
Beiträge zur Algebra und Geometrie
Contributions to Algebra and Geometry
Volume 48 (2007), No. 1, 175-190.

Weyl Quantization for Principal Series

Benjamin Cahen
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Abstract. Let G be a connected semisimple non-compact Lie group
and π a principal series representation of G. Let O be the coadjoint
orbit of G associated by the Kirillov-Kostant method of orbits to the
representation π. By dequantizing π we construct an explicit symplec-
tomorphism between a dense open set of O and a symplectic product
R2n × O′ where O′ is a coadjoint orbit of a compact subgroup of G.
This allows us to obtain a Weyl correspondence on O which is adapted
to the representation π in the sense of [6].
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1. Introduction

Let G be a connected Lie group, g the Lie algebra of G and g∗ the dual space
of g. Let π be a unitary irreducible representation of G on a Hilbert space H.
We suppose that the representation π is associated to a coadjoint orbit O of G
by the Kirillov-Kostant method of orbits [21], [25]. The notion of adapted Weyl
correspondence was introduced in [4] (see also [5] and [6]) in order to generalize
the usual quantization rules [1], [15].

Definition 1.1. An adapted Weyl correspondence is an isomorphism W from a
vector space A of complex-valued (or real-valued) smooth functions on the orbit O
(called symbols) to a vector space B of (not necessarily bounded) linear operators
on H satisfying the following properties:
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(i) the elements of B preserve a fixed dense domain D of H;

(ii) the constant function 1 belongs to A, the identity operator I belongs to B
and W (1) = I;

(iii) A ∈ B and B ∈ B implies AB ∈ B;

(iv) for each f in A the complex conjugate f̄ of f belongs to A and the adjoint
of W (f) is an extension of W (f̄) (in the real case: for each f in A the
operator W (f) is symmetric);

(v) the elements of D are C∞-vectors for the representation π, the functions X̃
(X ∈ g) defined on O by X̃(ξ) =< ξ,X > are in A and W (iX̃) v = dπ(X)v
for each X ∈ g and each v ∈ D.

Let us illustrate this definition by two important examples, the nilpotent case
and the compact case. Suppose first that G is a connected simply-connected
nilpotent Lie group andO is an arbitrary coadjoint orbit of G. Let n = 1/2 dim O.
There exists a symplectomorphism from R2n endowed with its natural symplectic
structure onto the orbit O endowed with its Kostant-Kirillov symplectic 2-form
[3], [29]. The representation π associated to O can be realized on the Hilbert
space L2(Rn). Then, the usual Weyl correspondence from the space of polynomial
functions on O ' R2n onto the space of polynomial differential operators acting on
the Schwartz space D = S(Rn) is an adapted Weyl correspondence [29]. Suppose
now that G is a connected simply-connected semisimple compact Lie group and
O is an integral coadjoint orbit of G. The unitary irreducible representation of G
associated to the orbit O is usually realized on a finite-dimensional complex vector
space E whose elements are the holomorphic sections of a Hermitian line bundle
on the orbit O. The Berezin calculus is a map which associates to any operator
on E a function on O [1], [10]. Its inverse map is an adapted Weyl correspondence
on the orbit O defined on a finite-dimensional space of functions on O [4], [5].

The relationship between adapted Weyl correspondences and the notions of
prequantization and quantization introduced by Mark Gotay [16] is briefly de-
scribed in [10]. In fact, our original motivation for constructing adapted Weyl
correspondences was to build covariant star-products on coadjoint orbits [5]. A
more recent motivation is that adapted Weyl correspondences can be used to study
contractions of representations of Lie groups in the setting of the Kirillov-Kostant
method of orbits [7], [8], [9], [12].

In [5], adapted Weyl correspondences on the coadjoint orbits associated to the
principal series representations of a connected semisimple non-compact Lie group
were constructed by combining the Berezin calculus and a symbolic calculus on
the cotangent bundle of a nilpotent Lie group (see also Section 5). In [10], we have
considered the case whenG is the semidirect product VoK whereK is a connected
semisimple non-compact Lie group acting linearly on a finite-dimensional real
vector space V and O is a coadjoint orbit of G associated by the method of orbits
to a unitary irreducible representation π of G. Under the assumption that the
corresponding little group K0 is a maximal compact subgroup of K, we have
shown that the orbit O is symplectomorphic to the symplectic product R2n ×O′

where n = dim(K) − dim(K0) and O′ is a coadjoint orbit of K0. Thus we have
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obtained an adapted Weyl correspondence on O by combining the usual Weyl
correspondence on R2n and the Berezin calculus on O′ (see also [6] and [7] for
earlier results concerning the Poincaré group).

In the present paper, we revisit the case whenG is a connected semisimple non-
compact Lie group and O is a coadjoint orbit of G associated to a principal series
representation π of G. We use the dequantization procedure introduced in [10] in
order to obtain an adapted Weyl correspondence on O using only the usual Weyl
correspondence and the Berezin calculus. In Section 2, we introduce a principal
series representation π and the associated coadjoint orbit O. In particular, we
realize the representation π on a Hilbert space of functions on Rn. In Section 3,
we give an explicit formula for the derived representation dπ and we dequantize
the representation dπ by means of the usual Weyl correspondence on R2n and the
Berezin calculus on a coadjoint orbit O′ of a compact subgroup of G. Then we
obtain in Section 4 an explicit symplectomorphism from the symplectic product
R2n × O′ onto a dense open set of O (Theorem 4.6) and the desired adapted
Weyl correspondence on O (Theorem 4.7). Finally, in Section 5, we compare this
adapted Weyl correspondence to the symbolic calculus introduced in [5]. We could
hope for further applications of these results to the study in the spirit of [7] and
[12] of the contractions of the principal series representations of G to the unitary
irreducible representations of its Cartan motion group (see [13]).

2. Preliminaries

Let G be a connected non-compact semisimple real Lie group with finite center.
Let g be the Lie algebra of G. We identify G-equivariantly g to its dual space g∗

using the Killing form of g defined by < X, Y >= Tr(adX adY ) for X and Y
in g. Let θ be a Cartan involution of g and g = k ⊕ p the corresponding Cartan
decomposition of g. Let K be the connected compact subgroup of G with Lie
algebra k. Let a be a maximal abelian subalgebra of p and M be the centralizer
of a in K. Let m denote the Lie algebra of M . We can decompose g under the
adjoint action of a:

g = a⊕m⊕
∑
λ∈∆

gλ

where gλ = {X ∈ g : [H,X] = λ(H)X ∀H ∈ a} for λ ∈ a∗ and ∆ = {λ ∈
a∗ \ (0) : gλ 6= (0)} is the set of restricted roots. We fix a Weyl chamber in a and
we set n =

∑
λ>o gλ and n̄ =

∑
λ<o gλ. Then n̄ = θ(n). Let A, N and N̄ denote

the analytic subgroups of G with algebras a, n, n̄, respectively. We fix a regular
element ξ1 in a (i.e. λ(ξ1) 6= 0 for each λ ∈ ∆) and an element ξ2 in m. Let
ξ0 = ξ1 + ξ2 and denote by O(ξ0) the orbit of ξ0 in g∗ ' g under the (co)adjoint
action of G and by O(ξ2) the orbit of ξ2 in m under the adjoint action of M .

Let M0 be the connected component of the identity of M and let σ0 be a
unitary irreducible representation of M0. We have M = M0.Z

′ where Z ′ is a
central finite abelian subgroup of M [24, Lemma 9.13]. Then the unitary irre-
ducible representations σ of M such that σ|M0 = σ0 constitute (up to unitary
equivalence) a finite family (σχ) parametrized by the characters χ of Z ′ satisfying
χ|Z′∩M0 = σ0|Z′∩M0 .
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Henceforth we assume that the orbit O(ξ2) is associated to a unitary irre-
ducible representation σ0 of M0 as in [30], Section 4 (see also [26]) and we fix a
unitary irreducible representation σ of M realized in a finite dimensional complex
vector space E such that σ|M0 = σ0.

The Berezin calculus associates to each operator A on the finite-dimensional
complex vector space E a complex-valued function s(A) on the orbit O(ξ2) called
the symbol of the operator A (see [2], [11]). The following properties of the Berezin
calculus can be found in [2], [4], [5].

Proposition 2.1.
1) The map A→ s(A) is injective.

2) For each operator A on E, we have s(A∗) = s(A).

3) For ϕ ∈ O(ξ2), k ∈ K and for an operator A on E, we have

s(A)(Ad(k)ϕ) = s(σ(k)−1Aσ(k))(ϕ).

4) For X ∈ m and ϕ ∈ O(ξ2), we have s(dσ(X))(ϕ) = i < ϕ,X > where dσ
denotes the derived representation of σ.

5) There exists a constant ε (which depends only on the orbit O(ξ2)) such that,
for each operator A on E,

Tr(A) = ε

∫
O(ξ2)

s(A)(ϕ) dµ0(ϕ)

where dµ0(ϕ) is the Liouville measure on O(ξ2).

Now we consider the unitarily induced representation

π̂ = IndG
MAN (σ ⊗ exp(iν)⊗ 1N)

where ν =< ξ1, · >∈ a∗. The representation π̂ belongs to the unitary principal
series of G and is usually realized on the space L2(N̄ , E) which is the Hilbert space
completion of the space of compactly supported smooth functions ψ : N̄ → E
relative to the norm

‖ψ‖2 =

∫
N̄

< ψ (y) , ψ(y) >E dy

where dy is the Haar measure on N̄ normalized as follows. Let (E1, E2, . . . , En)
be an orthonormal basis for n̄ with respect to the scalar product (Y, Z ) :=
− < Y, θ(Z) >. Denote by (Y1, Y2, . . . , Yn) the coordinates of Y ∈ n̄ in this
basis and let dY = dY1dY2 . . . dYn be the Euclidian measure on n̄. The exponen-
tial map exp is a diffeomorphism from n̄ onto N̄ and we set dy = log∗(dY ) where
log = exp−1. For g ∈ G the action of the operator π̂(g) is given by (see [24], [28])

(π̂(g)ψ)(y) = e−(ρ+iν) log a(g−1y)σ(m(g−1y))−1 ψ(n̄(g−1y)) (2.1)

where ρ(H) := 1
2
Tr(adH|n̄) for H ∈ a and h = n̄(h)m(h)a(h)n(h) is the decom-

position of h ∈ N̄MAN , so the functions n̄, m, a and n are defined on an open
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dense subset of G (see [28]). For our purpose, it is more convenient to realize π̂
on the Hilbert space L2(n̄, E) defined as the completion of the space C0(n̄, E) of
compactly supported smooth functions φ : n̄ → E with respect to the norm

‖φ‖2 =

∫
n̄

< φ(Y ), φ(Y ) >E dY.

To this end, we use the isometry B from L2(n̄, E) to L2(N̄ , E) defined by B(φ)
(expY ) = φ(Y ) and we put π(g) = B−1π̂(g)B for g ∈ G. We immediately obtain,
for g ∈ G

(π̂(g)φ)(Y ) = e−(ρ+iν) log a(g−1 exp Y )σ(m(g−1 expY ))−1 φ( log n̄(g−1 expY )). (2.2)

3. Dequantization of the derived representation

In this section, we first give an explicit formula for the differential dπ of the
representation π of G. Then we dequantize dπ by means of the Berezin-Weyl
calculus on n̄× n̄×O(ξ2). For X ∈ n̄ we denote by X+ the right invariant vector
field on N̄ generated by X, that is, X+(y) = d

dt
(exp tX)y|t=0 for y ∈ N̄ .

Lemma 3.1.
1) For X ∈ n̄ and Y ∈ n̄, we have

d log(expY )
(
X+(expY )

)
=

adY

ead Y − 1
(X).

2) Let pa, pm and pn̄ be the projections of g onto a, m and n̄ associated with the
direct decomposition g = a⊕m⊕ n⊕ n̄. For X ∈ g and y ∈ N̄ , we have

d

dt
a(exp(tX)y)

∣∣∣
t=0

= pa(Ad(y−1)X)

d

dt
m(exp(tX)y)

∣∣∣
t=0

= pm(Ad(y−1)X)

d

dt
n̄(exp(tX)y)

∣∣∣
t=0

= (Ad(y) pn̄(Ad(y−1)X))+(y).

Proof. 1) is an immediate consequence of the well-known expression for the deriva-
tive of the exponential map (see [17], for instance).

To prove 2), we consider the diffeomorphism µ : N̄ ×M × A × N → N̄MAN
defined by µ(y,m, a, n) = yman. We have, for y ∈ N̄ , Y ∈ n̄, U ∈ m, H ∈ a and
Z ∈ n:

dµ(y, e, e, e)(Y +(y), U,H, Z) =
d

dt
exp(tY )y exp(tU) exp(tH) exp(tZ)

∣∣∣
t=0

= (Y + Ad y(U +H + Z))+(y).

Now, let X ∈ g. We write Ad y−1X = Y0 + U + H + Z where Y0 ∈ n̄, U ∈ m,
H ∈ a and Z ∈ n. Then the previous equality implies that dn̄(y)(X+(y)) =
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(Ad(y)Y0)
+(y). This proves the last equality of 2). The other equalities are

proved similarly. �

From Lemma 3.1 we deduce immediately:

Proposition 3.2. For X ∈ g we have

(dπ(X)φ)(Y ) = (ρ+ iν)(pa(Ad(y−1)X))φ(y)

+ dσ(pm(Ad(y−1)X))φ(Y ) (3.1)

− dφ(Y )
( adY

ead Y − 1
Ad(y) pn̄(Ad(y−1)X)

)
where φ ∈ C0(n̄, E), Y ∈ n̄ and y = expY .

Now we introduce the Berezin-Weyl calculus on n̄ × n̄ × O(ξ2). We say that
a complex-valued smooth function f : (Y, Z, ϕ) → f(Y, Z, ϕ) is a symbol on
n̄× n̄×O(ξ2) if for each (Y, Z) ∈ n̄× n̄ the function ϕ→ f(Y, Z, ϕ) is the symbol
in the Berezin calculus on O(ξ2) of an operator on E denoted by f̂(Y, Z). A
symbol f on n̄× n̄×O(ξ2) is called an S-symbol if the function f̂ belongs to the
Schwartz space of rapidly decreasing smooth functions on n̄ × n̄ with values in
End(E). Here we consider the Weyl calculus for End(E)-valued functions. This
is a slight refinement of the usual Weyl calculus for complex-valued functions [15],
[19], [20]. For any S-symbol on n̄× n̄×O(ξ2) we define an operator W(f) on the
Hilbert space L2(n̄, E) by

(W(f)φ)(Y ) = (2π)−n

∫
n̄×n̄

ei( T,Z )f̂

(
Y +

1

2
T, Z

)
φ(Y + T ) dT dZ (3.2)

for φ ∈ C0(n̄, E).
In fact the Weyl calculus can be extended to much larger classes of symbols

(see for instance [20]). Here we only consider a class of polynomial symbols. We
say that a symbol f on n̄ × n̄ × O(ξ2) is a P-symbol if the function f̂(Y, Z) is
polynomial in Z. Let f be the P-symbol defined by f(Y, Z, ϕ) = u(Y )Zα where
u ∈ C∞(n̄, E) and Zα := Zα1Zα2 · · ·Zαn for each multi-index α = (α1, α2, . . . , αn).
Then

(W(f)φ)(Y ) =

(
i
∂

∂Z

)α(
u(Y +

1

2
Z)φ(Y + Z)

) ∣∣∣
Z=0

(3.3)

(see [27]). In particular, if f(Y, Z, ϕ) = u(Y ) then

(W(f)φ)(Y ) = u(Y )φ(Y ) (3.4)

and if f(Y, Z, ϕ) = u(Y )Zk then

(W(f)φ)(Y ) = i

(
1

2
∂ku(Y )φ(Y ) + u(Y )∂kφ(Y )

)
(3.5)

where ∂k denotes the partial derivative with respect to the variable Yk.
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The correspondence f →W(f) is called the Berezin-Weyl calculus on n̄× n̄×
O(ξ2). In order to dequantize the derived representation dπ, that is, to calculate
the Berezin-Weyl symbol of the operators dπ(X) (X ∈ g), we need the following
lemma. The trace of an endomorphism u of n̄ is denoted by Trn̄ u.

Lemma 3.3. For X ∈ g let cX : n̄ → n̄ be the map defined by

cX(Y ) = s(adY )pn̄(Ad(y−1)X)

where s is the function defined by s(z) = zez

ez−1
for z 6= 0 and s(0) = 1. Then we

have
Trn̄ dcX(Y ) = −2ρ

(
pa(Ad(y−1)X)

)
. (3.6)

Proof. Let s(z) =
∑

k≥0 akz
k be the power-series expansion of the function s.

Note that for Y ∈ n̄ the sum s(adY ) =
∑

k≥0 ak(adY )k is finite since adY is a
nilpotent endomorphism of n̄. We have, for Y and Z in n̄

dcX(Y ) =
d

dt
s(ad(Y + tZ))

∣∣∣
t=0
pn̄(Ad(y−1)X) +

s(adY )pn̄

(
d

dt
Ad(exp(−Y − tZ))X

∣∣∣
t=0

)
. (3.7)

Now

d

dt
s(ad(Y + tZ))

∣∣∣
t=0

=
∑
k≥0

ak
d

dt
(adY + t adZ)k

∣∣∣
t=0

=
∑
k≥0

ak

(
k−1∑
r=0

(adY )r adZ(adY )k−r−1

)
.

Then, since the endomorphism of n̄ defined by

Z → (adY )r adZ(adY )k−r−1pn̄(Ad(y−1)X)

= −(adY )r ad
(
(adY )k−r−1pn̄(Ad(y−1)X)

)
(Z)

is clearly nilpotent, the endomorphism of n̄ given by

Z → d

dt
s(ad(Y + tZ))

∣∣∣
t=0
pn̄(Ad(y−1)X)

has trace zero. Now we also have

d

dt
Ad(exp(−Y −tZ))X

∣∣∣
t=0

=
d

dt
Ad (exp(−Y ) exp(Y +tZ))−1 Ad(exp(−Y ))X

∣∣∣
t=0

= − ad

(
1− e− ad Y

adY
Z

)
Ad(expY )−1X

= ad
(
Ad(expY )−1X

)(1− e− ad Y

adY

)
Z.
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Then the trace of the endomorphism of n̄ defined by

Z → s(adY )pn̄

(
d

dt
Ad(exp(−Y − tZ))X

∣∣∣
t=0

)
is

Trn̄

(
s(adY )pn̄ ◦ ad(Ad(expY )−1X)

1− e− ad Y

adY

)
= Trn̄

(1− e− ad Y

adY
s(adY ) pn̄ ◦ ad(Ad(expY )−1X)

)
= Trn̄

(
1− e− ad Y

adY

adY

ead Y − 1
exp(adY ) pn̄ ◦ ad(Ad(expY )−1X)

)
= Trn̄

(
pn̄ ◦ ad(Ad(expY )−1X)

)
.

Thus the lemma will be proved if we can show that, for each X ∈ g,

Trn̄ (pn̄ ◦ adX) = −2ρ(pa(X)).

If X ∈ n̄ then pn̄ ◦ adX = adX is a nilpotent endomorphism of n̄. Thus
Trn̄ (pn̄ ◦ adX) = 0. If X ∈ n then, noting that [n , gλ] ⊂ a +

∑
µ>λ gµ for each

λ < 0, we also obtain that Trn̄ (pn̄ ◦ adX) = 0. If X ∈ m then pn̄ ◦ adX = adX
is an endomorphism of n̄ which is skew-symmetric with respect to (·, ·) [17]. Thus
Trn̄ (pn̄ ◦ adX) = 0. Finally, if X ∈ a then Trn̄ (pn̄ ◦ adX) = Trn̄(adX) =
−2ρ(X). This ends the proof of the lemma. �

Proposition 3.4. For each X ∈ g, the Berezin-Weyl symbol of the operator
−idπ(X) is the P-symbol fX on n̄× n̄×O(ξ2) given by

fX(Y, Z, ϕ) = ν
(
pa(Ad(y−1)X)

)
+ < ϕ, pm(Ad(y−1)X) > +( cX(Y ), Z ) (3.8)

where y = expY .

Proof. If we put ckX(Y ) = ( cX(Y ), Ek ) for k = 1, . . . , n then we can write (3.1) as

(−idπ(X)φ)(Y ) = (−iρ+ ν)(pa(Ad(y−1)X))φ(y)

−idσ(pm(Ad(y−1)X))φ(Y ) (3.9)

+i
n∑

k=1

(∂kφ)(Y )ckX(Y ).

Using Proposition 2.1 4) and the properties (3.3) and (3.4) of the Weyl calculus,
we see that the symbol of −idπ(X) is

fX(Y, Z, ϕ) = (−iρ+ ν)
(
pa(Ad(y−1)X)

)
+ < ϕ, pm(Ad(y−1)X) >

+
n∑

k=1

ckX(Y )Zk −
i

2

n∑
k=1

∂kc
k
X(Y ).



B. Cahen: Weyl Quantization for Principal Series 183

By Lemma 3.3

− i
2

n∑
k=1

∂kc
k
X(Y ) = − i

2
Trn̄ (dcX(Y )) = iρ(pa(Ad(y−1)X)).

The result follows. �

4. Adapted Weyl correspondence

In this section, we show that the dequantization procedure introduced in Section 3
allows us to obtain an explicit diffeomorphism from n̄2×O(ξ2) onto the dense open
set Õ(ξ0) := Ad(N̄MAN)ξ0 of O(ξ0). This diffeomorphism is a symplectomor-
phism for the natural symplectic structures. Using this symplectomorphism, we
then construct an adapted Weyl correspondence on O(ξ0). We retain the notation
of the previous sections.

Recall that fX denotes the Berezin-Weyl symbol of the operator −idπ(X) for
X ∈ g. Since the map X → fX(T, S, ϕ) is linear there exists a map Ψ from
n̄2 ×O(ξ2) to g∗ such that

fX(Y, Z, ϕ) =< Ψ(Y, Z, ϕ) , X >

for each X ∈ g and each (Y, Z, ϕ) ∈ n̄× n̄×O(ξ2). From Proposition 3.4 we can
deduce a precise expression for Ψ.

Proposition 4.1. For (Y, Z, ϕ) ∈ n̄× n̄×O(ξ2) we have

Ψ(Y, Z, ϕ) = Ad(expY )
(
ξ1 + ϕ+ pn

( adY

ead Y − 1
θ(Z)

))
. (4.1)

Proof. Recall that

fX(Y, Z, ϕ) = ν
(
pā(Ad(y−1)X)

)
+ < ϕ, pm(Ad(y−1)X) > + < cX(Y ), θ(Z) >

where y = expY . We have

< cX(Y ), θ(Z) >= < ad Y
ead Y −1

Ad(y) pn̄(Ad(y−1)X) , θ(Z) >

= < pn̄(Ad(y−1)X) , ad Y
ead Y −1

θ(Z) >

= < pn̄(Ad(y−1)X) , pn

(
ad Y

ead Y −1
θ(Z)

)
>

= < Ad(y−1)X , pn

(
ad Y

ead Y −1
θ(Z)

)
>

= < X , Ad(y) pn

(
ad Y

ead Y −1
θ(Z)

)
> .

Here we have used that < a + m, n + n̄ >= (0), < n, n >= (0) and < n̄, n̄ >= (0).
Similarly, we have

ν
(
pa(Ad(y−1)X)

)
= < ξ1, pa(Ad(y−1)X) >

= < ξ1,Ad(y−1)X >=< Ad(y) ξ1, X >
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and
< ϕ, pm(Ad(y−1)X) >=< ϕ,Ad(y−1)X >=< Ad(y)ϕ,X > .

The result then follows. �

An element V ∈ a + m is called regular if Det(ad V |n) 6= 0. If V ∈ a then the
condition that V is regular is just that λ(V ) 6= 0 for each λ > 0.

Lemma 4.2.
1) If V1 is a regular element of a and V2 ∈ m then V = V1 + V2 is regular.

2) Let G(ξ0) be the stabilizer of ξ0 in G. Then G(ξ0) = AM(ξ2) where M(ξ2)
is the stabilizer of ξ2 in M .

Proof. 1) For each λ > 0, we have (ad V )(gλ) ⊂ gλ. Set vλ = (ad V )|gλ . Then,
for each X ∈ gλ, we have vλ(X) = λ(V1)X + (ad V2)(X). Thus, since ad V2 is
skew-symmetric with respect to (X, Y ) =< X, θ(Y ) >, the eigenvalues of vλ are
of the form λ(V1) + ir where λ(V1) ∈ R \ (0) and r ∈ R. Then Det(vλ) 6= 0 for
each λ > 0. Hence Det(ad V |n) 6= 0.

2) We argue as in [24], p. 126, Remark (2). Let M̂ be the normalizer of a in
K. Let g ∈ G(ξ0). We can write g = k expX with k ∈ K, X ∈ p. Applying
θ, we see that k exp(−X) ∈ M̂ . Then exp(2X) ∈ M̂ i.e. Ad(exp(2X))(a) ⊂ a.
Since Ad(exp(2X)) is positive definite on g, its Hermitian logarithm ad(2X) is a
polynomial in Ad(exp(2X)). Thus ad(2X)(a) ⊂ a and we easily verify thatX ∈ a.
Then Ad(k)(ξ0) = ξ0 or, equivalently, Ad(k)(ξ1 + ξ2) = ξ1 + ξ2. Since Ad(k)ξ1 ∈ k

and Ad(k)ξ2 ∈ p, this gives Ad(k)ξ1 = ξ1 and Ad(k)ξ2 = ξ2. But Ad(k)ξ1 = ξ1
implies that Ad(k)a ⊂ a. In other words, k lies in the normalizer M̂ of a in K. Let
C(ξ1) the Weyl chamber of a containing ξ1. We have Ad(k)C(ξ1) = C(ξ1). Since
the Weyl group M̂/M acts simply transitively on the set of the Weyl chambers of
a, we obtain k ∈M . Hence k ∈M(ξ2). �

The following proposition can be found in [14] (see also [4]). Here we present an
elementary proof.

Proposition 4.3. The map Ψ0 defined by Ψ0(y, Z, ϕ) = Ad(y) (ξ1 +ϕ+ θ(Z)) is
a diffeomorphism from N̄ × n̄×O(ξ2) onto Õ(ξ0).

Proof. Recall that if V ∈ a+m is regular then the map Y → Ad(expY )V −V is a
diffeomorphism of n [28]. Let (y, Z, ϕ) ∈ N̄ × n̄×O(ξ2). Write ϕ = Ad(m)ξ2 with
m ∈ M . Since the element ξ1 + ϕ = Ad(m)ξ0 is regular, there exists an element
z ∈ N such that ξ1 + ϕ + θ(Z) = Ad(zm)ξ0. Then Ψ0(y, Z, ϕ) = Ad(yzm)(ξ0).
Thus Ψ0 takes values in Õ(ξ0). By the same arguments, we show that Ψ0 is onto.
Now, suppose that Ψ0(y, Z, ϕ) = Ψ0(y

′, Z ′, ϕ′). As before, we write Ψ0(y, Z, ϕ) =
Ad(yzm)(ξ0) and Ψ0(y

′, Z ′, ϕ′) = Ad(y′z′m′)(ξ0) with m ∈ M , m′ ∈ M , z ∈ N
and z′ ∈ N . Then (z′m′)−1(y′−1y)zm lies in G(ξ0). By Lemma 4.2., there exists
m0 ∈ M(ξ2) and a ∈ A such that (z′m′)−1(y′−1y)zm = m0a. By unicity in the
N̄MAN -decomposition, we have y′−1y = e and m = m′m0. Then y = y′, ϕ = ϕ′

and Z = Z ′. This shows that Ψ0 is injective.
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Now we show that Ψ0 is regular. Let Y ∈ n̄, T ∈ n̄ and φ ∈ m such that

dΨ0(y, Z, ϕ)(Y +(y), T, φ+(ϕ)) = 0.

Since

dΨ0(y, Z, ϕ)(Y +(y), T, φ+(ϕ)) =
d

dt

(
Ad(exp(tY )y)(ξ1+exp(tφ)ϕ+θ(Z+tT ))

)∣∣∣
t=0

= Ad(y)([φ, ϕ] + θ(T ) + [Y,Ψ0(y, Z, ϕ)])

we have
[φ, ϕ] + θ(T ) + [Ad(y−1)Y, ξ1 + ϕ+ θ(Z)] = 0. (4.2)

Since [n̄, a + m + n] ⊂ a + n + n̄, we get φ+(ϕ) = [φ, ϕ] = 0. Write ϕ = Ad(m)ξ2
with m ∈ M and set T ′ = Ad(m−1)T ∈ m, Y ′ = Ad(m−1) Ad(y−1)Y ∈ n̄ and
Z ′ = Ad(m−1)Z ∈ n̄. Then (4.2) can be rewritten as

θ(T ′) + [Y ′, ξ0] + [Y ′, θ(Z ′)] = 0. (4.3)

If Y ′ 6= 0 then we can write Y ′ = Y ′
λ +

∑
µ>λ Y

′
µ where Y ′

λ ∈ gλ \ (0) and Y ′
µ ∈ gµ

for each µ > λ. But the first member of (4.3) lies in a+gλ +
∑

µ>λ gµ (direct sum)
and its component on gλ is [Y ′

λ, ξ0] = −λ(ξ0)Y
′
λ. This is a contradiction because

ξ0 is regular. Then Y = 0. Hence T = 0. �

Lemma 4.4. Let Y ∈ n̄. Then the map

η : Z → pn

( adY

ead Y − 1
(Z)
)

is a diffeomorphism of n.

Proof. By using the decomposition g = a ⊕ m ⊕ n ⊕ n̄, we easily show that the

inverse map of η is Z → pn

(
ead Y −1

ad Y
(Z)
)
. �

Let ω0 and ω2 be the Kirillov 2-forms on O(ξ0) and O(ξ2), respectively. Denote
by {·, ·}0 and {·, ·}2 the Poisson brackets associated with ω0 and ω2. We equip n̄2

with the symplectic form dY ∧dZ :=
∑n

k=1 dYk∧dZk. The corresponding Poisson
bracket on C∞(n̄2) is

{f , g} =
n∑

k=1

(
∂f

∂Yk

∂g

∂Zk

− ∂f

∂Zk

∂g

∂Yk

)
. (4.4)

We form the symplectic product n̄2 × O(ξ2). We denote by {·, ·}1 the Poisson
bracket associated with the symplectic form ω1 := (dT ∧ dS) ⊗ ω2. Let u, v ∈
C∞(n̄2) and a, b ∈ C∞(O(ξ2)). Observe that for f(Y, Z, ϕ) = u(Y, Z)a(ϕ) and
g(Y, Z, ϕ) = v(Y, Z)b(ϕ) we have

{f, g}1 = u(Y, Z)v(Y, Z){a, b}2 + a(ϕ)b(ϕ){u, v}. (4.5)
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Lemma 4.5. Suppose that f and g are two P-symbols on n̄2 ×O(ξ2) of the form

u(Y )+ < v(Y ), ϕ > +
n∑

k=1

wk(Y )Zk

where u ∈ C∞(n̄), v ∈ C∞(n̄,m) and wk ∈ C∞(n̄) for k = 1, 2, . . . , n. Then

[W(f) , W(g)] = −iW({f , g}1). (4.6)

Proof. Direct computation using (3.4), (3.5) and the fact that if f =< v(Y ), ϕ >
then (W (f)φ)(Y ) = −i dρ(v(Y ))φ(Y ). �

Theorem 4.6. The map Ψ introduced in Proposition 4.1 is a symplectomorphism
from (n̄2 ×O(ξ2) , ω1) onto (Õ(ξ0) , ω0|Õ(ξ0)).

Proof. By combining Proposition 4.3 and Lemma 4.4, we see that Ψ is a diffeo-
morphism from n̄2 × O(ξ2) onto Õ(ξ0). Recall that for X ∈ g, X̃ denotes the
function on O(ξ0) defined by X̃(ξ) =< ξ,X >. Observe that fX = X̃ ◦ Ψ.

Let X and Y in g. Then by Proposition 3.4 and Lemma 4.5 we have

[W(fX) , W(fY )] = −iW({fX , fY }1).

On the other hand

[W(fX) , W(fY )] = [−idπ(X),−idπ(Y )] = −dπ([X , Y ]) = −iW(f[X,Y ]).

Hence we obtain f[X,Y ] = {fX , fY }1. Since ˜[X, Y ] = {X̃, Ỹ }0 we have finally

{X̃, Ỹ }0 ◦ Ψ = {X̃ ◦Ψ , Ỹ ◦Ψ}1.

This implies that Ψ is a symplectomorphism. �

In order to construct an adapted Weyl transform on O(ξ0) we transfer to O(ξ0)
the Berezin-Weyl calculus on n̄2 × O(ξ2). We say that a smooth function f on
O(ξ0) is a symbol on O(ξ0) if f ◦Ψ is a symbol for the Berezin-Weyl calculus on
n̄2 ×O(ξ2). We say that f is a P-symbol (or an S-symbol) on O(ξ0) if f ◦Ψ is a
P-symbol (or an S-symbol) on n̄2 ×O(ξ2).

Theorem 4.7. Let A be the space of P-symbols on O(ξ0) and let B be the space of
differential operators on n̄ with coefficients in C∞(n̄, E). Then the map W : A →
B that assigns to each f ∈ A the operator W(f ◦ Ψ) on L2(n̄, E) is an adapted
Weyl correspondence in the sense of Definition 1.1.

Proof. Properties (i), (ii) and (iii) of the definition of an adapted Weyl correspon-
dence are clearly satisfied with D = C0(n̄, E).
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Property (iv) follows from Proposition 2.1 2) and from the similar result for the
usual Weyl calculus.

Finally, property (v) is just a reformulation of Proposition 3.4. �

5. Comparison with the symbolic calculus of [4].

In this section, we first describe the construction of the adapted Weyl transform
on O(ξ0) introduced in [4]. We retain the notation of the previous sections. In
[4], a symbolic calculus on N̄ × n̄×O(ξ2) is defined as follows. A smooth function
f : (y, Z, ϕ) → f(y, Z, φ) is said to be a symbol on N̄ × n̄ × O(ξ2) if for each
(y, Z) ∈ N̄ × n̄ the function φ→ f(y, Z, ϕ) is the symbol in the Berezin calculus
on O(ξ2) of an operator on E denoted by f̂(y, Z). As in Section 3, we define the
notions of S-symbol and P -symbol on N̄ × n̄ × O(ξ2). We associate with any
P -symbol f on N̄ × n̄ × O(ξ2) the operator W0(f) on C0(N̄ , E) defined by the
integral formula

W0(f)(ψ)(y) = (2π)−n

∫ ∫
n̄×n̄

ei(T,Z)f̂(y exp(T/2), Z)ψ(y expT )dTdZ. (5.1)

As for the Weyl calculus, one can extend W0 to P -symbols. More precisely,
let f be the P -symbol on N̄ × n̄ × O(ξ2) defined by f(y, Z, ϕ) = u(y)Zα with
u ∈ C∞(N̄ , E). Then we have

W0(f)(ψ)(y) =
(
i
∂

∂Z

)α

(u(y exp (T/2))ψ(y expT ))
∣∣∣
Z=0

. (5.2)

In particular, if f(y, Z, φ) = u(y) thenW0(f)(ψ)(y) = u(y)ψ(y) and if f(y, Z, ϕ) =
( v(y), Z ) with v ∈ C∞(N̄ , E) then

W0(f)(ψ)(y) = i
( d
dt

n∑
k=1

(
Ek, v(y exp

t

2
Ek)
)∣∣∣

t=0
ψ(y) +

d

dt
ψ(y exp(tv(y))

∣∣∣
t=0

)
.

(5.3)
Now we say that a smooth function f on O(ξ0) is a P -symbol (resp. an S-symbol)
on O(ξ0) if f ◦Ψ0 is a P -symbol (resp. an S-symbol) on N̄ × n̄×O(ξ2). For each
P -symbol (or S-symbol) f on O(ξ0) we set W0(f) = W0(f ◦Ψ0). We have shown
in [4] that the map W0 is then a Weyl correspondence on O(ξ0) adapted to the
realization π̂ of the principal series representation (see (2.1)). In particular, we
have dπ̂(X)ψ = W0(iX̃)ψ for X ∈ g and ψ ∈ C0(N̄ , E) ([4], Proposition 6).

Note that if f is a function on O(ξ0) then

(f ◦Ψ)(Y, Z, ϕ) = (f ◦Ψ0)(expY, θ
(
pn

( adY

ead Y − 1
θ(Z)

))
, ϕ). (5.4)

Then we see that f is a P -symbol (resp. an S-symbol) for W0 if and only f is a
P -symbol (resp. an S-symbol) for W . Recall that the unitary operator B from
L2(n̄, E) to L2(N̄ , E) defined by B(φ)(expY ) = φ(Y ) is an intertwining operator
between the representations π and π̂, that is, Bπ(g) = π̂(g)B for each g ∈ G.
Then, noting that B maps C0(n̄, E) onto C0(N̄ , E), we have Bdπ(X) = dπ̂(X)B
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on C0(n̄, E) for each X ∈ g. Equivalently, we have BW (X̃) = W0(X̃)B on
C0(n̄, E) for each X ∈ g. Now, we say that f is a P -symbol of degree ≤ 1 for W0

(resp. W ) if f ◦Ψ0 (resp. f ◦Ψ) is a polynomial in the variable Z of degree ≤ 1.
It is immediate that f is a P -symbol of degree ≤ 1 for W0 if and only if f is a
P -symbol of degree ≤ 1 for W . In particular, for each X ∈ g, the function X̃ is
P -symbol of degree ≤ 1 for W0 and W . We will prove that if f is a P -symbol of
degree ≤ 1 then the relation BW (f) = W0(f)B holds.

For Z ∈ n̄, we denote by Z− the vector field on N̄ defined by Z−(y)
= d

dt
(y exp(tZ))|t=0.

Lemma 5.1. Let U ∈ C∞(n̄, n̄). Define u ∈ C∞(n̄, N̄) by u(expY ) = 1−e− ad Y

ad Y

U(Y ). For Y ∈ n̄, let γY be the endomorphism of n̄ defined by γY (Z) = du(expY )
(Z−(expY )).Then we have

Trn̄(γY ) = Trn̄(dU(Y ))

for each Y ∈ n̄.

Proof. By differentiating the relation U(Y ) = ad Y
1−e− ad Y u(expY ), we obtain, for Y

and Z in n̄

dU(Y )(Z) =
∑
m≥0

bm

m−1∑
r=0

(adY )r adZ(adY )m−r−1u(expY )

+
adY

1− e− ad Y
γY

(
1− e− ad Y

adY

)
Z

where z
1−e−z =

∑
m≥0 bmz

m.

Now, we note first that the endomorphism of n̄ defined by

Z → (adY )r adZ(adY )m−r−1u(expY ) = − adY ad((adY )m−r−1u(expY ))Z

is nilpotent then its trace is zero. Secondly, we have

Trn̄

(
adY

1− e− ad Y
◦ γY ◦ 1− e− ad Y

adY

)
= Trn̄(γY ).

The lemma then follows. �

Proposition 5.2. Let f be a P -symbol of degree ≤ 1 for W and W0. Then we
have BW (f) = W0(f)B on C0(n̄, E).

Proof. Using the relations (3.5) and (5.3), we see that the result is a consequence
of Lemma 5.1. �

Proposition 5.3. Assume that [n̄, [n̄, n̄]] = (0). Let f be an S-symbol or a
P -symbol for W . Then we have BW (f) = W0(f)B on C0(n̄, E).
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Proof. Suppose first that f is an S-symbol for W and W0. We express W (f)(ψ ◦
exp)(Y ) as an integral (see (3.2)) which we transform by means of the change of
variables (T, Z) → (T ′, Z ′) where T ′ = log(exp(−Y ) exp(Y + T )) and

Z ′ = θ
(
pn

( ad(Y + T
2
)

ead(Y +T
2

) − 1
θ(Z)

))
.

Since [n̄, [n̄, n̄]] = (0), we have T ′ = T − 1
2
[Y, T ] and we easily verify that W (f)(ψ ◦

exp)(Y ) = W0(f)(ψ)(expY ). Then we obtain the result for S-symbols and thus,
following [27], the result for P -symbols. �
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