Borel Ideals in Three Variables

Maria Grazia Marinari Luciana Ramella *
Dipartimento di Matematica, Università v. Dodecaneso 35, I-16146 Genova, Italy
e-mail: marinari@dima.unige.it ramella@dima.unige.it

1. Introduction

Borel ideals, are special monomial ideals, occurring as generic initial ideals of homogeneous ideals $\mathfrak{a} \subseteq \mathbf{P}(\mathbf{n}):=\mathbf{k}\left[X_{1}, \ldots, X_{n}\right]$, widely studied after Galligo's and Bayer-Stillman's results ([6] and [1]). More precisely (under the action of $\operatorname{Gl}(\mathbf{n}, \mathbf{k})$ on $\left.\mathbf{P}(\mathbf{n}): g\left(X_{j}\right)=\sum_{i=1}^{n} g_{i j} X_{i}, g=\left(g_{i j}\right) \in G l(\mathbf{n}, \mathbf{k})\right)$, given any term-ordering $<$ and homogeneous ideal $\mathfrak{a} \subseteq \mathbf{P}(\mathbf{n})$, there exists a non-empty open subset U of $G l(\mathbf{n}, \mathbf{k})$ such that as g ranges in $U, \operatorname{gin}(\mathfrak{a}):=\operatorname{in}(g(\mathfrak{a}))$ is constant. Moreover, $\operatorname{gin}(\mathfrak{a})$ is fixed by the group B of upper-triangular invertible matrices, if $X_{1}>\cdots>X_{n}$, while $\operatorname{gin}(\mathfrak{a})$ is fixed by the group \mathbf{B}^{\prime} of lower-triangular invertible matrices if $X_{1}<\cdots<X_{n}$. Monomial ideals $\mathfrak{a} \subseteq \mathbf{P}(\mathbf{n})$, can be studied via the associated order-ideal $\mathcal{N}(\mathfrak{a})$ consisting of all the terms (= monic monomials) 'outside' \mathfrak{a} and called sous-éscalier of \mathfrak{a} ([6], [8] and [10]). For a Borel ideal $\mathfrak{b} \subseteq \mathbf{P}(\mathbf{n}), \mathcal{N}(\mathfrak{b})$ is fixed by \mathbf{B}^{\prime} if $X_{1}>\cdots>X_{n}$, and by \mathbf{B} if $X_{1}<\cdots<X_{n}$. Studying Borel ideals through their sous-éscaliers, following A. Galligo ([7]), we consider $X_{1}<\cdots<X_{n}$.

In Section 2 we fix our notation. In Section 3 we introduce the Borel subsets of the multiplicative semigroup of terms in $\mathbf{P}(\mathbf{n})$, illustrating some of their features and giving a 'general construction' to produce Borel subsets of assigned cardinality in each degree. In Section 4 we describe the Borel ideals $\mathfrak{b} \subset \mathbf{P}(\mathbf{n})$; in particular, basing on the combinatorics of $\mathcal{N}(\mathfrak{b})$, we associate to every 0 -dimensional $\mathfrak{b} \subseteq$ $\mathbf{P}(\mathbf{n})$, generated in degrees $\leq s+1$, an n by $s+1$ matrix $\tilde{\mathcal{M}}(\mathfrak{b})$ with non-negative integral entries $\tilde{m}_{i, j}(\mathfrak{b})$. Since on $\tilde{\mathcal{M}}(\mathfrak{b})^{\prime} s$ rows one reads the Hilbert functions of sections of $\mathbf{P}(\mathbf{n}) / \mathfrak{b}$ with linear spaces (see Definition 4.10 and Remark 4.12 a)),

[^0]0138-4821/93 \$ 2.50 © 2006 Heldermann Verlag
inspired by [2], $\tilde{\mathcal{M}}(\mathfrak{b})$ is called sous-éscalier sectional matrix. In Section 5, given any O-sequence $\mathbf{h}=\left(1, n, h_{2}, \ldots, h_{d}, \ldots, h_{s}\right)$ of positive integers we introduce an equivalence relation \sim on the set $\mathcal{B}_{\mathbf{h}}^{n}$ of 0 -dimensional Borel ideals corresponding to \mathbf{h} via: $\mathfrak{b} \sim \mathfrak{b}^{\prime}$ if they have the same sous-éscalier sectional matrix. We also introduce a poset structure on $\mathcal{B}_{\mathrm{h}}^{n} / \sim$, by means of the partial order relation \prec defined via: $\overline{\mathfrak{b}} \prec \overline{\overline{\mathfrak{b}}^{\prime}}$ if $\overline{\mathfrak{b}} \neq \overline{\mathfrak{b}}^{\prime}$ and $\tilde{m}_{i, j}(\mathfrak{b}) \leq \tilde{m}_{i, j}\left(\mathfrak{b}^{\prime}\right)$ for each representatives $\mathfrak{b}, \mathfrak{b}^{\prime}$. The Lex-segment ideal $\mathcal{L}(\mathbf{h})$ gives the unique maximal element of $\mathcal{B}_{\mathbf{h}}^{n} / \sim$. In the 3 -variable case, by the combinatorial character of \prec, we construct the generalized rev-lex segment ideal $£(\mathbf{h})$ and prove our main results: for any O-sequence $\mathbf{h}=\left(1,3, h_{2}, \ldots, h_{s}\right) \in \mathbb{N}^{*(s+1)}$, the poset $\mathcal{B}_{\mathbf{h}}^{3} / \sim$ has a 'natural' lattice structure and $\overline{£(\mathbf{h})}$ is its unique minimal element; if $n \geq 4, \mathcal{B}_{\mathbf{h}}^{n} / \sim$, only admits a poset structure having, in general, several different minimal elements (see Theorem 5.6 and Example 5.3).

We are grateful to D. Bayer for suggesting us to investigate this subject.

2. Notation

In this section we fix our notation, recalling some general facts which will be used. For each positive integer $n, \mathbf{P}(\mathbf{n})$ is the polynomial ring in the variables X_{1}, \ldots, X_{n} over a field \mathbf{k} of characteristic 0 . If $n \leq 4, X, Y, Z, T$ replace ordinately X_{1}, \ldots, X_{4}. For $1 \leq i \leq n, \mathbf{P}(\mathbf{i}):=\mathbf{k}\left[X_{1}, \ldots, X_{i}\right]$ and $\mathbf{P}^{\prime}(\mathbf{i}):=\mathbf{k}\left[X_{n-i+1}, \ldots, X_{n}\right]$ are thought as subrings of $\mathbf{P}(\mathbf{n})=\mathbf{P}^{\prime}(\mathbf{n})$.
For every $j \in \mathbb{N}$ let $\mathbf{P}(\mathbf{n})_{j}$ denote the j-homogeneous part of $\mathbf{P}(\mathbf{n})$ and similarly, for M a subset of $\mathbf{P}(\mathbf{n})$ let M_{j} denote the degree j part.

The multiplicative semigroup of terms $\mathbf{T}(\mathbf{n})$ is the set of monic monomials $\mathbf{X}^{\mathbf{a}}:=X_{1}^{a_{1}} \cdot X_{2}^{a_{2}} \cdots X_{n}^{a_{n}}$ with $a_{i} \in \mathbb{N}$, for $1 \leq i \leq n, \mathbf{T}(\mathbf{i})$ and $\mathbf{T}^{\prime}(\mathbf{i})$ denote respectively the terms involving the set of variables $\left\{X_{1}, \ldots, X_{i}\right\}$ and $\left\{X_{n-i+1}, \ldots, X_{n}\right\}$. For each subset N of $\mathbf{T}(\mathbf{n})$, we let $N(\mathbf{i})$ be the intersection $N \cap \mathbf{T}(\mathbf{i})$ and $N^{\prime}(\mathbf{i})$ the intersection $N \cap \mathbf{T}^{\prime}(\mathbf{i})$. If no confusion can arise, we ordinately write $\mathbf{P}, \mathbf{T}, \mathbb{T}$ and \mathbb{T}^{\prime} for $\mathbf{P}(\mathbf{n}), \mathbf{T}(\mathbf{n}), \mathbf{T}(\mathbf{n}-\mathbf{1})$ and $\mathbf{T}^{\prime}(\mathbf{n}-\mathbf{1})$. On \mathbf{T} among the possible termorderings, we will consider the lexicographic (l), degree-lexicographic (dl) and degree-reverse-lexicographic (drl) with $X_{1}<\cdots<X_{n}$. The following decompositions (in increasing order) hold for all $j \in \mathbb{N}^{*}$ and $n \neq 1$, (see [10]):
(•)

$$
\mathbf{T}_{j}=\mathbb{T}_{j} \sqcup X_{n} \mathbb{T}_{j-1} \sqcup \cdots \sqcup X_{n}^{j-1} \mathbb{T}_{1} \sqcup X_{n}^{j} \mathbb{T}_{0}=\bigsqcup_{r=0}^{n} X_{n}^{r} \mathbb{T}_{j-r} \text { (w.r.t. dl) }
$$

(••) $\quad \mathbf{T}_{j}=X_{1} \mathbf{T}_{j-1} \sqcup \mathbb{T}_{j}^{\prime}=\bigsqcup_{i=1}^{n} X_{i} \mathbf{T}^{\prime}(\mathbf{n}-\mathbf{i}+\mathbf{1})_{j-1}$ (w.r.t. drl).
For each $i, j \in \mathbb{N}^{*}, 1 \leq i \leq n, 1 \leq \omega \leq\binom{ i+j-1}{j}$, the set of the ω smallest terms of $\mathbf{T}(\mathbf{i})_{j}$ w.r.t. l (resp. rl) is denoted $\mathbf{L}_{i, \omega, j}$ (resp. $\Lambda_{i, \omega, j}$), and called ω-(initial)-lsegment (resp. ω-(initial)-rl-segment) of $\mathbf{T}(\mathbf{i})_{j}$.

As usual, the leading term (w.r.t. the given term-ordering) of an $f \in \mathbf{P}$ is denoted $T(f) \in \mathbf{T}$; for a homogeneous ideal $\mathfrak{a} \subset \mathbf{P}, T(\mathfrak{a}):=\{T(f): f \in \mathfrak{a}\}$ is a semigroup ideal and $\operatorname{in}(\mathfrak{a}) \subset \mathbf{P}$ is the generated monomial ideal. We call sous-éscalier of \mathfrak{a} the order ideal $\mathcal{N}(\mathfrak{a}):=\mathbf{T} \backslash T(\mathfrak{a})$.

For each subset N of \mathbf{T} and positive integers i, j with $0 \leq i \leq n-1$ we denote by $\lambda_{i, j}(N)$ the number of egree j terms of N involving the variables X_{i+1}, \ldots, X_{n} :

$$
\begin{equation*}
\lambda_{i, j}(N):=\#\left(N^{\prime}(\mathbf{n}-\mathbf{i})_{j}\right), \tag{1}
\end{equation*}
$$

it may be useful to conventionally put $\lambda_{n, j}(N):=0$. If $N \subseteq \mathbf{T}_{\bar{j}}$ for some $\bar{j} \in \mathbb{N}^{*}$, then $\lambda_{i, j}(N)=0$ for all $j \neq \bar{j}$, thus we write $\lambda_{i}(N)$ instead of $\lambda_{i, \bar{j}}(N)$.
For $t=X_{1}^{a_{1}} \cdot X_{2}^{a_{2}} \cdots X_{n}^{a_{n}} \in \mathbf{T}, N \subseteq \mathbf{T}, i, j \in \mathbb{N}^{*}$ with $1 \leq i \leq n$, we put

$$
\begin{gather*}
\mu(t):=\min \left\{\ell \in\{1, \ldots, n\}: a_{\ell} \neq 0\right\}, \tag{2}\\
\nu_{i, j}(N):=\#\left\{t \in N_{j}: \mu(t)=i\right\} . \tag{3}
\end{gather*}
$$

As for $1 \leq i \leq n$ we have $t \in \mathbf{T}^{\prime}(\mathbf{n}-\mathbf{i})$ iff $\mu(t) \geq i+1$ for all $N \subseteq \mathbf{T}$, it holds:

$$
\begin{equation*}
\nu_{i, j}(N)=\lambda_{i-1, j}(N)-\lambda_{i, j}(N) \tag{4}
\end{equation*}
$$

If $N \subseteq \mathbf{T}_{j}$ for some $j \in \mathbb{N}^{*}$ we set $N_{(0)}:=N$ and, for all $\ell \in \mathbb{N}^{*}$

$$
\begin{equation*}
N_{(\ell)}:=\mathbf{T}_{j+\ell} \backslash\left\{X_{1}, \ldots, X_{n}\right\} \cdot\left(\mathbf{T}_{j+\ell-1} \backslash N_{(\ell-1)}\right), \tag{5}
\end{equation*}
$$

calling it potential expansion of N in $\mathbf{T}_{j+\ell}$.
By definition, for each homogeneous ideal $\mathfrak{a} \subseteq \mathbf{P}$, as $\mathbf{T}_{j} \backslash \mathcal{N}(\mathfrak{a})_{j}=\mathfrak{a} \cap \mathbf{T}_{j}$, one has

$$
\begin{equation*}
\left(\mathcal{N}(\mathfrak{a})_{j}\right)_{(1)}=\mathbf{T}_{j+1} \backslash T\left\{\mathfrak{a}_{j} \mathbf{P}_{1}\right\}, \tag{6}
\end{equation*}
$$

and, since $\mathfrak{a}_{j} \mathbf{P}_{1} \subseteq \mathfrak{a}_{j+1}$, one also has

$$
\begin{equation*}
\mathcal{N}(\mathfrak{a})_{j+1} \subseteq\left(\mathcal{N}(\mathfrak{a})_{j}\right)_{(1)} \tag{7}
\end{equation*}
$$

For a monomial ideal $\mathfrak{a} \subseteq \mathbf{P}(\mathbf{n}), G(\mathfrak{a})$ denotes its minimal system of generators. If \mathfrak{a} is generated in degrees $\leq s+1$, with initial degree $d \in \mathbb{N}^{*}$, then

$$
\begin{equation*}
\# G(\mathfrak{a})_{j}=\#\left(\mathcal{N}(\mathfrak{a})_{j-1}\right)_{(1)}-\#\left(\mathcal{N}(\mathfrak{a})_{j}\right) \text { holds for every } d \leq j \leq s+1 \tag{8}
\end{equation*}
$$

Note that, in the 0-dimensional case, one has in particular $G(\mathfrak{a})_{s+1}=\left(\mathcal{N}(\mathfrak{a})_{s}\right)_{(1)}$.

3. Borel subsets of T

In this section we give the notion of Borel subset of \mathbf{T} and some useful properties.
Definition 3.1. A subset B of \mathbf{T} is Borel if $t \in B$ and $X_{j} \mid t$ imply $X_{i} t / X_{j} \in B$ for all $i<j$.

Remark 3.2. a) For a Borel $B \subseteq \mathbf{T}(\mathbf{i})_{j}$ it holds $X_{i}^{j} \in B$ iff $B=\mathbf{T}(\mathbf{i})_{j}$, if B has cardinality $\omega<\binom{i+j-1}{j}$, then $\lambda_{0}(B)=\omega$ and $\lambda_{i-1}(B)=0$. So, if $i=3$, only $\lambda_{1}(B)$ is meaningful.
b) For each $i, j \in \mathbb{N}^{*}, 1 \leq i \leq n, 1 \leq \omega \leq\binom{ i+j-1}{j}, \mathbf{L}_{i, \omega, j}$ and $\Lambda_{i, \omega, j}$ are Borel subset of $\mathbf{T}(\mathbf{i})_{j}$, moreover $\mathbf{L}_{i, \omega, j}=\Lambda_{i, \omega, j}$ iff $\omega \in\left\{1,2,\binom{i+j-1}{j}-2,\binom{i+j-1}{j}-1,\binom{i+j-1}{j}\right\}$ and $\mathbf{L}_{1,1, j}=\Lambda_{1,1, j}=\left\{X_{1}^{j}\right\}, \mathbf{L}_{2, \omega, j}=\Lambda_{2, \omega, j}=\left\{X_{1}^{j}, \ldots X_{1}^{j-\omega+1} X_{2}^{\omega-1}\right\}$.

Notation 3.3. For all $a, j \in \mathbb{N}^{*}, a\{j\}$ means the j-binomial expansion of a,

$$
a=\binom{k(j)}{j}+\binom{k(j-1)}{j-1}+\cdots+\binom{k(r)}{r}
$$

with $k(j)>k(j-1)>\cdots>k(r) \geq r \geq 1$.
Moreover, for all $\ell \in \mathbb{Z}$ we let:

$$
(a\{j\})^{\ell}:=\binom{k(j)+\ell}{j}+\binom{k(j-1)+\ell}{j-1}+\cdots+\binom{k(r)+\ell}{r},
$$

where $\binom{k(j-m)+\ell}{j-m}=0$ if $k(j-m)+\ell<j-m$ for some $0 \leq m \leq j-r$. In particular $(a\{j\})^{1-n}=1$ if $a=\binom{n+j-1}{j},(a\{j\})^{1-n}=0$ if $a<\binom{n+j-1}{j}$.
Lemma 3.4. For each $j \in \mathbb{N}^{*}, 0 \leq i \leq n-1$ and $1 \leq \omega \leq\binom{ n+j-1}{j}-1$ it holds:

$$
\lambda_{i}\left(\mathbf{L}_{n, \omega, j}\right)=(\omega\{j\})^{-i} .
$$

Proof. We prove by induction on $n \geq 2$ and $j \in \mathbb{N}^{*}$ that $\lambda_{1}\left(\mathbf{L}_{n, \omega, j}\right)=(\omega\{j\})^{-1}$, this if $n=2$ is trivial for all $j \in \mathbb{N}^{*}$. Assume our contention for $m \leq n-1, h \leq j-1$ and deduce it for n and j. For $1 \leq \omega \leq\binom{ n+j-1}{j}-1$ we set $\sigma(\omega):=-1$ and $\alpha(\omega):=\omega$ if $\omega \leq\binom{ n+j-2}{j}$, otherwise we set $\alpha(\omega):=\omega-\sum_{\ell=0}^{\sigma(\omega)}\binom{n+j-2-\ell}{j-\ell}$ with $\sigma(\omega)$ defined via:
$\binom{n+j-2}{j}+\cdots+\binom{n+j-2-\sigma(\omega)}{j-\sigma(\omega)}<\omega \leq\binom{ n+j-2}{j}+\cdots+\binom{n+j-2-\sigma(\omega)}{j-\sigma(\omega)}+\binom{n+j-2-\sigma(\omega)-1}{j-\sigma(\omega)-1}$.
As $\sum_{\ell=0}^{j}\binom{n+j-2-\ell}{j-\ell}=\binom{n+j-1}{j}>\omega$, we have $\sigma(\omega)=j-1$ iff $\omega=\binom{n+j-1}{j}-1$, i.e. for all $\omega \neq\binom{ n+j-1}{j}-1$, it holds $j-\sigma(\omega)-1 \geq 1$. By (\bullet) of Section 2, every $\tau \in \mathbf{L}_{n, \omega, j}$ is not divisible by $X_{n}^{\sigma(\omega)+2}$, thus, $\sigma(\omega)=-1$ implies $\mathbf{L}_{n, \omega, j} \subseteq \mathbb{T}_{j}$, and the inductive hypothesis on n applies. Otherwise, $j-\sigma(\omega)-1 \geq j-1$ and $\mathbf{L}_{n, \omega, j}=\bigsqcup_{\ell=0}^{\sigma(\omega)} X_{n}^{\ell} \mathbb{T}_{j-\ell} \sqcup X_{n}^{\sigma(\omega)+1} \mathbf{L}_{n-1, \alpha(\omega), j-\sigma(\omega)-1}$.
As $\omega\{j\}=\sum_{\ell=0}^{\sigma(\omega)}\binom{n+j-2-\ell}{j-\ell}+\alpha(\omega)\{j-\sigma(\omega)-1\}$, we end by the inductive hypothesis on j. Similarly for $i>1$.

Remark 3.5. a) One computes $\lambda_{i}\left(\Lambda_{n, \omega, j}\right)$ similarly (for this reason we gave our proof of Lemma 3.4 different from [11], Theorem 5.5). For each $j, \omega \in \mathbb{N}^{*}$ and $1 \leq \omega \leq\binom{ n+j-1}{j}-1$, by $(\bullet \bullet)$ of Section 2, we have:

$$
\lambda_{1}\left(\Lambda_{n, \omega, j}\right)=\left\{\begin{array}{ll}
0 & \text { if } \left.\omega \leq \begin{array}{c}
n+j-2 \\
j-1
\end{array}\right) \\
\omega-\binom{n+j-2}{j-1} & \text { otherwise }
\end{array} .\right.
$$

Defining $\rho(\omega)$ via: $\binom{n+j-2}{j-1}+\cdots+\binom{n+j-2-\rho(\omega)}{j-1} \leq \omega<\binom{n+j-2}{j-1}+\cdots+\binom{n+j-2-\rho(\omega)-1}{j-1}$, $\sum_{\ell=0}^{n-1}\binom{n+j-2-\ell}{j-1}=\binom{n+j-1}{j}>\omega$ implies $\rho(\omega) \leq n-2$ and again by $(\bullet \bullet)$ of Section 2
we have

$$
\lambda_{i}\left(\Lambda_{n, \omega, j}\right)= \begin{cases}0 & \text { if } \rho(\omega)<i-1 \\ \omega-\sum_{\ell=0}^{i-1}\binom{n+j-2-\ell}{j-1} & \text { if } \rho(\omega) \geq i-1\end{cases}
$$

Note that $\rho(\omega)+1$ is the greatest i between 0 and $n-2$ with $\lambda_{i}\left(\Lambda_{n, \omega, j}\right) \neq 0$ (i.e. $\rho(\omega)+2$ gives the greatest i between 1 and $n-1$, for which $X_{i}^{j} \in \Lambda_{n, \omega, j}$.
b) Moreover, by Remark 3.2 b) and Lemma 3.4, for all Borel subsets $B \subseteq \mathbf{T}_{j}$, consisting of ω elements, with $3 \leq \omega \leq\binom{ n+j-1}{j}-3$, we have

$$
\begin{equation*}
\lambda_{i}\left(\mathbf{L}_{n, \omega, j}\right) \geq \lambda_{i}(B) \geq \lambda_{i}\left(\Lambda_{n, \omega, j}\right) \tag{9}
\end{equation*}
$$

Lemma 3.6. If $B \subseteq \mathbf{T}_{j}$ is Borel then $B_{(1)}$ is so, with cardinality $\sum_{i=1}^{n} \lambda_{i-1}(B)$.
Proof. Note that for each $r \in \mathbb{N}^{*}, C \subseteq \mathbf{T}_{r}$ is Borel iff

$$
\begin{equation*}
t \in \mathbf{T}_{r} \backslash C \text { and } X_{\ell} \mid t \text { imply } X_{i} t / X_{\ell} \in \mathbf{T}_{r} \backslash B \text { for all } i>\ell \tag{10}
\end{equation*}
$$

By definition, $B_{(1)}=\mathbf{T}_{j+1} \backslash\left\{X_{1}, \ldots, X_{n}\right\} \cdot\left(\mathbf{T}_{j} \backslash B\right)$ and we will show that (10) is verified by $\left\{X_{1}, \ldots, X_{n}\right\} \cdot\left(\mathbf{T}_{j} \backslash B\right)$. Namely, $\bar{t} \in\left\{X_{1}, \ldots, X_{n}\right\} \cdot\left(\mathbf{T}_{j} \backslash B\right)$ implies $\bar{t}=X_{\alpha} t$ for some $1 \leq \alpha \leq n$ and $t \in \mathbf{T}_{j} \backslash B$. Clearly $X_{\alpha} \mid \bar{t}$ and for all $i>\alpha$ we have $X_{i} \bar{t} / X_{\alpha}=X_{i} t \in\left\{X_{1}, \ldots, X_{n}\right\} \cdot\left(\mathbf{T}_{j} \backslash B\right)$. If $X_{\ell} \mid \bar{t}$ for $\ell \neq \alpha$, then $X_{i} t / X_{\ell} \in\left(\mathbf{T}_{j} \backslash B\right)$ for all $i>\ell$, since B is Borel, so $X_{i} \bar{t} / X_{\ell}=X_{i} X_{\alpha} t / X_{\ell} \in\left\{X_{1}, \ldots, X_{n}\right\} \cdot\left(\mathbf{T}_{j} \backslash B\right)$ for all $i>\ell$. Moreover, $X_{i} \cdot B^{\prime}(n-i+1) \cap\left\{X_{1}, \ldots, X_{n}\right\} \cdot\left(\mathbf{T}_{j} \backslash B\right)=\emptyset$ for each $i, 1 \leq i \leq n-1$ and for all $\tau \in B_{(1)}$ it holds $\tau \in X_{\mu(\tau)} \cdot B^{\prime}(\mathbf{n}-\mu(\tau)+\mathbf{1})$. Thus

$$
\begin{equation*}
B_{(1)}=\bigcup_{i=1}^{n} X_{i} \cdot B^{\prime}(\mathbf{n}-\mathbf{i}+\mathbf{1}) \tag{11}
\end{equation*}
$$

and the union is disjoint because of $(\bullet \bullet)$ of Section 2. Thus, by the definition of $\lambda_{i-1}(B)$:

$$
\begin{equation*}
\#\left(B_{(1)}\right)=\sum_{i=1}^{n} \lambda_{i-1}(B) \tag{12}
\end{equation*}
$$

Theorem 3.7. If $B \subseteq \mathbf{T}_{j}$ is Borel, then for every $\ell \in \mathbb{N}^{*}, B_{(\ell)} \subseteq \mathbf{T}_{j+\ell}$ is so and $\# B_{(\ell)}=\# \underset{1 \leq i_{1} \leq \cdots \leq i_{\ell} \leq n}{\bigsqcup} X_{i_{1}} X_{i_{2}} \cdots X_{i_{\ell}} \cdot B^{\prime}\left(\mathbf{n}-\mathbf{i}_{\ell}+\mathbf{1}\right)=\sum_{i=1}^{n}\binom{i+\ell-2}{\ell-1} \lambda_{i-1}(B)$.
Proof. Clearly $B_{(\ell)}$ is Borel being defined iteratively as $\left(B_{(\ell-1)}\right)_{(1)}$ (see (5) of Section 2). Since $B_{(2)}=\left(B_{(1)}\right)_{(1)}$ and, by the proof of Lemma 3.6, $B_{(1)}=\bigsqcup_{i=1}^{n} X_{i}$. $B^{\prime}(\mathbf{n}-\mathbf{i}+\mathbf{1})$, one has $B_{(2)}=\bigsqcup_{i=1}^{n} X_{i} \cdot B_{(1)}^{\prime}(\mathbf{n}-\mathbf{i}+\mathbf{1})=\bigsqcup_{i=1}^{n} X_{i}\left[\bigsqcup_{r=1}^{n} X_{r} B^{\prime}(\mathbf{n}-\mathbf{r}+\right.$ 1)] ${ }^{\prime}(\mathbf{n}-\mathbf{i}+1)$.

Since $t \in \mathbf{T}^{\prime}(\mathbf{n}-\mathbf{i}+\mathbf{1})$ iff $\mu(t) \geq i$ (see (4) of Section 2), one has

$$
\left[X_{r} B^{\prime}(\mathbf{n}-\mathbf{r}+\mathbf{1})\right]^{\prime}(\mathbf{n}-\mathbf{i}+\mathbf{1})= \begin{cases}\emptyset & \text { if } r<i \\ X_{r} B^{\prime}(\mathbf{n}-\mathbf{r}+\mathbf{1}) & \text { if } r \geq i\end{cases}
$$

Thus, $\left.B_{(2)}=\bigsqcup_{i=1}^{n} X_{i}\left[\bigsqcup_{r=i}^{n} X_{r} B^{\prime}(\mathbf{n}-\mathbf{r}+\mathbf{1})\right]=\bigsqcup_{1 \leq i \leq r \leq n} X_{i} X_{r} B^{\prime}(\mathbf{n}-\mathbf{r}+\mathbf{1})\right]$. Assume our contention for $\ell \in \mathbb{N}^{*}$, and deduce it for $\ell+1$. As $B_{(\ell+1)}=\left(B_{(\ell)}\right)_{(1)}$, one has

$$
\begin{gathered}
B_{(\ell+1)}=\bigsqcup_{i=1}^{n} X_{i}\left[\bigsqcup_{1 \leq r_{1} \leq \cdots \leq r_{\ell} \leq n}^{\bigsqcup_{r_{1}}} X_{r_{2}} \cdots X_{r_{\ell}} \cdot B^{\prime}\left(\mathbf{n}-\mathbf{r}_{\ell}+\mathbf{1}\right)\right]^{\prime}(\mathbf{n}-\mathbf{i}+\mathbf{1}) \\
=\bigsqcup_{i=1}^{n} X_{i}\left[\bigsqcup_{i \leq r_{1} \leq \cdots \leq r_{\ell} \leq n} X_{r_{1}} X_{r_{2}} \cdots X_{r_{\ell}} \cdot B^{\prime}\left(\mathbf{n}-\mathbf{r}_{\ell}+\mathbf{1}\right)\right] \\
={ }_{1 \leq i_{1} \leq \cdots \leq i_{\ell} \leq i_{\ell+1} \leq n} X_{i_{1}} X_{i_{2}} \cdots X_{i_{\ell+1}} \cdot B^{\prime}\left(\mathbf{n}-\mathbf{i}_{\ell+1}+\mathbf{1}\right) .
\end{gathered}
$$

By counting how many times $B^{\prime}(\mathbf{n}-\mathbf{i}+\mathbf{1}), i$ running from 1 to n, contributes to the above union, one gets $\#\left(B_{(\ell)}\right) . B=B^{\prime}(\mathbf{n})$ only occurs multiplied by $X_{1}^{\ell}, B^{\prime}(\mathbf{n}-\mathbf{1})$ occurs $\binom{\ell}{\ell-1}$ times (multiplied by the $t \in \mathbf{T}(\mathbf{2})_{\ell}$ divisible by $\left.X_{2}\right)$ and $B^{\prime}(\mathbf{n}-\mathbf{i}+\mathbf{1})$ occurs $\binom{i+\ell-2}{\ell-1}$ times (multiplied by the $t \in \mathbf{T}(\mathbf{i})_{\ell}$ divisible by X_{i}). Thus, as claimed, $\#\left(B_{(\ell)}\right)=\sum_{i=1}^{n}\binom{i+\ell-2}{\ell-1} \lambda_{i-1}(B)$.
Theorem 3.7 shows how to construct Borel subsets of given cardinality in each degree (for Lex-segments see [8], for the general case see [9]).

General Construction 3.8. Fix $d<s \in \mathbb{N}^{*}$ and $1 \leq \omega \leq\binom{ n+d-1}{d}-1$, for all $0 \leq j \leq d-1$, we let $B_{j}:=\mathbf{T}_{j}$ and $B_{d} \subseteq \mathbf{T}_{d}$ a Borel subset of cardinality $\omega_{0}:=\omega$. We also let $B_{d+\ell} \subseteq\left(B_{d+\ell-1}\right)_{(1)}$ be a Borel subset of cardinality ω_{ℓ} for all $1 \leq \ell \leq$ $s-d$ and $\omega_{\ell} \leq \#\left(B_{d}\right)_{(\ell)}$, and $B_{j}=\emptyset$ for all $j>s$. As clearly $\left(B_{j}\right)_{(1)}=\mathbf{T}_{j+1}$, for all $0 \leq j \leq d-1$, we have $B_{r+1} \subseteq\left(B_{r}\right)_{(1)}$, for each $r \in \mathbb{N}$. Thus, $\mathbb{N}:=\bigsqcup_{r \in \mathbb{N}} B_{r}$ is an order ideal and a Borel subset of \mathbf{T}, with $\# N=\sum_{i=0}^{d-1}\binom{n+i-1}{i}+\sum_{\ell=0}^{s-d} \omega_{\ell}$.

Remark 3.9. a) From Lemma 3.4 and Lemma 3.6, we get:

- $\mathbf{L}_{n, \eta, j+1} \subseteq\left(\mathbf{L}_{n, \omega, j}\right)_{(1)}$ for every $\eta \leq \#\left(\left(\mathbf{L}_{n, \omega, j}\right)_{(1)}\right)$, yet
- $\Lambda_{n, \eta, j+1} \subseteq\left(\Lambda_{n, \omega, j}\right)_{(1)}$ only for $\eta \leq \omega$.
b) For each r between 0 and $n-2$, we have $\lambda_{r}\left(B_{(1)}\right)=\sum_{i=r}^{n-2} \lambda_{i}(B)$.

If $n=3, \#\left(B_{(\ell)}\right)=\lambda_{0}(B)+\ell \lambda_{1}(B)$, i.e. $\lambda_{1}\left(B_{(\ell)}\right)=\lambda_{1}(B)$ for each $\ell \in \mathbb{N}$.

4. Borel ideals

In this and next section, $\mathbf{h}:=\left(1, n, \ldots, h_{d}, \ldots, h_{s}\right) \in \mathbb{N}^{*(s+1)}$ is the O-sequence of a homogeneous 0 -dimensional ideal $\mathfrak{a} \subseteq \mathbf{P}$ with initial degree $d \leq s$ and generators in degrees $\leq s+1$ (i.e. $H_{\mathbf{P} / \mathfrak{a}}(j)=h_{j}$ for $0 \leq j \leq s$ and $H_{\mathbf{P} / \mathfrak{a}}(j)=0$ for $j \geq s+1$. In particular we will say that such an \mathbf{h} is not increasing if $\Delta(\mathbf{h}):=(1, n-$ $\left.1, \ldots, h_{d}-h_{d-1}, \ldots, h_{s}-h_{s-1}\right)=\left(1, n-1, \ldots, \Delta(\mathbf{h})_{d}, \ldots, \Delta(\mathbf{h})_{s}\right) \in \mathbb{Z}^{s+1}$ satisfies $\Delta(\mathbf{h})_{j} \leq 0$, for all $j \geq d+1$ (n.b. for $n \geq 2, \Delta(\mathbf{h})_{j}=\binom{n+j-2}{j}>0$ if $1 \leq j \leq d-1$; no assumption is made on $\left.\Delta(\mathbf{h})_{d}\right)$.

Notation 4.1. The l-segment ideal associated to \mathbf{h} is $\mathcal{L}(\mathbf{h})$ with $\mathcal{N}(\mathcal{L}(\mathbf{h}))_{j}=$ \mathbf{T}_{j} if $0 \leq j \leq d-1, \mathcal{N}(\mathcal{L}(\mathbf{h}))_{j}=\mathbf{L}_{n, h_{j}, j}$ if $d \leq j \leq s$ and $\mathcal{N}(\mathcal{L}(\mathbf{h}))_{j}=\emptyset$ if $s+1 \leq j$ (see [8]). For \mathbf{h} non-increasing, the associated rl-segment ideal is $\Lambda(\mathbf{h})$ with $\mathcal{N}(\Lambda(\mathbf{h}))_{j}=\mathbf{T}_{j}$ if $0 \leq j \leq d-1, \mathcal{N}(\Lambda(\mathbf{h}))_{j}=\Lambda_{n, h_{j}, j}$ if $d \leq j \leq s$ and $\mathcal{N}(\Lambda(\mathbf{h}))_{j}=\emptyset$ if $s+1 \leq j$ (see [3] and [10]).
Definition 4.2. A monomial ideal $\mathfrak{b} \subseteq \mathbf{P}$ is Borel if $\mathcal{N}(\mathfrak{b})_{j}$ is so, for all $j \in \mathbb{N}$ and $\mathcal{B}_{\mathbf{h}}^{n}$ is the set of 0 -dimensional Borel ideals $\mathfrak{b} \subseteq \mathbf{P}(\mathbf{n})$ corresponding to \mathbf{h}.
For $n=2$ all notions coincide. If $n \geq 3$, then l-segment and $r l$-segment ideals are Borel, yet there are Borel ideals neither l-segment nor $r l$-segment. For a Borel ideal $\mathfrak{b} \subseteq \mathbf{P}$ of initial degree $d \in \mathbb{N}^{*} X_{n}^{d} \in G(\mathfrak{b})$, thus $\nu_{n, d}(\mathfrak{b})=1$ and $\nu_{n, j}(\mathfrak{b})=0$ for all $j \neq d$.

Remark 4.3. a) $\mathcal{B}_{\mathbf{h}}^{n} \neq \emptyset$ as it contains $\mathcal{L}(\mathbf{h})$; if $\Delta(\mathbf{h})_{j}>0$ for some $j \geq d+1$, by Remark 3.9 a) there isn't corresponding $r l$-segment ideal.
b) If $\mathfrak{b} \in \mathcal{B}_{\mathfrak{h}}^{n}$, as $G(\mathfrak{b})_{s+1}=\left(\mathcal{N}(\mathfrak{b})_{s}\right)_{(1)}$ and $\nu_{n, j}(\mathfrak{b})=0$, for all $j \neq d$, Lemma 3.6 applied to $\mathcal{N}(\mathfrak{b})_{s}$ implies $\nu_{i, s+1}(\mathfrak{b})=\lambda_{i-1, s}(\mathcal{N}(\mathfrak{b}))$ for each i in the range between 1 and n. Moreover, for each ℓ in the range between 0 and $s-(d+\ell)$:

$$
h_{d+\ell+1}=\#\left(\left(\mathcal{N}(\mathfrak{b})_{d+\ell}\right)_{(1)} \backslash G(\mathfrak{b})_{d+\ell+1}\right)=\sum_{i=0}^{n-2} \lambda_{i, d+\ell}(\mathcal{N}(\mathfrak{b}))-\#\left(G(\mathfrak{b})_{d+\ell+1}\right) .
$$

c) By Theorem 3.7 for constructing $\mathfrak{b} \in \mathcal{B}_{\mathbf{h}}^{n}$ one needs, for r varying from 0 to $s-d$, Borel subsets $B_{r} \subseteq \mathbf{T}_{d+r}$ of cardinality h_{d+r}, with the following constraints:

1. $B_{r+1} \subseteq\left(B_{r}\right)_{(1)}$,
2. $\#\left(B_{(\ell)}\right) \geq h_{d+r+\ell}$ for each ℓ in the range between 0 and $s-(d+\ell)$.

Lemma 4.4. A monomial ideal $\mathfrak{a} \subseteq \mathbf{P}$ corresponding to \mathbf{h} satisfies $\lambda_{1, j}(\mathcal{N}(\mathfrak{a})) \geq$ $\Delta(\mathbf{h})_{j}$, for all j in the range between 0 and s.
Proof. By $(\bullet \bullet)$ of Section 2, $\mathcal{N}(\mathfrak{a})_{j}=\left(\mathcal{N}(\mathfrak{a})_{j} \cap X_{1} \mathbf{T}_{j-1}\right) \sqcup\left(\mathcal{N}(\mathfrak{a})_{j}\right)^{\prime}(\mathbf{n}-\mathbf{1})$. Letting

$$
\xi_{j}:=\#\left(\mathcal{N}(\mathfrak{a})_{j} \cap X_{1} \mathbf{T}_{j-1}\right),
$$

we have $h_{j}=\#\left(\mathcal{N}(\mathfrak{a})_{j}\right)=\xi_{j}+\lambda_{1, j}(\mathcal{N}(\mathfrak{a}))$. Moreover, $\mathfrak{a}_{j-1} \mathbf{P}_{1} \subseteq \mathfrak{a}_{j}$ implies $\mathfrak{a}_{j-1} X_{1} \subseteq \mathfrak{a}_{j} \cap X_{1} \mathbf{T}_{j-1}$ or, which is the same, $\mathcal{N}(\mathfrak{a})_{j} \cap X_{1} \mathbf{T}_{j-1} \subseteq \mathcal{N}(\mathfrak{a})_{j-1} X_{1}$, i.e. $\xi_{j} \leq h_{j-1}$. So $\Delta(\mathbf{h})_{j}:=h_{j}-h_{j-1}=\xi_{j}+\lambda_{1, j}(\mathcal{N}(\mathfrak{a}))-h_{j-1} \leq \lambda_{1, j}(\mathcal{N}(\mathfrak{a}))$.

Corollary 4.5. $A \mathfrak{b} \in \mathcal{B}_{\mathbf{h}}^{n}$ satisfies $\lambda_{1, j}(\mathcal{N}(\mathfrak{b}))=\Delta(\mathbf{h})_{j}$ exactly for those j in the range between 0 and s, such that $G(\mathfrak{b})_{j}$ does not contain any term divisible by X_{1}.
Proof. As clearly $G(\mathfrak{b})_{j}=\emptyset$ for each $0 \leq j \leq d-1$, only $j=d+\ell, 0 \leq \ell \leq s-d$, matter. Moreover, from Lemma 4.4 one infers that $\lambda_{1, d+\ell}(\mathcal{N}(\mathfrak{b}))=\Delta(\mathbf{h})_{d+\ell}$ iff $\xi_{d+\ell}=h_{d+\ell-1} . \quad$ As $G(\mathfrak{b})_{d+\ell}=\left(\mathcal{N}(\mathfrak{b})_{d+\ell-1}\right)_{(1)} \backslash \mathcal{N}(\mathfrak{b})_{d+\ell}$ and $\left(\mathcal{N}(\mathfrak{b})_{d+\ell-1}\right)_{(1)}=$ $\bigsqcup_{j=1}^{n-1} X_{j}\left(\mathcal{N}(\mathfrak{b})_{d+\ell-1}\right)^{\prime}(\mathbf{n}-\mathbf{j}+\mathbf{1})$, this means exactly $X_{1} \nmid t$, for all $t \in G(\mathfrak{b})_{d+\ell}$.
If $n=3$, we can say more and therefore, from now on, unless otherwise noticed, $\mathbf{T}:=\mathbf{T}(\mathbf{3})$ endowed with drl and $\mathbf{h}:=\left(1,3, h_{2}, \ldots, h_{d}, \ldots, h_{s}\right)$, as if $d=s+1$ then $\mathcal{B}_{\mathrm{h}}^{3}=\left\{(X, Y, Z)^{s}\right\}$, one can take $d \leq s$. We begin giving the following definition:

Definition 4.6. ([9], [10]) For $j \in \mathbb{N}^{*}$ and $1 \leq i \leq j+1,0 \leq a \leq j+1$ we set:

$$
\ell_{i j}:=\left\{X^{j-i+1} Z^{i-1}, X^{j-i} Y Z^{i-1}, \ldots, Y^{j-i+1} Z^{i-1}\right\} \text { and } R_{a, j}:=\bigsqcup_{i=1}^{a} \ell_{i j} .
$$

Note that: $R_{0, j}=\emptyset, R_{j+1, j}=\mathbf{T}(\mathbf{3})_{j}$, and $R_{a, j}$ is the (initial)-l-segment $\mathbf{L}_{3, \frac{a(2 j-a+3)}{2}, j}$. If $B \subseteq \mathbf{T}(\mathbf{3})_{j}$ is Borel, then $\#\left(B \cap \ell_{i j}\right)>\#\left(B \cap \ell_{i+1 j}\right)$ for every $1 \leq i \leq j+1$; if $B \cap \ell_{\bar{i} j} \neq \emptyset$, for some $1 \leq \bar{i} \leq j+1$, a full segment (from the left) of $\ell_{\bar{i} j}$ lies in B.
Definition 4.7. For each $0 \leq \ell \leq s-d$, the increasing character of \mathbf{h} in degree $d+\ell$ is $a_{\ell}:=\max \left\{0, \max _{i \geq d+\ell}\left\{\Delta(\mathbf{h})_{i}\right\}\right\}$.
In Definition 4.7 we have $d \geq a_{0} \geq a_{1} \geq \cdots \geq a_{s-d}:=\max \left\{0, \Delta(\mathbf{h})_{s}\right\}$. Thus, $a_{\ell}=0$ for some $0 \leq \ell \leq s-d$, implies $a_{\ell+r}=0$ for all $0 \leq r \leq s-(d+\ell)$.
We point out that bonds of Remark 4.3 c) reduce (by Remark 3.9 b)) to:

- $B_{\ell+1} \subseteq\left(B_{\ell}\right)_{(1)}$,
- $\lambda_{1}\left(B_{\ell}\right) \geq a_{\ell}$, for all $0 \leq \ell \leq s-d$.

Definition 4.8. 1. Denoting $m(\mathbf{h}) \leq s-d$ the index of the last positive increasing character of \mathbf{h}, we introduce $\overline{\mathbf{h}} \in \mathbb{N}^{*(d+m(\mathbf{h})+1)}$, defined by:

$$
\bar{h}_{j}= \begin{cases}\Delta(\mathbf{h})_{j}=j+1 & \text { if } 0 \leq j \leq d-1, \\ a_{j-d} & \text { if } d \leq j \leq d+m(\mathbf{h}) .\end{cases}
$$

2. Following our General Construction 3.8, we define the order ideal $\mathbb{L}(\mathbf{h}):=$ $\bigsqcup_{j \in \mathbb{N}} \mathbb{L}(\mathbf{h})_{j}$, where:

- $\mathbb{L}(\mathbf{h})_{j}:=\mathbf{T}_{j}$ if $0 \leq j \leq d-1$,
- $\mathbb{L}(\mathbf{h})_{j}:=R_{\overline{\mathbf{h}}_{j}, j} \sqcup\left\{t_{1}, \ldots, t_{b(j)}\right\}$ if $d \leq j \leq d+m(\mathbf{h})$, with $b(j):=h_{j}-$ $\frac{\bar{h}_{j}\left(2 j-\bar{h}_{j}+3\right)}{2}$ and $t_{1}<\cdots<t_{b(j)}$ the smallest terms of $\left(\mathbb{L}(\mathbf{h})_{j-1}\right)_{(1)} \backslash R_{\bar{h}_{j}, j}$,
- $\mathbb{L}(\mathbf{h})_{j}:=\left\{t_{1}, \ldots, t_{h_{j}}\right\}$ if $d+m(\mathbf{h})+1 \leq j \leq s$, with $t_{1}<\cdots<t_{h_{j}}$ the smallest terms of $\left(\mathbb{L}(\mathbf{h})_{j-1}\right)_{(1)}$,
- $\mathbb{L}(\mathbf{h})_{j}:=\emptyset \quad$ if $j>s$.

3. The generalized-rl-segment-ideal $£(\mathbf{h}) \in \mathcal{B}_{\mathbf{h}}^{3}$ is the monomial ideal with souséscalier $\mathbb{L}(\mathbf{h})$.
Let $s_{1}<\cdots<s_{h_{j}} \in \mathcal{N}(£(\mathbf{h}))_{j}$ and $\tau_{1}<\cdots<\tau_{h_{j}} \in \mathcal{N}(\mathfrak{b})_{j}$, for $\mathfrak{b} \in \mathcal{B}_{\mathbf{h}}^{3}, 0 \leq j \leq s$, be the respective elements, one has $s_{r} \leq \tau_{r}$ for all $1 \leq r \leq h_{j}$. As $\lambda_{1, d+\ell}(\mathcal{N}(\mathfrak{b})) \geq$ a_{ℓ} for each $\mathfrak{b} \in \mathcal{B}_{\mathbf{h}}^{3}$, the trace of $\mathcal{N}(£(\mathbf{h}))_{d+\ell}$ in $\mathbb{T}_{d+\ell}^{\prime}, \ell$ varying from 0 to $s-d$, is minimal among the elements of $\mathcal{B}_{\mathbf{h}}^{3}$. If \mathbf{h} is not-increasing, then $\mathbb{L}(\mathbf{h})=\Lambda(\mathbf{h})$.
Remark 4.9. a) The sequence $\overline{\mathbf{h}}$ of Definition 4.8 a) is an O-sequence being the Hilbert function of the Borel ideal:

$$
\left(£(\mathbf{h}), X_{1}\right) /\left(X_{1}\right) \subseteq \mathbf{P}^{\prime}(\mathbf{2}) .
$$

b) Letting, for all homogeneous ideal $\mathfrak{a} \subseteq \mathbf{P}$ and i in the range between 1 and n, $\mathfrak{a}[i]:=\left(\mathfrak{a}, X_{1}, \ldots, X_{i}\right) /\left(X_{1}, \ldots, X_{i}\right)$, we have:

$$
\lambda_{i, j}(\mathcal{N}(\mathfrak{a})):=\#\left(\left(\mathcal{N}(\mathfrak{a})_{j}\right)^{\prime}(\mathbf{n}-\mathbf{i})\right)=H_{\mathbf{P} / \mathfrak{a}[i]}(j) .
$$

Drawing inspiration from [2], we associate to every 0-dimensional Borel ideal $\mathfrak{b} \subseteq$ \mathbf{P}, generated in degrees $\leq s+1$, a matrix in $M_{n, s+1}(\mathbb{N})$, defined as follows:

Definition 4.10. The sous-éscalier sectional matrix (ses-matrix) of a 0 -dimensional Borel ideal $\mathfrak{b} \subseteq \mathbf{P}$, generated in degrees $\leq s+1$, is $\tilde{\mathcal{M}}(\mathfrak{b})=\left(\tilde{m}_{i, j}(\mathfrak{b})\right) \in$ $M_{n, s+1}(\mathbb{N})$:

$$
\tilde{m}_{i, j}(\mathfrak{b}):=\lambda_{i-1, j-1}(\mathcal{N}(\mathfrak{b})), 1 \leq i \leq n, 1 \leq j \leq s+1 .
$$

In general different ideals in $\mathcal{B}_{\mathrm{h}}^{n}$ can share the same ses-matrix.
Example 4.11. If $\mathbf{h}=(1,3,4,3)$, then both $\Lambda(\mathbf{h})=\left(Z^{2}, Y Z, Y^{3}, X Y^{2}, X^{3} Z\right.$, $\left.X^{3} Y, X^{4}\right)$ and $\mathcal{L}(\mathbf{h})=\left(Z^{2}, Y Z, Y^{3}, X^{2} Z, X^{2} Y^{2}, X^{3} Y, X^{4}\right)$ are in $\mathcal{B}_{\mathbf{h}}^{3}$. Note that

$$
\tilde{\mathcal{M}}(\Lambda(\mathbf{h}))=\left(\begin{array}{llll}
1 & 3 & 4 & 3 \\
1 & 2 & 1 & 0 \\
1 & 1 & 0 & 0
\end{array}\right)=\tilde{\mathcal{M}}(\mathcal{L}(\mathbf{h})) \text {. }
$$

Remark 4.12. a) By Definition 4.10 and Remark 4.9 a) we have:

- $\left(\tilde{m}_{i, 1}(\mathfrak{b}), \ldots, \tilde{m}_{i, s+1}(\mathfrak{b})\right)=\left(H_{\mathbf{P} / \mathfrak{b}[i-1]}(0), \ldots, H_{\mathbf{P} / \mathfrak{b}[i-1]}(s)\right)$ as i ranges between 1 and n, in particular, for each i the $0 \neq \tilde{m}_{i, j}(\mathfrak{b})$ form an O-sequence.
- $\left(\tilde{m}_{1, j}(\mathfrak{b}), \ldots, \tilde{m}_{n, j}(\mathfrak{b})\right)=\left(H_{\mathbf{P} / \mathfrak{b}[0]}(j-1), \ldots, H_{\mathbf{P} / \mathfrak{b}[n-1]}(j-1)\right), 1 \leq j \leq s+1$.
b) Given any O-sequence $\mathbf{h}=\left(1,3,\binom{4}{2}, \ldots,\binom{d+1}{d-1}, h_{d}, \ldots, h_{s}\right)$, by Lemma 3.4, the second row of $\tilde{\mathcal{M}}(\mathcal{L}(\mathbf{h}))$ is

$$
\left(\begin{array}{llllll}
1 & 2 & 3 & \cdots & d & \left(h_{d}\{d\}\right)^{-1}
\end{array} \cdots \quad\left(h_{s}\{s\}\right)^{-1}\right),
$$

while, by construction, the second row of $\tilde{\mathcal{M}}(£(\mathbf{h}))$ is

$$
\left(\begin{array}{lllllllllll}
1 & 2 & 3 & \cdots & d & a_{0} & \cdots & a_{m(\mathbf{h})} & 0 & \cdots & 0
\end{array}\right)
$$

In general, for all O-sequence $\mathbf{h}=\left(1, n, \ldots,\binom{n+d-2}{d-1}, h_{d}, \ldots, h_{s}\right)$, the i-th row of $\tilde{\mathcal{M}}(\mathcal{L}(\mathbf{h}))$ is $\left(1, n-i+1,\binom{n-i+2}{2}, \ldots,\binom{n+d-(i+1)}{d-1},\left(h_{d}\{d\}\right)^{-(i-1)}, \ldots,\left(h_{s}\{s\}\right)^{-(i-1)}\right)$.

A well-known result of Eliahou-Kervaire [4] gives a handy formula for the graded Betti numbers of a Borel ideal $\mathfrak{b} \subseteq \mathbf{P}$. Namely, if $X_{1}<\cdots<X_{n}$, it holds:

$$
\begin{equation*}
\beta_{q, j+q}(\mathfrak{b})=\sum_{\substack{t \in G(\mathfrak{b}) \\ \operatorname{deg} t=j}}\binom{n-\mu(t)}{q}=\sum_{i=1}^{n}\binom{n-i}{q} \nu_{i, j}(\mathfrak{b}) \tag{*}
\end{equation*}
$$

(where $\mu(t)$ is defined in (2) and $\nu_{i, j}(\mathfrak{b})$ stays for $\nu_{i, j}(G(\mathfrak{b}))$ (defined in (3))). In particular, for a 0-dimensional Borel ideal $\mathfrak{b} \subseteq \mathbf{P}$ of initial degree d and generated in degrees $\leq s+1, j$ and q in (*) vary respectively between d and $s+1,0$ and $n-1$.

Proposition 4.13. Two 0-dimensional Borel ideals $\mathfrak{b}, \mathfrak{b}^{\prime} \subseteq \mathbf{P}(\mathbf{n})$ have the same ses-matrix iff they have the same graded Betti numbers.

Proof. Let $\mathfrak{b}, \mathfrak{b}^{\prime}$ have either the same ses-matrix or graded Betti numbers, and let d (resp. $s+1$) be the initial (resp. greatest) degree of generators. Denoting \star either of \mathfrak{b} and \mathfrak{b}^{\prime}, from ($*$) above we get linear relations between the $\beta_{-,-}(\star)^{\prime} s$ and $\nu_{+,+}(\star)^{\prime} s$, more precisely, for j varying between d and $s+1$, we get a Gauss-reduced linear system of n equations, q varying between $n-1$ and 0 . Namely, $q=n-1$ implies $\beta_{n-1, j+n-1}(*)=\sum_{i=1}^{n}\binom{n-i}{n-1} \nu_{i, j}(*)=\nu_{1, j}(*)$, substituting it in $q=n-2$ we get $\beta_{n-2, j+n-2}(\star)=\sum_{i=1}^{n}\binom{n-i}{n-2} \nu_{i, j}(\star)=(n-1) \nu_{1, j}(\star)+\nu_{2, j}(\star)=(n-1) \beta_{n-1, j+n-1}(\star)+$ $\nu_{2, j}(\star)$, i.e. $\nu_{2, j}(\star)=\beta_{n-2, j+n-2}(\star)-(n-1) \beta_{n-1, j+n-1}(\star)$ and so on, until $q=0$. Thus $\beta_{q, j+q}\left(*\right.$'s are function of $\nu_{i, j}(*)$'s, $0 \leq q \leq n-1, d \leq j \leq s+1,1 \leq i \leq n$, and conversely. As $\nu_{n, d}(\star)=1$ and $\nu_{n, j}(\star)=0$, for all j between $d+1$ and $s+1$, dependency relations between the $\beta_{-,-}(\star)$'s hold. By (8) and (11) we have also

$$
\nu_{i, j}(\star)=\#\left(\mathcal{N}(\star)^{\prime}\left((\mathbf{n}-\mathbf{i}+\mathbf{1})_{j-1}\right)_{(1)}-\lambda_{i, j}(\mathcal{N}(\star))-\sum_{h=1}^{n-1} \nu_{i+h, j}(\star)\right.
$$

from which, recalling that $\lambda_{n-1, j}(\mathcal{N}(\star))=0$ for $d \leq j \leq s$, we get the following relations between $\nu_{i, j}(\star)$'s and $\lambda_{i, j}(\mathcal{N}(\star))$'s:

- $\nu_{i, d}(\star)=\binom{n-i+d-1}{d-1}+\lambda_{i, d}(\mathcal{N}(\star))-\lambda_{i-1, d}(\mathcal{N}(\star)), \quad n-1 \geq i \geq 1$,
- $\nu_{i, j}(\star)=\lambda_{i-1, j-1}(\mathcal{N}(\star))-\lambda_{i-1, j}(\mathcal{N}(\star))+\lambda_{i, j}(\mathcal{N}(\star)), n-1 \geq i \geq 1, d<j \leq s$,
- $\nu_{i, s+1}(\star)=\lambda_{i-1, s}(\mathcal{N}(\star)) \quad$ for $1 \leq i \leq n-1$,
which allow to express the last ones in terms of the first ones.
We get our contention taking into account (\diamond) and \bullet 's and recalling that $\tilde{m}_{i, j}(\star):=$ $\lambda_{i-1, j-1}(\mathcal{N}(\star))$ for i and j respectively in the range between 1 and $n, 1$ and $s+1$.

Remark 4.14. Let $n=3, \mathbf{h}$ an O-sequence and $\mathfrak{b}, \mathfrak{b}^{\prime} \in \mathcal{B}_{\mathbf{h}}^{3}$, then:
a) $\nu_{3, d}(\mathfrak{b})=1, \quad \nu_{2, d}(\mathfrak{b})=d-\lambda_{1, d}(\mathcal{N}(\mathfrak{b})), \nu_{1, d}(\mathfrak{b})=\binom{d+1}{2}-h_{d}+\lambda_{1, d}(\mathcal{N}(\mathfrak{b}))$;
b) as $G(\mathfrak{b})_{d+\ell+1}=\left(X \mathcal{N}(\mathfrak{b})_{d+\ell} \sqcup Y\left(\left(\mathcal{N}(\mathfrak{b})_{d+\ell}\right)^{\prime}(2)\right) \backslash \mathcal{N}(\mathfrak{b})_{d+\ell+1}\right.$, for $\ell, 1 \leq \ell \leq$ $s-d$, we have $\nu_{3, d+\ell+1}(\mathfrak{b})=0, \nu_{2, d+\ell+1}(\mathfrak{b})=\lambda_{1, d+\ell}(\mathcal{N}(\mathfrak{b}))-\lambda_{1, d+\ell+1}(\mathcal{N}(\mathfrak{b}))$, and $\nu_{1, d+\ell+1}(\mathfrak{b})=h_{d+\ell}-h_{d+\ell+1}+\lambda_{1, d+\ell+1}(\mathcal{N}(\mathfrak{b}))$;
c) if $0 \rightarrow L_{2} \rightarrow L_{1} \rightarrow L_{0} \rightarrow \mathbf{P} \rightarrow \mathbf{P} / \mathfrak{b} \rightarrow 0$ is the minimal free resolution of $(\mathbf{P} / \mathfrak{b})$, with $\quad L_{i}=\bigoplus_{j=d}^{s+1} \mathbf{P}(-j-i)^{\beta_{i, j+i}}$, letting $0=h_{s+1}=\lambda_{0, s+1}(\mathcal{N}(\mathfrak{b}))$, since $\lambda_{1, j}(\mathcal{N}(\mathfrak{b}))=\beta_{0, j+1}-h_{j}+h_{j+1}$ for j in the range between d and s, the above found values, inserted in the [4]'s formula ($*$) give:

$$
\begin{aligned}
& \beta_{0, j}=\left\{\begin{array}{cl}
\binom{d+2}{2}-h_{d} & \text { if } j=d \\
h_{j-1}-h_{j}+\lambda_{1, j-1}(\mathcal{N}(\mathfrak{b})) & \text { if } j \text { varies from } d+1 \text { to } s+1
\end{array}\right. \\
& \beta_{1, j+1}= \begin{cases}d(d+2)-3 h_{d}+h_{d+1}+\beta_{0, d+1} & \text { if } j=d \\
h_{j-1}-2 h_{j}+h_{j+1}+\beta_{0, j+1}+\beta_{0, j} & \text { if } j \text { varies from } d+1 \text { to } s+1\end{cases} \\
& \beta_{2, j+2}=h_{j-1}-2 h_{j}+h_{j+1}+\beta_{0, j+1} \text { if } j \text { varies between } d \text { and } s+1 .
\end{aligned}
$$

From the above consideration we get

$$
\beta_{q, j+q}(\mathfrak{b}) \geq \beta_{q, j+q}\left(\mathfrak{b}^{\prime}\right) \text { if and only if } \tilde{m}_{q, j+q}(\mathfrak{b}) \geq \tilde{m}_{q, j+q}\left(\mathfrak{b}^{\prime}\right) .
$$

If $n \neq 3$, graded Betti numbers of a 0 -Borel ideal are not characterized only in terms of its \mathbf{h} and $\beta_{0, j}$'s.

Example 4.15. In $\mathbf{P}:=\mathbf{P}(4)$ (with $X<Y<Z<T$) let \mathfrak{a} and \mathfrak{b} be the two Borel ideals:

$$
\begin{aligned}
\mathfrak{a}= & \left(X^{6}, X^{5} Y, X^{4} Y^{2}, X^{3} Y^{3}, X^{2} Y^{4}, X Y^{5}, Y^{6}, X^{5} Z, X^{4} Y Z, X^{3} Y^{2} Z, X^{2} Y^{3} Z, X Y^{4} Z,\right. \\
& Y^{5} Z, X^{4} Z^{2}, X^{3} Y Z^{2}, X^{2} Y^{2} Z^{2}, X Y^{3} Z^{2}, Y^{4} Z^{2}, X^{3} Z^{3}, X^{2} Y Z^{3}, X Y^{2} Z^{3}, Y^{3} Z^{3}, \\
& X^{2} Z^{4}, X Y Z^{4}, Y^{2} Z^{4}, Z^{5}, X^{5} T, X^{4} Y T, X^{3} Y^{2} T, X^{2} Y^{3} T, X Y^{4} T, Y^{5} T, X^{4} Z T, \\
& X^{3} Y Z T, X^{2} Y^{2} Z T, X Y^{3} Z T, Y^{4} Z T, X^{2} Z^{2} T, Y Z^{2} T, Z^{3} T, X^{2} T^{2}, X Y T^{2}, \\
& \left.Y^{2} T^{2}, X Z T^{2}, Y Z T^{2}, Z^{2} T^{2}, X T^{3}, Y T^{3}, Z T^{3}, T^{4}\right), \\
\mathfrak{b}= & \left(X^{6}, X^{5} Y, X^{4} Y^{2}, X^{3} Y^{3}, X^{2} Y^{4}, X Y^{5}, Y^{6}, X^{5} Z, X^{4} Y Z, X^{3} Y^{2} Z, X^{2} Y^{3} Z, X Y^{4} Z,\right. \\
& Y^{5} Z, X^{4} Z^{2}, X^{3} Y Z^{2}, X^{2} Y^{2} Z^{2}, X Y^{3} Z^{2}, Y^{4} Z^{2}, X^{3} Z^{3}, X^{2} Y Z^{3}, X Y^{2} Z^{3}, Y^{3} Z^{3}, \\
& X^{2} Z^{4}, X Y Z^{4}, Y^{2} Z^{4}, X Z^{5}, Y Z^{5}, Z^{6}, X_{5} T, X^{4} Y T, X^{3} Y^{2} T, X^{2} Y^{3} T, Y^{4} T, \\
& X^{4} Z T, X^{3} Y Z T, X^{2} Y^{2} Z T, Y^{3} Z T, X^{3} Z^{2} T, Y Z^{2} T, Z^{3} T, X^{2} T^{2}, X Y T^{2}, Y^{2} T^{2}, \\
& \left.X Z T^{2}, Y Z T^{2}, Z^{2} T^{2}, X T^{3}, Y T^{3}, Z T^{3}, T^{4}\right) .
\end{aligned}
$$

We have $\mathfrak{a}, \mathfrak{b} \in \mathcal{B}_{\mathbf{h}}^{4}$ with $\mathbf{h}=(1,4,10,20,23,29), \mathbf{P} / \mathfrak{a}$ and $\mathbf{P} / \mathfrak{b}$ have the same $\beta_{0, j}$'s, but different $\beta_{i, j+i}$ for $i \geq 1$, indeed their minimal free resolutions are:
$0 \rightarrow \mathbf{P}^{4}(-7) \oplus \mathbf{P}(-8) \oplus \mathbf{P}^{29}(-9) \rightarrow \mathbf{P}^{16}(-6) \oplus \mathbf{P}^{3}(-7) \oplus \mathbf{P}^{94}(-8) \rightarrow \mathbf{P}^{23}(-5) \oplus$ $\mathbf{P}^{4}(-6) \oplus \mathbf{P}^{101}(-7) \rightarrow \mathbf{P}^{12}(-4) \oplus \mathbf{P}^{2}(-5) \oplus \mathbf{P}^{36}(-6) \rightarrow \mathbf{P} \rightarrow \mathbf{P} / \mathfrak{a} \rightarrow 0$, $0 \rightarrow \mathbf{P}^{4}(-7) \oplus \mathbf{P}^{29}(-9) \rightarrow \mathbf{P}^{16}(-6) \oplus \mathbf{P}^{2}(-7) \oplus \mathbf{P}^{93}(-8) \rightarrow \mathbf{P}^{23}(-5) \oplus \mathbf{P}^{4}(-6) \oplus$ $\mathbf{P}^{100}(-7) \rightarrow \mathbf{P}^{12}(-4) \oplus \mathbf{P}^{2}(-5) \oplus \mathbf{P}^{36}(-6) \rightarrow \mathbf{P} \rightarrow \mathbf{P} / \mathfrak{b} \rightarrow 0$.

5. The poset structure

In this section, for each $\mathbf{h}=\left(1, n, h_{2}, \ldots, h_{d}, \ldots, h_{s}\right)$, with $n \geq 3$, we first introduce an equivalence relation \sim on the set $\mathcal{B}_{\mathrm{h}}^{n}$ of 0 -dimensional Borel ideals of $\mathbf{P}(\mathbf{n})$ corresponding to \mathbf{h}. Then we define a partial order \prec on $\mathcal{B}_{\mathbf{h}}^{n} / \sim$, which endows it with a poset structure, some features of which are studied.

Definition 5.1. 1. Two Borel ideals $\mathfrak{b}, \mathfrak{b}^{\prime} \in \mathcal{B}_{\mathbf{h}}^{n}$ are equivalent (in symbol $\mathfrak{b} \sim$ \mathfrak{b}^{\prime}) if share the same ses-matrix (see Definition 4.10).
2. Two equivalence classes $\overline{\mathfrak{b}}, \overline{\mathfrak{b}^{\prime}} \in \mathcal{B}_{\mathbf{h}}^{n} / \sim$ satisfy $\overline{\mathfrak{b}} \prec \overline{\mathfrak{b}^{\prime}}$ if $\overline{\mathfrak{b}} \neq \overline{\mathfrak{b}^{\prime}}$ and for all representatives $\mathfrak{b}, \mathfrak{b}^{\prime}$ the ses-matrices's entries satisfy $m_{i, j}(\mathfrak{b}) \leq m_{i, j}\left(\mathfrak{b}^{\prime}\right)$.

Remark 5.2. a) In Example 4.15, the rl-segment ideal $\Lambda(\mathbf{h})$ and the l-segment ideal $\mathcal{L}(\mathbf{h})$ are distinct but $\Lambda(\mathbf{h}) \sim \mathcal{L}(\mathbf{h})$.
b) By Proposition 4.13, equivalent elements of $\mathcal{B}_{\mathrm{h}}^{n}$ have the same minimal free resolution. After Proposition 4.13, tedious but easy computations show that $\overline{\mathfrak{b}} \prec$ $\overline{\mathfrak{b}^{\prime}} \in \mathcal{B}_{\mathbf{h}}^{n} / \sim$ implies $\beta_{i, j}(\mathfrak{b}) \leq \beta_{i, j}\left(\mathfrak{b}^{\prime}\right)$, for all $\mathfrak{b} \in \overline{\mathfrak{b}}, \mathfrak{b}^{\prime} \in \overline{\mathfrak{b}^{\prime}}$.
c) The ses-matrices of Example 4.15 are not comparable w.r.t. \prec, indeed:

$$
\tilde{\mathcal{M}}(\mathfrak{a})=\left(\begin{array}{cccccc}
1 & 4 & 10 & 20 & 23 & 29 \\
1 & 3 & 6 & 10 & 7 & 7 \\
1 & 2 & 3 & 4 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 & 0
\end{array}\right) \quad \text { and }
$$

$$
\tilde{\mathcal{M}}(\mathfrak{b})=\left(\begin{array}{cccccc}
1 & 4 & 10 & 20 & 23 & 29 \\
1 & 3 & 6 & 10 & 7 & 6 \\
1 & 2 & 3 & 4 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 0
\end{array}\right)
$$

Yet, as their minimal free resolutions show: $\beta_{i, j}(\mathfrak{b}) \leq \beta_{i, j}(\mathfrak{a})$, for all $i=0,1,2,3$, $j=4,5,6$, this means that \prec is a partial order stronger than the one given by the graded Betti numbers.
d) By (9) and Remark 3.9 a), the class $\overline{\mathcal{L}(\mathbf{h})}$ of the 1 -segment ideal corresponding to \mathbf{h} is the maximum element of $\mathcal{B}_{h}^{n} / \sim$.
e) If \mathbf{h} is not increasing, (9) and Remark 3.9 b) imply that the la class $\overline{\Lambda(\mathbf{h})}$ of the rl-segment ideal corresponding to \mathbf{h} is the minimum element of $\mathcal{B}_{\mathbf{h}}^{n} / \sim$.
f) If $n=3$, by Remark 4.9 b) the class $\overline{£(\mathbf{h})}$ of the generalized-rl-segment ideal corresponding to \mathbf{h} is the minimum element of $\mathcal{B}_{\mathbf{h}}^{n} / \sim$, whatsoever \mathbf{h} could be.

Altogether we have that $\mathcal{B}_{\mathrm{h}}^{3} / \sim$, endowed with \prec, is a poset with universal extremes $\mathbf{0}=\overline{£(h)}$ and $\mathbf{1}=\overline{\mathcal{L}(h)}$.

Example 5.3. Let $\mathbf{h}=(1,4,10,20,35,46,59)$. Then $\Delta(\mathbf{h})=(1,3,6,10,15,11$, 13), in.deg. $\mathbf{(h)}=5$, as $\Delta(\mathbf{h})_{6}=13>0$, does not exist rl-segment ideal. By Lemma $4.4 \tilde{m}_{2,6}(\mathfrak{b}) \geq 11$ and $\tilde{m}_{2,7}(\mathfrak{b}) \geq 13$ for all $\mathfrak{b} \in \mathcal{B}_{\mathbf{h}}^{4}$. We have to look for $\lambda_{1,6}(\mathcal{N}(\mathfrak{b}))=13$, by Proposition 3.6 and Remark 4.3 e), $\lambda_{1,5}(\mathcal{N}(\mathfrak{b}))+\lambda_{2,5}(\mathcal{N}(\mathfrak{b}))-$ $\#\left(G(\mathfrak{b})_{6}\right)=13$ so the minimal values of $\lambda_{1,5}(\mathcal{N}(\mathfrak{b}))$ and $\lambda_{2,5}(\mathcal{N}(\mathfrak{b}))$ are for $G(\mathfrak{b})_{6}=$ \emptyset. We have for this only the following possibilities:

$$
\begin{aligned}
& \lambda_{1,5}(\mathcal{N}(\mathfrak{b}))=11 \text { and } \lambda_{2,5}(\mathcal{N}(\mathfrak{b}))=2 ; \text { or } \\
& \lambda_{1,5}(\mathcal{N}(\mathfrak{b}))=12 \text { and } \lambda_{2,5}(\mathcal{N}(\mathfrak{b}))=1 ; \text { or } \\
& \lambda_{1,5}(\mathcal{N}(\mathfrak{b}))=13 \text { and } \lambda_{2,5}(\mathcal{N}(\mathfrak{b}))=0, \text { which give ordinately: } \\
& \mathfrak{b}_{1}=\left(T^{5}, Z T^{4}, Z^{2} T^{3}, Z^{3} T^{2}, Y T^{4}, Y Z T^{3}, Y Z^{2} T^{2}, Y^{2} T^{3}, Y^{2} Z T^{2}, Y^{3} T^{2}, Z^{6} T, Z^{7},\right. \\
& Y Z^{5} T, Y Z^{6}, Y^{2} Z^{4} T, Y^{2} Z^{5}, Y^{3} Z^{3} T, Y^{3} Z^{4}, Y^{4} Z^{2} T, Y^{4} Z^{3}, Y^{5} Z T, Y^{5} Z^{2}, Y^{6} T, \\
& Y^{6} Z, Y^{7}, X Z^{5} T, X Z^{6}, X Y Z^{4} T, X Y Z^{5}, X Y^{2} Z^{3} T, X Y^{2} X Z^{4}, X Y^{3} Z^{2} T, \\
& X Y^{3} Z^{3}, X Y^{4} Z T, X Y^{4} Z^{2}, X Y^{5} T, X Y^{5} Z, X Y^{6}, X^{2} Z^{4} T, X^{2} Z^{5}, X^{2} Y Z^{3} T, \\
& \left.X^{2} Y Z^{4}, X^{2} Y^{2} Z^{2} T, X^{2} Y^{2} Z^{3}, X^{2} Y^{3} Z T, X^{2} Y^{3} Z^{2}, X^{2} Y^{4} T, X^{2} Y^{4} Z, X^{2} Y^{5}\right)+ \\
& X^{3}(Y, Z, T)^{4}+X^{4}(Y, Z, T)^{3}+X^{5}(Y, Z, T)^{2}+X^{6}(Y, Z, T)+\left(X^{7}\right), \\
& \left.\qquad \tilde{\mathcal{M}\left(\mathfrak{b}_{1}\right)=\left(\begin{array}{cccccc}
1 & 4 & 10 & 20 & 35 & 46 \\
1 & 3 & 6 & 10 & 15 & 11 \\
1 & 2 & 3 & 4 & 5 & 13 \\
1 & 2 \\
1 & 1 & 1 & 1 & 1 & 0
\end{array}\right) ;} \begin{array}{l}
0
\end{array}\right) ; \\
& \mathfrak{b}_{2}=\left(T^{5}, Z T^{4}, Z^{2} T^{3}, Z^{3} T^{2}, Z^{4} T, Y T^{4}, Y Z T^{3}, Y Z^{2} T^{2}, Y^{2} T^{3}, X T^{4}, Z^{7}, Y Z^{6}, Y^{2} Z^{5},\right. \\
& Y^{3} Z^{3} T, Y^{3} Z^{4}, Y^{4} Z T^{2}, Y^{4} Z^{2} T, Y^{4} Z^{3}, Y^{5} T^{2}, Y^{5} Z T, Y^{5} Z^{2}, Y^{6} T, Y^{6} Z, Y^{7}, \\
& X Z^{6}, X Y^{2} Z^{3} T, X Y Z^{5}, X Y^{2} Z^{4}, X Y^{3} Z T^{2}, X Y^{3} Z^{2} T, X Y^{3} Z^{3}, X Y^{4} T^{2}, \\
& \left.X Y^{4} Z T, X Y^{4} Z^{2}, X Y^{5} T, X Y^{5} Z, X Y^{6}\right)+X^{2}\left(Z^{5}, Y Z^{3} T, Y Z^{4}, Y^{2} Z T^{2},\right. \\
& \left.Y^{2} Z^{2} T, Y^{2} Z^{3}, Y^{3} T^{2}, Y^{3} Z T, Y^{3} Z^{2}, Y^{4} T, Y^{4} Z, Y^{5}\right)+X^{3}\left[(Y, Z, T)^{4} \backslash\left\{T^{4}\right\}\right]+
\end{aligned}
$$

$$
\begin{aligned}
& X^{4}(Y, Z, T)^{3}+X^{5}(Y, Z, T)^{2}+X^{6}(Y, Z, T)+\left(X^{7}\right), \\
& \tilde{\mathcal{M}}\left(\mathfrak{b}_{2}\right)=\left(\begin{array}{ccccccc}
1 & 4 & 10 & 20 & 35 & 46 & 59 \\
1 & 3 & 6 & 10 & 15 & 12 & 13 \\
1 & 2 & 3 & 4 & 5 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 0 & 0
\end{array}\right) ; \\
& \mathfrak{b}_{3}=\left(T^{5}, Z T^{4}, Z^{2} T^{3}, Z^{3} T^{2}, Z^{4} T, Y T^{4}, Y Z T^{3}, Y Z^{2} T^{2}, Y Z^{3} T, X T^{4}, Z^{7}, Y Z^{6}, Y^{2} Z^{5},\right. \\
& Y^{3} Z^{4}, Y^{4} T^{3}, Y^{4} Z T^{2}, Y^{4} Z^{2} T, Y^{4} Z^{3}, Y^{5} T^{2}, Y^{5} Z T, Y^{5} Z^{2}, Y^{6} T, Y^{6} Z, Y^{7}, X Z^{6}, \\
& X Y Z^{5}, X Y^{2} Z^{4}, X Y^{3} T^{3}, X Y^{3} Z T^{2}, X Y^{3} Z^{2} T, X Y^{3} Z^{3}, X Y^{4} T^{2}, X Y^{4} Z T \text {, } \\
& \left.X Y^{4} Z^{2}, X Y^{5} T, X Y^{5} Z, X Y^{6}\right)+X^{2}\left(Z^{5}, Y Z^{4}, Y^{2} T^{3}, Y^{2} Z T^{2}, Y^{2} Z^{2} T, Y^{2} Z^{3},\right. \\
& \left.Y^{3} T^{2}, Y^{3} Z T, Y^{3} Z^{2}, Y^{4} T, Y^{4} Z, Y^{5}\right)+X^{3}\left[(Y, Z, T)^{4} \backslash\left\{T^{4}\right\}\right]+X^{4}(Y, Z, T)^{3}+ \\
& X^{5}(Y, Z, T)^{2}+X^{6}(Y, Z, T)+\left(X^{7}\right) \text {, with } \\
& \tilde{\mathcal{M}}\left(\mathfrak{b}_{3}\right)=\tilde{\mathcal{M}}\left(\mathfrak{b}_{2}\right) ; \\
& \mathfrak{b}_{4}=\left(T^{5}, Z T^{4}, Z^{2} T^{3}, Z^{3} T^{2}, Z^{4} T, Z^{5}, Y T^{4}, Y Z T^{3}, X T^{4}, X Z T^{3}, Y^{3} Z^{2} T^{2}, Y^{3} Z^{3} T\right. \text {, } \\
& Y^{3} Z^{4}, Y^{3} Z^{4}, Y^{4} T^{3}, Y^{4} Z T^{2}, Y^{4} Z^{2} T, Y^{4} Z^{3}, Y^{5} T^{2}, Y^{5} Z T, Y^{5} Z^{2}, Y^{6} T, Y^{6} Z, \\
& \left.Y^{7}\right)+X\left(Y^{2} Z^{2} T^{2}, Y^{2} Z^{3} T, Y^{2} Z^{4}, Y^{3} T^{3}, Y^{3} Z T^{2}, Y^{3} Z^{2} T, Y^{3} Z^{3}, Y^{4} T^{2}, Y^{4} Z T,\right. \\
& \left.Y^{4} Z^{2}, Y^{5} T, Y^{5} Z, Y^{6}\right)+X^{2}\left(Y Z^{2} T^{2}, Y Z^{3} T, Y Z^{4}, Y^{2} T^{3}, Y^{2} Z T^{2}, Y^{2} Z^{2} T,\right. \\
& \left.Y^{2} Z^{3}, Y^{3} T^{2}, Y^{3} Z T, Y^{3} Z^{2}, Y^{4} T, Y^{4} Z, Y^{5}\right)+X^{3}\left[(Y, Z, T)^{4} \backslash\left\{T^{4}, Z T^{3}\right\}\right]+ \\
& X^{4}(Y, Z, T)^{3}+X^{5}(Y, Z, T)^{2}+X^{6}(Y, Z, T)+\left(X^{7}\right), \\
& \tilde{\mathcal{M}}\left(\mathfrak{b}_{4}\right)=\left(\begin{array}{ccccccc}
1 & 4 & 10 & 20 & 35 & 46 & 59 \\
1 & 3 & 6 & 10 & 15 & 13 & 13 \\
1 & 2 & 3 & 4 & 5 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

The above Example 5.3 shows that if $n \geq 4$, and \mathbf{h} is such that $\Delta(\mathbf{h})_{j} \not \leq 0$, for some $j \geq d+1$,then $\mathcal{B}_{\mathrm{h}}^{n} / \sim$ does not have minimum element but several minimal ones. Recently, using different methods, C. A. Francisco in [5] proved a similar result for the partial ordering on $\mathcal{B}_{\mathrm{h}}^{n}$ given by the graded Betti numbers.
We prove now that for each O-sequence $\mathbf{h}=\left(1,3,\binom{4}{2}, \ldots, h_{d}, \ldots, h_{s}\right) \in \mathbb{N}^{*(s+1)}$, the \prec above endows $\mathcal{B}_{\mathrm{h}}^{3} / \sim$ with a lattice structure.

Lemma 5.4. Let $\mu_{0}, \ldots, \mu_{s-d} \in \mathbb{N}$ satisfy $\lambda_{1, d+\ell}(\mathcal{N}(\mathcal{L}(\mathbf{h}))) \geq \mu_{\ell} \geq \lambda_{1, d+\ell}(\mathcal{N}(£$ $(\mathbf{h}))$), as ℓ varies from 0 to $s-d$, then there exists an ideal $\mathfrak{d} \in \mathcal{B}_{\mathbf{h}}^{3}$ with $\lambda_{1, d+\ell}(\mathcal{N}(\mathfrak{d}))$ $=\mu_{\ell}$.

Proof. We argue as in the construction of $£(\mathbf{h})$:

- for all $0 \leq j \leq d-1: \Delta_{j}=\mathbf{T}_{j}$,
- for all $0 \leq \ell \leq s-d: \Delta_{d+\ell}=R_{\mu_{\ell}, d+\ell} \sqcup\left\{t_{1}, \ldots, t_{c(\ell)}\right\}$ with $c(\ell):=h_{d+\ell}-$ $\frac{\mu_{\ell}\left(2(d+\ell)-\mu_{\ell}+3\right)}{2}$ and $t_{1}<\cdots<t_{c(\ell)}$ smallest terms of $\left(\Delta_{d+\ell-1}\right)_{(1)} \backslash R_{\mu_{\ell}, d+\ell}$,
- for all $r \in \mathbb{N}^{*}: \Delta_{s+r}=\emptyset, \Delta:=\bigsqcup_{j \in \mathbb{N}} \Delta_{j} \subset \mathbf{T}$ is a Borel subset which is an order ideal. The wanted $\mathfrak{d} \in \mathcal{B}_{\mathrm{h}}^{3}$ is the monomial ideal having Δ as sous-éscalier.

Remark 5.5. a) The $(d+\ell)$-degree terms of $G(\mathfrak{d})$ (d defined in Lemma 5.4 and $0 \leq \ell \leq s-d)$, are ordinately greater or equal than those of any $\mathfrak{b} \in \mathcal{B}_{\mathrm{h}}^{3}$ with $\lambda_{1}\left(\mathcal{N}(\mathfrak{b})_{d+\ell}\right)=\mu_{\ell}$. In fact $G(\mathfrak{d})_{d}$ consists of the $\left(\frac{(d+2)(d+1)}{2}-h_{d}\right)$ biggest elements of $\mathbf{T}_{d} \backslash R_{\mu_{0}, d}, G(\mathfrak{d})_{d+\ell}$ consists of the greatest $h_{d+\ell}+\mu_{\ell}-h_{d+\ell+1}$ elements of $\left(\Delta_{d+\ell}\right)_{(1)} \backslash$ $R_{\mu_{\ell+1}, d+\ell}$ for all $1 \leq \ell \leq s-d$, and $G(\mathfrak{d})_{s+1}=\left(\Delta_{s}\right)_{(1)}$.
b) Lemma 5.4 allows to determine all possible ses-matrix of ideals in $\mathcal{B}_{\mathrm{h}}^{3}$. Indeed, the second row in the matrix of Remark 4.12 b) must be of the form:

$$
\left(\begin{array}{llllllll}
1 & 2 & 3 & \cdots & d & \mu_{0} & \cdots & \mu_{s-d}
\end{array}\right)
$$

for all $\mu_{0} \geq \cdots \geq \mu_{s-d} \in \mathbb{N}$ such that $a_{\ell} \leq \mu_{\ell} \leq\left(h_{d+\ell}\{d+\ell\}\right)^{-1}$.
Theorem 5.6. The poset $\mathcal{B}_{\mathbf{h}}^{3} / \sim$ has a lattice structure.
Proof. Given $\overline{\mathfrak{b}}, \overline{\mathfrak{b}^{\prime}} \in \mathcal{B}_{\mathbf{h}}^{3} / \sim$, let $\mathfrak{b} \in \overline{\mathfrak{b}}, \mathfrak{b}^{\prime} \in \overline{\mathfrak{b}^{\prime}}$, and $\mu_{0} \geq \cdots \geq \mu_{s-d}$ (resp. $\mu_{0}^{\prime} \geq$ $\left.\cdots \geq \mu_{s-d}^{\prime}\right)$ be the $(d-s+1)$-tuple defined, for ℓ ranging from 0 to $s-d$, by: $\mu_{\ell}:=$ $\min \left\{\lambda_{1}\left(\mathcal{N}(\mathfrak{b})_{d+\ell}\right), \lambda_{1}\left(\mathcal{N}\left(\mathfrak{b}^{\prime}\right)_{d+\ell}\right)\right\}\left(\right.$ resp. $\left.\mu_{\ell}^{\prime}:=\max \left\{\lambda_{1}\left(\mathcal{N}(\mathfrak{b})_{d+\ell}\right), \lambda_{1}\left(\mathcal{N}\left(\mathfrak{b}^{\prime}\right)_{d+\ell}\right)\right\}\right)$.
We set: $\overline{\mathfrak{b}} \wedge \overline{\mathfrak{b}^{\prime}}:=\overline{\mathfrak{d}}, \overline{\mathfrak{b}} \vee \overline{\mathfrak{b}^{\prime}}:=\overline{\mathfrak{d}^{\prime}}$, with $\mathfrak{d} \in \mathcal{B}_{\mathbf{h}}^{3}$ (resp. $\mathfrak{d}^{\prime} \in \mathcal{B}_{\mathbf{h}}^{3}$), the ideal constructed, as in Lemma 5.4, from the above $(d-s+1)$-tuple $\mu_{0}, \ldots, \mu_{s-d}$ (resp. $\mu_{0}^{\prime}, \ldots, \mu_{s-d}^{\prime}$). Note that if $\overline{\mathfrak{b}} \preceq \overline{\mathfrak{b}^{\prime}}$, then, by construction, $\overline{\mathfrak{b}} \wedge \overline{\mathfrak{b}^{\prime}}:=\overline{\mathfrak{b}}$ and $\overline{\mathfrak{b}} \vee \overline{\bar{b}^{\prime}}:=\overline{\mathfrak{b}^{\prime}}$.
For all $\mathfrak{b}, \mathfrak{b}^{\prime} \in \mathcal{B}_{\mathrm{h}}^{3}$ we have $\overline{\mathfrak{b}} \wedge \overline{\mathfrak{b}^{\prime}} \preceq \overline{\mathfrak{b}}, \overline{\mathfrak{b}^{\prime}}$, and $\overline{\mathfrak{b}} \vee \overline{\mathfrak{b}^{\prime}} \succeq \overline{\mathfrak{b}}, \overline{\mathfrak{b}^{\prime}}$. Moreover, $\overline{\mathfrak{a}} \preceq \overline{\mathfrak{b}} \wedge \overline{\mathfrak{b}^{\prime}}$ and $\overline{\mathfrak{a}^{\prime}} \succeq \overline{\mathfrak{b}} \vee \overline{\bar{b}^{\prime}}$ for all $\mathfrak{a}, \mathfrak{a}^{\prime} \in \mathcal{B}_{h}$ with $\overline{\mathfrak{a}} \preceq \overline{\mathfrak{b}}, \overline{\mathfrak{b}^{\prime}}$ and $\overline{\mathfrak{a}^{\prime}} \succeq \overline{\mathfrak{b}}, \overline{\mathfrak{b}^{\prime}}$. All this proves that we have the claimed lattice structure.

Example 5.7. If $h=(1,3,6,10,15,16,11)$, then $\# \mathcal{B}_{\mathbf{h}}^{3}=20$ and \mathcal{B}_{h} / \sim consists of six classes $\overline{\mathfrak{b}_{1}}=\overline{\Lambda(h)}, \ldots, \overline{\mathfrak{b}_{6}}=\overline{\mathcal{L}(h)}$. The poset structure is described in next picture where for all $1 \leq i \leq 6, i$ represents the class $\overline{\mathfrak{b}_{i}}$ and an oriented arrow from i to $j(i \neq j)$ indicates that $\overline{\overline{\mathfrak{b}}_{i}} \succ \overline{\mathfrak{b}_{j}}$

Moreover,

$$
\begin{array}{ll}
\overline{\mathfrak{b}_{2}} \wedge \overline{\mathfrak{b}_{3}}=\overline{\mathfrak{b}_{1}} & \overline{\mathfrak{b}_{2}} \vee \overline{\mathfrak{b}_{3}}=\overline{\mathfrak{b}_{4}} \\
\overline{\mathfrak{b}_{2}} \wedge \overline{\mathfrak{b}_{5}}=\overline{\mathfrak{b}_{1}} & \\
\overline{\mathfrak{b}_{4}} \wedge \overline{\mathfrak{b}_{5}}=\overline{\mathfrak{b}_{5}} & \\
\overline{\mathfrak{b}_{4}} \vee \overline{\mathfrak{b}_{6}}=\overline{\mathfrak{b}_{6}}
\end{array}
$$

Finally notice that, according to Remark 4.14 c), for all $\mathfrak{a} \in \overline{\mathfrak{b}_{2}} \cup \overline{\mathfrak{b}_{3}}$ we have $\beta_{0}=23, \beta_{1}=39, \beta_{2}=17$. Of course $\beta_{i, j+i}$'s distinguish the elements of $\overline{\overline{\mathfrak{b}}_{2}}$ from those of $\overline{\mathfrak{b}_{3}}$.

References

[1] Bayer, D.; Stillman, M.: A criterion for detecting m-regularity. Invent. Math. 87(1) (1987), 1-11.

Zbl 0625.13003
[2] Bigatti, A. M.; Robbiano, L.: Borel sets and sectional matrices. Ann. Comb. 1 (1997), 197-213.

Zbl 0918.13009
[3] Deery, T.: Rev-lex Segment Ideals and minimal Betti numbers. The Curves Seminar, Vol. X. Queen's Pap. Pure Appl. Math. 102 (1996), 193-219.

Zbl 0873.13003
[4] Eliahou, S.; Kervaire, M.: Minimal resolution of some monomial ideals. J. Algebra 129 (1990), 1-25.

Zbl 0701.13006
[5] Francisco, C. A.: Minimal graded Betti numbers and stable ideals. Commun. Algebra 31(10) (2003), 4971-4987.

Zbl 1048.13010
[6] Galligo, A.: A propos du Théorem de Préparation de Weierstrass. Lect. Notes Math. 409 (1974), 543-579.

Zbl 0297.32003
[7] Galligo, A.: Examples d'ensembles de points en position uniforme. E.M.A.G. (ed. by T. Mora, C. Traverso), Prog. Math. 94 (1991), 105-117.

Zbl 0741.13008
[8] Macaulay, F. S.: Some properties of enumeration in the theory of modular systems. Proc. London Math. Soc. 26 (1927), 531-555. JFM 53.0104.01
[9] Marinari, M. G.: Sugli ideali di Borel. Boll. Unione Mat. Ital. Sez. B, Artic. Ric. Mat. 4(1) (2001), 207-237.

Zbl 1035.13009
[10] Marinari, M. G.; Ramella, L.: Some properties of Borel ideals. J. Pure Appl. Algebra 139 (1999), 183-200.

Zbl 0929.13012
[11] Robbiano, L.: Introduction to the theory of Hilbert functions. Queen's Pap. Pure Appl. Math., Exposé B, 85 (1990).

Zbl 0816.13013

Received April 10, 2004

[^0]: *Authors were supported by MURST and GNSAGA (CNR)

