal{O}\left(\xi_{0}\right)$ is a symbol on $\mathcal{O}\left(\xi_{0}\right)$ if $f \circ \Psi$ is a symbol for the Berezin-Weyl calculus on $\overline{\mathfrak{n}}^{2} \times \mathcal{O}\left(\xi_{2}\right)$. We say that f is a P-symbol (or an S-symbol) on $\mathcal{O}\left(\xi_{0}\right)$ if $f \circ \Psi$ is a P-symbol (or an S-symbol) on $\overline{\mathfrak{n}}^{2} \times \mathcal{O}\left(\xi_{2}\right)$.

Theorem 4.7. Let \mathcal{A} be the space of P-symbols on $\mathcal{O}\left(\xi_{0}\right)$ and let \mathcal{B} be the space of differential operators on $\overline{\mathfrak{n}}$ with coefficients in $C^{\infty}(\overline{\mathfrak{n}}, E)$. Then the map $W: \mathcal{A} \rightarrow$ \mathcal{B} that assigns to each $f \in \mathcal{A}$ the operator $\mathcal{W}(f \circ \Psi)$ on $L^{2}(\overline{\mathfrak{n}}, E)$ is an adapted Weyl correspondence in the sense of Definition 1.1.

Proof. Properties (i), (ii) and (iii) of the definition of an adapted Weyl correspondence are clearly satisfied with $D=C_{0}(\overline{\mathfrak{n}}, E)$.

Property (iv) follows from Proposition 2.1 2) and from the similar result for the usual Weyl calculus.
Finally, property (v) is just a reformulation of Proposition 3.4.

5. Comparison with the symbolic calculus of [4].

In this section, we first describe the construction of the adapted Weyl transform on $\mathcal{O}\left(\xi_{0}\right)$ introduced in [4]. We retain the notation of the previous sections. In [4], a symbolic calculus on $\bar{N} \times \overline{\mathfrak{n}} \times \mathcal{O}\left(\xi_{2}\right)$ is defined as follows. A smooth function $f:(y, Z, \varphi) \rightarrow f(y, Z, \phi)$ is said to be a symbol on $\bar{N} \times \overline{\mathfrak{n}} \times \mathcal{O}\left(\xi_{2}\right)$ if for each $(y, Z) \in \bar{N} \times \overline{\mathfrak{n}}$ the function $\phi \rightarrow f(y, Z, \varphi)$ is the symbol in the Berezin calculus on $\mathcal{O}\left(\xi_{2}\right)$ of an operator on E denoted by $\hat{f}(y, Z)$. As in Section 3, we define the notions of S-symbol and P-symbol on $\bar{N} \times \overline{\mathfrak{n}} \times \mathcal{O}\left(\xi_{2}\right)$. We associate with any P-symbol f on $\bar{N} \times \overline{\mathfrak{n}} \times \mathcal{O}\left(\xi_{2}\right)$ the operator $\mathcal{W}_{0}(f)$ on $C_{0}(\bar{N}, E)$ defined by the integral formula

$$
\begin{equation*}
\mathcal{W}_{0}(f)(\psi)(y)=(2 \pi)^{-n} \iint_{\overline{\mathfrak{n}} \times \overline{\mathfrak{n}}} e^{i(T, Z)} \hat{f}(y \exp (T / 2), Z) \psi(y \exp T) d T d Z \tag{5.1}
\end{equation*}
$$

As for the Weyl calculus, one can extend \mathcal{W}_{0} to P-symbols. More precisely, let f be the P-symbol on $\bar{N} \times \overline{\mathfrak{n}} \times \mathcal{O}\left(\xi_{2}\right)$ defined by $f(y, Z, \varphi)=u(y) Z^{\alpha}$ with $u \in C^{\infty}(\bar{N}, E)$. Then we have

$$
\begin{equation*}
\mathcal{W}_{0}(f)(\psi)(y)=\left.\left(i \frac{\partial}{\partial Z}\right)^{\alpha}(u(y \exp (T / 2)) \psi(y \exp T))\right|_{Z=0} . \tag{5.2}
\end{equation*}
$$

In particular, if $f(y, Z, \phi)=u(y)$ then $\mathcal{W}_{0}(f)(\psi)(y)=u(y) \psi(y)$ and if $f(y, Z, \varphi)=$ $(v(y), Z)$ with $v \in C^{\infty}(\bar{N}, E)$ then

$$
\begin{equation*}
\mathcal{W}_{0}(f)(\psi)(y)=i\left(\left.\frac{d}{d t} \sum_{k=1}^{n}\left(E_{k}, v\left(y \exp \frac{t}{2} E_{k}\right)\right)\right|_{t=0} \psi(y)+\frac{d}{d t} \psi\left(\left.y \exp (t v(y))\right|_{t=0}\right)\right. \tag{5.3}
\end{equation*}
$$

Now we say that a smooth function f on $\mathcal{O}\left(\xi_{0}\right)$ is a P-symbol (resp. an S-symbol) on $\mathcal{O}\left(\xi_{0}\right)$ if $f \circ \Psi_{0}$ is a P-symbol (resp. an S-symbol) on $\bar{N} \times \overline{\mathfrak{n}} \times \mathcal{O}\left(\xi_{2}\right)$. For each P-symbol (or S-symbol) f on $\mathcal{O}\left(\xi_{0}\right)$ we set $W_{0}(f)=\mathcal{W}_{0}\left(f \circ \Psi_{0}\right)$. We have shown in [4] that the map W_{0} is then a Weyl correspondence on $\mathcal{O}\left(\xi_{0}\right)$ adapted to the realization $\hat{\pi}$ of the principal series representation (see (2.1)). In particular, we have $d \hat{\pi}(X) \psi=W_{0}(i \tilde{X}) \psi$ for $X \in \mathfrak{g}$ and $\psi \in C_{0}(\bar{N}, E)$ ([4], Proposition 6).

Note that if f is a function on $\mathcal{O}\left(\xi_{0}\right)$ then

$$
\begin{equation*}
(f \circ \Psi)(Y, Z, \varphi)=\left(f \circ \Psi_{0}\right)\left(\exp Y, \theta\left(p_{\mathfrak{n}}\left(\frac{\operatorname{ad} Y}{e^{\operatorname{ad} Y}-1} \theta(Z)\right)\right), \varphi\right) \tag{5.4}
\end{equation*}
$$

Then we see that f is a P-symbol (resp. an S-symbol) for W_{0} if and only f is a P-symbol (resp. an S-symbol) for W. Recall that the unitary operator B from $L^{2}(\overline{\mathfrak{n}}, E)$ to $L^{2}(\bar{N}, E)$ defined by $B(\phi)(\exp Y)=\phi(Y)$ is an intertwining operator between the representations π and $\hat{\pi}$, that is, $B \pi(g)=\hat{\pi}(g) B$ for each $g \in G$. Then, noting that B maps $C_{0}(\overline{\mathfrak{n}}, E)$ onto $C_{0}(\bar{N}, E)$, we have $B d \pi(X)=d \hat{\pi}(X) B$
on $C_{0}(\overline{\mathfrak{n}}, E)$ for each $X \in \mathfrak{g}$. Equivalently, we have $B W(\tilde{X})=W_{0}(\tilde{X}) B$ on $C_{0}(\overline{\mathfrak{n}}, E)$ for each $X \in \mathfrak{g}$. Now, we say that f is a P-symbol of degree ≤ 1 for W_{0} (resp. W) if $f \circ \Psi_{0}$ (resp. $f \circ \Psi$) is a polynomial in the variable Z of degree ≤ 1. It is immediate that f is a P-symbol of degree ≤ 1 for W_{0} if and only if f is a P-symbol of degree ≤ 1 for W. In particular, for each $X \in \mathfrak{g}$, the function \tilde{X} is P-symbol of degree ≤ 1 for W_{0} and W. We will prove that if f is a P-symbol of degree ≤ 1 then the relation $B W(f)=W_{0}(f) B$ holds.

For $Z \in \overline{\mathfrak{n}}$, we denote by Z^{-}the vector field on \bar{N} defined by $Z^{-}(y)$ $=\left.\frac{d}{d t}(y \exp (t Z))\right|_{t=0}$.

Lemma 5.1. Let $U \in C^{\infty}(\overline{\mathfrak{n}}, \overline{\mathfrak{n}})$. Define $u \in C^{\infty}(\overline{\mathfrak{n}}, \bar{N})$ by $u(\exp Y)=\frac{1-e^{-\mathrm{ad} Y}}{\operatorname{ad} Y}$ $U(Y)$. For $Y \in \overline{\mathfrak{n}}$, let γ_{Y} be the endomorphism of $\overline{\mathfrak{n}}$ defined by $\gamma_{Y}(Z)=d u(\exp Y)$ $\left(Z^{-}(\exp Y)\right)$. Then we have

$$
\operatorname{Tr}_{\overline{\mathfrak{n}}}\left(\gamma_{Y}\right)=\operatorname{Tr}_{\bar{n}}(d U(Y))
$$

for each $Y \in \overline{\mathfrak{n}}$.
Proof. By differentiating the relation $U(Y)=\frac{\mathrm{ad} Y}{1-e^{-\operatorname{ad} Y}} u(\exp Y)$, we obtain, for Y and Z in $\overline{\mathfrak{n}}$

$$
\begin{aligned}
d U(Y)(Z)= & \sum_{m \geq 0} b_{m} \sum_{r=0}^{m-1}(\operatorname{ad} Y)^{r} \operatorname{ad} Z(\operatorname{ad} Y)^{m-r-1} u(\exp Y) \\
& +\frac{\operatorname{ad} Y}{1-e^{-\operatorname{ad} Y}} \gamma_{Y}\left(\frac{1-e^{-\operatorname{ad} Y}}{\operatorname{ad} Y}\right) Z
\end{aligned}
$$

where $\frac{z}{1-e^{-z}}=\sum_{m \geq 0} b_{m} z^{m}$.
Now, we note first that the endomorphism of $\overline{\mathfrak{n}}$ defined by

$$
Z \rightarrow(\operatorname{ad} Y)^{r} \operatorname{ad} Z(\operatorname{ad} Y)^{m-r-1} u(\exp Y)=-\operatorname{ad} Y \operatorname{ad}\left((\operatorname{ad} Y)^{m-r-1} u(\exp Y)\right) Z
$$

is nilpotent then its trace is zero. Secondly, we have

$$
\operatorname{Tr}_{\bar{n}}\left(\frac{\operatorname{ad} Y}{1-e^{-\operatorname{ad} Y}} \circ \gamma_{Y} \circ \frac{1-e^{-\operatorname{ad} Y}}{\operatorname{ad} Y}\right)=\operatorname{Tr}_{\bar{n}}\left(\gamma_{Y}\right) .
$$

The lemma then follows.
Proposition 5.2. Let f be a P-symbol of degree ≤ 1 for W and W_{0}. Then we have $B W(f)=W_{0}(f) B$ on $C_{0}(\overline{\mathfrak{n}}, E)$.

Proof. Using the relations (3.5) and (5.3), we see that the result is a consequence of Lemma 5.1.

Proposition 5.3. Assume that $[\overline{\mathfrak{n}},[\overline{\mathfrak{n}}, \overline{\mathfrak{n}}]]=(0)$. Let f be an S-symbol or a P-symbol for W. Then we have $B W(f)=W_{0}(f) B$ on $C_{0}(\overline{\mathfrak{n}}, E)$.

Proof. Suppose first that f is an S-symbol for W and W_{0}. We express $W(f)(\psi \circ$ $\exp)(Y)$ as an integral (see (3.2)) which we transform by means of the change of variables $(T, Z) \rightarrow\left(T^{\prime}, Z^{\prime}\right)$ where $T^{\prime}=\log (\exp (-Y) \exp (Y+T))$ and

$$
Z^{\prime}=\theta\left(p_{\mathfrak{n}}\left(\frac{\operatorname{ad}\left(Y+\frac{T}{2}\right)}{e^{\operatorname{ad}\left(Y+\frac{T}{2}\right)}-1} \theta(Z)\right)\right)
$$

Since $[\overline{\mathfrak{n}},[\overline{\mathfrak{n}}, \overline{\mathfrak{n}}]]=(0)$, we have $T^{\prime}=T-\frac{1}{2}[Y, T]$ and we easily verify that $W(f)(\psi \circ$ $\exp)(Y)=W_{0}(f)(\psi)(\exp Y)$. Then we obtain the result for S-symbols and thus, following [27], the result for P-symbols.

References

[1] Ali, S. T.; Englis, M.: Quantization methods: a guide for physicists and analysts. Rev. Math. Phys. 17(4) (2005), 391-490. Zbl 1075.81038
[2] Arnal, D.; Cahen, M.; Gutt, S.: Representation of compact Lie groups and quantization by deformation. Acad. R. Belg. Bull. Cl. Sc. 3e série LXXIV 45 (1988), 123-141.

Zbl 0681.58016
[3] Arnal, D.; Cortet, J.-C.: Nilpotent Fourier Transform and Applications. Lett. Math. Phys. 9 (1985), 25-34.

Zbl 0616.46041
[4] Cahen, B.: Star-représentations induites. Thèse, Université de Metz, 1992.
[5] Cahen, B.: Deformation Program for Principal Series Representations. Lett. Math. Phys. 36 (1996), 65-75.

Zbl 0843.22020
[6] Cahen, B.: Quantification d'une orbite massive d'un groupe de Poincaré généralisé. C.R. Acad. Sci. Paris Sér. I, Math. 325 (1997), 803-806.

Zbl 0883.22016
[7] Cahen, B.: Quantification d'orbites coadjointes et théorie des contractions. J. Lie Theory 11 (2001), 257-272.

Zbl 0973.22009
[8] Cahen, B.: Contraction de $S U(2)$ vers le groupe de Heisenberg et calcul de Berezin. Beitr. Algebra Geom. 44(2) (2003), 581-603. Zbl 1032.22004
[9] Cahen, B.: Contractions of $S U(1, n)$ and $S U(n+1)$ via Berezin quantization. J. Anal. Math. 97 (2005), 83-102.
[10] Cahen, B.: Weyl quantization for semidirect products. preprint Univ. Metz (2005), to appear in Diff. Geom. Appl.
[11] Cahen, M.; Gutt, S.; Rawnsley, J.: Quantization on Kähler manifolds, I: Geometric interpretation of Berezin's quantization. J. Geom. Phys. 7 (1990), 45-62.

Zbl 0719.53044
[12] Cotton, P.; Dooley, A. H.: Contraction of an Adapted Functional Calculus. J. Lie Theory 7 (1997), 147-164.

Zbl 0882.22015
[13] Dooley, A. H.; Rice, J. W.: On contractions of semisimple Lie groups. Trans. Am. Math. Soc. 289(1) (1985), 185-202.

Zbl 0546.22017
[14] Duflo, M.: Fundamental-series representations of a semisimple Lie group. Funct. Anal. Appl. 4(2) (1970), 122-126.

Zbl 0254.22007
[15] Folland, B.: Harmonic Analysis in Phase Space. Princeton Univ. Press, 1989. Zbl 0682.43001
[16] Gotay, M.: Obstructions to Quantization. In: Mechanics: From Theory to Computation (Essays in Honor of Juan-Carlos Simo), J. Nonlinear Science Editors, Springer-Verlag, New-York 2000, 171-216. Zbl 1041.53507
[17] Helgason, S.: Differential Geometry, Lie Groups and Symmetric Spaces. Graduate Studies in Mathematics 34, American Mathematical Society, Providence, Rhode Island 2001. Zbl 0993.53002
[18] Helgason, S.: Groups and Geometric Analysis. Mathematical Surveys and Monographs 83, American Mathematical Society, Providence, Rhode Island 2000.

Zbl 0965.43007
[19] Hörmander, L.: The Weyl calculus of pseudo-differential operators. Commun. Pure Appl. Math. 32 (1979), 359-443.

Zbl 0388.47032
[20] Hörmander, L.: The analysis of linear partial differential operators. Vol. 3, Section 18.5, Springer-Verlag, Berlin-Heidelberg-New-York 1985.

Zbl 0601.35001
[21] Kirillov, A. A.: Elements of the Theory of Representations. Grundlehren der mathematischen Wissenschaften 220, Springer-Verlag, Berlin-Heidelberg-New-York 1976.

Zbl 0342.22001
[22] Kirillov, A. A.: Merits and demerits of the orbit method. Bull. Am. Math. Soc., New Ser. 36(4) (1999), 433-488.

Zbl 0940.22013
[23] Kirillov, A. A.: Lectures on the Orbit Method. Graduate Studies in Mathematics 64, American Mathematical Society, Providence, Rhode Island 2004. Zbl pre02121486
[24] Knapp, A. W.: Representation theory of semisimple groups. An overview based on examples. Princeton Mathematical Series 36 (1986). Zbl 0604.22001
[25] Kostant, B.: Quantization and unitary representations. In: Modern Analysis Appl. 3, Lect. Notes Math. 170, Springer-Verlag, Berlin-Heidelberg-NewYork 1970, 87-208. Zbl 0223.53028
[26] Landsman, N. P.: Strict quantization of coadjoint orbits. J. Math. Phys. 39(12) (1998), 6372-6383.

Zbl 0986.81057
[27] Voros, A.: An Algebra of Pseudo differential operators and the Asymptotics of Quantum Mechanics. J. Funct. Anal. 29 (1978), 104-132. Zbl 0386.47031
[28] Wallach, N. R.: Harmonic Analysis on Homogeneous Spaces. Dekker, New York 1973.

Zbl 0265.22022
[29] Wildberger, N. J.: Convexity and unitary representations of a nilpotent Lie group. Invent. Math. 98 (1989), 281-292. Zbl 0684.22005
[30] Wildberger, N. J.: On the Fourier transform of a compact semi simple Lie group. J. Aust. Math. Soc., Ser. A 56 (1994) 64-116. Zbl 0842.22015

Received January 10, 2006

