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Abstract. In this paper, we discuss submersion of CR-submanifolds
of locally conformal Kaehler manifold. We prove that if π : M −→ B◦
is a submersion of CR-submanifold M of a locally conformal Kaehler
manifold M onto an almost Hermitian manifold B◦, then B◦ is a locally
conformal Kaehler manifold. Furthermore, we discuss totally umbilical
CR-submanifold and cohomology of CR-submanifold of locally confor-
mal Kaehler manifold under the submersion.
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1. Introduction

A Hermitian manifold (M, g) is called a locally conformal Kaehler manifold (briefly
l.c.K manifold), if every point of M has a neighborhood U such that the restriction
gU of g to U is conformal to a Kaehler metric g′U of U : gU = eσU g′U for some c∞

function σU : U −→ R. (M, g) is a globally conformal Kaehler (g.c.K) manifold if
one can choose U = M ; then g′ is a Kaehler metric on M , and hence (M, g′) is a
Kaehler manifold.

Let Ω be a 2-form on M . Then M is a l.c.K. manifold if and only if there is
a global 1-form ω on M (the Lee form of M) such that [15]

dΩ = ω ∧ Ω, dω = 0, (1.1)
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and M is a g.c.K manifold if and only if ω is also exact.
Let M be an l.c.K. manifold. Then the vector field B (the Lee field of M) is

defined by
g(X, B) = ω(X). (1.2)

The best known examples of l.c.K. manifolds which are not globally conformal
Kaehler are the Hopf manifolds. Further examples and general properties of l.c.K.
manifolds have been studied by I. Vaisman in a series of papers and by others (see
[9] for detail). For most of the known examples of l.c.K manifolds, the Lee form
ω turns out to be parallel with respect to the Levi-Civita connection.

Now, suppose that 5 be the Levi-Civita connection of g. Then we have [14]

5̃XY = 5XY − 1

2
ω(X)Y − 1

2
ω(Y )X +

1

2
g(X, Y )B. (1.3)

5̃ is a torsionless linear connection on M which is called the Weyl connection
of g.

Theorem 1.1. [14] The almost Hermitian manifold M is an l.c.K. manifold if
and only if there is a closed 1-form ω on M such that the Weyl connection be
almost complex i.e., 5̃J = 0.

The notion of Cauchy-Riemann (CR-)submanifold was introduced by Bejancu [1]
as a natural generalization of complex submanifolds and totally real submanifolds.

Now we have

Definition. Let M be an m-dimensional submanifold of an l.c.K manifold M . If
there exist two orthogonal complementary distributions D and D⊥ on M satisfying
JD = D and JD⊥ ⊂ ν, where J is the almost complex structure on M and ν is
the normal bundle of M , then M is called a CR-submanifold of M .

We call D (resp. D⊥) a horizontal (resp. vertical) distribution.
We denote by the same letter g the induced metric on M . The Riemannian

connection 5 on M gives rise to the induced Riemannian connection 5 on M
and a connection 5⊥ in the normal bundle ν. Then the Gauss and Weingarten
formulas are given by

5XY = 5XY + h(X, Y ), (1.4)

5XN = −ÃNX +5⊥
XN, (1.5)

for X, Y ∈ T (M) and N ∈ ν, where h is the second fundamental form and ÃN is
the Weingarten map and these are related by

g(ÃNX,Y ) = g(h(X, Y ), N). (1.6)

Now we state the following lemmas for later use.

Lemma 1.2. [13, P.5] Let M be an l.c.K manifold and M be a CR-submanifold
of M . If the horizontal distribution D is integrable, then

h(JX, Y )− h(X, JY ) = g(X, JY )B⊥,
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for any X, Y ∈ D, where B⊥ denotes the normal component of B.

Lemma 1.3 [9, P.167] Let M be an l.c.K manifold and M be a CR-submanifold
of M . Then vertical distribution D⊥ is always integrable.

The curvature tensor R of the submanifold M is related to the curvature tensor
R of M by the following Gauss equation

R(X, Y ; Z,W ) = R(X,Y ; Z,W ) + g(h(X,Z), h(Y, W ))− g(h(X, W ), h(Y, Z)),
(1.7)

for any X, Y, Z, W ∈ T (M).
A CR-submanifold M of a locally conformal Kaehler manifold M is called a

CR-product if locally M is a Riemannian product of an invariant submanifold and
a totally real submanifold of M [9].

A CR-submanifold M is said to be totally umbilical if

h(X, Y ) = g(X, Y )H,

where H is the mean curvature vector.
The study of the Riemannian submersion π : M −→ B◦ of a Riemannian

manifold M onto a Riemannian manifold B◦ was initiated by O. Neill [12]. A
submersion π naturally gives rise to two distributions on M called the horizontal
and vertical distribution respectively, of which the vertical distribution is always
integrable giving rise to the fibres of the submersion which are closed submanifold
of M . Submersion of CR-submanifold of a Kaehler manifold was defined and
studied by Kobayashi [10] and Deshmukh, Ali, Husain [8].

For the submersion of a CR-submanifold of an l.c.K. manifold onto an almost
Hermitian manifold, we have

Definition. Let M be a CR-submanifold of a locally conformal Kaehler manifold
M . By a submersion π : M −→ B◦ of M onto an almost Hermitian manifold
B◦ we mean a Riemannian submersion π : M −→ B◦ together with the following
conditions:

(i) D⊥ is the kernel of π∗, i.e., π∗D
⊥ = {0},

(ii) J interchanges D⊥ and ν, i.e., JD⊥ = ν,

(iii) π∗ : Dp −→ D∗
π(p) is a complex isometry of the subspace Dp onto D∗

π(p) for

every p ∈ M , where D∗
π(p) denotes the tangent space of B◦ at π(p).

For a vector field X on M , we set [10]

X = HX + V X, (1.8)

where H and V denote the horizontal and vertical part of X.
We make the special choice of vector field in order to relate the geometry of

M with that of B◦ and call this as basic vector field.
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Definition. A vector field X on M is called basic if

(i) X is horizontal, i.e., X ∈ D and

(ii) X is π-related to a vector field on B◦ i.e., there is a vector field X∗ on B◦
such that (π∗X)p = (X∗)π(p) at all points p ∈ M .

Lemma 1.4. [12] Let X and Y be basic vector fields on M . Then

(i) g(X,Y ) = g∗(X∗, Y∗) ◦ π,

(ii) H[X, Y ] is basic and corresponds to [X∗, Y∗],

(iii) H(5XY ) is basic and corresponds to 5∗
X∗Y∗ where 5∗ is a Riemannian

connection on B◦,

(iv) [X,Z] ∈ D⊥, for Z ∈ D⊥.

For a covariant differentiation operator 5∗ we define a corresponding operator 5̃∗

for basic vector fields of M by

5̃∗
XY = H(5XY ). (1.9)

Then 5̃∗
XY is a basic vector field, and we have

π∗(5̃
∗
XY ) = 5∗

X∗Y∗.

Next, we define a tensor field C by

5XY = H(5XY ) + C(X, Y ),

for all X, Y ∈ D, where C(X,Y ) is the vertical part of 5XY . In particular, if X
and Y are basic vector fields, then we have

5XY = 5̃∗
XY + C(X, Y ). (1.10)

It is known that C is skew-symmetric, and if X, Y ∈ D, then

C(X, Y ) =
1

2
V [X, Y ]. (1.11)

Next, for vertical vector fields Z,W ∈ D⊥ we define L by

5W Z = 5̂W Z + L(W, Z), (1.12)

where L(W, Z) is the horizontal part of 5W Z. L is a bilinear mapping L : D⊥ ×
D⊥ −→ D and it is symmetric tensor.

Since the fibres are closed submanifolds of M . So for vertical vector fields,
L defines the second fundamental form of the fibres in M . The fibres are totally
geodesic if L(W, Z) = 0 for all W, Z ∈ D⊥ [8].

For X ∈ D, V ∈ D⊥ define an operator A on M by setting

5XV = AXV + ν(5XV ), (1.13)
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where AXV (resp. ν(5XV )) is the horizontal (resp. normal) component of 5XV .
Using (iv) of Lemma (1.4) we have

H(5XV ) = H(5V X) = AXV. (1.14)

The operator C and A are related by

g(AXV, Y ) = −g(V, C(X,Y )), (1.15)

for X, Y ∈ D, V ∈ D⊥.

2. Submersion of CR-submanifold

It is known by a result of Chen [5] that the anti-invariant distribution D⊥ of a
CR-submanifold of a Kaehler manifold is always integrable. This is still true for
CR-submanifold of locally conformal Kaehler manifold [9]. Now we have

Proposition 2.1. Let π : M −→ B◦ be a submersion of a CR-submanifold M of
a locally conformal Kaehler manifold M onto an almost Hermitian manifold B◦.
If the horizontal distribution D is integrable and the vertical distribution D⊥ is
parallel, then M is CR-product.

Proof. Since the horizontal distribution D is integrable. So for X, Y ∈ D, we
have [X, Y ] ∈ D. Therefore V [X, Y ] = 0. Now using the equation (1.11) we
get C(X,Y ) = 0 for X, Y ∈ D. Putting the value of C(X, Y ) in (1.10) we

have 5XY = 5̃∗
XY ∈ D which shows that D is parallel. Since the horizontal

distribution D and vertical distribution D⊥ are both parallel. So using de Rham’s
theorem , it follows that M is the product M1 × M2, where M1 is invariant
submanifold of M and M2 is totally real submanifold of M . Hence M is a CR-
product. �

Proposition 2.2. Let π : M −→ B◦ be a submersion of a CR-submanifold M of
a locally conformal Kaehler manifold M onto an almost Hermitian manifold B◦
such that B ∈ D⊥, then

H(ÃJY X) = −JL(X,Y ), (2.1)

V (ÃJY X) = −Jh(X, Y ), (2.2)

for X, Y ∈ D⊥.

Proof. Since J is parallel with respect to the Weyl connection 5̃, so we have for
X, Y ∈ D⊥

5̃XJY = J5̃XY.

Now using (1.3), we have

5XJY − 1

2
ω(X)JY − 1

2
ω(JY )X +

1

2
g(X, JY )B

= J
(
5XY − 1

2
ω(X)Y − 1

2
ω(Y )X +

1

2
g(X, Y )B

)
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or,

−ÃJY X +5⊥
XJY − 1

2
ω(X)JY − 1

2
ω(JY )X =

J
(
5XY + h(X, Y )− 1

2
ω(X)Y − 1

2
ω(Y )X +

1

2
g(X, Y )B

)
(2.3)

for X, Y ∈ D⊥.
Since J interchanges vertical and normal part i.e., D⊥ and ν. So using these

facts in equation (2.3), we get

−H(ÃJY X)− V (ÃJY X) +5⊥
XJY − 1

2
ω(JY )X = J5̂XY + JL(X, Y )

+ Jh(X, Y )− 1

2
ω(Y )JX +

1

2
g(X, Y )JB. (2.4)

As Lee vector field B ∈ D⊥, then the above equation reduces to

−H(ÃJY X)− V (ÃJY X) +5⊥
XJY − 1

2
g(X, Y )JB − 1

2
ω(JY )X = J5̂XY

+ JL(X, Y ) + Jh(X, Y )− 1

2
ω(Y )JX, (2.5)

for X, Y ∈ D⊥.
Equating horizontal and vertical components on both sides of equation (2.5),

we get the result. �

Now we prove

Theorem 2.3. Let π : M −→ B◦ be a submersion of CR-submanifold M of a
locally conformal Kaehler manifold M onto an almost Hermitian manifold B◦ such
that Lee vector field B ∈ D⊥. Then B◦ is a locally conformal Kaehler manifold.

Proof. Let X, Y ∈ D be the basis vectors. Using equation (1.10) in (1.4) we have

5XY = 5̃∗
XY + h(X, Y ) + C(X,Y ) for X, Y ∈ D,

which by virtue of (1.3), we obtain

5̃XY +
1

2
ω(X)Y +

1

2
ω(Y )X − 1

2
g(X, Y )B

= 5̃∗
XY + h(X, Y ) + C(X, Y ). (2.6)

Applying J both the side of above equation, we have

J5̃XY +
1

2
ω(X)JY +

1

2
ω(Y )JX − 1

2
g(X, Y )JB

= J5̃∗
XY + Jh(X, Y ) + JC(X, Y ). (2.7)
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Replacing Y by JY in equation (2.6), we get

5̃XJY +
1

2
ω(X)JY +

1

2
ω(JY )X − 1

2
g(X, JY )B

= 5̃∗
XJY + h(X, JY ) + C(X, JY ). (2.8)

Subtracting equations (2.7) and (2.8), we get

(5̃XJ)(Y ) +
1

2
ω(JY )X − 1

2
g(X, JY )B − 1

2
ω(Y )JX +

1

2
g(X, Y )JB

= (5̃∗
XJ)(Y ) + h(X, JY ) + C(X, JY )− Jh(X,Y )− JC(X, Y ) (2.9)

for X, Y ∈ D.

As J interchanges vertical and normal part. So comparing horizontal, vertical and
normal components of the above equation (2.9) for B ∈ D⊥ we get

(5̃∗
XJ)(Y ) =0, (2.10)

Jh(X, Y ) = −C(X, JY )−1

2
g(X, JY )B, (2.11)

JC(X, Y )− h(X, JY ) =
1

2
g(X, Y )JB, (2.12)

for X, Y ∈ D, B ∈ D⊥.
Hence equation (2.10) shows that the base manifold B◦ is a locally conformal

Kaehler manifold, where 5̃∗
denotes the horizontal lift of the covariant derivative

5∗ of B◦. �

3. Totally umbilical CR-submanifold

In this section, we discuss submersion of totally umbilical CR-submanifold of l.c.K
manifold. The equations of Gauss and Weingarten take the following forms:

5XY = 5XY + g(X, Y )H, 5XN = −g(N, H)X +5⊥
XN, (3.1)

for X, Y ∈ TM, N ∈ ν and H is the mean curvature vector.
Now we have the following

Proposition 3.1. Let π : M −→ B◦ be a submersion of a totally umbilical
CR-submanifold M of a locally conformal Kaehler manifold M onto an almost
Hermitian manifold B◦ such that Lee vector field B ∈ D⊥, D is parallel and
g(JX,X) = 0. Then M is a totally geodesic submanifold.

Proof. The mean curvature vector H is normal and J interchanges vertical and
normal parts. Now we have

(5̃XJ)H = 0
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or,
5̃XJH = J5̃XH

or,
−5̃XH = J5̃XJH

−5XH +
1

2
ω(X)H +

1

2
ω(H)X − 1

2
g(X, H)B

= J(5JH − 1

2
ω(X)JH − 1

2
ω(JH)X +

1

2
g(X, JH)B). (3.2)

But for B ∈ D⊥ and X ∈ D we have

ω(H) = g(B, H) = 0, g(X, H) = 0, g(X, JH) = 0.

Thus using the above facts in (3.2) we get

−5XH = J5XJH − 1

2
ω(JH)JX

or,

ÃHX −5⊥
XH = J5XJH + Jh(X, JH)− 1

2
ω(JH)JX.

Taking inner product with X ∈ D in the above equation, we get

g(ÃHX,X) = g(J5XJH, X)

or,
g(h(X, X), H) = −g(5XJH, JX) = g(5XJX, JH). (3.3)

As D is parallel, so 5XJX ∈ D for X ∈ D, giving g(5XJX, JH) = 0. So from
equation (3.3), we get ||H|| = 0 which gives H = 0. Hence M is a totally geodesic
submanifold. �

4. Curvature properties

First we prove

Theorem 4.1. Let π : M −→ B◦ be a submersion of a CR-submanifold M of
a locally conformal Kaehler manifold M onto an almost Hermitian manifold B◦
such that B ∈ D⊥. Then the sectional curvature of locally conformal Kaehler
manifold M and the fibres is given by

K(X ∧ Y ) = K̂(X ∧ Y )− g(ÃJY X, ÃJXY ) + g(ÃJXX, ÃJY Y )− ||ÃJY X||2,

for all vertical vector fields X, Y ∈ D⊥.

Proof. From the definition of curvature tensor R, we have

R(X, Y )Z = 5X5Y Z −5Y5XZ −5[X,Y ]Z. (4.1)
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Using (1.12) in (4.1) we have

R(X, Y ) = 5X(5̂Y Z +L(Y, Z))−5Y (5̂XZ +L(X, Z))−5̂[X,Y ]Z−L([X,Y ], Z),

for X, Y, Z ∈ D⊥.
Since L(X, Y ) is the horizontal part of 5XY for X, Y ∈ D⊥ i.e., L(X, Y ) =
H(5XY ), we get

R(X, Y )Z = 5X5̂Y Z +5XL(Y, Z)

−5Y 5̂XZ −5Y L(X, Z)− 5̂[X,Y ]Z −H(5[X,Y ]Z),

for X, Y ∈ D⊥.
Taking inner product with a vertical vector field W ∈ D⊥ in the above equa-

tion, we get

g(R(X, Y )Z,W ) = g(5X5̂Y Z,W ) + g(5XL(Y, Z), W )

− g(5Y 5̂XZ,W )− g(5Y L(X,Z), W )− g(5̂[X,Y ]Z,W )

= g(5X5̂Y Z,W )− g(5Y 5̂XZ,W )− g(5̂[X,Y ]Z,W )

− g(L(Y, Z),5XW ) + g
(
L(X, Z),5Y W

)
,

for X, Y, W ∈ D⊥.
Therefore

R(X, Y, Z, W ) = R̂(X,Y, Z, W )− g
(
L(Y, Z), L(X, W )

)
+ g

(
L(X,Z), L(Y, W )

)
.

Now, from Gauss equation, the above equation reduces to

R(X, Y, Z, W ) = R̂(X,Y, Z, W )− g
(
L(Y, Z), L(X, W )

)
+ g

(
L(X, Z), L(Y,W )

)
+ g

(
h(X, Z), h(Y,W )

)
− g

(
h(Y, Z), h(X, W )

)
.

Thus, putting Y = X, Z = X,W = Y in the above equation, we have

R(X, Y ; X, Y ) = R̂(X, Y ; X, Y )− g
(
L(Y,X), L(X, Y )

)
+ g

(
L(X, X), L(Y, Y )

)
+ g

(
h(X, X), h(Y, Y )

)
− g

(
h(Y,X), h(X, Y )

)
,

which implies that

K(X ∧ Y ) = K̂(X ∧ Y )− g
(
L(X,Y ), L(Y,X)

)
+ g

(
L(X, X), L(Y, Y )

)
+ g

(
h(X,X), h(Y, Y )

)
− g

(
h(X,Y ), h(X, Y )

)
(4.2)

for X, Y ∈ D⊥.
Using equations (2.1) and (2.2) in (4.2) we get

K(X ∧ Y ) = K̂(X ∧ Y )− g(HÃJY X, HÃJXY ) + g(HÃJXX, HÃJY Y )

+ g(V (ÃJXX), V (ÃJY Y ))− g(V (ÃJY X), V (ÃJY X))

= K̂(X ∧ Y )− g(ÃJY X, ÃJXY )

+ g(ÃJXX, ÃJY Y )− g(ÃJY X, ÃJY X)
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for X, Y ∈ D⊥, which completes the proof. �

Next, we discuss the holomorphic sectional curvature of l.c.K manifold M and B◦
respectively. Using equation (1.13) and (1.15), the curvature tensor R on M is
given by

R(X, Y, Z, W ) = R∗(X∗, Y∗, Z∗, W∗) + g(C(X, Z), C(Y,W ))

− g(C(Y, Z), C(X, W )) + 2g(C(X, Y ), C(Z,W )), (4.3)

where π∗X = X∗, π∗Y = Y∗, π∗Z = Z∗, π∗W = W∗ ∈ B◦ for X,Y, Z, W ∈ D.
Thus for X, Y ∈ D making use of (4.3) in (1.7) and the fact that C is skew-

symmetric, we get

H(X) = R(X, JX, JX,X) = H∗(X∗) + ||h(X, JX)||2

− g(h(JX, JX), h(X, X))− 3||C(X, JX)||2, (4.4)

where H(X) and H∗(X∗) are the holomorphic sectional curvature tensors of M
and B◦ respectively. Thus we have

Proposition 4.2. Let π : M −→ B◦ be a submersion of a CR-submanifold M of
a locally conformal Kaehler manifold M onto an almost Hermitian manifold B◦.
Then the holomorphic sectional curvature of M and B◦ is related by

H(X) = R(X, JX, JX,X) = H∗(X∗) + ||h(X, JX)||2

− g(h(JX, JX), h(X, X))− 3||C(X, JX)||2,

for X, Y ∈ D.

Corollary 4.3. Let M be an l.c.K manifold and M be a CR-submanifold of
M with integrable distribution D. Let B◦ be an almost Hermitian manifold and
π : M −→ B◦ be a submersion. Then the holomorphic sectional curvatures H and
H∗ of M and B◦ respectively satisfy

H(X) ≥ H∗(X∗) for X ∈ D, g(X, JX) = 0.

Proof. Since D is integrable. So from Lemma 1.2 using g(X, JX) = 0, we have

h(JX, JX) = −h(X, X).

Also, from (2.11) by taking Y = X we obtain C(X, JX) = 0. Thus from (4.4) we
have

H(X) = H∗(X∗) + ||h(X, JX)||2 + ||h(X, X)||2, X ∈ D,

which proves that H(X) ≥ H∗(X∗). �
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5. Cohomology of CR-submanifolds

The cohomology class was originally introduced by Chen in his article [6] for CR-
submanifold in Kaehler manifolds. Later this was extended to CR-submanifold
in locally conformal Kaehler manifold by Chen and Piccinni [7]. In fact, the
cohomology class has also been studied by several geometers [9]. In this section,
we discuss how the submersion π : M −→ B◦ of a CR-submanifold M with
integrable D effects the topology of M . Let M be a CR-submanifold of a locally
conformal Kaehler manifold M and π : M −→ B◦ be a submersion of M onto an
almost Hermitian manifold B◦.

Let dim M = m and dim D = 2p. We choose a local orthonormal frame
{e1, . . . , ep, Je1, . . . , Jep, e2p+1, . . . , em} on CR-submanifold M such that {e1, . . . ,
ep, Je1, . . . , Jep} is a local orthonormal frame of D and {e2p+1, . . . , em} is a local
orthonormal frame of D⊥. Let {φ1, . . . , φ2p, φ2p+1, . . . , φm} be the dual frame of
1-forms to the above local orthonormal frame. Let us define a 2p-forms φ on
CR-submanifold M by

φ = {φ1 ∧ · · · ∧ φ2p}, (5.1)

where {φ1, . . . , φ2p} be the dual frame of an orthonormal frame {e1, . . . , ep, Je1,
. . . , Jep} of D. From definition (5.1) of φ, we have

dφ =

2p∑
i=1

(−1)i−1φ1 ∧ · · · ∧ dφi ∧ · · · ∧ dφ2p.

From above equation, it follows that dφ = 0 if and only if

dφ(Z1, Z2, X1, . . . , X2p−1) = 0, (5.2)

and
dφ(Z1, X1, . . . , X2p) = 0, (5.3)

where Z1, Z2 ∈ D⊥ and X1, . . . , X2p ∈ D.
Choosing the vectors X1, . . . , X2p ∈ D as a local orthonormal frame {e1, . . . , ep,
Je1, . . . , Jep} of D we see that equation (5.2) holds if and only if D⊥ is integrable
and equation (5.3) holds if and only if D is minimal. However, it is known that
totally real distribution D⊥ of CR-submanifold of a locally conformal Kaehler
manifold is integrable [7]. The hypothesis of the theorem gives that D is integrable
and this together with the proof of Proposition 2.1 gives that D is minimal. Thus
it follows that dφ = 0 on CR-submanifold M which means that φ is closed. Hence
it defines a de Rham cohomology class [φ] in H2p(M, R).

Next, suppose that D⊥ is minimal and we show that φ is harmonic. For this,
define an (m− 2p)-form φ⊥ on CR-submanifold M by

φ⊥ = {φ2p+1, . . . , φm} (5.4)

where {φ2p+1, . . . , φm} is dual frame to the orthonormal frame {e2p+1, . . . , em}
of D⊥. Then using the similar argument as above we see that φ⊥ is closed, i.e.,
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dφ⊥ = 0 if D is integrable and D⊥ is minimal. Hence φ is closed and co-closed too
and M is closed CR-submanifold which means that φ is harmonic, i.e., ∆φ = 0.
Since φ is a nonzero form. Therefore c(M) = [φ] 6= 0. Thus we have

Theorem 5.1. Let π : M −→ B◦ be a submersion of a closed CR-submanifold
M of a locally conformal Kaehler manifold M onto an almost Hermitian manifold
B◦ with integrable horizontal distribution D. Then the 2p-form φ is closed and
defines de Rham cohomology [φ] in H2p(M, R). Moreover, the cohomology group
H2p(M, R) is non-trivial if the vertical distribution D⊥ is minimal.
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95–100. Zbl 0619.58004−−−−−−−−−−−−

[11] Matsumoto, K.: On CR-submanifold of locally conformal Kaehler manifolds.
J. Korean Math. Soc. 21 (1984), 49–61. Zbl 0554.53039−−−−−−−−−−−−

[12] O’Neill, B.: The fundamental equations of a submersion. Mich. Math. J. 13
(1966), 459–469. Zbl 0145.18602−−−−−−−−−−−−

http://www.emis.de/MATH-item?0368.53040
http://www.emis.de/MATH-item?0368.53041
http://www.emis.de/MATH-item?0605.53001
http://www.emis.de/MATH-item?0453.53018
http://www.emis.de/MATH-item?0431.53048
http://www.emis.de/MATH-item?0485.53051
http://www.emis.de/MATH-item?0478.53046
http://www.emis.de/MATH-item?0587.53059
http://www.emis.de/MATH-item?0887.53001
http://www.emis.de/MATH-item?0619.58004
http://www.emis.de/MATH-item?0554.53039
http://www.emis.de/MATH-item?0145.18602


R. Al-Ghefari et al.: Submersion of CR-Submanifolds of . . . 159

[13] Sahin, B.; Gunes, R.: CR-submanifolds of a locally conformal Kaehler mani-
fold and almost contact structure. Math. J. Toyama Univ. 25 (2002), 13–23.

Zbl 1047.53010−−−−−−−−−−−−
[14] Shahid, M. H.: CR-submanifolds of a locally conformal Kaehler space form.

Int. J. Math. Sci. 17(3) (1994), 511–514. Zbl 0812.53017−−−−−−−−−−−−
[15] Vaisman, I.: On locally and globally conformal Kaehler manifolds. Trans. Am.

Math. Soc. 262 (1980), 533–542. Zbl 0446.53048−−−−−−−−−−−−
[16] Vaisman, I.: Some curvature properties of locally conformal Kaehler mani-

folds. Trans. Am. Math. Soc. 259 (1980), 439–447. Zbl 0435.53044−−−−−−−−−−−−
[17] Yano, K.; Kon, M.: Structures on manifolds. Series in Pure Mathematics 3

Word Scientific Publishing Co. Singapore 1984. Zbl 0557.53001−−−−−−−−−−−−

Received June 20, 2004, revised version June 22, 2005

http://www.emis.de/MATH-item?1047.53010
http://www.emis.de/MATH-item?0812.53017
http://www.emis.de/MATH-item?0446.53048
http://www.emis.de/MATH-item?0435.53044
http://www.emis.de/MATH-item?0557.53001

