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Introduction

Let R be a standard graded K-algebra with graded maximal ideal m=(x1, . . ., xn).
The algebra R can be written as S/I where I ⊂ m2 is a graded ideal in the
polynomial ring S = K[x1, . . . , xn]. In this paper we want to study the depth
and the regularity of the symmetric algebra Sym(m) of the ideal m. Depth and
regularity have been extensively investigated [10] for the Rees algebra of m, while
for Sym(m) only partial results and estimates for the depth are known, see [9].

As a technique to study the symmetric algebra we use Gröbner bases: let <
be any term order on S, and let R∗ = S/ in(I) and m∗ the graded maximal ideal
of R∗, where in(I) denotes the initial ideal of I. In Section 1 we compare Sym(m)
and Sym(m∗). Denote by n the graded maximal ideal of S. For an element f ∈ S
and a graded ideal L ⊂ S we set

vL(f) = max{j : f ∈ njL},
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and show that

reg Sym(m) ≤ reg Sym(m∗) and depth Sym(m∗) ≤ depth Sym(m),

if
vin(I)(in(f)) ≥ vI(f) for all f ∈ I.

Provided K is a field of characteristic 0, we show in Proposition 1.8 that this
last condition is satisfied for the reverse lexicographical term order in generic
coordinates, if I is componentwise linear in the sense of [7].

Thus in order to obtain upper bounds for the regularity and lower bounds for
the depth of the symmetric algebra of the graded maximal ideal of a standard
graded algebra whose defining ideal is componentwise linear, it suffices to study
standard graded K-algebras with monomial relations. For such algebras we use
the theory of s-sequence which was introduced in [8]. Recall that Sym(m) can
be written as P/J where P = R[y1, . . . , yn] and J ⊂ P is generated by the
polynomials g =

∑n
i aiyi with

∑n
i aixi = 0. The sequence x1, . . . , xn is said to be

an s-sequence if for some term order < on the monomials in y1, . . . , yn which is
induced by y1 < y2 < · · · < yn, the initial ideal of J is generated by terms which
are linear in the yi.

For the computation of in(J) we cannot use the standard techniques of Gröb-
ner basis theory because our base ring R is not a field. To overcome this problem
we show in Section 2 that in case I is a monomial ideal, in(J) can be computed as
follows: write Sym(m) as S[y1, . . . , yn]/(I, J0), and determine the initial ideal of
(I, J0) with respect to a suitable term order which extends the given term order
in the yi, and is induced by x1 < x2 < · · · < xn < y1 < y2 < · · · < yn. This initial
ideal is of the form (I, L0), and in(J) is the image of L0 modulo I.

With this method we characterize in Theorem 2.2 those monomial ideals for
which x1, . . . , xn is an s-sequence in R. These ideals include the stable ideals.

We apply these results in Section 3 to compute the depth and the regularity
of the symmetric algebra Sym(m) in case I is strongly stable in the reverse order.

Let u be a monomial. We denote by m(u) the smallest integer i for which xi

divides u. The main results are Theorem 3.7:

reg R ≤ reg Sym(m) ≤ reg R + 1, and reg Sym(m) = reg R ⇐⇒ max{m(u)} ≤ 2,

where the maximum is taken over all Borel generators u of I of maximal degree,
and Theorem 3.9:

depth Sym(m) = 0, if depth R = 0,

and
depth Sym(m) = depth R + 1, if depth R > 0.

Assuming char K = 0, the generic initial ideal Gin(I) of I with respect to the
reverse lexicographical induced by x1 < x1 < · · · < xn is strongly stable in the
reverse order. Thus if the defining ideal of the standard graded algebra R is
componentwise linear the results of Section 1 and Section 3 imply:

reg Sym(m) ≤ reg R +1, and depth Sym(m) ≥ depth R +1 if depth R > 0.
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1. Symmetric algebras and initial ideals

In this section we recall some basic facts about s-sequences, and discuss the sym-
metric algebra of an initial ideal.

Let R be a Noetherian ring and M an R-module generated by f1, . . . , fn.
Then M has a presentation

Rm → Rn −→ M −→ 0

with relation matrix and A = (aij) i=1,... ,m
j=1,... ,n

.

The symmetric algebra Sym(M) has the presentation

R[y1, . . . , yn]/J,

where J = (g1, . . . , gm) and gi =
∑n

j=1 aijyj with i = 1, . . . , m.
We consider P = R[y1, . . . , yn] a graded R-algebra assigning to each variable

yi the degree 1 and to the elements of R the degree 0. Then J is a graded ideal,
and Sym(M) a graded R-algebra.

Let < a monomial order induced by y1 < · · · < yn. For f ∈ P , f =
∑

α aαyα

we put in(f) = aαyα where yα is the largest monomial with respect to the given
order such that aα 6= 0. We call in(f) the initial term of f . Note that in contrast
to ordinary Gröbner basis theory the base ring of our polynomial ring P is not a
field. Nevertheless we may define the ideal

in(J) = (in(f) : f ∈ J).

This ideal is generated by terms which are monomials in y1, . . . , yn with coeffi-
cients in R, and is finitely generated since P is Noetherian.

For i = 1, . . . , n we set Mi =
∑i

j=1 Rfj, and let Ii = Mi−1 :R fi = {a ∈
R : afi ∈ Mi−1}. We also set I0 = 0. Note that Ii is the annihilator of the cyclic
module Mi/Mi−1

∼= R/Ii.
It is clear that

(I1y1, . . . , Inyn) ⊆ in(J),

and the two ideals coincide in degree 1.

Definition 1.1. The generators f1, . . . , fn of M are called an s-sequence (with
respect to <), if

(I1y1, . . . , Inyn) = in(J).

If in addition I1 ⊂ I2 ⊂ · · · ⊂ In, then f1, . . . , fn is called a strong s-sequence.

Since Sym(m) = P/J may be viewed as the general fiber of a 1-parameter flat
family whose special fiber is P/ in(J), invariants of Sym(m) = S/J compared with
the corresponding invariants of P/ in(J) can only be better. Thus, for example,
if x1, . . . , xn is a strong s-sequence one has

depth Sym(m) ≥ depth R[y1, . . . , yn]/(I1y1, . . . , Inyn)

≥ min{depth R/Ii + i : i = 0, 1, . . . , n},
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see [8, Proposition 2.5].

In the same spirit we may do the following comparison: let I ⊂ S be a graded
ideal, and m the graded maximal ideal of R = S/I. Let furthermore < be a
term order on S, in(I) the initial ideal of I, R∗ = S/ in(I), and m∗ the graded
maximal ideal of R∗. How are the invariants of Sym(m) and Sym(m∗) related to
each other? At least for the depth there seems not to be no obvious relationship
as the following examples demonstrate.

Example 1.2. Let < be the lexicographical order induced by y3 > y2 > y1 >
x3 > x2 > x1, and let I = (x1x3 − x2

2, x1x2 − x2
1). Then in(I) = (x1x2, x1x3, x

3
2),

depth Sym(m) = 1, and depth Sym(m∗) = 2.

On the other hand, let I =(x2x3−x2
1, x2x3−x2

3). Then in(I)=(x2
3, x2x3, x

2
1x3, x

2
1x

2
2),

depth Sym(m) = 1, and depth Sym(m∗) = 0.

These examples show that we need some extra hypotheses. Let L ⊂ S be any
graded ideal and f ∈ L, f 6= 0. We set

vL(f) = max{j : f ∈ njL}.

For systematic reasons we set vL(f) = ∞, if f = 0.
Let R(n) =

⊕
j njtj be the Rees ring of the graded maximal ideal n of S.

Then
R(n) = S[x1t, . . . , xnt] ⊂ S[t].

The function vL : L → Z has the following interpretation:

Lemma 1.3. Let f1, . . . , fm be a homogeneous system of generators of L, and
consider the ideal C = (L, Lt) = (f1, . . . , fm, f1t, . . . , fmt) in R(n). Let f ∈ L be
a homogeneous element and a ∈ Z, a ≥ 0. Then

fta ∈ C ⇐⇒ a ≤ vL(f) + 1.

Proof. Suppose that a ≤ vL(f) + 1. We may assume that f 6= 0 and a > 0.
Otherwise it is trivial that fta ∈ C. Let j = vL(f). Then f ∈ njL. Hence
f =

∑m
i=1 gifi with all gi homogeneous of degree ≥ j. For a ∈ Z with 0 < a ≤ j+1

we write fta =
∑

i=1,... ,m git
a−1fit. Note that if g ∈ S is homogeneous of degree k,

then gta ∈ R(n) if and only if a ≤ k. Therefore git
a−1 ∈ R(n) for all i, and hence

fta ∈ C.
Conversely suppose that fta ∈ C. We note that R(n) is bigraded, C is a

bigraded ideal, and fta is bihomogeneous, if we assign the following bidegrees to
the generators of R(n):

deg xi = (1, 0) and deg xit = (0, 1) for all i = 1, . . . , n.
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Thus we can write fta as a linear combination

fta =
n∑

i=1

git
afi +

n∑
i=1

hit
a−1fit,

of the generators of C with bihomogeneous coefficients git
a, hit

a−1 ∈ R(n). It
follows that deg gi ≥ a and deg hi ≥ a − 1. Here we use the convention that
the zero-polynomial has degree ∞. Assuming that a > j + 1, we have f =∑n

i=1(gi + hi)fi with gi + hi ∈ nj+1, a contradiction. �

With the introduced notation we have

Theorem 1.4. Suppose that

vin(I)(in(f)) ≥ vI(f) for all f ∈ I.

Then

reg Sym(m) ≤ reg Sym(m∗), and depth Sym(m∗) ≤ depth Sym(m).

This theorem is again a consequence of the fact that under the given hypotheses,
Sym(m) may be viewed as the general fiber of a 1-parameter flat family whose
special fiber is Sym(m∗). Indeed, write

Sym(m) = R[y1, . . . , yn]/J and Sym(m∗) = R∗[y1, . . . , yn]/J∗.

Let f1, . . . , fm be a set of generators of I. Write fi =
∑n

j=1 fijxj for i = 1, . . . , m,
and set

J0 = ({
n∑

j=1

fijyj}i=1,... ,m ∪ {xiyj − xjyi}1≤i<j≤n).

Similarly, we define J∗0 . Then J = J0 mod I, and J∗ = J∗0 mod in(I). Hence

Sym(m) = S[y1, . . . , yn]/(I, J0) and Sym(m∗) = S[y1, . . . , yn]/(in(I), J∗0 ).

Let (M, <) be the totally ordered set of monomials of S = K[x1, . . . , xn] where <
is the given monomial order. We define a degree-function d : S[y1, . . . , yn] →M:
let f ∈ S[y1, . . . , yn], f =

∑
ν,µ cν,µx

νyµ. Then

d(f) = max{xν+µ : cν,µ 6= 0},

and we call
ind(f) =

∑
ν,µ

xν+µ=d(f)

cν,µx
νyµ.

the initial polynomial of f (with respect to d).

This function satisfies the following conditions: for all f, g ∈ S[y1, . . . , yn] one has

(a) d(f + g) ≤ max{d(f), d(g)} and d(f + g) = max{d(f), d(g)} if d(f) 6= d(g);
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(b) d(fg) = d(f)d(g).

Let L ⊂ S[y1, . . . , yn] be an ideal. Let ind(L) denote the ideal in S[y1, . . . , yn]
generated by all initial polynomials ind(f) with f ∈ L.

Recall the following concept: given a linear function ω : Zm → Z we define
the weight of a term u = λxa in K[x1, . . . , xm] to be ω(a). Different terms
may have the same weight. Nevertheless we may define for any polynomial f ∈
K[x1, . . . , xm] the initial polynomial inω(f) of f with respect to ω to be the sum
of all terms in f which have maximal weight, and we denote by ω(f) this maximal
weight. Finally, if L ⊂ K[x1, . . . , xm] is an ideal one sets

inω(L) = ({inω(f) : f ∈ I}).

We shall need the following result:

Lemma 1.5. For any ideal L ⊂ S[y1, . . . , yn] = K[x1, . . . , xn, y1, . . . , yn] there
exists a weight function ω : Z2n → Z such that ind(L) = inω(L).

Proof. Let f1, . . . , fm ∈ L. Just as in ordinary Gröbner basis theory one has
the following criterion: we consider the relations of ind(f1), . . . , ind(fm), i.e. the
m-tupels r = (r1, . . . , rm) with ri ∈ S[y1, . . . , ym] such that

∑m
i=1 ri ind(fi) = 0.

Let R be a generating set of relations of ind(f1), . . . , ind(fm). Then the following
conditions are equivalent:

(a) the initial polynomials ind(f1), . . . , ind(fm) generate ind(L);

(b) for each r ∈ R, the polynomial f =
∑m

i=1 rifi can be rewritten as

g1f1 + g2f2 + · · ·+ gmfm,

such that d(f) ≥ d(gifi) for i = 1, . . . , m.

The same criterion holds if we replace everywhere d by ω.
Suppose now that ind(f1), . . . , ind(fm) generate ind(L), and that we can find

a weight function ω such that

(i) inω(fi) = ind(fi) for i = 1, . . . , m;

(ii) ω(f) ≥ ω(gifi) for i = 1, . . . , m for all (the finitely many) equations in (b).

Then the above criterion and (ii) imply that the polynomials inω(f1), . . . , inω(fm)
generate inω(L). Therefore (i) yields ind(L) = inω(L).

Now we show how we can choose ω such that (i) and (ii) are satisfied. Given
a polynomial h ∈ S[y1, . . . , yn], let hi, i = 1, 2, . . . be the terms in h such that
d(h) > d(hi). Then we define the (finite) set Ph = {(d(h), d(hi)) : i = 1, 2, . . . } of
pairs of monomials in S.

Now we consider the finite set of pairs of monomials
⋃m

i=1 Pfi
in S, and add

to this union the sets of pairs Pf ∪
⋃m

i=1 Pgifi
as well as all the pairs (d(f), d(gifi))

(i = 1, . . . , m) which correspond to the finitely many relations in R. Altogether
this is a finite set of pairs of monomials (u, v) in S with u > v for each pair. Then
[5, Proposition 15.16] asserts that there exists a weight function ω0 : Zn → Z such
that for each of the pairs (u, v) above, we have ω0(u) > ω0(v).
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The weight function ω : Z2n → Z we are looking for is defined as follows: for
(ν, µ) ∈ Z2n with ν, µ ∈ Zn we set

ω(ν, µ) = ω0(ν + µ).

We note that for a monomial u = xνyµ we have ω(u) = ω0(d(u)). Thus our choice
of ω guarantees that the conditions (i) and (ii) are satisfied. �

In the proof of the next lemma we need the following notation: for a monomial
u in S we set m(u) = inf{i : xi divides u}, and u′ = u/xm(u). In particular,
u = u′xm where m = m(u).

The following crucial lemma together with the previous lemma will imply Theo-
rem 1.4.

Lemma 1.6. (in(I), J∗0 ) ⊂ ind(I, J0), and equality holds if

vin(I)(in(f)) ≥ vI(f) for all f ∈ I.

Proof. Let f1, . . . , fm be a Gröbner basis of I, and let ui = in(fi) for i = 1, . . . , k.
Then

(in(I), J∗0 ) = (u1, . . . , uk, u
′
1ym1 , . . . , u′kymk

, {xiyj − xjyi}1≤i<j≤n)

where mi = m(ui) for i = 1, . . . , k.
On the other hand, write fi =

∑n
j=1 fijxj for i = 1, . . . , k. Then

(I, J0) = (f1, . . . , fk,
n∑

j=1

f1jyj, . . . ,
n∑

j=1

fkjyj, {xiyj − xjyi}1≤i<j≤n).

It is clear that ui ∈ ind(I, J0) since ind(fi) = in<(fi) = ui. We also have xiyj −
xjyi ∈ ind(I, J0) for all i and j since ind(xiyj − xjyi) = xiyj − xjyi.

For each i the presentation fi =
∑n

j=1 fijxj may be chosen such that each
monomial appearing in fi appears in exactly one of the summands fijxj. Then
if the leading term ui of fi appears in the summand fijxj, then (ui/xj)yj =
ind(

∑n
`=1 fi`y`). Thus (ui/xj)yj ∈ ind(I, J0). However since xmi

yj − xjymi
∈

ind(I, J0), we also have u′iymi
∈ ind(I, J0). This shows that

(in(I), J∗0 ) ⊂ ind(I, J0).

We suppose now that vin(I)(in(f)) ≥ vI(f) for all f ∈ I. Note first that the ideal
B = ({xiyj − xjyi}1≤i<j≤n) is contained in the ideal (in(I), J∗0 ) as well as in the
ideal ind(I, J0). Thus in order to show that ind(I, J0) ⊂ (in(I), J∗0 ) it suffices to
show that ind(I, J0)/B ⊂ (in(I), J∗0 )/B.

Let ϕ : S[y1, . . . , yn] → R(n) be the epimorphism given by

ϕ(yi) = xit for i = 1, . . . , n.
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It is known and easy to see that B=Ker ϕ. Hence we have R(n)∼=S[y1, . . . , yn]/B.
Therefore, if f1, . . . , fm is a reduced Gröbner basis of I, then

(in(I), J∗0 )/B = ϕ(in(I), J∗0 ) = (in(f1), . . . , in(fm), in(f1)t, . . . , in(fm)t),

and
(I, J0)/B = ϕ(I, J0) = (f1, . . . , fm, f1t, . . . fmt).

Now let f ∈ (I, J0). We want to prove that ϕ(ind(f)) ∈ ϕ(in(I), J∗0 ). Since
(I, J0) is bigraded, we may assume that f is bihomogeneous of bidegree (b, a). Set
|α| =

∑n
i αi for α = (α1, . . . , αn). Then f =

∑
ν,µ cνµx

νyµ with |ν| = b and |µ| = a
for all ν and µ in the sum, and ϕ(f) = gta where g =

∑
ν,µ cνµx

ν+µ belongs to I
and is of degree a + b. It follows that either ϕ(ind(f)) = 0 or ϕ(ind(f)) = in(g)ta.

In the first case there is nothing to prove. In the second case, note first that by
Lemma 1.3, a ≤ vI(g)+1, since gta = ϕ(f) ∈ ϕ(I, J0) = (f1, . . . , fm, f1t, . . . , fmt).
Since by assumption vin(I)(in(g)) ≥ vI(g), we obtain that a ≤ vin(I)(in(g)) + 1.
Again applying Lemma 1.3 we conclude that

ϕ(ind(f)) = in(g)ta ∈ (in(f1), . . . , in(fm), in(f1)t, . . . , in(fm)t) = ϕ(in(I), J∗0 ),

as desired. �

Proof. [Proof of Theorem 1.4] By Lemma 1.5 there exists a weight function ω such
that ind(I, J0) = inω(I, J0). Applying [5, Theorem 15.17] we obtain the following
inequalities of graded Betti-numbers

βij(I, J0) ≤ βij(ind(I, J0)) for all i, j.

The assumptions of Theorem 1.4 and Lemma 1.6 imply that (in(I), J∗0 )=ind(I, J0),
and hence βij(I, J0)≤βij(in(I), J0∗) for all i, j. This yields the desired inequalities
for the depth and regularity of the symmetric algebras under consideration. �

The last result of this section describes a case in which the hypotheses of Theorem
1.4 are satisfied. For a given term order < and f ∈ S, we denote by inm<(f) (or
simply inm(f)) the initial monomial of f .

Proposition 1.7. Let I ⊂ S be a graded ideal, and < a term order. Suppose
there exists a minimal system of homogeneous generators f1, . . . , fm of I with the
property that for each integer t the set of polynomials {fi : deg fi ≤ t} is a Gröbner
basis of the ideal they generate. Then vin(I)(in(f)) ≥ vI(f) for all homogeneous
polynomials f ∈ I.

Proof. Let f1, . . . , fm be a minimal system of homogeneous generators of I satis-
fying the conditions as described in the proposition. Let f ∈ I be a homogeneous
polynomial, and let vI(f) = j. Then f ∈ mjI; hence there exist homogeneous
polynomials gi ∈ mj such that f =

∑m
i=1 gifi and deg gifi = deg f for all i.

Let u = min{inm(gifi) : i = 1, . . . , m}. Then u ≤ inm(f). Assume u <
inm(f). Let S = {i : inm(gifi) = u}. Then

∑
i∈S in(gi) in(fi) =

∑
i∈S in(gifi) =
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0. Let t = max{deg fi : i ∈ S}, and suppose without loss of generality that
deg fi ≤ t for i ≤ r and deg fi > t for i > r. Since by assumption f1, . . . , fr is
a Gröbner basis and S ⊂ {f1, . . . , fr}, there exist homogeneous polynomials hi

such that∑
i∈S

gifi =
r∑

i=1

hifi with u < inm(hifi) and deg hifi = deg f for i = 1, . . . , r.

Replacing
∑

i∈S gifi in the sum
∑m

i=1 gifi by
∑r

i=1 hifi, we can rewrite f as

f =
m∑

i=1

g′ifi with u < inm(g′ifi) for all i.

Note furthermore that deg hi ≥ deg f − t = deg gi0 ≥ j, where i0 ∈ S is the index
with deg fi0 = t. Thus we see that all hi ∈ mj for i = 1, . . . , r, and hence g′i ∈ mj

for i = 1, . . . , m.
After finitely many steps of rewriting f we may assume that inm(f)=inm(gifi)

for some i. Then we conclude that vin(I)(in(f)) ≥ j, since in(gifi) = in(gi) in(fi)
and in(gi) ∈ mj. �

Recall that a graded ideal I ⊂ S is called componentwise linear, if each component
Ij of I generates an ideal with linear resolution.

Let I be a componentwise linear ideal. Fix an integer t, and let I≤t be the
ideal generated by all components Ij with j ≤ t. Then I≤t is again componentwise
linear. In fact, (I≤t)j = Ij for j ≤ t, while for j > t one has (I≤t)j = Sj−tIt. Thus
all components of I≤t generate ideals with linear resolution.

We now assume that char K = 0. Choose generic coordinates x1, . . . , xn, and
let < be the degree reverse lexicographical term order induced by xn > xn−1 >
· · · > x1. Let f1, . . . , fm be a minimal homogeneous set of generators of I such
that inm(f1) ≤ inm(f2) ≤ · · · ≤ inm(fm). It follows from [7, Theorem 1.1] that
such a minimal system of generators of I is Gröbner basis of I. Therefore, since
for each integer t, the ideal I≤t is componentwise linear it follows that f1, . . . , fm1

is a Gröbner basis of I≤t, where mt = max{i : deg fi ≤ t}. Hence we may apply
Proposition 1.7 and Theorem 1.4, and obtain

Corollary 1.8. Suppose char K = 0. Let I ⊂ S be componentwise linear ideal.
Choose generic coordinates x1, . . . , xn, and let < be the degree reverse lexicograph-
ical term order induced by x1 < x2 < · · · < xn. Then

reg Sym(m) ≤ reg Sym(m∗), and depth Sym(m∗) ≤ depth Sym(m).

2. Algebras with monomial relations whose maximal ideal is generated
by an s-sequence

Let K be a field, S = K[x1, . . . , xn] be a polynomial ring, and I ⊂ S a monomial
ideal. We denote by G(I) = {u1, . . . , ur} the unique minimal monomial set of
generators of I, and by m the graded maximal ideal of R = S/I.
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For a monomial u in S we set m(u) = inf{i : xi|u} and u′ = u/xm(u). Then in
particular, ui = u′xmi

where mi = m(ui).
Let J0 ⊂ S[y1, . . . , yn] be the ideal which is generated by

G0 = {u′iymi
: i = 1, . . . , r} ∪ {xiyj − xjyi : 1 ≤ i < j ≤ n},

and let J ⊂ P = R[y1, . . . , yn] be the ideal which is generated by the residue
classes of the elements in G0 modulo I.

Then we have

SymR(m) ∼= P/J ∼= S[y1, . . . , yn]/(I, J0).

We fix a term order < on P induced by y1 < y2 < · · · < yn for which we want to
compute in<(J). To this end we extend the given order on the monomials in the
variables yi to a term order ≺ order satisfying x1 < x2 < · · · < xn < y1 < y2 <
· · · < yn. Since I is a monomial ideal it follows that

in≺(I, J0) = (I, L′),

for some monomial ideal L′ ⊂ S[y1, . . . , yn]. Let L ⊂ P be the image of L′. Then

Lemma 2.1. in<(J) = L.

Proof. For a graded module M we denote by HM(t) =
∑

i dimK Mit
i the Hilbert

series of M . We claim that

(1) L ⊂ in(J);

(2) HP/J(t) = HP/ in(J)(t).

By (1) and (2) it follows that L = in(J) if and only if HP/L(t) = HP/J(t). In
order to prove this equality of Hilbert series we use Macaulay’s theorem (see [3,
Corollary 4.2.4]) and the isomorphism P/J ∼= S[y1, . . . , yn]/(I, J0), and get

HP/J(t) = HS[y1,... ,yn]/(I,J0)(t) = HS[y1,... ,yn]/ in(I,J0)(t)

= HS[y1,... ,yn]/(I,L′)(t) = HP/L(t),

as desired.

Proof of (1): We view S[y1, . . . , yn] as a Zn-graded K-algebra by setting for
i = 1, . . . , n, deg xi = deg yi = (0, . . . , 0, 1, 0, . . . , 0) where the entry 1 is at the
i-th position. Notice that (I, J0) is multi-homogeneous.

Let g ∈ (I, J0) be a multi-homogeneous element. We will show that if in(g) 6=
0, then in(g) = in(g) where f̄ denotes the residue class modulo I of an element
f ∈ S[y1, . . . , yn]. From this observation assertion (1) will follow.

Let g =
∑

a vay
a where the sum is taken over all a ∈ Nn and where the

coefficients va are monomials in the variables x1, . . . , xn, with all but finitely
many va are zero.

Let in(g) = va0y
a0 , and assume that va0 6∈ I. Then in(g) 6= 0, and g =∑

a vay
a. Suppose in(g) 6= in(g). Then there exists a1 such that va1y

a1 > va0y
a0 .



J. Herzog et al.: On the Depth and Regularity of the Symmetric Algebra 39

Then this means that ya1 > ya0 . Since va0y
a0 and va1y

a1 have the same multi-
degree and since yj > xi for all i and j, it follows that va1y

a1 > va0y
a0 , a contra-

diction.

Proof of (2): We show that for each multi-degree a the multi-graded components
Ja and in(J)a have the same K-dimension.

If g ∈ R[y1, . . . , yn] with in(g) = uyc with u ∈ R, then we let inm(g) = yc be
the initial term of this g.

Now let g1, . . . , gs a K-basis of Ja where the gj are multi-graded with deg gi =
a. We may assume that inm(g1) ≥ inm(g2) ≥ · · · ≥ inm(gs). We claim that we
can modify this K-basis such that inm(g1) > inm(g2) > · · · > inm(gs). In fact,
suppose that for g1, . . . , gm, (m ≤ s) we have inm(g1) = inm(g2) = · · · = inm(gm).
Then since the gi multi-homogeneous all of same degree a this implies that there
exist λi ∈ K, λi 6= 0, such that in(gi) = λi in(g1) = in(λig1) for i = 1, . . . , m.
We replace g1, . . . , gs by g′1, . . . , g′s where g′1 = g1, g

′
i = gi − λig1, for i = 2, . . . , m

and g′i = gi for i = m + 1, . . . , s. Then g′1, . . . , g′s is again a basis of Ja and
inm(g′1) > inm(g′i) for all i.

After renumbering we may assume that

inm(g′1) > inm(g′2) ≥ inm(g′3) ≥ · · · ≥ inm(g′s).

Applying the same argument to g′2, . . . , g′s and using induction on s, the claim
follows.

In particular, the initial terms in(g1), . . . , in(gs) are linearly independent over
K. Therefore we conclude that dimK in(J)a ≥ dimK Ja. The opposite inequality
is proved similarly. �

Now we are ready to prove the main result of this section.

Theorem 2.2. Let K be a field, S = K[x1, . . . , xn] the polynomial ring, I ⊂ S a
monomial ideal with G(I) = {u1, . . . , ur}, and R = S/I. Then for any term order
< induced by x1 < x2 < · · · < xn < y1 < y2 < · · · < yn, the following conditions
are equivalent:

(a) G = {u1, . . . , ur} ∪ {u′1y1, . . . , u′ryr} ∪ {xiyj − xjyi : 1 ≤ i < j ≤ n} is a
Gröbner basis of (I, J0).

(b) For all u ∈ G(I) and all j > m(u′) either

(i) u′xj/xm(u′) ∈ I, or

(ii) there exists v ∈ G(I) such that either

m(v) = m(u), or

m(v) = m(u′) and v′ divides u′xj/xm(u′).

If the equivalent conditions hold, then the elements x1, . . . , xn form an s-sequence
in R.

Proof. Note that G is a Gröbner basis of (I, J0) if and only if all S-pairs of G
reduce to zero. The only S-pairs of G which do not trivially reduce to zero are
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the S-pairs S(u′ym(u), xiyj − xjyi) with u ∈ G(I), i < j and xi divides u′. In that
case we have

S(u′ym(u), xiyj − xjyi) =
u′xj

xi

ym(u)yi.

If i > m(u′), then

u′xj

xm(u′)
ym(u)ym(u′) =

u′xj

xi

ym(u)yi −
u′xj

xixm(u′)
ym(u)(xm(u′)yi − xiym(u′)).

Therefore it suffices to see in which cases (u′xj/xm(u′))ym(u)ym(u′) reduces to zero.
Since all integers k for which xk divides u′xj/xm(u′) are ≥ m(u′), the relations
xiyj − xjyi with i < j can not be used for further reductions.

Therefore it follows that (u′xj/xm(u′))ym(u)ym(u′) reduces to zero if and only
either u′xj/xm(u′) ∈ I or v′ym(v) divides (u′xj/xm(u′))ym(u)ym(u′) for some v ∈ G(I).
This is exactly condition (b). �

Corollary 2.3. Suppose condition (b) of Theorem 2.2 is satisfied. Then

(a) in(I, J0) = (u1, . . . , ur, u
′
1ym1 , . . . , u′rymr , {xiyj}1≤i<j≤n);

(b) in(J) is generated by the residue classes modulo I of the set of monomials

{u′1ym1 , . . . , u′rymr} ∪ {xiyj}1≤i<j≤n.

In particular, the annihilator ideals of x1, . . . , xn are

Ij = [(x1, . . . , xj−1) + Lj] mod I

with Lj = ({u′ : u ∈ G(I) and m(u) = j}) for j = 1, . . . , n.

As a first application of Theorem 2.2 we have

Proposition 2.4. Let I be a monomial ideal generated in degree 2. Then follow-
ing conditions are equivalent:

(a) x1, . . . , xn is an s-sequence in R;

(b) for all monomials xixj ∈ I with i ≤ j and for all k > i either xixk ∈ I or
xjxk ∈ I.

If the equivalent conditions hold, then Sym(m) is a Koszul algebra.

Proof. It is obvious that for a monomial ideal which is generated in degree 2 the
condition (b) in this proposition is equivalent to condition (b) in Theorem 2.2.
Therefore we have the equivalence of (a) and (b).

If the equivalent conditions hold, then the Gröbner basis of the defining ideal
J of Sym(m) is generated by quadratic forms. It is well known that this implies
that Sym(m) is Koszul. �
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3. Algebras defined by stable monomial ideals

As in the previous section we let I ⊂ S = K[x1, . . . , xn] be a monomial ideal, and
denote by R the standard graded K-algebra S/I, and by m the graded maximal
ideal of R. Without loss of generality we may assume that I ⊂ m2.

Let I be a monomial ideal. We say that I is stable (resp. strongly stable) in
the reverse order if for all monomials u ∈ I, one has that u′xj ∈ I for all j > m(u)
(resp. (u/xk)xj ∈ I for all j > k and all k such that xk divides u).

Note that if we renumber the variables so that xi becomes xn−i+1 for i =
1, . . . , n, then an ideal which is stable in the reverse order becomes an ideal which
is stable in the usual sense.

Proposition 3.1. x1, . . . , xn is a strong s-sequence in R if I is a stable ideal in
the reverse order.

Proof. Let u ∈ G(I). Since I is stable in the reverse order, we have that
u′xj ∈ I for all j > m(u). Therefore there exists v ∈ G(I), and a monomial
w such that u′xj = vw. Since xm(u′) divides u′, it follows that xm(u′) divides
vw. In case, xm(u′) divides w, one has u′xj/xm(u′) ∈ I, and condition (b)(i) of
Theorem 2.2 is satisfied. On the other hand, if xm(u′) divides v, then v/xm(u′) = v′

and u′xj/xm(u′) = v′w, and condition (b)(ii) of Theorem 2.2 is satisfied, therefore
x1, . . . , xn is an s-sequence.

To conclude the proof we have to show I1 ⊂ I2 ⊂ · · · ⊂ In. By Corollary 2.3,

Ij = [(x1, . . . , xj−1) + Lj] mod I.

Let v ∈ (x1, . . . , xj−1)+Lj. If xi divides v for i = 1, . . . , j, then v ∈ (x1, . . . , xj)+
Lj+1. Therefore we assume that v ∈ Lj, and that i > j whenever xi divides v.
Then v = u′w with u ∈ G(I), m(u) = j and m(u′) > j. Since I is stable,
u′xj+1 ∈ I, and since m(u′) > j, m(u′xj+1) = j + 1. Thus u′xj+1 = gh where
g ∈ G(I), h is a monomial and m(gh) = j+1. If m(g) = j+1, then g′ ∈ Lj+1, and
hence v = g′hw belongs to Lj+1. Otherwise, m(h) = j+1, and then v = gh′w ∈ I.
Therefore, v mod I = 0 ∈ Ij+1. �

Examples 3.2. (a) Let I = (x1, . . . , xn)d. Then I is stable in the reverse order,
and so by Proposition 3.1 the sequence x1, . . . , xn is an s-sequence in R. Using
Corollary 2.3 we see that the annihilator ideals of x1, . . . , xn are

Ij = (x1, . . . , xj−1, (xj+1, . . . , xn)d−1) mod I.

In particular, x1, . . . , xn is a strong s-sequence. Using the formulas [8, Proposition
2.4] we get

dim Sym(m) = n and e(Sym(m)) = d− 1,

where e(Sym(m)) denotes the multiplicity. Note that by the Huneke-Rossi formula
[11] one has dim Sym(m) = n in general.

(b) The ideal I = (x1x2, x1x3, x2x4, x3x4) satisfies condition (b) of Theorem 2.2,
but is not stable in the reverse order.
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For the proof of the next result we need a few lemmata on stable ideals and basic
facts on graded resolutions.

Lemma 3.3. Suppose that I is strongly stable in the reverse order. Then for
j = 1, . . . , n, the ideals (I, Lj) with Lj = (u′)u∈G(I),m(u)=j as defined in Corollary
2.3 are strongly stable in the reverse order.

Proof. Let v ∈ (I, Lj) be a monomial, and suppose that xi divides v. For all k > i
we want to show that (v/xi)xk ∈ (I, Lj). Since I is strongly stable in the reverse
order, we may assume that v ∈ Lj. Then there exists a monomial u ∈ G(I) with
m(u) = j such that v = u′w for some monomial w.

If xi|w, then (v/xi)xk = u′(w/xi)xk ∈ Lj. If xi|u′, then xi|u and hence
(u/xi)xk ∈ I, since I is strongly stable in the reverse order.
Moreover, m((u/xi)xk) = j. Hence (u/xi)xk = gh where g ∈ G(I) and h is a
monomial, such that either m(g) = j or m(h) = j. If m(h) = j, then (v/xi)xk =
gh′w ∈ I, and if m(g) = j, then (v/xi)xk = g′hw ∈ Lj. �

Lemma 3.4. Let I and J be graded ideals in S such that TorS
1 (S/I, S/J) = 0.

Then reg(I + J) ≥ reg I, and equality holds if and only if J is generated by linear
forms.

Proof. Let F be the graded minimal free resolution of S/I, and G the graded
minimal free resolution of S/J . Then TorS

1 (S/I, S/J) = 0 implies that F ⊗ G is
the graded minimal free resolution of S/(I + J).

Let P =
∑

i,j βi,i+j(S/I)xiyi+j be the graded Poincaré series of S/I and Q =∑
i,j βi,i+j(S/J)xiyi+j the graded Poincaré series of S/J . Then PQ is the graded

Poincaré series of S/(I + J). One has reg S/I = degy P , where degy P denotes
the y-degree of P . Similarly, reg S/J = degy Q and reg S/(I + J) = degy PQ =
degy P + degy Q. It follows that reg S/I = reg S/J if and only degy Q = 0, and
this is the case if and only if J is generated by linear forms. �

For a graded ideal I ⊂ S and an integer j we denote by I≥j the ideal generated
by all homogeneous elements f ∈ I with deg f ≥ j.

Lemma 3.5. Let I ⊂ S be a graded ideal. Then the natural map

Tori(I≥j, K)i+j → Tori(I, K)i+j

is surjective for all i and j.

Proof. The short exact sequence

0 −→ I≥j −→ I −→ I/I≥j −→ 0

induces the long exact sequence

Tori(I≥j, K)i+j −→ Tori(I, K)i+j −→ Tori(I/I≥j, K)i+j.

Note that (I/I≥j)k = 0 for k ≥ j. Let K(x; I/I≥j) be the Koszul complex of the
sequence x = x1, . . . , xn with values in I/I≥j. Then Ki(x; I/I≥j)i+j = 0. Now
since Tori(I/I≥j, K)i+j

∼= Hi(x; I/I≥j)i+j, we conclude that Hi(x; I/I≥j)i+j = 0,
as desired. �
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Lemma 3.6. Let I ⊂ J ⊂ S be graded ideals, and f ∈ S a linear form. Suppose
that f is a non-zerodivisor on S/I and on S/J and that for some j,

Tori(I, K)i+j → Tori(J, K)i+j

is surjective for all i. Then

Tori((I, f), K)i+j → Tori((J, f), K)i+j

is surjective for all i.

Proof. Let F be the graded minimal free resolution of S/I, and G the graded
minimal free resolution of S/J . Let α : F → G be the complex homomorphism
induced by I ⊂ J . We denote by αi,j the jth graded component of αi. Then the
map Tori(I, K)i+j → Tori(J, K)i+j can be identified with ᾱi,i+j : (Fi/mFi)i+j →
(Gi/mGi)i+j, where ᾱi,i+j denotes the i+jth graded component of ᾱi = αi⊗S/m.

The resolution of S/(I, f) is given by F⊗H where H is the complex

0 −−−→ S(−1)
f−−−→ S −−−→ 0.

Similarly, the resolution of S/(J, f) is given by G⊗H. Hence the inclusion (I, f) ⊂
(J, f) can be lifted by the complex homomorphism α ⊗ id. Thus for all i and j
we have

(α⊗ id)i,i+j = αi,i+j ⊕ αi−1,i+j−1 : (Fi)i+j ⊕ (Fi−1)i+j−1 −→ (Gi)i+j ⊕ (Gi−1)i+j−1,

which induces the homomorphisms

(α⊗ id)i,i+j : (Fi/mFi)i+j⊕(Fi−1/mFi−1)i+j−1→(Gi/mGi)i+j⊕Gi−1/mGi−1)i+j−1.

Since (α⊗ id)i,i+j = ᾱi,i+j ⊕ ᾱi−1,i+j−1 and since ᾱi,i+j is surjective for all i, it
follows that (α⊗ id)i,i+j is surjective, as desired. �

Theorem 3.7. Let R = S/I where I is a strongly stable ideal in the reverse order,
let u1, . . . , ur be the Borel generators of I and d = max{deg(ui) : i = 1, . . . , r}.
Then

(a) reg R ≤ reg SymR(m) ≤ reg R + 1;

(b) reg R = reg SymR(m) ⇐⇒ max{m(ui) : deg(ui) = d} ≤ 2.

Proof. (a) By the Eliahou-Kervaire resolution of I (see [6]) the regularity of I
equals d since I is stable in the reverse order. Hence it amounts to show that
d ≤ reg(I, J0) ≤ d + 1.

Since the highest degree of a generators of (I, J0) is d it follows that d ≤
reg(I, J0). In order to prove the upper inequality, it suffices to show that reg in(I,
J0) ≤ d + 1 since reg(I, J0) ≤ reg in(I, J0).

For j = 1, . . . , n we consider the ideal

Kj = (I, I ′1y1, I
′
2y2, . . . , I ′jyj),



44 J. Herzog et al.: On the Depth and Regularity of the Symmetric Algebra

where I ′j = (x1, . . . , xj−1) + (I, Lj), and we set K0 = I. Recall from Corollary 2.3
that the ideals Ij = I ′j mod I are the annihilator ideals of x1, . . . , xn.

We will show by induction on j that reg Kj ≤ d + 1. This implies the upper
bound, since by Corollary 2.3 we have in(I, J0) = Kn.

Since K0 = I is strongly stable in the reverse order, we have reg K0 = d.
Now let j > 0 and assume that reg Kj−1 ≤ d + 1. We have

Kj = (Kj−1, I
′
jyj) = (Kj−1, I

′
j) ∩ (Kj−1, yj),

and I ′1 ⊂ I ′2 ⊂ · · · ⊂ I ′j, since I1 ⊂ I2 ⊂ · · · ⊂ Ij by Proposition 3.1. It follows
that (Kj−1, I

′
j) = I ′j. Hence we obtain the exact sequence

0 −→ Kj −→ I ′j ⊕ (Kj−1, yj) −→ (I ′j, yj) −→ 0.

This together with Lemma 3.4 implies that

reg Kj ≤ max{reg I ′j, reg(Kj−1, yj), reg(I ′j, yj) + 1}
= max{reg Kj−1, reg I ′j + 1}.

By induction hypothesis reg Kj−1 ≤ d + 1. Hence it remains to show that
reg I ′j ≤ d.

For a monomial ideal H we denote by H≥j the ideal generated by all mono-
mials u ∈ H with m(u) ≥ j. Then we have I ′j = (x1, . . . , xj−1) + (I, Lj)

≥j.
Therefore, by Lemma 3.4, reg I ′j = reg(I, Lj)

≥j. In Lemma 3.3 it is shown that
(I, Lj) is strongly stable in the reverse order. It is clear that then also (I, Lj)

≥j

is strongly stable in the reverse order, and that the highest degree of a Borel
generator of (I, Lj)

≥j is ≤ d. This implies that reg(I, Lj)
≥j ≤ d, as desired.

(b) Let m = max{m(ui) : deg(ui) = d}, and assume m ≤ 2. Since d ≤ reg(I, J0)≤
reg in(I, J0), and since in(I, J0) = Kn it suffices to prove that reg(Kn) = d. In
fact, we show by induction on j that reg Kj ≤ d for j = 0, . . . , n. We first consider
the case m = 1. The induction begin is trivial because K0 = I. The assumption
m = 1 implies that (I, Lj)

≥j is generated in degree ≤ d − 1 for all j, and this
implies reg(I, Lj)

≥j ≤ d−1 for all j. Arguing as in the proof of (a) it follows that
reg Kj ≤ d for all j.

Now assume that m = 2. Again we show by induction on j that reg Kj ≤ d.
For j = 0 the assertion is trivial. We must also consider the case j = 1. Since
K1 = (I, I ′1y1) = (I, L1) ∩ (I, y1) we obtain the exact sequence

0 −→ K1 −→ (I, L1)⊕ (I, y1) −→ (I, L1, y1) −→ 0.

For all j this yields the long exact sequence

−→ Tori+1((I, L1), K)j ⊕ Tori+1((I, y1), K)j −→ Tori+1((I, L1, y1), K)j

−→ Tori(K1, K)j −→ Tori((I, L1), K)j ⊕ Tori((I, y1), K)j.

We need to show that Tori(K1, K)j = 0 for j > d + i. Since (I, L1) and I are
strongly stable ideals in the reverse order, generated in degree ≤ d, it follows that
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Tori((I, L1), K)j⊕Tori((I, y1), K)j = 0 for j > d+ i, and Tori+1((I, L1, y1), K)j =
0 for j > d + i + 1. Hence we see that Tori(K1, K)j = 0 for j > d + i + 1. It
remains to show that Tori(K1, K)d+i+1 = 0. In fact this is the case since

Tori+1((I, y1), K)d+i+1 → Tori+1((I, L1, y1), K)d+i+1

is surjective. Indeed, we have (I, L1)≥d = I. Thus the surjectivity follows from
Lemma 3.5 and Lemma 3.6.

Now let m ≥ 3. We will show that the first syzygy module of J has a generator
of degree d+3. This will imply that reg Sym(m) ≥ reg R+1. Then together with
(a) the conclusion follows.

Let u be one of the Borel generators with m(u) ≥ 3, deg(u) = d. We consider
the subideal J ′ of J generated by u, u′ym and x1y2−x2y1, x1ym−xmy1, x2ym−xmy2.
It is easy to see that this is the ideal of 4-Pfaffians of the skew-symmetric matrix

A =


0 0 ym −y2 y1

0 0 −xm x2 −x1

−ym xm 0 0 0
y2 −x2 0 0 u′

−y1 x1 0 −u′ 0

 .

Hence by the Buchsbaum-Eisenbud structure theorem ([3, Theorem 3.4.1]), J ′ is
Gorenstein ideal of height 3 whose graded resolution G is

0 → S(−d− 3) → S3(−d− 1)⊕ S2(−3) → S2(−d)⊕ S3(−2) → S → S/J ′ → 0.

We construct graded free resolution F of J such that the inclusion J ′ ⊂ J induces
a complex homomorphism α : G → F for which G/mG → F/mF is injective.

Let G be the Gröbner basis of J as described in Theorem 2.2. Furthermore,
let F1 be the free module with basis ef , f ∈ G and F1 → J the epimorphism
which sends ef to f . Since the generators of J ′ are part of the set G of generators
of J , the map G1/mG1 → F1/mF1 is injective.

Next we determine a generating set of relations of J . Since G is a Gröbner
basis of J , we obtain a generating set of relations of G by lifting the minimal set
of relations of in(G). We obtain the following set of relations:

(1) xieu − xm(u)eu′xi
where u ∈ G(I) and i > m(u);

(2) xieu′ym(u)
− xm(u′)e(u′/xm(u′))ym(u)xi

where u ∈ G(I) and i > m(u′);

(3) ym(u)eu − xm(u)eu′ym(u)
where u ∈ G(I);

(4) yieu′ym(u)
− ym(u)eu′yi

where u ∈ G(I) and m(u) < i ≤ m(u′);

(5) yjeu + yie(u/xi)xj
− (u/xi)efij

where u ∈ G(I), xi divides u, j > i and
fij = xiyj − xjyi;

(6) yieu − xieu′ym(u)
+ u′efim(u)

where u ∈ G(I) and i < m(u);

(7) yjeu′ym(u)
− yie(u′/xi)xjym(u)

+ (u′/xi)ymefij
where u ∈ G(I), xi divides u′ and

j > i;

(8) xiefjk
− xjefik

+ xkefij
where 1 ≤ i < j < k ≤ n;
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(9) yiefjk
− yjefik

+ ykefij
where 1 ≤ i < j < k ≤ n.

We let F2 be the free module whose basis elements are mapped to these relations.
Observe that the first row in the matrix A is a relation of type (9), the second of
type (8), the third of type (3), the fourth and fifth of type (6). This shows that
G2/mG2 → F2/mF2 is injective.

Next we choose a minimal homogeneous presentation of Ker(F2 → F1) and
obtain the begin

F3 → F2 → F1 → J → 0 .

of a graded free resolution of J .
It remains to show that G3/mG3 → F3/mF3 is injective. In order to see this

we show that the second syzygy z2 of J which is represented by the image of
S(−d − 3) → S3(−d − 1) ⊕ S2(−3) cannot be written as a linear combination
of second syzygies of degree d + 2. Indeed, let r1, . . . , rs be all the relations
listed above and h1, . . . , hs be the homogeneous basis of F2 with ∂(hi) = ri for
i = 1, . . . , s. We may assume that r1, . . . , r5 are the relations corresponding to
the rows of the matrix A. Then, since J ′ is a Gorenstein ideal, its resolution is
self-dual, so that

z2 = uh1 + u′ymh2 + f12h3 + f1mh4 + f2mh5.

In particular we see that the coefficient of h3 is f12 6= 0. Hence if z2 is a linear
combination of homogeneous second syzygies, at least one of these syzygies has
to have a coefficient of h3 which is non-zero modulo all xi and yi with i ≥ 3. We
will show that any such syzygy is of degree ≥ d + 3. In fact, let w =

∑s
i=1 aihi be

a homogeneous syzygy with a3 6= 0 modulo all xi and yi with i ≥ 3 and i 6= m(u).
Let

ri = · · ·+ bieu + cieu′ym + · · · .

Then
∑

i aibi = 0 and
∑

i aici = 0. We denote by f̄ the residue class of an element
f modulo the elements xi and yi with i ≥ 3 and i 6= m(u) and get

∑
i āib̄i = 0

and
∑

i āic̄i = 0. Inspecting our list of relations we see that in each of these sums
only three summands remain, so that we get

−ā3ym + ā4y2 − ā5y1 = 0 and ā3xm − ā4x2 + ā5x1 = 0.

Therefore, ā3 must be a multiple of f12. This shows that w is a syzygy of degree
≥ d + 3.

These calculations show that

F3 → F2 → F1 → J → 0 .

is the begin of a graded free resolution of J with the following properties:

(i) the presentation F1 → J is minimal (since G is a minimal set of generators
of J);

(ii) the presentation F3 → Ker(∂2) is minimal;

(iii) F3 contains a homogeneous basis element b of degree d+3 with ∂3(b) ∈ mF2.
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This complex may not be the begin of a minimal graded free resolution of J .
However by (i) and (ii) one can find graded decompositions F2 = F ′

2 ⊕ F ′′
2 , and

F3 = F ′
3 ⊕ F ′′

3 with ∂3(F
′
3) ⊂ F ′

2 and ∂3(F
′′
3 ) ⊂ F ′′

2 , such that the induced map
∂3 : F ′′

3 → F ′′
2 is an isomorphism and the induced complex

F ′
3 → F ′

2 → F1 → J → 0 .

is the begin of a minimal graded free resolution of J . We claim that the image of
b under the canonical projection F3 → F ′

3, does not belong to mF ′
3. In fact, let

g1, . . . , gs be a homogeneous basis of F ′
3, h1, . . . , ht a homogeneous basis of F ′′

3 ,
and write b =

∑
i aigi +

∑
j cjhj. Then the image of b in F ′

3 is
∑

i aigi. Suppose
ai ∈ m for all i. Then, since b is a basis element of F3, there exists an index j such
that cj 6∈ m. Since the induced map ∂3 : F ′′

3 → F ′′
2 is an isomorphism, this implies

that ∂3(b) 6∈ mF2, a contradiction. Thus we conclude that F ′
3 has a generator of

degree d + 3, as desired. �

Next we want to compute depth of the symmetric algebra. We shall need the
following variation of [8, Proposition 2.6].

Proposition 3.8. Let m be an integer with 1 ≤ m ≤ n and let (0) = Im−1 ⊂
Im ⊂ Im+1 ⊂ · · · ⊂ In ⊂ R be graded ideals in R. Then

depth R[y1, . . . , yn]/(Imym, . . . , Inyn) ≥ min{depth R/Ii + i: i = m− 1, . . . , n}.

Proof. As in [8] we set Ri = R[y1, . . . , yi], and Ji = (I1y1, . . . , Iiyi) with
I1 = I2 = · · · = Im−1 = (0) and Im ⊂ · · · ⊂ In. Proceeding by induction on
j, we want to prove that

depth Rj/Jj ≥ {depth R/Ii + i : i = m− 1, . . . , j} for j ≥ m− 1.

Since Im−1 = (0), it follows that depth Rm−1/Jm−1 = depth Rm−1 = depth R+
m− 1.

Now, assume that j > m− 1. We consider the exact sequences

0 → IjRj/Jj → Rj/Jj → Rj/IjRj → 0,

0 → IjRj−1/Jj−1 → Rj−1/Jj−1 → Rj−1/IjRj−1 → 0.

Since IjRj/Jj
∼= IjRj−1/Jj−1, these exact sequences together with the induction

hypothesis imply:

depth Rj/Jj ≥ min{depth IjRj/Jj, depth Rj/IjRj}
≥ min{depth Rj−1/Jj−1, depth Rj−1/IjRj−1 + 1, depth R/Ij + j}
≥ min{depth R/Ii + i : i = m− 1, . . . , j},

as required. �
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Theorem 3.9. Let R = S/I where I is a strongly stable ideal in the reverse order.
Then

depth Sym(m) =

{
0, if depth R = 0,
depth R + 1, if depth R > 0.

Proof. It follows from [1, Proposition 2.1] that the homology classes of the
cycles u′em(u) ∧ ej1 ∧ ej2 ∧ · · · ∧ eji−1

with u ∈ G(I) and m(u) < j1 < j2 < · · · <
ji−1 ≤ n form a K-basis of the Koszul homology Hi(x1, . . . , xn; R). Therefore, if
t = depth R and F is the graded minimal free resolution of R then

(i) t + 1 = min{m(u) : u ∈ G(I)};
(ii) the highest degree of a generator of Fn−t is d − 1 + n − t, where d =

max{deg u : m(u) = t + 1}.
In particular, if depth R = 0, then there exists a monomial u ∈ G(I) with
m(u) = 1. Note that u′ 6∈ J . Therefore, depth Sym(m) = 0, since u′ ∈ J :
(x1, . . . , xn, y1, . . . , yn). Indeed, because u = u′x1 ∈ G(I), we have u′xi ∈ I ⊂ J
for all i = 1, . . . , n. By the definition of the J with each u′xi ∈ I we also have
u′yi ∈ J , as desired.

Now let depth R = t > 0. We first show that depth Sym(m) ≥ t + 1. Since

depth R[y1, . . . , yn]/J ≥ R[y1, . . . , yn]/ in(J) = R[y1, . . . , yn]/(I1y1, . . . , Inyn),

it suffices to show that depth R[y1, . . . , yn]/(I1y1, . . . , Inyn) ≥ t + 1. We observe
that I1 = 0 because t > 0. Therefore we may apply Proposition 3.8, and obtain
that

depth R[y1, . . . , yn]/(I2y2, . . . , Inyn) ≥ min{depth R/Ii + i : i = 1, . . . , n}.

Obviously, depth R/Ii + i ≥ t + 1 for i ≥ t + 1. Therefore it suffices to show that
depth R/Ii > t− i for i = 1, . . . , t. For such i we have Li = (0), so that

R/Ii
∼= K[xi, . . . , xn]/I≥i.

Since G(I) = G(I≥i) for i < t+1, formula (i) implies that depth R/Ii = (t+1)−i >
t− i, as desired.

It remains to show that depth Sym(m) ≤ t + 1 if depth R = t > 0. We choose
u ∈ G(I) of maximal degree with m(u) = t + 1, and let d = deg u. We claim that

Tor2n−(t+1)(K, Sym(m))2n−(t+1)+(d−1) 6= 0,

which of course implies the desired inequality.
Suppose first that t = 1. We construct a non-zero homology class

[z] ∈ H2n−2(x,y; Sym(m))

in the Koszul homology of Sym(m) with respect to the sequence x1, . . . , xn, y1, . . . ,
yn with deg[z] = 2n− 2 + (d− 1).

For K1(x,y; Sym(m)) we choose the basis e1, . . . , en, f1, . . . , fn with ∂(ei) = xi

and ∂(fi) = yi for i = 1, . . . , n, and let z = u′e2 ∧ · · · ∧ en ∧ f2 ∧ · · · ∧ fn. Then
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deg z = 2n− 2 + (d− 1) and z is a cycle. In fact, since I is strongly stable in the
reverse order we have u′xi ∈ I ⊂ J for all i ≥ 2. On the other hand, if v ∈ I is a
monomial and xi divides v, then (v/xi)yi ∈ J . Thus we see that u′yi ∈ J for all
i ≥ 2.

We claim that z is not a boundary. In fact, suppose z = ∂(b). Then

b =
n∑

i=1

cie1 ∧ · · · ∧ ei−1 ∧ ei+1 ∧ · · · ∧ en ∧ f1 ∧ · · · ∧ fn

+
n∑

i=1

die1 ∧ · · · ∧ en ∧ f1 ∧ · · · ∧ fi−1 ∧ fi+1 ∧ · · · ∧ fn, and

z = ∂(b) = (d1x1 + (−1)nc1y1)e2 ∧ · · · ∧ en ∧ f2 ∧ · · · ∧ fn + · · · .

Thus we must have that u′ = d1x1 + (−1)nc1y1. As in Lemma 2.1 we use the fact
that J is a multigraded ideal with deg xi = deg yi = εi for i = 1, . . . , n where εi

denotes the i-th vector in the canonical basis of Zn. Since z is multihomogeneous
we may assume that b is multihomogeneous of the same multidegree as z. In
particular, d1x1 + (−1)nc1y1 is multihomogeneous. Let a = (a1, . . . , an) be the
multidegree of d1x1 + (−1)nc1y1; then a1 6= 0. This is a contradiction since u′ has
a multidegree whose first component is zero.

Now suppose that depth R = t > 1. Then x1 − y1 is a non-zerodivisor on
Sym(m). Indeed suppose that f(x1 − y1) ∈ (I, J0). Then with respect to a term
order as in Theorem 2.2 we have

− in(f)y1 = in(f(x1 − y1)) ∈ in(I, J0).

Since no monomial in G(in(I, J0)) contains the factor y1 it follows that in(f) ∈
in(I, J0), that is, in(f) = u in(fi), with u a monomial in S[y1, . . . , yn] and fi a
generator of J . Let f̃ = f − ufi then f̃(x1 − y1) = f(x1 − y1)− ufi(x1 − y1) ∈ J ,
with in(f̃) < in(f). Induction by in(f) concludes the proof.

Let m be the graded maximal ideal of R̄ = K[x2, . . . , xn]/I and consider its
symmetric algebra SymR(m) whose defining ideal is

I + (Liyi : i = t + 1, . . . , n) + (xiyj − xjyi : 2 ≤ i < j ≤ n).

Let Sym(m) = Sym(m)/(x1 − y1). Its defining ideal is

I+(Liyi : i = t+1, . . . , n)+(x1(xi−yi) : i = 2, . . . , n)+(xiyj−xjyi : 2 ≤ i < j ≤ n).

From this it follows that Sym(m) ∼= Sym(m)/(x1). Let T = S[y1, . . . , yn]. We
have the exact sequence of T -modules

0 −→ (x1) −→ Sym(m) −→ Sym(m) −→ 0. (1)

The principal ideal (x1) is isomorphic to

Sym(m)/ Ann(x1) ∼= R[y1] ∼= T/(I, y2, . . . , yn),
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and hence its depth is t + 1.
Considering the long exact sequence of Tor induced by sequence (1), we get

the exact sequence

Tor2n−t(K, Sym(m))2n−t+d−1 → Tor2n−t(K, Sym(m))2n−t+d−1 (2)
ϕ→ Tor2n−(t+1)(K, R[y1])2n−(t+1)+d → · · · .

Let
F : 0 → Fn−t → · · · → Fi → · · · → F1 → F0

be the minimal free resolution of T/I, then the minimal free resolution of R[y1] ∼=
T/(I, y2, . . . , yn) is the tensor product of F with the Koszul complex K(y2, . . . ,
yn; T ), and by (ii) the highest degree of a generator of Fn−t ⊗Kn−1 is

(d + n− t− 1) + (n− 1) = 2n− (t + 1) + (d− 1).

Therefore, Tor2n−(t+1)(K, R[y1])2n−(t+1)+d = 0, and so sequence (2) and our induc-

tion hypothesis imply that Tor2n−t(K, Sym(m))2n−t+d−1 6= 0.
On the other hand, from the exact sequence

0 −→ Sym(m)(−1) −→ Sym(m) −→ Sym(m) −→ 0 .

one deduces easily that

Tor2n−(t+1)(K, Sym(m))2n−(t+1)+d−1
∼= Tor2n−t(K, Sym(m))2n−t+d−1

and this yields the desired conclusion. �

Combining Corollary 1.8 with Theorem 3.7 and Theorem 3.9 of this section we
obtain

Corollary 3.10. Assume char K = 0. Let I ⊂ S = K[x1, . . . , xn] be a compo-
nentwise linear ideal, and m the graded maximal ideal of R = S/I. Then

(a) reg Sym(m) ≤ reg R + 1;

(b) depth Sym(m) ≥ depth R + 1 if depth R > 0.
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