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Abstract. The isotropic analogue of Brocard’s theorem was first ob-
tained by K. Strubecker [7]. Later this analogue was also discussed by
J. Lang [3] and H. Sachs [5]. In the present paper we derive some new
results related to Brocard points in the isotropic plane. Namely, an
expression for the distance between the Brocard points and certain re-
lations between the circumradii of the corresponding Brocard circles are
given. Also we present a statement which is dual to Brocard’s theorem.
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1. Introduction

The isotropic (Galilean) plane (see [7] and [5]) is defined as a projective plane
with an absolute which consists of a line f (the absolute line) and a point F (the
absolute point) lying on f . We can choose a basic coordinate system Oxy such
that the axis Oy coincides with the absolute line f and the infinite point of Oy
coincides with the absolute point F . Then the direction, determined by the axis
Oy, is said to be the isotropic (or special) direction.

A line in the isotropic plane is called isotropic if it is parallel to the isotropic
direction, and two points P1 and P2 are said to be parallel if the line P1P2 is
isotropic.
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The (oriented) distance from the point P1(x1, y1) to the point P2(x2, y2) is
defined by

P1P2 = x2 − x1.

Let g1 : y = k1x + n1 and g2 : y = k2x + n2 be two non-isotropic lines. Then the
(oriented) angle from g1 to g2 is defined by

∠(g1, g2) = k2 − k1.

A conic k in the isotropic plane, which contains the absolute point F and touches
the absolute line at F , is called an isotropic circle (cycle).

Any isotropic circle can be presented by the equation

k : y = Rx2 + αx + β,

where the real number R 6= 0 is said to be the radius of k, and α, β ∈ R.
For any admissible triangle 4ABC (i.e., a triangle whose three pairs of ver-

tices form non-parallel points, in each case) there exists a unique circumscribed
isotropic circle.

If 4ABC is an admissible triangle, ∠(AC, AB) = α, ∠(BA, BC) = β,
∠(CB,CA) = γ, and R is the circumradius of 4ABC, then the following re-
lations hold1:

BC + CA + AB = 0, (1)

α + β + γ = 0, (2)

BC

α
=

CA

β
=

AB

γ
= − 1

R
. (3)

For further basic notions of isotropic geometry in the plane we refer to [5] and [7].

2. Dual numbers and a lemma

The so-called dual numbers used in the following were introduced by E. Study,
but the first extensive discussions of applications of these numbers in geometry
go back to J. Grünwald [2].

Any dual number z can be written in the form

z = x + εy, (4)

where x and y are real numbers and ε2 = 0 (see [5], [2], [9], and [10]). The number
x is called the modulus of the dual number z and denoted by |z|, i.e., |z| = x.

Any dual number (4) with x 6= 0 can also be written in the form z = |z| (1 +

εϕ), where ϕ =
y

x
is called the argument of z, denoted by arg z.

Following K. Strubecker [6], we will now identify points of the isotropic plane
with dual numbers, similar to the identification of points of the Euclidean plane
with complex numbers.

1The last relation is called the law of sines in the isotropic plane.
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Thus, the dual numbers z1 = x1 + εy1 and z2 = x2 + εy2 determine two points
P1(x1, y1) and P2(x2, y2) whose distance is given by

P1P2 = |z2 − z1| (= x2 − x1).

Furthermore, let a, b and c be three dual numbers determining an admissible
triangle 4ABC with angles

∠(AC, AB) = α, ∠(BA, BC) = β, ∠(CB,CA) = γ. (5)

In terms of dual numbers, the relations (1) and (3) read as follows:

|c− a|+ |a− c|+ |b− a| = 0,

|c− b|
α

=
|a− c|

β
=
|b− a|

γ
= − 1

R
. (6)

We continue with a technical lemma.

Lemma 1. For any three dual numbers a, b and c, that determine an admissible
triangle 4ABC with angles as given in (5), the following relation holds:

a− c

a− b
=

β

γ
(−1 + εα).

Proof. By [10] we have

∠(ab, ac) = arg
a− c

a− b
,

implying
a− c

a− b
=
∣∣∣a− c

a− b

∣∣∣ (1 + ε arg
a− c

a− b
) =

|a− c|
|a− b|

(1− εα).

Using the law of sines in the version (6), we get

a− c

a− b
= −β

γ
(1− εα) =

β

γ
(−1 + εα). �

3. An extension of the isotropic analogue of Brocard’s theorem

The following statement, which is the isotropic analogue of Brocard’s theorem in
the Euclidean plane (see, e.g., the survey [4]) was first given by K. Strubecker
[7]. Later also J. Lang [3] and H. Sachs (see [5], p. 44) discussed this isotropic
analogue.

Theorem 1. Let 4ABC be an admissible triangle and ∠(AC, AB) = α, ∠(BA,
BC) = β, ∠(CB,CA) = γ. Let k1 = (A; BC) be the circle which passes through
the vertices A and B and is tangent to the line BC at B, and define k2 = (B; CA)

and k3 = (C; AB) analogously. Similarly, let k̂1 = (A; CB), k̂2 = (B; AC), and
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k̂3 = (C; BA). Then the circles k1, k2, and k3 intersect at a point W 1, called the

first Brocard point, and k̂1, k̂2, and k̂3 intersect at a point W 2, called the second
Brocard point. In addition, the following relations hold (see Fig. 1):

∠BAW 1 = ∠CBW 1 = ∠ACW 1 = −∠CAW 2 = −∠ABW 2 = −∠BCW 2,

− 1

ω1

=
1

α
+

1

β
+

1

γ
, (7)

where ω1 = ∠BAW 1 and

AW 1

AW 2
:
BW 1

BW 2
:
CW 1

CW 2
=

CA

AB
:

AB

BC
:
BC

CA
. (8)

Figure 1

It should be noticed that J. Tölke [8] extended parts of that theorem by charac-
terizing Brocard points in the isotropic plane among more general pairs of points.

Now we are ready to present our extension of Theorem 1.

Theorem 2. Let 4ABC be an admissible triangle in the isotropic plane with
angles ∠(AC, AB) = α, ∠(BA, BC) = β, ∠(CB,CA) = γ, R be the radius of the
circumcircle of 4ABC, W 1 be the first Brocard point of 4ABC, and W 2 be its
second Brocard point. Then the following relations hold:

1

W 1W 2
= R (

1

α
+

1

β
+

1

γ
), (9)

R1

R̂1

:
R2

R̂2

:
R3

R̂3

=

(
R̂2

R3

)2

:

(
R̂3

R1

)2

:

(
R̂1

R2

)2

=

(
CA

AB

)2

:

(
AB

BC

)2

:

(
BC

CA

)2

, (10)

R1R2R̂1R̂2 = (R3R̂3)
2,

R2R3R̂1R̂2 = (R1R̂1)
2,

R3R1R̂3R̂1 = (R2R̂2)
2,

(11)

where R1, R2, R3, R̂1, R̂2, and R̂3 are the radii of the Brocard circles k1, k2, k3,
k̂1, k̂2, and k̂3, respectively.
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Proof. Denote by a = a1 + εa2, b = b1 + εb2, c = c1 + εc2, w1, and w2 the dual
numbers of the points A, B, C, W 1, and W 2, respectively. Let ω1 = ∠BAW 1.
Applying (2) and Lemma 1 with respect to 4BCW 1 (see Fig. 2), we get

b− w1

b− c
=

γ + ω1

−γ
[−1 + ε(−ω1)]. (12)

Figure 2

Analogously, for 4CAW 2 we get the relation

c− w2

c− a
=
−ω1

−γ
[−1 + ε(γ + ω1)]. (13)

From (12) and (13) we obtain

w1 = (−ω1

γ
− εω1

γ + ω1

γ
)b + (1 +

ω1

γ
+ εω1

γ + ω1

γ
)c

and

w1 = (−ω1

γ
+ εω1

γ + ω1

γ
)a + (1 +

ω1

γ
− εω1

γ + ω1

γ
)c.

Therefore

W 1W 2 = |w2 − w1| = ω1

γ
(b1 − a1) = ω1

AB

γ
.

Together with the law of sines in the version (3) and (7), we deduce (9) from this.
Further on, we calculate

CW 1 = |w1 − c| = −ω1

γ
b1 + (1 +

ω1

γ
) c1 − c1 = ω1

BC

γ
,

CW 2 = |w2 − c| = −ω1

γ
a1 + (1 +

ω1

γ
) c1 − c1 = ω1

AC

γ
.

Analogously,

AW 1 = ω1
CA

α
, AW 2 = ω1

BA

α
, BW 1 = ω1

AB

β
, BW 2 = ω1

CB

β
.
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Now we apply (3) to 4ABW 1, 4BCW 1, 4CAW 1, 4CAW 2, 4ABW 2,
4CBW 2, and so we get

R1 =
β

AB
, R2 =

γ

BC
, R3 =

α

CA
, R̂1 =

γ

CA
, R̂2 =

α

AB
, R̂3 =

β

BC
(14)

and
AW 1 =

ω1

R3

, BW 1 =
ω1

R1

, CW 1 =
ω1

R2

,

AW 2 = −ω1

R̂2

, BW 2 = −ω1

R̂3

, CW 2 = −ω1

R̂1

.

Hence
AW 1

AW 2
:
BW 1

BW 2
:
CW 1

CW 2
=

R̂2

R3

:
R̂3

R1

:
R̂1

R2

,

and by (8) the second equality of (10) is proved.
Moreover, (3) and (14) imply

R1

R̂1

:
R2

R̂2

:
R3

R̂3

=
β CA

γ AB
:

γ AB

α BC
:
α BC

β CA
=

(
CA

AB

)2

:

(
AB

BC

)2

:

(
BC

CA

)2

,

i.e., (10) is established.
Finally we remark that (11) follows immediately from (10). �

4. Brocard lines

One nice property of isotropic geometry is the principle of duality, which asserts
that every theorem remains true if we consistently interchange the words ‘point’
and ‘line’, ‘distance’ between two points and ‘angle’ between two lines, ‘lie on’
and ‘pass through’, ‘join’ and ‘intersection’, ‘collinear’ and ‘concurrent’, see [10],
p. 54–65. This principle of duality can also be applied to Brocard’s theorem.
Namely, the following statement is a direct corollary of Theorem 1:

Corollary 1. If the lines p1, q1, and r1 through the vertices A, B, and C of the
triangle 4ABC with angles ∠(CA, AB) = α, ∠(AB, BC) = β, ∠(BC, CA) = γ
are determined by

∠(BA, p1) = ∠(CB, q1) = ∠(AC, r1) = ω1,

and the lines p2, q2, and r2 through the vertices A, B, and C are determined by

∠(CA, p2) = ∠(AB, q2) = ∠(BC, r2) = −ω1,

where ω1 satisfies the equation

− 1

ω1

=
1

α
+

1

β
+

1

γ
,

then the lines p1, q1, and r1 meet at some point W 1 (the first Brocard point), and
the lines p2, q2, and r2 meet at some point W 2 (the second Brocard point).
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Dualizing this statement, we establish a new theorem.

Theorem 3. Let the points P1, Q1, and R1 lie on the lines BC, CA, and AB,
and the points P2, Q2, and R2 lie also on the lines BC, CA, and AB such that

CP1 = AQ1 = BR1 = x, BP2 = CQ2 = AR2 = −x,

where x satisfies the relation

−1

x
=

1

AB
+

1

BC
+

1

CA
.

Then the points P1, Q1, and R1 are collinear, and the points P2, Q2, and R2 are
also collinear.

Remark 1. The line through P1, Q1, and R1 we will call the first Brocard line,
and the line through P2, Q2, and R2 is said to be the second Brocard line of the
triangle.

Finally we will ask for the angle between the Brocard lines.
The dual of the circumcircle Z of the triangle 4ABC (i.e., the circle consid-

ered as a set of points, containing the vertices A, B, C) is the incircle of 4ABC
(considered as the envelope of a set of tangents, containing the prolonged sides
BC, CA, AB), see [10], p. 106. Furthermore, the radius r of the incircle is equal

to
R

4
, where R is the circumradius (see [5], p. 28). Thus, applying the principle

of duality to (9) we establish

Corollary 2. For the angle ϕ between the Brocard lines of the triangle 4ABC
the relation

1

ϕ
=

R

4

(
1

AB
+

1

BC
+

1

CA

)
holds, where R is the circumradius of 4ABC.
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