Weyl Quantization for Principal Series

Benjamin Cahen

Université de Metz, UFR-MIM, Département de mathématiques LMMAS, ISGMP-Bât. A, Ile du Saulcy 57045, Metz cedex 01, France e-mail: cahen@univ-metz.fr.

Abstract. Let G be a connected semisimple non-compact Lie group and π a principal series representation of G. Let \mathcal{O} be the coadjoint orbit of G associated by the Kirillov-Kostant method of orbits to the representation π . By dequantizing π we construct an explicit symplectomorphism between a dense open set of \mathcal{O} and a symplectic product $\mathbb{R}^{2n} \times \mathcal{O}'$ where \mathcal{O}' is a coadjoint orbit of a compact subgroup of G. This allows us to obtain a Weyl correspondence on \mathcal{O} which is adapted to the representation π in the sense of [6].

MSC 2000: 81S10, 22E46

Keywords: principal series representations, coadjoint orbits, Weyl quantization, Berezin quantization, dequantization

1. Introduction

Let G be a connected Lie group, \mathfrak{g} the Lie algebra of G and \mathfrak{g}^* the dual space of \mathfrak{g} . Let π be a unitary irreducible representation of G on a Hilbert space H. We suppose that the representation π is associated to a coadjoint orbit \mathcal{O} of G by the Kirillov-Kostant method of orbits [21], [25]. The notion of adapted Weyl correspondence was introduced in [4] (see also [5] and [6]) in order to generalize the usual quantization rules [1], [15].

Definition 1.1. An adapted Weyl correspondence is an isomorphism W from a vector space \mathcal{A} of complex-valued (or real-valued) smooth functions on the orbit \mathcal{O} (called symbols) to a vector space \mathcal{B} of (not necessarily bounded) linear operators on H satisfying the following properties:

0138-4821/93 \$ 2.50 © 2007 Heldermann Verlag

- (i) the elements of \mathcal{B} preserve a fixed dense domain D of H;
- (ii) the constant function 1 belongs to \mathcal{A} , the identity operator I belongs to \mathcal{B} and W(1) = I;
- (iii) $A \in \mathcal{B}$ and $B \in \mathcal{B}$ implies $AB \in \mathcal{B}$;
- (iv) for each f in \mathcal{A} the complex conjugate \overline{f} of f belongs to \mathcal{A} and the adjoint of W(f) is an extension of $W(\overline{f})$ (in the real case: for each f in \mathcal{A} the operator W(f) is symmetric);
- (v) the elements of D are C^{∞} -vectors for the representation π , the functions \tilde{X} $(X \in \mathfrak{g})$ defined on \mathcal{O} by $\tilde{X}(\xi) = \langle \xi, X \rangle$ are in \mathcal{A} and $W(i\tilde{X})v = d\pi(X)v$ for each $X \in \mathfrak{g}$ and each $v \in D$.

Let us illustrate this definition by two important examples, the nilpotent case and the compact case. Suppose first that G is a connected simply-connected nilpotent Lie group and \mathcal{O} is an arbitrary coadjoint orbit of G. Let $n = 1/2 \dim \mathcal{O}$. There exists a symplectomorphism from \mathbb{R}^{2n} endowed with its natural symplectic structure onto the orbit \mathcal{O} endowed with its Kostant-Kirillov symplectic 2-form [3], [29]. The representation π associated to \mathcal{O} can be realized on the Hilbert space $L^2(\mathbb{R}^n)$. Then, the usual Weyl correspondence from the space of polynomial functions on $\mathcal{O} \simeq \mathbb{R}^{2n}$ onto the space of polynomial differential operators acting on the Schwartz space $D = S(\mathbb{R}^n)$ is an adapted Weyl correspondence [29]. Suppose now that G is a connected simply-connected semisimple compact Lie group and \mathcal{O} is an integral coadjoint orbit of G. The unitary irreducible representation of G associated to the orbit \mathcal{O} is usually realized on a finite-dimensional complex vector space E whose elements are the holomorphic sections of a Hermitian line bundle on the orbit \mathcal{O} . The Berezin calculus is a map which associates to any operator on E a function on $\mathcal{O}[1], [10]$. Its inverse map is an adapted Weyl correspondence on the orbit \mathcal{O} defined on a finite-dimensional space of functions on \mathcal{O} [4], [5].

The relationship between adapted Weyl correspondences and the notions of prequantization and quantization introduced by Mark Gotay [16] is briefly described in [10]. In fact, our original motivation for constructing adapted Weyl correspondences was to build covariant star-products on coadjoint orbits [5]. A more recent motivation is that adapted Weyl correspondences can be used to study contractions of representations of Lie groups in the setting of the Kirillov-Kostant method of orbits [7], [8], [9], [12].

In [5], adapted Weyl correspondences on the coadjoint orbits associated to the principal series representations of a connected semisimple non-compact Lie group were constructed by combining the Berezin calculus and a symbolic calculus on the cotangent bundle of a nilpotent Lie group (see also Section 5). In [10], we have considered the case when G is the semidirect product $V \rtimes K$ where K is a connected semisimple non-compact Lie group acting linearly on a finite-dimensional real vector space V and \mathcal{O} is a coadjoint orbit of G associated by the method of orbits to a unitary irreducible representation π of G. Under the assumption that the corresponding little group K_0 is a maximal compact subgroup of K, we have shown that the orbit \mathcal{O} is symplectomorphic to the symplectic product $\mathbb{R}^{2n} \times \mathcal{O}'$ where $n = \dim(K) - \dim(K_0)$ and \mathcal{O}' is a coadjoint orbit of K₀. Thus we have obtained an adapted Weyl correspondence on \mathcal{O} by combining the usual Weyl correspondence on \mathbb{R}^{2n} and the Berezin calculus on \mathcal{O}' (see also [6] and [7] for earlier results concerning the Poincaré group).

In the present paper, we revisit the case when G is a connected semisimple noncompact Lie group and \mathcal{O} is a coadjoint orbit of G associated to a principal series representation π of G. We use the dequantization procedure introduced in [10] in order to obtain an adapted Weyl correspondence on \mathcal{O} using only the usual Weyl correspondence and the Berezin calculus. In Section 2, we introduce a principal series representation π and the associated coadjoint orbit \mathcal{O} . In particular, we realize the representation π on a Hilbert space of functions on \mathbb{R}^n . In Section 3, we give an explicit formula for the derived representation $d\pi$ and we dequantize the representation $d\pi$ by means of the usual Weyl correspondence on \mathbb{R}^{2n} and the Berezin calculus on a coadjoint orbit \mathcal{O}' of a compact subgroup of G. Then we obtain in Section 4 an explicit symplectomorphism from the symplectic product $\mathbb{R}^{2n} \times \mathcal{O}'$ onto a dense open set of \mathcal{O} (Theorem 4.6) and the desired adapted Weyl correspondence on \mathcal{O} (Theorem 4.7). Finally, in Section 5, we compare this adapted Weyl correspondence to the symbolic calculus introduced in [5]. We could hope for further applications of these results to the study in the spirit of [7] and [12] of the contractions of the principal series representations of G to the unitary irreducible representations of its Cartan motion group (see [13]).

2. Preliminaries

Let G be a connected non-compact semisimple real Lie group with finite center. Let \mathfrak{g} be the Lie algebra of G. We identify G-equivariantly \mathfrak{g} to its dual space \mathfrak{g}^* using the Killing form of \mathfrak{g} defined by $\langle X, Y \rangle = \operatorname{Tr}(\operatorname{ad} X \operatorname{ad} Y)$ for X and Yin \mathfrak{g} . Let θ be a Cartan involution of \mathfrak{g} and $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ the corresponding Cartan decomposition of \mathfrak{g} . Let K be the connected compact subgroup of G with Lie algebra \mathfrak{k} . Let \mathfrak{a} be a maximal abelian subalgebra of \mathfrak{p} and M be the centralizer of \mathfrak{a} in K. Let \mathfrak{m} denote the Lie algebra of M. We can decompose \mathfrak{g} under the adjoint action of \mathfrak{a} :

$$\mathfrak{g}=\mathfrak{a}\oplus\mathfrak{m}\oplus\sum_{\lambda\in\Delta}\mathfrak{g}_\lambda$$

where $\mathfrak{g}_{\lambda} = \{X \in \mathfrak{g} : [H, X] = \lambda(H)X \quad \forall H \in \mathfrak{a}\}$ for $\lambda \in \mathfrak{a}^*$ and $\Delta = \{\lambda \in \mathfrak{a}^* \setminus (0) : \mathfrak{g}_{\lambda} \neq (0)\}$ is the set of restricted roots. We fix a Weyl chamber in \mathfrak{a} and we set $\mathfrak{n} = \sum_{\lambda > o} \mathfrak{g}_{\lambda}$ and $\overline{\mathfrak{n}} = \sum_{\lambda < o} \mathfrak{g}_{\lambda}$. Then $\overline{\mathfrak{n}} = \theta(\mathfrak{n})$. Let A, N and \overline{N} denote the analytic subgroups of G with algebras $\mathfrak{a}, \mathfrak{n}, \overline{\mathfrak{n}}$, respectively. We fix a regular element ξ_1 in \mathfrak{a} (i.e. $\lambda(\xi_1) \neq 0$ for each $\lambda \in \Delta$) and an element ξ_2 in \mathfrak{m} . Let $\xi_0 = \xi_1 + \xi_2$ and denote by $O(\xi_0)$ the orbit of ξ_0 in $\mathfrak{g}^* \simeq \mathfrak{g}$ under the (co)adjoint action of G and by $O(\xi_2)$ the orbit of ξ_2 in \mathfrak{m} under the adjoint action of M.

Let M_0 be the connected component of the identity of M and let σ_0 be a unitary irreducible representation of M_0 . We have $M = M_0.Z'$ where Z' is a central finite abelian subgroup of M [24, Lemma 9.13]. Then the unitary irreducible representations σ of M such that $\sigma|_{M_0} = \sigma_0$ constitute (up to unitary equivalence) a finite family (σ_{χ}) parametrized by the characters χ of Z' satisfying $\chi_{|Z'\cap M_0} = \sigma_{0|Z'\cap M_0}$. Henceforth we assume that the orbit $O(\xi_2)$ is associated to a unitary irreducible representation σ_0 of M_0 as in [30], Section 4 (see also [26]) and we fix a unitary irreducible representation σ of M realized in a finite dimensional complex vector space E such that $\sigma|_{M_0} = \sigma_0$.

The Berezin calculus associates to each operator A on the finite-dimensional complex vector space E a complex-valued function s(A) on the orbit $\mathcal{O}(\xi_2)$ called the symbol of the operator A (see [2], [11]). The following properties of the Berezin calculus can be found in [2], [4], [5].

Proposition 2.1.

- 1) The map $A \to s(A)$ is injective.
- 2) For each operator A on E, we have $s(A^*) = \overline{s(A)}$.
- 3) For $\varphi \in \mathcal{O}(\xi_2)$, $k \in K$ and for an operator A on E, we have

$$s(A)(\operatorname{Ad}(k)\varphi) = s(\sigma(k)^{-1}A\sigma(k))(\varphi).$$

- 4) For $X \in \mathfrak{m}$ and $\varphi \in \mathcal{O}(\xi_2)$, we have $s(d\sigma(X))(\varphi) = i < \varphi, X >$ where $d\sigma$ denotes the derived representation of σ .
- 5) There exists a constant ε (which depends only on the orbit $\mathcal{O}(\xi_2)$) such that, for each operator A on E,

$$\operatorname{Tr}(A) = \varepsilon \int_{\mathcal{O}(\xi_2)} s(A)(\varphi) \, d\mu_0(\varphi)$$

where $d\mu_0(\varphi)$ is the Liouville measure on $\mathcal{O}(\xi_2)$.

Now we consider the unitarily induced representation

$$\hat{\pi} = \operatorname{Ind}_{MAN}^{G} \left(\sigma \otimes \exp(i\nu) \otimes 1_N \right)$$

where $\nu = \langle \xi_1, \cdot \rangle \in \mathfrak{a}^*$. The representation $\hat{\pi}$ belongs to the unitary principal series of G and is usually realized on the space $L^2(\bar{N}, E)$ which is the Hilbert space completion of the space of compactly supported smooth functions $\psi : \bar{N} \to E$ relative to the norm

$$\|\psi\|^2 = \int_{\bar{N}} \langle \psi(y), \psi(y) \rangle_E dy$$

where dy is the Haar measure on \overline{N} normalized as follows. Let (E_1, E_2, \ldots, E_n) be an orthonormal basis for $\overline{\mathbf{n}}$ with respect to the scalar product (Y, Z) := $- \langle Y, \theta(Z) \rangle$. Denote by (Y_1, Y_2, \ldots, Y_n) the coordinates of $Y \in \overline{\mathbf{n}}$ in this basis and let $dY = dY_1 dY_2 \ldots dY_n$ be the Euclidian measure on $\overline{\mathbf{n}}$. The exponential map exp is a diffeomorphism from $\overline{\mathbf{n}}$ onto \overline{N} and we set $dy = \log^*(dY)$ where $\log = \exp^{-1}$. For $g \in G$ the action of the operator $\hat{\pi}(g)$ is given by (see [24], [28])

$$(\hat{\pi}(g)\psi)(y) = e^{-(\rho+i\nu)\log a(g^{-1}y)}\sigma(m(g^{-1}y))^{-1} \quad \psi(\bar{n}(g^{-1}y))$$
(2.1)

where $\rho(H) := \frac{1}{2} \operatorname{Tr}(\operatorname{ad} H|_{\bar{\mathfrak{n}}})$ for $H \in \mathfrak{a}$ and $h = \bar{n}(h)m(h)a(h)n(h)$ is the decomposition of $h \in NMAN$, so the functions \bar{n}, m, a and n are defined on an open

dense subset of G (see [28]). For our purpose, it is more convenient to realize $\hat{\pi}$ on the Hilbert space $L^2(\bar{\mathbf{n}}, E)$ defined as the completion of the space $C_0(\bar{\mathbf{n}}, E)$ of compactly supported smooth functions $\phi : \bar{\mathbf{n}} \to E$ with respect to the norm

$$\|\phi\|^2 = \int_{\bar{\mathfrak{n}}} \langle \phi(Y), \phi(Y) \rangle_E dY.$$

To this end, we use the isometry B from $L^2(\bar{\mathbf{n}}, E)$ to $L^2(\bar{N}, E)$ defined by $B(\phi)$ (exp Y) = $\phi(Y)$ and we put $\pi(g) = B^{-1}\hat{\pi}(g)B$ for $g \in G$. We immediately obtain, for $g \in G$

$$(\hat{\pi}(g)\phi)(Y) = e^{-(\rho+i\nu)\log a(g^{-1}\exp Y)}\sigma(m(g^{-1}\exp Y))^{-1} \ \phi(\log \bar{n}(g^{-1}\exp Y)).$$
(2.2)

3. Dequantization of the derived representation

In this section, we first give an explicit formula for the differential $d\pi$ of the representation π of G. Then we dequantize $d\pi$ by means of the Berezin-Weyl calculus on $\mathbf{\bar{n}} \times \mathbf{\bar{n}} \times \mathcal{O}(\xi_2)$. For $X \in \mathbf{\bar{n}}$ we denote by X^+ the right invariant vector field on \bar{N} generated by X, that is, $X^+(y) = \frac{d}{dt}(\exp tX)y|_{t=0}$ for $y \in \bar{N}$.

Lemma 3.1.

1) For $X \in \overline{\mathfrak{n}}$ and $Y \in \overline{\mathfrak{n}}$, we have

$$d\log(\exp Y)\left(X^{+}(\exp Y)\right) = \frac{\operatorname{ad} Y}{e^{\operatorname{ad} Y} - 1}(X).$$

2) Let $p_{\mathfrak{a}}$, $p_{\mathfrak{m}}$ and $p_{\bar{\mathfrak{n}}}$ be the projections of \mathfrak{g} onto \mathfrak{a} , \mathfrak{m} and $\bar{\mathfrak{n}}$ associated with the direct decomposition $\mathfrak{g} = \mathfrak{a} \oplus \mathfrak{m} \oplus \mathfrak{n} \oplus \bar{\mathfrak{n}}$. For $X \in \mathfrak{g}$ and $y \in \bar{N}$, we have

$$\begin{aligned} \frac{d}{dt}a(\exp(tX)y)\Big|_{t=0} &= p_{\mathfrak{a}}(\operatorname{Ad}(y^{-1})X) \\ \frac{d}{dt}m(\exp(tX)y)\Big|_{t=0} &= p_{\mathfrak{m}}(\operatorname{Ad}(y^{-1})X) \\ \frac{d}{dt}\bar{n}(\exp(tX)y)\Big|_{t=0} &= (\operatorname{Ad}(y)\,p_{\bar{\mathfrak{n}}}(\operatorname{Ad}(y^{-1})\,X))^{+}(y). \end{aligned}$$

Proof. 1) is an immediate consequence of the well-known expression for the derivative of the exponential map (see [17], for instance).

To prove 2), we consider the diffeomorphism $\mu : \bar{N} \times M \times A \times N \to \bar{N}MAN$ defined by $\mu(y, m, a, n) = yman$. We have, for $y \in \bar{N}$, $Y \in \bar{\mathfrak{n}}$, $U \in \mathfrak{m}$, $H \in \mathfrak{a}$ and $Z \in \mathfrak{n}$:

$$d\mu(y, e, e, e)(Y^{+}(y), U, H, Z) = \frac{d}{dt} \exp(tY)y \exp(tU) \exp(tH) \exp(tZ)\Big|_{t=0}$$

= $(Y + \operatorname{Ad} y(U + H + Z))^{+}(y).$

Now, let $X \in \mathfrak{g}$. We write $\operatorname{Ad} y^{-1}X = Y_0 + U + H + Z$ where $Y_0 \in \overline{\mathfrak{n}}, U \in \mathfrak{m}, H \in \mathfrak{a}$ and $Z \in \mathfrak{n}$. Then the previous equality implies that $d\overline{n}(y)(X^+(y)) = U$

 $(\operatorname{Ad}(y) Y_0)^+(y)$. This proves the last equality of 2). The other equalities are proved similarly.

From Lemma 3.1 we deduce immediately:

Proposition 3.2. For $X \in \mathfrak{g}$ we have

$$(d\pi(X)\phi)(Y) = (\rho + i\nu)(p_{\mathfrak{a}}(\operatorname{Ad}(y^{-1})X))\phi(y) + d\sigma(p_{\mathfrak{m}}(\operatorname{Ad}(y^{-1})X))\phi(Y) - d\phi(Y)\left(\frac{\operatorname{ad}Y}{e^{\operatorname{ad}Y} - 1}\operatorname{Ad}(y)p_{\overline{\mathfrak{n}}}(\operatorname{Ad}(y^{-1})X)\right)$$
(3.1)

where $\phi \in C_0(\bar{\mathbf{n}}, E), Y \in \bar{\mathbf{n}} \text{ and } y = \exp Y.$

Now we introduce the Berezin-Weyl calculus on $\mathbf{\bar{n}} \times \mathbf{\bar{n}} \times \mathcal{O}(\xi_2)$. We say that a complex-valued smooth function $f : (Y, Z, \varphi) \to f(Y, Z, \varphi)$ is a symbol on $\mathbf{\bar{n}} \times \mathbf{\bar{n}} \times \mathcal{O}(\xi_2)$ if for each $(Y, Z) \in \mathbf{\bar{n}} \times \mathbf{\bar{n}}$ the function $\varphi \to f(Y, Z, \varphi)$ is the symbol in the Berezin calculus on $\mathcal{O}(\xi_2)$ of an operator on E denoted by $\hat{f}(Y, Z)$. A symbol f on $\mathbf{\bar{n}} \times \mathbf{\bar{n}} \times \mathcal{O}(\xi_2)$ is called an S-symbol if the function \hat{f} belongs to the Schwartz space of rapidly decreasing smooth functions on $\mathbf{\bar{n}} \times \mathbf{\bar{n}}$ with values in End(E). Here we consider the Weyl calculus for End(E)-valued functions. This is a slight refinement of the usual Weyl calculus for complex-valued functions [15], [19], [20]. For any S-symbol on $\mathbf{\bar{n}} \times \mathbf{\bar{n}} \times \mathcal{O}(\xi_2)$ we define an operator $\mathcal{W}(f)$ on the Hilbert space $L^2(\mathbf{\bar{n}}, E)$ by

$$(\mathcal{W}(f)\phi)(Y) = (2\pi)^{-n} \int_{\bar{\mathfrak{n}}\times\bar{\mathfrak{n}}} e^{i(T,Z)} \hat{f}\left(Y + \frac{1}{2}T, Z\right) \phi(Y+T) \, dT \, dZ \qquad (3.2)$$

for $\phi \in C_0(\bar{\mathfrak{n}}, E)$.

In fact the Weyl calculus can be extended to much larger classes of symbols (see for instance [20]). Here we only consider a class of polynomial symbols. We say that a symbol f on $\bar{\mathbf{n}} \times \bar{\mathbf{n}} \times \mathcal{O}(\xi_2)$ is a P-symbol if the function $\hat{f}(Y, Z)$ is polynomial in Z. Let f be the P-symbol defined by $f(Y, Z, \varphi) = u(Y)Z^{\alpha}$ where $u \in C^{\infty}(\bar{\mathbf{n}}, E)$ and $Z^{\alpha} := Z^{\alpha_1}Z^{\alpha_2}\cdots Z^{\alpha_n}$ for each multi-index $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n)$. Then

$$(\mathcal{W}(f)\phi)(Y) = \left(i\frac{\partial}{\partial Z}\right)^{\alpha} \left(u(Y + \frac{1}{2}Z)\phi(Y + Z)\right)\Big|_{Z=0}$$
(3.3)

(see [27]). In particular, if $f(Y, Z, \varphi) = u(Y)$ then

$$(\mathcal{W}(f)\phi)(Y) = u(Y)\phi(Y) \tag{3.4}$$

and if $f(Y, Z, \varphi) = u(Y)Z_k$ then

$$(\mathcal{W}(f)\phi)(Y) = i\left(\frac{1}{2}\partial_k u(Y)\phi(Y) + u(Y)\partial_k\phi(Y)\right)$$
(3.5)

where ∂_k denotes the partial derivative with respect to the variable Y_k .

The correspondence $f \to \mathcal{W}(f)$ is called the Berezin-Weyl calculus on $\bar{\mathfrak{n}} \times \bar{\mathfrak{n}} \times \mathcal{O}(\xi_2)$. In order to dequantize the derived representation $d\pi$, that is, to calculate the Berezin-Weyl symbol of the operators $d\pi(X)$ ($X \in \mathfrak{g}$), we need the following lemma. The trace of an endomorphism u of $\bar{\mathfrak{n}}$ is denoted by $\operatorname{Tr}_{\bar{\mathfrak{n}}} u$.

Lemma 3.3. For $X \in \mathfrak{g}$ let $c_X : \overline{\mathfrak{n}} \to \overline{\mathfrak{n}}$ be the map defined by

$$c_X(Y) = s(\operatorname{ad} Y)p_{\bar{\mathfrak{n}}}(\operatorname{Ad}(y^{-1})X)$$

where s is the function defined by $s(z) = \frac{ze^z}{e^z-1}$ for $z \neq 0$ and s(0) = 1. Then we have

$$\operatorname{Tr}_{\bar{\mathfrak{n}}} dc_X(Y) = -2\rho \left(p_{\mathfrak{a}}(\operatorname{Ad}(y^{-1})X) \right).$$
(3.6)

Proof. Let $s(z) = \sum_{k\geq 0} a_k z^k$ be the power-series expansion of the function s. Note that for $Y \in \overline{\mathbf{n}}$ the sum $s(\operatorname{ad} Y) = \sum_{k\geq 0} a_k (\operatorname{ad} Y)^k$ is finite since $\operatorname{ad} Y$ is a nilpotent endomorphism of $\overline{\mathbf{n}}$. We have, for \overline{Y} and Z in $\overline{\mathbf{n}}$

$$dc_X(Y) = \frac{d}{dt} s(\operatorname{ad}(Y+tZ)) \Big|_{t=0} p_{\bar{\mathfrak{n}}}(\operatorname{Ad}(y^{-1})X) + s(\operatorname{ad} Y) p_{\bar{\mathfrak{n}}}\left(\frac{d}{dt}\operatorname{Ad}(\exp(-Y-tZ))X\Big|_{t=0}\right).$$
(3.7)

Now

$$\frac{d}{dt}s(\operatorname{ad}(Y+tZ))\Big|_{t=0} = \sum_{k\geq 0} a_k \frac{d}{dt} (\operatorname{ad} Y+t \operatorname{ad} Z)^k \Big|_{t=0}$$
$$= \sum_{k\geq 0} a_k \left(\sum_{r=0}^{k-1} (\operatorname{ad} Y)^r \operatorname{ad} Z(\operatorname{ad} Y)^{k-r-1} \right).$$

Then, since the endomorphism of $\bar{\mathfrak{n}}$ defined by

$$Z \to (\operatorname{ad} Y)^r \operatorname{ad} Z(\operatorname{ad} Y)^{k-r-1} p_{\bar{\mathfrak{n}}}(\operatorname{Ad}(y^{-1})X)$$

= $-(\operatorname{ad} Y)^r \operatorname{ad} ((\operatorname{ad} Y)^{k-r-1} p_{\bar{\mathfrak{n}}}(\operatorname{Ad}(y^{-1})X))(Z)$

is clearly nilpotent, the endomorphism of $\bar{\mathfrak{n}}$ given by

$$Z \to \frac{d}{dt} s(\operatorname{ad}(Y + tZ)) \Big|_{t=0} p_{\bar{\mathfrak{n}}}(\operatorname{Ad}(y^{-1})X)$$

has trace zero. Now we also have

$$\begin{aligned} \frac{d}{dt} \operatorname{Ad}(\exp(-Y - tZ))X\Big|_{t=0} &= \frac{d}{dt} \operatorname{Ad}(\exp(-Y)\exp(Y + tZ))^{-1} \operatorname{Ad}(\exp(-Y))X\Big|_{t=0} \\ &= -\operatorname{ad}\left(\frac{1 - e^{-\operatorname{ad} Y}}{\operatorname{ad} Y}Z\right) \operatorname{Ad}(\exp Y)^{-1} X \\ &= \operatorname{ad}\left(\operatorname{Ad}(\exp Y)^{-1}X\right)\left(\frac{1 - e^{-\operatorname{ad} Y}}{\operatorname{ad} Y}\right) Z. \end{aligned}$$

Then the trace of the endomorphism of $\bar{\mathfrak{n}}$ defined by

$$Z \to s(\operatorname{ad} Y) p_{\bar{\mathfrak{n}}} \left(\frac{d}{dt} \operatorname{Ad}(\exp(-Y - tZ)) X \Big|_{t=0} \right)$$

is

$$\begin{aligned} \operatorname{Tr}_{\bar{\mathfrak{n}}} & \left(s(\operatorname{ad} Y) p_{\bar{\mathfrak{n}}} \circ \operatorname{ad}(\operatorname{Ad}(\exp Y)^{-1} X) \frac{1 - e^{-\operatorname{ad} Y}}{\operatorname{ad} Y} \right) \\ &= \operatorname{Tr}_{\bar{\mathfrak{n}}} \left(\frac{1 - e^{-\operatorname{ad} Y}}{\operatorname{ad} Y} s(\operatorname{ad} Y) \, p_{\bar{\mathfrak{n}}} \circ \operatorname{ad}(\operatorname{Ad}(\exp Y)^{-1} X) \right) \\ &= \operatorname{Tr}_{\bar{\mathfrak{n}}} \left(\frac{1 - e^{-\operatorname{ad} Y}}{\operatorname{ad} Y} \frac{\operatorname{ad} Y}{e^{\operatorname{ad} Y} - 1} \exp(\operatorname{ad} Y) \, p_{\bar{\mathfrak{n}}} \circ \operatorname{ad}(\operatorname{Ad}(\exp Y)^{-1} X) \right) \\ &= \operatorname{Tr}_{\bar{\mathfrak{n}}} \left(p_{\bar{\mathfrak{n}}} \circ \operatorname{ad}(\operatorname{Ad}(\exp Y)^{-1} X) \right). \end{aligned}$$

Thus the lemma will be proved if we can show that, for each $X \in \mathfrak{g}$,

$$\operatorname{Tr}_{\bar{\mathfrak{n}}}(p_{\bar{\mathfrak{n}}} \circ \operatorname{ad} X) = -2\rho(p_{\mathfrak{a}}(X)).$$

If $X \in \bar{\mathbf{n}}$ then $p_{\bar{\mathbf{n}}} \circ \operatorname{ad} X = \operatorname{ad} X$ is a nilpotent endomorphism of $\bar{\mathbf{n}}$. Thus $\operatorname{Tr}_{\bar{\mathbf{n}}}(p_{\bar{\mathbf{n}}} \circ \operatorname{ad} X) = 0$. If $X \in \mathbf{n}$ then, noting that $[\mathbf{n}, \mathfrak{g}_{\lambda}] \subset \mathfrak{a} + \sum_{\mu > \lambda} \mathfrak{g}_{\mu}$ for each $\lambda < 0$, we also obtain that $\operatorname{Tr}_{\bar{\mathbf{n}}}(p_{\bar{\mathbf{n}}} \circ \operatorname{ad} X) = 0$. If $X \in \mathbf{m}$ then $p_{\bar{\mathbf{n}}} \circ \operatorname{ad} X = \operatorname{ad} X$ is an endomorphism of $\bar{\mathbf{n}}$ which is skew-symmetric with respect to (\cdot, \cdot) [17]. Thus $\operatorname{Tr}_{\bar{\mathbf{n}}}(p_{\bar{\mathbf{n}}} \circ \operatorname{ad} X) = 0$. Finally, if $X \in \mathfrak{a}$ then $\operatorname{Tr}_{\bar{\mathbf{n}}}(p_{\bar{\mathbf{n}}} \circ \operatorname{ad} X) = \operatorname{Tr}_{\bar{\mathbf{n}}}(\operatorname{ad} X) = -2\rho(X)$. This ends the proof of the lemma.

Proposition 3.4. For each $X \in \mathfrak{g}$, the Berezin-Weyl symbol of the operator $-id\pi(X)$ is the P-symbol f_X on $\overline{\mathfrak{n}} \times \overline{\mathfrak{n}} \times \mathcal{O}(\xi_2)$ given by

$$f_X(Y, Z, \varphi) = \nu \left(p_{\mathfrak{a}}(\operatorname{Ad}(y^{-1})X) \right) + \langle \varphi, p_{\mathfrak{m}}(\operatorname{Ad}(y^{-1})X) \rangle + (c_X(Y), Z) \quad (3.8)$$

where $y = \exp Y$.

Proof. If we put $c_X^k(Y) = (c_X(Y), E_k)$ for $k = 1, \ldots, n$ then we can write (3.1) as

$$(-id\pi(X)\phi)(Y) = (-i\rho + \nu)(p_{\mathfrak{a}}(\operatorname{Ad}(y^{-1})X))\phi(y) -id\sigma(p_{\mathfrak{m}}(\operatorname{Ad}(y^{-1})X))\phi(Y) +i\sum_{k=1}^{n} (\partial_{k}\phi)(Y)c_{X}^{k}(Y).$$
(3.9)

Using Proposition 2.1 4) and the properties (3.3) and (3.4) of the Weyl calculus, we see that the symbol of $-id\pi(X)$ is

$$f_X(Y, Z, \varphi) = (-i\rho + \nu) \left(p_{\mathfrak{a}}(\operatorname{Ad}(y^{-1})X) \right) + \langle \varphi, p_{\mathfrak{m}}(\operatorname{Ad}(y^{-1})X) \rangle$$

+
$$\sum_{k=1}^n c_X^k(Y) Z_k - \frac{i}{2} \sum_{k=1}^n \partial_k c_X^k(Y).$$

By Lemma 3.3

$$-\frac{i}{2}\sum_{k=1}^{n}\partial_{k}c_{X}^{k}(Y) = -\frac{i}{2}\operatorname{Tr}_{\bar{\mathfrak{n}}}(dc_{X}(Y)) = i\rho(p_{\mathfrak{a}}(\operatorname{Ad}(y^{-1})X)).$$

The result follows.

4. Adapted Weyl correspondence

In this section, we show that the dequantization procedure introduced in Section 3 allows us to obtain an explicit diffeomorphism from $\bar{\mathfrak{n}}^2 \times \mathcal{O}(\xi_2)$ onto the dense open set $\tilde{\mathcal{O}}(\xi_0) := \operatorname{Ad}(\bar{N}MAN)\xi_0$ of $\mathcal{O}(\xi_0)$. This diffeomorphism is a symplectomorphism for the natural symplectic structures. Using this symplectomorphism, we then construct an adapted Weyl correspondence on $\mathcal{O}(\xi_0)$. We retain the notation of the previous sections.

Recall that f_X denotes the Berezin-Weyl symbol of the operator $-id\pi(X)$ for $X \in \mathfrak{g}$. Since the map $X \to f_X(T, S, \varphi)$ is linear there exists a map Ψ from $\overline{\mathfrak{n}}^2 \times \mathcal{O}(\xi_2)$ to \mathfrak{g}^* such that

$$f_X(Y, Z, \varphi) = \langle \Psi(Y, Z, \varphi), X \rangle$$

for each $X \in \mathfrak{g}$ and each $(Y, Z, \varphi) \in \overline{\mathfrak{n}} \times \overline{\mathfrak{n}} \times \mathcal{O}(\xi_2)$. From Proposition 3.4 we can deduce a precise expression for Ψ .

Proposition 4.1. For $(Y, Z, \varphi) \in \overline{\mathfrak{n}} \times \overline{\mathfrak{n}} \times \mathcal{O}(\xi_2)$ we have

$$\Psi(Y, Z, \varphi) = \operatorname{Ad}(\exp Y) \left(\xi_1 + \varphi + p_{\mathfrak{n}} \left(\frac{\operatorname{ad} Y}{e^{\operatorname{ad} Y} - 1} \, \theta(Z) \right) \right). \tag{4.1}$$

Proof. Recall that

$$f_X(Y, Z, \varphi) = \nu \left(p_{\bar{\mathfrak{a}}}(\operatorname{Ad}(y^{-1}) X) \right) + \langle \varphi, p_{\mathfrak{m}}(\operatorname{Ad}(y^{-1}) X) \rangle + \langle c_X(Y), \theta(Z) \rangle$$

where $y = \exp Y$. We have

$$< c_X(Y), \theta(Z) >= < \frac{\operatorname{ad} Y}{e^{\operatorname{ad} Y} - 1} \operatorname{Ad}(y) \ p_{\bar{\mathfrak{n}}}(\operatorname{Ad}(y^{-1}) X), \ \theta(Z) >$$

$$= < p_{\bar{\mathfrak{n}}}(\operatorname{Ad}(y^{-1}) X), \ \frac{\operatorname{ad} Y}{e^{\operatorname{ad} Y} - 1} \theta(Z) >$$

$$= < p_{\bar{\mathfrak{n}}}(\operatorname{Ad}(y^{-1}) X), \ p_{\mathfrak{n}}\left(\frac{\operatorname{ad} Y}{e^{\operatorname{ad} Y} - 1} \theta(Z)\right) >$$

$$= < \operatorname{Ad}(y^{-1}) X, \ p_{\mathfrak{n}}\left(\frac{\operatorname{ad} Y}{e^{\operatorname{ad} Y} - 1} \theta(Z)\right) >$$

$$= < X, \ \operatorname{Ad}(y) \ p_{\mathfrak{n}}\left(\frac{\operatorname{ad} Y}{e^{\operatorname{ad} Y} - 1} \theta(Z)\right) > .$$

Here we have used that $\langle \mathfrak{a} + \mathfrak{m}, \mathfrak{n} + \overline{\mathfrak{n}} \rangle = (0), \langle \mathfrak{n}, \mathfrak{n} \rangle = (0)$ and $\langle \overline{\mathfrak{n}}, \overline{\mathfrak{n}} \rangle = (0)$. Similarly, we have

$$\nu \left(p_{\mathfrak{a}}(\mathrm{Ad}(y^{-1}) X) \right) = <\xi_1, p_{\mathfrak{a}}(\mathrm{Ad}(y^{-1}) X) > \\ = <\xi_1, \mathrm{Ad}(y^{-1}) X > = <\mathrm{Ad}(y) \xi_1, X >$$

and

$$\langle \varphi, p_{\mathfrak{m}}(\operatorname{Ad}(y^{-1})X) \rangle = \langle \varphi, \operatorname{Ad}(y^{-1})X \rangle = \langle \operatorname{Ad}(y)\varphi, X \rangle.$$

The result then follows.

An element $V \in \mathfrak{a} + \mathfrak{m}$ is called *regular* if $\text{Det}(\text{ad } V|_{\mathfrak{n}}) \neq 0$. If $V \in \mathfrak{a}$ then the condition that V is regular is just that $\lambda(V) \neq 0$ for each $\lambda > 0$.

Lemma 4.2.

- 1) If V_1 is a regular element of \mathfrak{a} and $V_2 \in \mathfrak{m}$ then $V = V_1 + V_2$ is regular.
- 2) Let $G(\xi_0)$ be the stabilizer of ξ_0 in G. Then $G(\xi_0) = A M(\xi_2)$ where $M(\xi_2)$ is the stabilizer of ξ_2 in M.

Proof. 1) For each $\lambda > 0$, we have $(\text{ad } V)(\mathfrak{g}_{\lambda}) \subset \mathfrak{g}_{\lambda}$. Set $v_{\lambda} = (\text{ad } V)|_{\mathfrak{g}_{\lambda}}$. Then, for each $X \in \mathfrak{g}_{\lambda}$, we have $v_{\lambda}(X) = \lambda(V_1)X + (\text{ad } V_2)(X)$. Thus, since ad V_2 is skew-symmetric with respect to $(X, Y) = \langle X, \theta(Y) \rangle$, the eigenvalues of v_{λ} are of the form $\lambda(V_1) + ir$ where $\lambda(V_1) \in \mathbb{R} \setminus (0)$ and $r \in \mathbb{R}$. Then $\text{Det}(v_{\lambda}) \neq 0$ for each $\lambda > 0$. Hence $\text{Det}(\text{ad } V|_{\mathfrak{n}}) \neq 0$.

2) We argue as in [24], p. 126, Remark (2). Let \hat{M} be the normalizer of \mathfrak{a} in K. Let $g \in G(\xi_0)$. We can write $g = k \exp X$ with $k \in K, X \in \mathfrak{p}$. Applying θ , we see that $k \exp(-X) \in \hat{M}$. Then $\exp(2X) \in \hat{M}$ i.e. $\operatorname{Ad}(\exp(2X))(\mathfrak{a}) \subset \mathfrak{a}$. Since $\operatorname{Ad}(\exp(2X))$ is positive definite on \mathfrak{g} , its Hermitian logarithm $\operatorname{ad}(2X)$ is a polynomial in $\operatorname{Ad}(\exp(2X))$. Thus $\operatorname{ad}(2X)(\mathfrak{a}) \subset \mathfrak{a}$ and we easily verify that $X \in \mathfrak{a}$. Then $\operatorname{Ad}(k)(\xi_0) = \xi_0$ or, equivalently, $\operatorname{Ad}(k)(\xi_1 + \xi_2) = \xi_1 + \xi_2$. Since $\operatorname{Ad}(k)\xi_1 \in \mathfrak{k}$ and $\operatorname{Ad}(k)\xi_2 \in \mathfrak{p}$, this gives $\operatorname{Ad}(k)\xi_1 = \xi_1$ and $\operatorname{Ad}(k)\xi_2 = \xi_2$. But $\operatorname{Ad}(k)\xi_1 = \xi_1$ implies that $\operatorname{Ad}(k)\mathfrak{a} \subset \mathfrak{a}$. In other words, k lies in the normalizer \hat{M} of \mathfrak{a} in K. Let $C(\xi_1)$ the Weyl chamber of \mathfrak{a} containing ξ_1 . We have $\operatorname{Ad}(k)C(\xi_1) = C(\xi_1)$. Since the Weyl group \hat{M}/M acts simply transitively on the set of the Weyl chambers of \mathfrak{a} , we obtain $k \in M$. Hence $k \in M(\xi_2)$.

The following proposition can be found in [14] (see also [4]). Here we present an elementary proof.

Proposition 4.3. The map Ψ_0 defined by $\Psi_0(y, Z, \varphi) = \operatorname{Ad}(y) (\xi_1 + \varphi + \theta(Z))$ is a diffeomorphism from $\overline{N} \times \overline{\mathfrak{n}} \times \mathcal{O}(\xi_2)$ onto $\tilde{\mathcal{O}}(\xi_0)$.

Proof. Recall that if $V \in \mathfrak{a} + \mathfrak{m}$ is regular then the map $Y \to \operatorname{Ad}(\exp Y) V - V$ is a diffeomorphism of \mathfrak{n} [28]. Let $(y, Z, \varphi) \in \overline{N} \times \overline{\mathfrak{n}} \times \mathcal{O}(\xi_2)$. Write $\varphi = \operatorname{Ad}(m)\xi_2$ with $m \in M$. Since the element $\xi_1 + \varphi = \operatorname{Ad}(m)\xi_0$ is regular, there exists an element $z \in N$ such that $\xi_1 + \varphi + \theta(Z) = \operatorname{Ad}(zm)\xi_0$. Then $\Psi_0(y, Z, \varphi) = \operatorname{Ad}(yzm)(\xi_0)$. Thus Ψ_0 takes values in $\tilde{\mathcal{O}}(\xi_0)$. By the same arguments, we show that Ψ_0 is onto. Now, suppose that $\Psi_0(y, Z, \varphi) = \Psi_0(y', Z', \varphi')$. As before, we write $\Psi_0(y, Z, \varphi) = \operatorname{Ad}(yzm)(\xi_0)$ and $\Psi_0(y', Z', \varphi') = \operatorname{Ad}(y'z'm')(\xi_0)$ with $m \in M$, $m' \in M$, $z \in N$ and $z' \in N$. Then $(z'm')^{-1}(y'^{-1}y)zm$ lies in $G(\xi_0)$. By Lemma 4.2., there exists $m_0 \in M(\xi_2)$ and $a \in A$ such that $(z'm')^{-1}(y'^{-1}y)zm = m_0a$. By unicity in the $\overline{N}MAN$ -decomposition, we have $y'^{-1}y = e$ and $m = m'm_0$. Then $y = y', \varphi = \varphi'$ and Z = Z'. This shows that Ψ_0 is injective.

184

Now we show that Ψ_0 is regular. Let $Y \in \overline{\mathfrak{n}}$, $T \in \overline{\mathfrak{n}}$ and $\phi \in \mathfrak{m}$ such that

$$d\Psi_0(y, Z, \varphi)(Y^+(y), T, \phi^+(\varphi)) = 0.$$

Since

$$d\Psi_0(y, Z, \varphi)(Y^+(y), T, \phi^+(\varphi)) = \frac{d}{dt} \Big(\operatorname{Ad}(\exp(tY)y)(\xi_1 + \exp(t\phi)\varphi + \theta(Z + tT)) \Big) \Big|_{t=0}$$

= $\operatorname{Ad}(y)([\phi, \varphi] + \theta(T) + [Y, \Psi_0(y, Z, \varphi)])$

we have

$$[\phi,\varphi] + \theta(T) + [\operatorname{Ad}(y^{-1})Y,\xi_1 + \varphi + \theta(Z)] = 0.$$
(4.2)

Since $[\bar{\mathfrak{n}}, \mathfrak{a} + \mathfrak{m} + \mathfrak{n}] \subset \mathfrak{a} + \mathfrak{n} + \bar{\mathfrak{n}}$, we get $\phi^+(\varphi) = [\phi, \varphi] = 0$. Write $\varphi = \operatorname{Ad}(m)\xi_2$ with $m \in M$ and set $T' = \operatorname{Ad}(m^{-1})T \in \mathfrak{m}$, $Y' = \operatorname{Ad}(m^{-1})\operatorname{Ad}(y^{-1})Y \in \bar{\mathfrak{n}}$ and $Z' = \operatorname{Ad}(m^{-1})Z \in \bar{\mathfrak{n}}$. Then (4.2) can be rewritten as

$$\theta(T') + [Y', \xi_0] + [Y', \theta(Z')] = 0.$$
(4.3)

If $Y' \neq 0$ then we can write $Y' = Y'_{\lambda} + \sum_{\mu > \lambda} Y'_{\mu}$ where $Y'_{\lambda} \in \mathfrak{g}_{\lambda} \setminus (0)$ and $Y'_{\mu} \in \mathfrak{g}_{\mu}$ for each $\mu > \lambda$. But the first member of (4.3) lies in $\mathfrak{a} + \mathfrak{g}_{\lambda} + \sum_{\mu > \lambda} \mathfrak{g}_{\mu}$ (direct sum) and its component on \mathfrak{g}_{λ} is $[Y'_{\lambda}, \xi_0] = -\lambda(\xi_0)Y'_{\lambda}$. This is a contradiction because ξ_0 is regular. Then Y = 0. Hence T = 0.

Lemma 4.4. Let $Y \in \overline{\mathfrak{n}}$. Then the map

$$\eta: \quad Z \to p_{\mathfrak{n}}\left(\frac{\operatorname{ad} Y}{e^{\operatorname{ad} Y} - 1}\left(Z\right)\right)$$

is a diffeomorphism of \mathfrak{n} .

Proof. By using the decomposition $\mathfrak{g} = \mathfrak{a} \oplus \mathfrak{m} \oplus \mathfrak{n} \oplus \overline{\mathfrak{n}}$, we easily show that the inverse map of η is $Z \to p_{\mathfrak{n}} \left(\frac{e^{\operatorname{ad} Y} - 1}{\operatorname{ad} Y} (Z) \right)$.

Let ω_0 and ω_2 be the Kirillov 2-forms on $\mathcal{O}(\xi_0)$ and $\mathcal{O}(\xi_2)$, respectively. Denote by $\{\cdot, \cdot\}_0$ and $\{\cdot, \cdot\}_2$ the Poisson brackets associated with ω_0 and ω_2 . We equip $\bar{\mathfrak{n}}^2$ with the symplectic form $dY \wedge dZ := \sum_{k=1}^n dY_k \wedge dZ_k$. The corresponding Poisson bracket on $C^{\infty}(\bar{\mathfrak{n}}^2)$ is

$$\{f, g\} = \sum_{k=1}^{n} \left(\frac{\partial f}{\partial Y_k} \frac{\partial g}{\partial Z_k} - \frac{\partial f}{\partial Z_k} \frac{\partial g}{\partial Y_k} \right).$$
(4.4)

We form the symplectic product $\bar{\mathfrak{n}}^2 \times \mathcal{O}(\xi_2)$. We denote by $\{\cdot, \cdot\}_1$ the Poisson bracket associated with the symplectic form $\omega_1 := (dT \wedge dS) \otimes \omega_2$. Let $u, v \in C^{\infty}(\bar{\mathfrak{n}}^2)$ and $a, b \in C^{\infty}(\mathcal{O}(\xi_2))$. Observe that for $f(Y, Z, \varphi) = u(Y, Z)a(\varphi)$ and $g(Y, Z, \varphi) = v(Y, Z)b(\varphi)$ we have

$$\{f, g\}_1 = u(Y, Z)v(Y, Z)\{a, b\}_2 + a(\varphi)b(\varphi)\{u, v\}.$$
(4.5)

Lemma 4.5. Suppose that f and g are two P-symbols on $\overline{\mathfrak{n}}^2 \times \mathcal{O}(\xi_2)$ of the form

$$u(Y) + \langle v(Y), \varphi \rangle + \sum_{k=1}^{n} w_k(Y) Z_k$$

where $u \in C^{\infty}(\bar{\mathfrak{n}}), v \in C^{\infty}(\bar{\mathfrak{n}}, \mathfrak{m})$ and $w_k \in C^{\infty}(\bar{\mathfrak{n}})$ for k = 1, 2, ..., n. Then

$$[\mathcal{W}(f), \mathcal{W}(g)] = -i \mathcal{W}(\{f, g\}_1). \tag{4.6}$$

Proof. Direct computation using (3.4), (3.5) and the fact that if $f = \langle v(Y), \varphi \rangle$ then $(W(f)\phi)(Y) = -i d\rho(v(Y))\phi(Y)$.

Theorem 4.6. The map Ψ introduced in Proposition 4.1 is a symplectomorphism from $(\bar{\mathfrak{n}}^2 \times \mathcal{O}(\xi_2), \omega_1)$ onto $(\tilde{\mathcal{O}}(\xi_0), \omega_0|_{\tilde{\mathcal{O}}(\xi_0)})$.

Proof. By combining Proposition 4.3 and Lemma 4.4, we see that Ψ is a diffeomorphism from $\bar{\mathfrak{n}}^2 \times \mathcal{O}(\xi_2)$ onto $\tilde{\mathcal{O}}(\xi_0)$. Recall that for $X \in \mathfrak{g}$, \tilde{X} denotes the function on $\mathcal{O}(\xi_0)$ defined by $\tilde{X}(\xi) = \langle \xi, X \rangle$. Observe that $f_X = \tilde{X} \circ \Psi$.

Let X and Y in \mathfrak{g} . Then by Proposition 3.4 and Lemma 4.5 we have

$$[\mathcal{W}(f_X), \, \mathcal{W}(f_Y)] = -i\mathcal{W}(\{f_X, \, f_Y\}_1).$$

On the other hand

$$\left[\mathcal{W}(f_X), \, \mathcal{W}(f_Y)\right] = \left[-id\pi(X), -id\pi(Y)\right] = -d\pi(\left[X, Y\right]) = -i\mathcal{W}(f_{[X,Y]}).$$

Hence we obtain $f_{[X,Y]} = \{f_X, f_Y\}_1$. Since $[X, Y] = \{X, Y\}_0$ we have finally

$$\{\tilde{X}, \tilde{Y}\}_0 \circ \Psi = \{\tilde{X} \circ \Psi, \tilde{Y} \circ \Psi\}_1.$$

This implies that Ψ is a symplectomorphism.

In order to construct an adapted Weyl transform on $\mathcal{O}(\xi_0)$ we transfer to $\mathcal{O}(\xi_0)$ the Berezin-Weyl calculus on $\bar{\mathfrak{n}}^2 \times \mathcal{O}(\xi_2)$. We say that a smooth function f on $\mathcal{O}(\xi_0)$ is a symbol on $\mathcal{O}(\xi_0)$ if $f \circ \Psi$ is a symbol for the Berezin-Weyl calculus on $\bar{\mathfrak{n}}^2 \times \mathcal{O}(\xi_2)$. We say that f is a P-symbol (or an S-symbol) on $\mathcal{O}(\xi_0)$ if $f \circ \Psi$ is a P-symbol (or an S-symbol) on $\bar{\mathfrak{n}}^2 \times \mathcal{O}(\xi_2)$.

Theorem 4.7. Let \mathcal{A} be the space of P-symbols on $\mathcal{O}(\xi_0)$ and let \mathcal{B} be the space of differential operators on $\bar{\mathfrak{n}}$ with coefficients in $C^{\infty}(\bar{\mathfrak{n}}, E)$. Then the map $W : \mathcal{A} \to \mathcal{B}$ that assigns to each $f \in \mathcal{A}$ the operator $\mathcal{W}(f \circ \Psi)$ on $L^2(\bar{\mathfrak{n}}, E)$ is an adapted Weyl correspondence in the sense of Definition 1.1.

Proof. Properties (i), (ii) and (iii) of the definition of an adapted Weyl correspondence are clearly satisfied with $D = C_0(\bar{\mathbf{n}}, E)$.

Property (iv) follows from Proposition 2.1 2) and from the similar result for the usual Weyl calculus.

Finally, property (v) is just a reformulation of Proposition 3.4.

5. Comparison with the symbolic calculus of [4].

In this section, we first describe the construction of the adapted Weyl transform on $\mathcal{O}(\xi_0)$ introduced in [4]. We retain the notation of the previous sections. In [4], a symbolic calculus on $\bar{N} \times \bar{\mathbf{n}} \times \mathcal{O}(\xi_2)$ is defined as follows. A smooth function $f: (y, Z, \varphi) \to f(y, Z, \phi)$ is said to be a symbol on $\bar{N} \times \bar{\mathbf{n}} \times \mathcal{O}(\xi_2)$ if for each $(y, Z) \in \bar{N} \times \bar{\mathbf{n}}$ the function $\phi \to f(y, Z, \varphi)$ is the symbol in the Berezin calculus on $\mathcal{O}(\xi_2)$ of an operator on E denoted by $\hat{f}(y, Z)$. As in Section 3, we define the notions of S-symbol and P-symbol on $\bar{N} \times \bar{\mathbf{n}} \times \mathcal{O}(\xi_2)$. We associate with any P-symbol f on $\bar{N} \times \bar{\mathbf{n}} \times \mathcal{O}(\xi_2)$ the operator $\mathcal{W}_0(f)$ on $C_0(\bar{N}, E)$ defined by the integral formula

$$\mathcal{W}_{0}(f)(\psi)(y) = (2\pi)^{-n} \int \int_{\bar{\mathfrak{n}} \times \bar{\mathfrak{n}}} e^{i(T,Z)} \hat{f}(y \exp(T/2), Z) \psi(y \exp T) dT dZ.$$
(5.1)

As for the Weyl calculus, one can extend \mathcal{W}_0 to *P*-symbols. More precisely, let *f* be the *P*-symbol on $\bar{N} \times \bar{\mathfrak{n}} \times \mathcal{O}(\xi_2)$ defined by $f(y, Z, \varphi) = u(y)Z^{\alpha}$ with $u \in C^{\infty}(\bar{N}, E)$. Then we have

$$\mathcal{W}_0(f)(\psi)(y) = \left(i\frac{\partial}{\partial Z}\right)^{\alpha} \left(u(y\exp\left(T/2\right))\psi(y\exp T)\right)\Big|_{Z=0}.$$
(5.2)

In particular, if $f(y, Z, \phi) = u(y)$ then $\mathcal{W}_0(f)(\psi)(y) = u(y)\psi(y)$ and if $f(y, Z, \varphi) = (v(y), Z)$ with $v \in C^{\infty}(\bar{N}, E)$ then

$$\mathcal{W}_{0}(f)(\psi)(y) = i \left(\frac{d}{dt} \sum_{k=1}^{n} \left(E_{k}, v(y \exp \left| \frac{t}{2} E_{k} \right| \right) \Big|_{t=0} \psi(y) + \frac{d}{dt} \psi(y \exp(tv(y)) \Big|_{t=0} \right).$$
(5.3)

Now we say that a smooth function f on $\mathcal{O}(\xi_0)$ is a P-symbol (resp. an S-symbol) on $\mathcal{O}(\xi_0)$ if $f \circ \Psi_0$ is a P-symbol (resp. an S-symbol) on $\overline{N} \times \overline{\mathfrak{n}} \times \mathcal{O}(\xi_2)$. For each P-symbol (or S-symbol) f on $\mathcal{O}(\xi_0)$ we set $W_0(f) = \mathcal{W}_0(f \circ \Psi_0)$. We have shown in [4] that the map W_0 is then a Weyl correspondence on $\mathcal{O}(\xi_0)$ adapted to the realization $\hat{\pi}$ of the principal series representation (see (2.1)). In particular, we have $d\hat{\pi}(X)\psi = W_0(i\tilde{X})\psi$ for $X \in \mathfrak{g}$ and $\psi \in C_0(\bar{N}, E)$ ([4], Proposition 6).

Note that if f is a function on $\mathcal{O}(\xi_0)$ then

$$(f \circ \Psi)(Y, Z, \varphi) = (f \circ \Psi_0)(\exp Y, \theta\left(p_{\mathfrak{n}}\left(\frac{\operatorname{ad} Y}{e^{\operatorname{ad} Y} - 1}\,\theta(Z)\right)\right), \varphi).$$
(5.4)

Then we see that f is a P-symbol (resp. an S-symbol) for W_0 if and only f is a P-symbol (resp. an S-symbol) for W. Recall that the unitary operator B from $L^2(\bar{n}, E)$ to $L^2(\bar{N}, E)$ defined by $B(\phi)(\exp Y) = \phi(Y)$ is an intertwining operator between the representations π and $\hat{\pi}$, that is, $B\pi(g) = \hat{\pi}(g)B$ for each $g \in G$. Then, noting that B maps $C_0(\bar{n}, E)$ onto $C_0(\bar{N}, E)$, we have $Bd\pi(X) = d\hat{\pi}(X)B$

on $C_0(\bar{\mathbf{n}}, E)$ for each $X \in \mathfrak{g}$. Equivalently, we have $BW(\tilde{X}) = W_0(\tilde{X})B$ on $C_0(\bar{\mathbf{n}}, E)$ for each $X \in \mathfrak{g}$. Now, we say that f is a P-symbol of degree ≤ 1 for W_0 (resp. W) if $f \circ \Psi_0$ (resp. $f \circ \Psi$) is a polynomial in the variable Z of degree ≤ 1 . It is immediate that f is a P-symbol of degree ≤ 1 for W_0 if and only if f is a P-symbol of degree ≤ 1 for W. In particular, for each $X \in \mathfrak{g}$, the function \tilde{X} is P-symbol of degree ≤ 1 for W_0 and W. We will prove that if f is a P-symbol of degree ≤ 1 for W_0 and $W(f) = W_0(f)B$ holds.

For $Z \in \overline{\mathbf{n}}$, we denote by Z^- the vector field on \overline{N} defined by $Z^-(y) = \frac{d}{dt}(y \exp(tZ))|_{t=0}$.

Lemma 5.1. Let $U \in C^{\infty}(\bar{\mathfrak{n}}, \bar{\mathfrak{n}})$. Define $u \in C^{\infty}(\bar{\mathfrak{n}}, \bar{N})$ by $u(\exp Y) = \frac{1-e^{-\operatorname{ad} Y}}{\operatorname{ad} Y}$ U(Y). For $Y \in \bar{\mathfrak{n}}$, let γ_Y be the endomorphism of $\bar{\mathfrak{n}}$ defined by $\gamma_Y(Z) = du(\exp Y)$ $(Z^{-}(\exp Y))$. Then we have

$$Tr_{\bar{\mathfrak{n}}}(\gamma_Y) = \operatorname{Tr}_{\bar{\mathfrak{n}}}(dU(Y))$$

for each $Y \in \overline{\mathfrak{n}}$.

Proof. By differentiating the relation $U(Y) = \frac{\operatorname{ad} Y}{1 - e^{-\operatorname{ad} Y}} u(\exp Y)$, we obtain, for Y and Z in $\overline{\mathfrak{n}}$

$$dU(Y)(Z) = \sum_{m \ge 0} b_m \sum_{r=0}^{m-1} (\operatorname{ad} Y)^r \operatorname{ad} Z(\operatorname{ad} Y)^{m-r-1} u(\exp Y)$$

+
$$\frac{\operatorname{ad} Y}{1 - e^{-\operatorname{ad} Y}} \gamma_Y \left(\frac{1 - e^{-\operatorname{ad} Y}}{\operatorname{ad} Y}\right) Z$$

where $\frac{z}{1-e^{-z}} = \sum_{m \ge 0} b_m z^m$.

Now, we note first that the endomorphism of $\bar{\mathfrak{n}}$ defined by

$$Z \to (\operatorname{ad} Y)^r \operatorname{ad} Z(\operatorname{ad} Y)^{m-r-1} u(\exp Y) = -\operatorname{ad} Y \operatorname{ad}((\operatorname{ad} Y)^{m-r-1} u(\exp Y)) Z$$

is nilpotent then its trace is zero. Secondly, we have

$$Tr_{\bar{\mathfrak{n}}}\left(\frac{\operatorname{ad}Y}{1-e^{-\operatorname{ad}Y}} \circ \gamma_{Y} \circ \frac{1-e^{-\operatorname{ad}Y}}{\operatorname{ad}Y}\right) = Tr_{\bar{\mathfrak{n}}}(\gamma_{Y})$$

The lemma then follows.

Proposition 5.2. Let f be a P-symbol of degree ≤ 1 for W and W_0 . Then we have $BW(f) = W_0(f)B$ on $C_0(\bar{\mathfrak{n}}, E)$.

Proof. Using the relations (3.5) and (5.3), we see that the result is a consequence of Lemma 5.1. \Box

Proposition 5.3. Assume that $[\bar{\mathbf{n}}, [\bar{\mathbf{n}}, \bar{\mathbf{n}}]] = (0)$. Let f be an S-symbol or a P-symbol for W. Then we have $BW(f) = W_0(f)B$ on $C_0(\bar{\mathbf{n}}, E)$.

Proof. Suppose first that f is an S-symbol for W and W_0 . We express $W(f)(\psi \circ \exp)(Y)$ as an integral (see (3.2)) which we transform by means of the change of variables $(T, Z) \to (T', Z')$ where $T' = \log(\exp(-Y) \exp(Y + T))$ and

$$Z' = \theta \Big(p_{\mathfrak{n}} \Big(\frac{\operatorname{ad}(Y + \frac{T}{2})}{e^{\operatorname{ad}(Y + \frac{T}{2})} - 1} \theta(Z) \Big) \Big).$$

Since $[\bar{\mathfrak{n}}, [\bar{\mathfrak{n}}, \bar{\mathfrak{n}}]] = (0)$, we have $T' = T - \frac{1}{2}[Y, T]$ and we easily verify that $W(f)(\psi \circ \exp)(Y) = W_0(f)(\psi)(\exp Y)$. Then we obtain the result for S-symbols and thus, following [27], the result for P-symbols.

References

- Ali, S. T.; Englis, M.: Quantization methods: a guide for physicists and analysts. Rev. Math. Phys. 17(4) (2005), 391–490.
 Zbl 1075.81038
- [2] Arnal, D.; Cahen, M.; Gutt, S.: Representation of compact Lie groups and quantization by deformation. Acad. R. Belg. Bull. Cl. Sc. 3e série LXXIV 45 (1988), 123–141.
- [3] Arnal, D.; Cortet, J.-C.: Nilpotent Fourier Transform and Applications. Lett. Math. Phys. 9 (1985), 25–34.
 Zbl 0616.46041
- [4] Cahen, B.: Star-représentations induites. Thèse, Université de Metz, 1992.
- [5] Cahen, B.: Deformation Program for Principal Series Representations. Lett. Math. Phys. 36 (1996), 65–75.
 Zbl 0843.22020
- [6] Cahen, B.: Quantification d'une orbite massive d'un groupe de Poincaré généralisé. C.R. Acad. Sci. Paris Sér. I, Math. 325 (1997), 803–806.

Zbl 0883.22016

- [7] Cahen, B.: Quantification d'orbites coadjointes et théorie des contractions.
 J. Lie Theory 11 (2001), 257–272.
 Zbl 0973.22009
- [8] Cahen, B.: Contraction de SU(2) vers le groupe de Heisenberg et calcul de Berezin. Beitr. Algebra Geom. 44(2) (2003), 581–603.
 Zbl 1032.22004
- [9] Cahen, B.: Contractions of SU(1, n) and SU(n+1) via Berezin quantization. J. Anal. Math. **97** (2005), 83–102.
- [10] Cahen, B.: Weyl quantization for semidirect products. preprint Univ. Metz (2005), to appear in Diff. Geom. Appl.
- [11] Cahen, M.; Gutt, S.; Rawnsley, J.: Quantization on Kähler manifolds, I: Geometric interpretation of Berezin's quantization. J. Geom. Phys. 7 (1990), 45–62.
 Zbl 0719.53044
- [12] Cotton, P.; Dooley, A. H.: Contraction of an Adapted Functional Calculus. J. Lie Theory 7 (1997), 147–164.
 Zbl 0882.22015
- [13] Dooley, A. H.; Rice, J. W.: On contractions of semisimple Lie groups. Trans. Am. Math. Soc. 289(1) (1985), 185–202.
 Zbl 0546.22017
- [14] Duflo, M.: Fundamental-series representations of a semisimple Lie group.
 Funct. Anal. Appl. 4(2) (1970), 122–126.
 Zbl 0254.22007

- [15] Folland, B.: *Harmonic Analysis in Phase Space*. Princeton Univ. Press, 1989. Zbl 0682.43001
- [16] Gotay, M.: Obstructions to Quantization. In: Mechanics: From Theory to Computation (Essays in Honor of Juan-Carlos Simo), J. Nonlinear Science Editors, Springer-Verlag, New-York 2000, 171–216.
- [17] Helgason, S.: Differential Geometry, Lie Groups and Symmetric Spaces. Graduate Studies in Mathematics 34, American Mathematical Society, Providence, Rhode Island 2001.
- [18] Helgason, S.: Groups and Geometric Analysis. Mathematical Surveys and Monographs 83, American Mathematical Society, Providence, Rhode Island 2000. Zbl 0965.43007
- [19] Hörmander, L.: The Weyl calculus of pseudo-differential operators. Commun. Pure Appl. Math. 32 (1979), 359–443.
 Zbl 0388.47032
- [20] Hörmander, L.: The analysis of linear partial differential operators. Vol. 3, Section 18.5, Springer-Verlag, Berlin-Heidelberg-New-York 1985.

<u>Zbl 0601.35001</u>

- [21] Kirillov, A. A.: Elements of the Theory of Representations. Grundlehren der mathematischen Wissenschaften 220, Springer-Verlag, Berlin-Heidelberg-New-York 1976.
- [22] Kirillov, A. A.: Merits and demerits of the orbit method. Bull. Am. Math. Soc., New Ser. 36(4) (1999), 433–488.
 Zbl 0940.22013
- [23] Kirillov, A. A.: Lectures on the Orbit Method. Graduate Studies in Mathematics 64, American Mathematical Society, Providence, Rhode Island 2004. Zbl pre02121486
- [24] Knapp, A. W.: Representation theory of semisimple groups. An overview based on examples. Princeton Mathematical Series 36 (1986). Zbl 0604.22001
- [25] Kostant, B.: Quantization and unitary representations. In: Modern Analysis Appl. 3, Lect. Notes Math. 170, Springer-Verlag, Berlin-Heidelberg-New-York 1970, 87–208.
 Zbl 0223.53028
- [26] Landsman, N. P.: Strict quantization of coadjoint orbits. J. Math. Phys. 39(12) (1998), 6372–6383.
 Zbl 0986.81057
- [27] Voros, A.: An Algebra of Pseudo differential operators and the Asymptotics of Quantum Mechanics. J. Funct. Anal. 29 (1978), 104–132. Zbl 0386.47031
- [28] Wallach, N. R.: Harmonic Analysis on Homogeneous Spaces. Dekker, New York 1973.
 Zbl 0265.22022
- [29] Wildberger, N. J.: Convexity and unitary representations of a nilpotent Lie group. Invent. Math. 98 (1989), 281–292.
 Zbl 0684.22005
- [30] Wildberger, N. J.: On the Fourier transform of a compact semi simple Lie group. J. Aust. Math. Soc., Ser. A 56 (1994) 64–116.
 Zbl 0842.22015

Received January 10, 2006