Regular Generalized Adjoint Semigroups of a Ring

Xiankun Du Junlin Wang
Department of Mathematics, Jilin University
Changchun 130012, China
e-mail:duxk@jlu.edu.cn

Abstract

In this paper, we characterize a ring with a generalized adjoint semigroup having a property \mathbf{P} and such generalized adjoint semigroups, where \mathbf{P} stands for orthodox, right inverse, inverse, pseudoinverse, E-unitary, and completely simple, respectively. Surprisingly, if R has a GA-semigroup with a property \mathbf{P}, then the adjoint semigroup of R has the property \mathbf{P}.

MSC 2000: 16N20, 16Y99, 20M25
Keywords: circle multiplication, generalized adjoint semigroup, orthodox semigroup, inverse semigroup

1. Introduction

Based on the paper [7], we continue our study of generalized adjoint semigroups (GA-semigroup) of a ring. In the present paper we are concerned with the description of a ring R with a GA-semigroup having a property \mathbf{P} and such GAsemigroups of R, where \mathbf{P} stands for orthodox, right inverse, inverse, pseudoinverse, E-unitary, and completely simple, respectively.

Let R be a ring not necessarily with identity. The composition defined by $a \circ b=a+b+a b$ for any $a, b \in R$ is usually called the circle or adjoint multiplication of R. It is well-known that (R, \circ) is a monoid with identity 0 , called the circle or adjoint semigroup of R, denoted by R°. There are many interesting connections between a ring and its adjoint semigroup, which were studied in several papers, for example, $[2,4,5,6,10,11,12,15,16]$. Typical results are to describe the
adjoint semigroup of a given ring and the ring with a given semigroup as its adjoint semigroup.

The circle multiplication of a ring satisfies the following generalized distributive laws:

$$
\begin{align*}
& a \circ(b+c-d)=a \circ b+a \circ c-a \circ d \tag{1}\\
& (b+c-d) \circ a=b \circ a+c \circ a-d \circ a \tag{2}
\end{align*}
$$

which was observed in [1]. Thus as generalizations of the circle multiplication of a ring, a binary operation \diamond (associative or nonassociative) on an Abelian group A satisfying the generalized distributive laws have been studied by several authors making use of different terminologies, for example, pseudo-rings, weak rings, quasirings, prerings. In [7], we call a binary operation \diamond on R is called a generalized adjoint multiplication on R, if it satisfies the following conditions:
(i) the associative law: $x \diamond(y \diamond z)=(x \diamond y) \diamond z$;
(ii) the generalized distributive laws:

$$
\begin{aligned}
& x \diamond(y+z)=x \diamond y+x \diamond z-x \diamond 0 \\
& (y+z) \diamond x=y \diamond x+z \diamond x-0 \diamond x
\end{aligned}
$$

(iii) the compatibility: $x y=x \diamond y-x \diamond 0-0 \diamond y+0 \diamond 0$.

The semigroup (R, \diamond) is called a generalized adjoint semigroup of R, abbreviated GA-semigroup and denoted by R^{\diamond}, which is a generalization of the multiplicative semigroup and the adjoint semigroup of a ring R. Essentially, the multiplicative and adjoint semigroup of R are exactly generalized adjoint semigroup of R with zero and identity, respectively ([7, Theorem 2.14]).

In Section 2, we prove that a GA-semigroup with central idempotents is a product of a multiplicative semigroup and an adjoint semigroup of ideals. The GA-semigroups of a strongly regular ring are determined.

The remaining sections are devoted to the description of the rings with a GA-semigroup having a property \mathbf{P} and its such GA-semigroups in terms of the ring of a Morita context, where \mathbf{P} stands for orthodox, right inverse, inverse, pseudoinverse, E-unitary, and completely simple, respectively. Surprisingly, we observe the following implication:
R^{\bullet} has the property $\mathbf{P} \Rightarrow R^{\diamond}$ has the property $\mathbf{P} \Rightarrow R^{\circ}$ has the property \mathbf{P},
where R • denotes the multiplicative semigroup of R.
Throughout, the set of idempotents of a semigroup or ring S will be denoted by $\mathcal{E}(S)$. For a ring R denote by R^{\bullet} and R° the multiplicative and the adjoint semigroup of R, respectively. It is easy to see that an element e of a ring R is an idempotent of R° if and only if $e+e^{2}=0$, that is, $-e$ is an idempotent of R^{\bullet}, and hence $\mathcal{E}(R)=\mathcal{E}\left(R^{\bullet}\right)=-\mathcal{E}\left(R^{\circ}\right)$.

Although a ring R in this paper needs not contain identity, it is convenient to use a formal identity 1 , which can be regarded as the identity of a unitary ring containing R, since R can be always embedded into a ring with identity 1 ; for
example, we can write $a \circ b=(1+a)(1+b)-1$ for any $a, b \in R$ and write $x^{0}=1$ for any $x \in R$ by making use of a formal 1 .

A radical ring means a Jacobson radical ring. For the algebraic theory and terminology on semigroups we will refer to $[3,9,13]$.

2. GA-semigroups with central idempotents

Recall that we call a GA-semigroups R^{\diamond} of R affinely isomorphic to the GAsemigroup S^{\diamond} of the ring S, notionally $R^{\diamond} \simeq S^{\diamond}$, if there exists a bijection ϕ from R onto S such that

$$
\phi(x+y-z)=\phi(x)+\phi(y)-\phi(z) \text { and } \phi(x \diamond y)=\phi(x) \diamond \phi(y)
$$

for any $x, y, z \in M$. If $R^{\diamond} \simeq S^{\diamond}$, then $R \cong S\left(\left[7\right.\right.$, Theorem 2.12]). R^{\diamond} is called (centrally) 0-idempotent if the additive 0 of R is an (central) idempotent in R^{\diamond} ([7]). One should note that (centrally) 0-idempotent is not an affinely isomorphic invariant. However, we have:

Lemma 2.1. ([7, Lemma 4.1]) Every GA-semigroup containing an (central) idempotent is affinely isomorphic to a (centrally) 0-idempotent one.
Lemma 2.2. ([7, Corollary 4.4]) A GA-semigroup R^{\diamond} is (centrally) 0-idempotent if and only if there exists an ideal extension \tilde{R} of R and an idempotent $\varepsilon \in \tilde{R}$ (commuting with elements of R) such that $x \diamond y=(x+\varepsilon)(y+\varepsilon)-\varepsilon$ for any $x, y \in R$.

Let $R_{i}^{\diamond}, i=1,2, \ldots, n$, be GA-semigroups of rings R_{i}. Then the direct product $\prod_{i=1}^{n} R_{i}^{\diamond}$ is a GA-semigroup of the ring $\prod_{i=1}^{n} R_{i}$, called the direct product of $R_{i}^{\diamond}, i=$ $1,2, \ldots, n$.

Example 2.3. Let R be a direct sum of ideals R_{0} and R_{1}. For any $x=a+b$ and $y=a^{\prime}+b^{\prime}, a, a^{\prime} \in R_{0}, b, b^{\prime} \in R_{1}$, define $x \diamond y=a^{\prime} a+b \circ b^{\prime}$. Then R^{\diamond} is a GA-semigroup of R. Clearly, $R^{\diamond} \simeq R_{0}^{\bullet} \times R_{1}^{\circ}$.

Example 2.4. Let R be a zero ring, i.e., $R^{2}=0$. Define $x \diamond y=y$ for any $x, y \in R$. Then R^{\diamond} is a GA-semigroup of R, called the right zero GA-semigroup of R. Symmetrically, one can define the left zero GA-semigroup of R.

Theorem 2.5. R^{\diamond} has a central idempotent if and only if $R^{\diamond} \simeq R_{0}^{\bullet} \times R_{1}^{\circ}$ for some ideals R_{0} and R_{1} of R such that $R=R_{0} \oplus R_{1}$.

Proof. The sufficiency is immediate. For the necessity, suppose that R contains a central idempotent e. Without loss of generality, we can assume 0 is a central idempotent in R^{\diamond} by Lemma 2.1. Then we can complete the proof by taking $R_{0}=\varepsilon R$ and $R_{1}=(1-\varepsilon) R$ from Lemma 2.2

A duo ring is a ring in which one-sided ideals are ideals.

Lemma 2.6. Let R^{\diamond} be a $G A$-semigroup of a duo ring R. If R^{\diamond} contains idempotents, then $R^{\diamond} \simeq R_{0}^{\bullet} \times R_{1}^{\circ} \times R_{2}^{\diamond} \times R_{3}^{\diamond}$, where $R_{i}, i=1,2,3$, are ideal of R such that $R=R_{0} \oplus R_{1} \oplus R_{2} \oplus R_{3}, R_{2}^{2}=R_{3}^{2}=0, R_{2}^{\diamond}$ is the left zero GA-semigroup of R_{2}, and R_{3}^{\diamond} is the right zero $G A$-semigroup of R_{3}.

Proof. By Lemma 2.1 we can assume that R^{\diamond} is a 0 -idempotent GA-semigroup. Put $R_{0}=\varepsilon R \varepsilon, R_{1}=(1-\varepsilon) R(1-\varepsilon), R_{2}=\varepsilon R(1-\varepsilon)$, and $R_{3}=(1-\varepsilon) R \varepsilon$, where ε is as in Lemma 2.2. Note that $R_{0}=\varepsilon R \cap R \varepsilon$. Then we have that R_{0} is an ideal of R since R is a duo ring. Similarly, R_{1}, R_{2}, and R_{3} are ideals of R, and $R=R_{0} \oplus R_{1} \oplus R_{2} \oplus R_{3}$. The rest is routine.

Corollary 2.7. Let R^{\diamond} be a $G A$-semigroup of a commutative π-regular ring. Then $R^{\diamond} \simeq R_{0}^{\bullet} \times R_{1}^{\circ} \times R_{2}^{\diamond} \times R_{3}^{\diamond}$, where $R_{i}, i=0,1,2,3$, are ideals of R such that $R=R_{0} \oplus R_{1} \oplus R_{2} \oplus R_{3}, R_{2}^{2}=R_{3}^{2}=0, R_{2}^{\diamond}$ is the left zero $G A$-semigroup of R_{2}, and R_{3}^{\diamond} is the right zero $G A$-semigroup of R_{3}.

Theorem 2.8. Any GA-semigroup R^{\diamond} of a strongly regular ring contains central idempotents, and so $R^{\triangleright} \simeq R_{0}^{\bullet} \times R_{1}^{\circ}$ for some ideals R_{0} and R_{1} of R such that $R=R_{0} \oplus R_{1}$.

Proof. It follows from [7, Theorem 3.5], Lemma 2.6 and the fact that a strongly regular ring is a duo ring ([8, Theorem 3.2]).

Corollary 2.9. The following statements for a ring R are equivalent.
(i) R is a Boolean ring;
(ii) R has a GA-semigroup is a semilattice;
(iii) any GA-semigroup of R is a semilattice.

Proof. (iii) \Rightarrow (ii) is trivial.
(ii) $\Rightarrow(\mathrm{i})$: If a GA-semigroup R^{\diamond} is a semilattice, then by Theorem $2.5, R^{\diamond} \simeq$ $R_{0}^{\bullet} \times R_{1}^{\circ}$, where R_{0} and R_{1} are ideals of R such that $R=R_{0} \oplus R_{1}$. Since R^{\diamond} is a semilattice, R_{0}^{\bullet} and R_{1}° are semilattices, implying that R is a Boolean ring.
(i) \Rightarrow (iii): Let R^{\diamond} be a GA-semigroup of R. Since R is a Boolean ring, by Theorem $2.8, R^{\diamond} \simeq R_{0}^{\bullet} \times R_{1}^{\circ}$, where R_{0} and R_{1} are ideals of R such that $R=R_{0} \oplus R_{1}$. Since R is a Boolean ring, R^{\diamond} is a semilattice.

3. Orthodox GA-semigroups

Given two rings S and T, denote by \tilde{S} and \tilde{T} the Dorroh extension of S and T, respectively. Let $\tilde{R}=\left(\begin{array}{cc}\tilde{S} & U \\ V & \tilde{T}\end{array}\right)$ be the ring of the Morita context with bimodules ${ }_{S} U_{T}$ and ${ }_{T} V_{S}$, which are considered as unitary $\tilde{S}-\tilde{T}$ and $\tilde{T}-\tilde{S}$ bimodules in a natural way, respectively. Let $R=\left(\begin{array}{rr}S & U \\ V & T\end{array}\right)$. Then R is an ideal of \tilde{R}. We call R the ring of the Morita context or a Morita ring, and denote by $\mathcal{M}(S, T, U, V)$. Let
$E_{11}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right) \in \tilde{R}$. Then the generalized adjoint multiplication induced by E_{11} is given by

$$
\begin{aligned}
A \diamond B & =A B+A E_{11}+E_{11} B \\
& =\left(A+E_{11}\right)\left(B+E_{11}\right)-E_{11} \\
& =\left(\begin{array}{cc}
s \circ s^{\prime}+u v^{\prime} & (1+s) u+u t^{\prime} \\
u\left(1+s^{\prime}\right)+t v^{\prime} & u u^{\prime}+t t^{\prime}
\end{array}\right)
\end{aligned}
$$

for any $A=\left(\begin{array}{cc}s & u \\ v & t\end{array}\right), B=\left(\begin{array}{cc}s^{\prime} & u^{\prime} \\ v^{\prime} & t^{\prime}\end{array}\right) \in R$. The semigroup R^{\diamond} is called the E_{11}-GA-semigroup of R, denoted by $\mathcal{M}_{11}^{\diamond}(S, T, U, V)$. It is clear that the E_{11}-GAsemigroup $\mathcal{M}_{11}^{\diamond}(S, T, U, V)$ is 0 -idempotent ([7]).

Theorem 3.1. ([7, Theorem 4.3]) Let R^{\diamond} be a GA-semigroup of R. If R^{\diamond} contains idempotents, then there exists a Morita ring $\mathcal{M}(S, T, U, V)$ such that $R \cong$ $\mathcal{M}(S, T, U, V)$ and $R^{\diamond} \simeq \mathcal{M}_{11}^{\diamond}(S, T, U, V)$.

A ring R is called adjoint regular if its adjoint semigroup R° is a regular semigroup $([5,11])$.

Lemma 3.2. Let $R=\mathcal{M}(S, T, U, V)$ and let R^{\diamond} be the $E_{11}-G A$-semigroup of R. If R^{\diamond} is regular, then S is an adjoint regular ring and T is a regular ring.
Proof. Let $R_{0}=\left(\begin{array}{cc}S & 0 \\ 0 & 0\end{array}\right)$ and $R_{1}=\left(\begin{array}{cc}0 & 0 \\ 0 & T\end{array}\right)$. Then we have $R_{0}^{\circ}=R_{0}^{\circ} \simeq S^{\circ}$ and $R_{1}^{\diamond}=R_{0}^{\boldsymbol{\bullet}} \simeq T^{\bullet}$.

Suppose R^{\diamond} is regular. For any $a \in R_{0}$, there exists $x \in R$ such that $a=a \diamond x \diamond a$. Noting that $0 \diamond a \diamond 0=E_{11} a E_{11}=a$ and $0 \diamond 0=0$, we see that $a=a \diamond 0 \diamond x \diamond 0 \diamond a$, and $0 \diamond x \diamond 0=E_{11} x E_{11} \in R_{0}$, whence R_{0}^{\diamond} is regular and so S° is regular.

For any $t \in T$, let $A=\left(\begin{array}{cc}0 & 0 \\ 0 & t\end{array}\right)$. Then there exists $B=\left(\begin{array}{ll}a & u \\ v & b\end{array}\right) \in R$ such that

$$
A=A \diamond B \diamond A=\left(\begin{array}{cc}
1 & 0 \\
0 & t
\end{array}\right)\left(\begin{array}{cc}
1+a & u \\
v & b
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & t
\end{array}\right)-E_{11}=\left(\begin{array}{cc}
a & u t \\
t v & t b t
\end{array}\right),
$$

yielding $t=t b t$ for some $b \in T$. Thus T is a regular ring.
Lemma 3.3. If $a-a \diamond b \diamond a+a \diamond c \diamond a$ be regular in R^{\diamond} for some $b, c \in R$, then a is regular in R^{\diamond}.

Proof. Let $x=a-a \diamond b \diamond a+a \diamond c \diamond a$. Then $x=x \diamond y \diamond x$ for some $y \in R$. Let $z=y-b \diamond a \diamond y+c \diamond a \diamond y$. Then

$$
\begin{aligned}
x \diamond y \diamond x & =a \diamond(y-b \diamond a \diamond y+c \diamond a \diamond y) \diamond x \\
& =a \diamond z \diamond x \\
& =a \diamond(z-z \diamond a \diamond b+z \diamond a \diamond c) \diamond a .
\end{aligned}
$$

Thus

$$
\begin{aligned}
a & =a \diamond b \diamond a-a \diamond c \diamond a+a \diamond(z-z \diamond a \diamond b+z \diamond a \diamond c) \diamond a \\
& =a \diamond(b-c+z-z \diamond a \diamond b+z \diamond a \diamond c) \diamond a,
\end{aligned}
$$

as desired.
Lemma 3.4. Let $R=\mathcal{M}(S, T, U, V)$ with $V U=0$. Then the E_{11}-GA-semigroup R^{\diamond} is regular if and only if S is an adjoint regular ring, T is a regular ring and $\mathcal{E}(S) U=V \mathcal{E}(S)=0$, and if so, then
(i) R is an adjoint regular ring;
(ii) $\mathcal{E}\left(R^{\diamond}\right)=\left\{\left.\left(\begin{array}{cc}-e-u v & u(1-f) \\ (1-f) v & f\end{array}\right) \right\rvert\, e \in \mathcal{E}(S), f \in \mathcal{E}(T), u \in U, v \in V\right\}$;
(iii) $\mathcal{E}(R)=\left\{\left.\left(\begin{array}{cc}e+u v & u f \\ f v & f\end{array}\right) \right\rvert\, e \in \mathcal{E}(S), f \in \mathcal{E}(T), u \in U, v \in V\right\}$.

Proof. Suppose that R^{\diamond} is regular. Then by Lemma 3.2 we see that S is an adjoint regular ring and T is a regular ring. Now for any $e \in \mathcal{E}\left(S^{\circ}\right)$ and $u \in U$ there exists $\left(\begin{array}{cc}s & y \\ z & t\end{array}\right)$ such that

$$
\begin{aligned}
\left(\begin{array}{ll}
e & u \\
0 & 0
\end{array}\right) & =\left(\begin{array}{ll}
e & u \\
0 & 0
\end{array}\right) \diamond\left(\begin{array}{ll}
s & y \\
z & t
\end{array}\right) \diamond\left(\begin{array}{cc}
e & u \\
0 & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
1+e & u \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
1+s & y \\
z & t
\end{array}\right)\left(\begin{array}{cc}
1+e & u \\
0 & 0
\end{array}\right)-E_{11} \\
& =\left(\begin{array}{cc}
e \circ s \circ e+u z(1+e) & (1+e \circ s+u z) u \\
0 & 0
\end{array}\right),
\end{aligned}
$$

forcing that $(e \circ s) u=0$, since $(u z) u=u(z u)=0$. Observing $e=-e(e \circ s)$, we can see that $e u=-e(e \circ s) u=0$, from which it follows that $\mathcal{E}\left(S^{\circ}\right) U=0$. Since $\mathcal{E}(S)=-\mathcal{E}\left(S^{\circ}\right)$, we have that $\mathcal{E}(S) U=0$. Symmetrically, $V \mathcal{E}(S)=0$.

Conversely, suppose that S is an adjoint regular ring, T is a regular ring and $\mathcal{E}(S) U=V \mathcal{E}(S)=0$. Let I be the ideal of S generated by $\mathcal{E}(S)$. Then I is adjoint regular by $\left[5\right.$, Proposition 1] and $I U=V I=0$. Let $A=\left(\begin{array}{cc}s & u \\ v & t\end{array}\right) \in R$, and $s=$ $s \circ s^{\prime} \circ s$ for some $s^{\prime} \in S$. Let $B=\left(\begin{array}{ll}s^{\prime} & 0 \\ 0 & 0\end{array}\right)$ and let $C=A-A \diamond B \diamond A+A \diamond B \diamond B \diamond A$. To prove that A is regular in R^{\diamond}, it suffices to prove that C is regular in R^{\diamond} by Lemma 3.3. A straightforward computation gives

$$
C=\left(\begin{array}{cc}
s \circ s^{\prime} \circ s^{\prime} \circ s & b \\
c & d
\end{array}\right)
$$

for some $b \in U, c \in V$, and $d \in T$. Let $a=s \circ s^{\prime} \circ s^{\prime} \circ s$. Then $C=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right)$. Since $s \circ s^{\prime}$ and $s^{\prime} \circ s$ are idempotents of S°, we have that $a \in I$, and so $a U=$
$V a=0$ and $a=a \circ a^{\prime} \circ a$ for some $a^{\prime} \in I$. Let $d^{\prime} \in T$ such that $d=d d^{\prime} d$ and let $x=a^{\prime}+b d^{\prime} c$. Then $x U=V x=0$. Let $D=\left(\begin{array}{cc}x & -b d^{\prime} \\ -d^{\prime} c & d^{\prime}\end{array}\right)$. Then a straightforward calculation shows that

$$
\begin{aligned}
C \diamond D \diamond C & =\left(\begin{array}{cc}
1+a & b \\
c & d
\end{array}\right)\left(\begin{array}{cc}
1+x & -b d^{\prime} \\
-d^{\prime} c & d^{\prime}
\end{array}\right)\left(\begin{array}{cc}
1+a & b \\
c & d
\end{array}\right)-E_{11} \\
& =\left(\begin{array}{cc}
\left(a \circ x-b d^{\prime} c\right) \circ a & b \\
c & d
\end{array}\right) .
\end{aligned}
$$

But $\left(a \circ x-b d^{\prime} c\right) \circ a=\left(a \circ a^{\prime}\right) \circ a=a$. It follows that $C \diamond D \diamond C=C$, as desired.
To prove (i), let $S_{1}=I+U V$. Then S_{1} is an ideal of S, whence S_{1} is an adjoint regular ring by [5, Proposition 1] and clearly $S_{1} U=V S_{1}=0$. Let $R_{1}=\left(\begin{array}{cc}S_{1} & U \\ V & T\end{array}\right)$. Then R_{1} is an ideal of R and $R / R_{1} \cong S / S_{1}$ is a radical ring since S / I is a radical ring by [6, Lemma 7] or [5, Theorem 3]. To prove R is adjoint regular, it is sufficient to prove R_{1} is adjoint regular by [5, Theorem 3]. If $A=\left(\begin{array}{cc}s & u \\ v & t\end{array}\right) \in R_{1}$, then $s=s \circ s^{\prime} \circ s$ for some $s^{\prime} \in S_{1}$. Since a regular ring is adjoint regular by [5, Theorem 1] ([6, Theorem 4], [11, Proposition 2.3]), we have that T is an adjoint regular ring, implying that $t=t \circ t^{\prime} \circ t$ for some $t^{\prime} \in T$. Let $x=s^{\prime}+u\left(1+t^{\prime}\right) v$. Then $x U=V x=0$. Let $B=\left(\begin{array}{cc}x & -u\left(1+t^{\prime}\right) \\ -\left(1+t^{\prime}\right) v & t^{\prime}\end{array}\right)$. Then

$$
\begin{aligned}
& A \circ B \circ A \\
& =\left(\begin{array}{cc}
1+s & u \\
v & 1+t
\end{array}\right)\left(\begin{array}{cc}
1+x & -u\left(1+t^{\prime}\right) \\
-\left(1+t^{\prime}\right) v & 1+t^{\prime}
\end{array}\right)\left(\begin{array}{cc}
1+s & u \\
v & 1+t
\end{array}\right)-1 \\
& =\left(\begin{array}{cc}
\left(s \circ x-u\left(1+t^{\prime}\right) v\right) \circ s & u \\
v & t
\end{array}\right) .
\end{aligned}
$$

But $\left(s \circ x-u\left(1+t^{\prime}\right) v\right) \circ s=\left(s \circ s^{\prime}\right) \circ s=s$. It follows that $A \circ B \circ A=A$, proving (i).

For $e \in \mathcal{E}(S)$ and $f \in \mathcal{E}(T)$, if $u f=f u=0$, then it is easy to verify that $\left(\begin{array}{cc}-e-u v & u \\ v & f\end{array}\right) \in \mathcal{E}\left(R^{\diamond}\right)$. Conversely, let $E=\left(\begin{array}{cc}s & u \\ v & t\end{array}\right)$. If $E \in \mathcal{E}\left(R^{\diamond}\right)$, then

$$
E=E \diamond E=\left(\begin{array}{cc}
s \circ s+u v & (1+s) u+u t \tag{3}\\
v(1+s)+t v & t^{2}
\end{array}\right)
$$

yielding $s=s \circ s+u v$. Thus

$$
\begin{equation*}
s+s^{2}=-u v . \tag{4}
\end{equation*}
$$

By (4) $\left(s+s^{2}\right)^{2}=u(v u) v=0$, that is, $\left((-s)-(-s)^{2}\right)^{2}=0$. By the R^{\bullet}-version of [7, Lemma 4.5] there exists an idempotent $e^{\prime} \in \mathcal{E}(R)$ such that $s^{2}=s^{2} e^{\prime}=e^{\prime} s^{2}$. Noting that $\left(s+s^{2}\right) u=-u(v u)=0$ by (4), we have that $s u=-s^{2} u=-s^{2} e^{\prime} u=0$,
and dually we have that $v s=0$. Since $s^{2}+s^{3}=-s u v=0$ by (4), one can deduce that $s^{2} \in \mathcal{E}(R)$. Let $e=s^{2}$. Then $s=-e-u v$ by (4). Putting $f=t$, we have $f \in \mathcal{E}(T)$ from (3). Since $s u=v s=0$, we obtain that $u t=t v=0$ from (3). Thus $E=\left(\begin{array}{cc}-e-u v & u \\ v & f\end{array}\right)$ with $e \in \mathcal{E}(S), f \in \mathcal{E}(T)$, and $u f=f v=0$, proving (ii).

For $e \in \mathcal{E}(S)$ and $f \in \mathcal{E}(T)$, if $u(1-f)=(1-f) u=0$, then it is easy to verify that $\left(\begin{array}{cc}e+u v & u \\ v & f\end{array}\right) \in \mathcal{E}(R)$. Conversely, let $E=\left(\begin{array}{cc}s & u \\ v & t\end{array}\right) \in \mathcal{E}(R)$. Then

$$
E=E^{2}=\left(\begin{array}{cc}
s^{2}+u v & s u+u t \tag{5}\\
v s+t v & t^{2}
\end{array}\right)
$$

yielding $s=s^{2}+u v$, that is $s-s^{2}=u v$. Similar to the proof of paragraph above, we have $s^{2} \in \mathcal{E}(R)$ and $s u=v s=0$. Let $e=s^{2}$ and $f=t$. Then $s=e+u v$ and $e \in \mathcal{E}(S)$ and $f \in \mathcal{E}(R)$. From (5) we get $u=u f$ and $v=f v$, proving (iii).

An orthodox semigroup means a regular semigroup whose idempotents constitute a subsemigroup. A band is called regular if $x y z x=x y x z x$ for any $x, y, z \in \mathcal{E}(S)$ ([9]).

It is easy to see that R^{\bullet} is an orthodox semigroup if and only if R is a strongly regular ring. In [6], we characterize the ring such that R° is orthodox, and we particularly prove that such a ring is a generalized radical ring such that $\mathcal{E}\left(R^{\circ}\right)$ is a regular band ([6, Theorem 14]), where a generalized radical ring means a ring whose adjoint semigroup is a union of groups ([2]).

Lemma 3.5. Let $R=\mathcal{M}(S, T, U, V)$. Then $E_{11}-G A$-semigroup R^{\diamond} is orthodox if and only if S° is an orthodox semigroup, T is a strongly regular ring, $\mathcal{E}(S) U=$ $V \mathcal{E}(S)=U V=V U=0$. Moreover, if R^{\diamond} is orthodox, then R^{\diamond} are a union of groups and $\mathcal{E}\left(R^{\diamond}\right)$ is a regular band.
Proof. Suppose R^{\diamond} is an orthodox semigroup. Then by Lemma 3.4, S° and T^{\bullet} are both orthodox semigroups, and so T is a strongly regular ring. For any $x \in U$ and $y \in V$ it is easy to see that $\left(\begin{array}{ll}0 & 0 \\ y & 0\end{array}\right)$ and $\left(\begin{array}{ll}0 & x \\ 0 & 0\end{array}\right)$ are both idempotents of R^{\diamond}. Since $\mathcal{E}\left(R^{\diamond}\right)$ is a semigroup, $\left(\begin{array}{ll}0 & 0 \\ y & 0\end{array}\right) \diamond\left(\begin{array}{ll}0 & x \\ 0 & 0\end{array}\right)=\left(\begin{array}{cc}0 & x \\ y & y x\end{array}\right)$ is an idempotent of R^{\diamond}, whence

$$
\begin{aligned}
\left(\begin{array}{cc}
0 & x \\
y & y x
\end{array}\right) & =\left(\begin{array}{cc}
0 & x \\
y & y x
\end{array}\right) \diamond\left(\begin{array}{cc}
0 & x \\
y & y x
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & x \\
y & y x
\end{array}\right)\left(\begin{array}{cc}
1 & x \\
y & y x
\end{array}\right)-E_{11} \\
& =\left(\begin{array}{cc}
x y & x+x y x \\
y+y x y & y x+(y x)^{2}
\end{array}\right)
\end{aligned}
$$

and so $x y=0$. Noting that $y x$ is a nilpotent element of T, we see that $y x=0$ since T is a strongly regular ring. Thus $U V=V U=0$. Since R^{\diamond} is regular, we have $\mathcal{E}(S) U=V \mathcal{E}(S)=0$ by Lemma 3.4.

Conversely, suppose S° is an orthodox semigroup, T is a strongly regular ring, and $\mathcal{E}(S) U=V \mathcal{E}(S)=U V=V U=0$. It suffices to prove that R^{\diamond} is a union of groups and $\mathcal{E}\left(R^{\diamond}\right)$ is a regular band. By Lemma 3.4,

$$
\mathcal{E}\left(R^{\diamond}\right)=\left\{\left.\left(\begin{array}{cc}
e & u(1-f) \tag{6}\\
(1-f) v & f
\end{array}\right) \right\rvert\, e \in \mathcal{E}\left(S^{\circ}\right), f \in \mathcal{E}(T), u \in U, v \in V\right\} .
$$

For any $A=\left(\begin{array}{cc}s & u \\ v & t\end{array}\right) \in R$, there exist $s^{\prime} \in S, e \in \mathcal{E}\left(S^{\circ}\right), t \in T$ and $f \in \mathcal{E}(T)$ such that $s \circ s^{\prime}=s^{\prime} \circ s=e, e \circ s=s \circ e=s$, and $e \circ s^{\prime}=s^{\prime} \circ e=s$ since S° is a union of groups by [6, Theorem 14], and $t t^{\prime}=t^{\prime} t=f$ and $f t=t$ since T is a strongly regular ring. Let

$$
\begin{aligned}
& B=\left(\begin{array}{cc}
e & \left(1+s^{\prime}\right) u(1-f) \\
(1-f) v\left(1+s^{\prime}\right) & f
\end{array}\right), \\
& C=\left(\begin{array}{cc}
s^{\prime} & \left(1+s^{\prime} \circ s^{\prime}\right) u(1-f)-\left(1+s^{\prime}\right) u t^{\prime} \\
-t^{\prime} v\left(1+s^{\prime}\right) & t^{\prime}
\end{array}\right) .
\end{aligned}
$$

Then $B \in \mathcal{E}(R)$ by (6), and a computation yields that $A \diamond B=B \diamond A=A$ and $A \diamond C=B$, whence R^{\diamond} is completely regular and so it is a union of groups by [3, Theorem 4.3].

Now we have to prove that $\mathcal{E}\left(R^{\diamond}\right)$ is a regular band. For $E, E^{\prime}, E^{\prime \prime} \in \mathcal{E}\left(R^{\diamond}\right)$, if $E=\left(\begin{array}{ll}e & u \\ v & f\end{array}\right), E^{\prime}=\left(\begin{array}{cc}e^{\prime} & u^{\prime} \\ v^{\prime} & f^{\prime}\end{array}\right), E^{\prime \prime}=\left(\begin{array}{cc}e^{\prime \prime} & u^{\prime \prime} \\ v^{\prime \prime} & f^{\prime \prime}\end{array}\right)$, then $u f=f v=u^{\prime} f^{\prime}=$ $f^{\prime} v^{\prime}=u^{\prime \prime} f^{\prime \prime}=f^{\prime \prime} v^{\prime \prime}=0$ by (6). Observe that

$$
\begin{align*}
E \diamond E^{\prime} & =\left(\begin{array}{cc}
1+e & u \\
v & f
\end{array}\right)\left(\begin{array}{cc}
1+e^{\prime} & u^{\prime} \\
v^{\prime} & f^{\prime}
\end{array}\right)-E_{11} \\
& =\left(\begin{array}{cc}
e \circ e^{\prime} & u^{\prime}+u f^{\prime} \\
v+f v^{\prime} & f f^{\prime}
\end{array}\right) . \tag{7}
\end{align*}
$$

Since $\mathcal{E}\left(S^{\circ}\right)$ is a band, we have that $e \circ e^{\prime} \in \mathcal{E}\left(S^{\circ}\right)$. Since T is a strongly regular ring, idempotents are contained in the center of T, and so $f f^{\prime} \in \mathcal{E}(T)$. Moreover, $\left(u^{\prime}+u f^{\prime}\right) f f^{\prime}=u^{\prime} f^{\prime} f+u f f^{\prime}=0$ and similarly $f f^{\prime}\left(v+f v^{\prime}\right)=0$. It follows from (6) and (7) that $E \circ E^{\prime} \in \mathcal{E}\left(R^{\diamond}\right)$. Thus $\mathcal{E}\left(R^{\diamond}\right)$ is a band. Now we need to prove $\mathcal{E}\left(R^{\diamond}\right)$ is regular. By (7), we have that

$$
\begin{align*}
& E \diamond E^{\prime} \diamond E^{\prime \prime} \\
& =\left(\begin{array}{cc}
1+e \circ e^{\prime} & u^{\prime}+u f^{\prime} \\
v+f v^{\prime} & f f^{\prime}
\end{array}\right)\left(\begin{array}{cc}
1+e^{\prime \prime} & u^{\prime \prime} \\
v^{\prime \prime} & f^{\prime \prime}
\end{array}\right)-E_{11} \\
& =\left(\begin{array}{cc}
e \circ e^{\prime} \circ e^{\prime \prime} & u^{\prime \prime}+u^{\prime} f^{\prime \prime}+u f^{\prime} f^{\prime \prime} \\
v+f v^{\prime}+f f^{\prime} v^{\prime \prime} & f f^{\prime} f^{\prime \prime}
\end{array}\right), \tag{8}
\end{align*}
$$

and by (8) we have

$$
\begin{align*}
& E \diamond E^{\prime} \diamond E^{\prime \prime} \diamond E \\
& =\left(\begin{array}{cc}
1+e \circ e^{\prime} \circ e^{\prime \prime} & u^{\prime \prime}+u^{\prime} f^{\prime \prime}+u f^{\prime} f^{\prime \prime} \\
v+f v^{\prime}+f f^{\prime} v^{\prime \prime} & f f^{\prime} f^{\prime \prime}
\end{array}\right)\left(\begin{array}{cc}
1+e & u \\
v & f
\end{array}\right)-E_{11} \\
& =\left(\begin{array}{cc}
e \circ e^{\prime} \circ e^{\prime \prime} \circ e & u+u^{\prime \prime} f+u^{\prime} f^{\prime \prime} f \\
v+f v^{\prime}+f f^{\prime} v^{\prime \prime} & f f^{\prime} f^{\prime \prime}
\end{array}\right) . \tag{9}
\end{align*}
$$

Replacing $x^{\prime \prime}$ by x in (8), $x \in\{u, v, e, f\}$, we get that

$$
E \diamond E^{\prime} \diamond E=\left(\begin{array}{cc}
e \circ e^{\prime} \circ e & u+u^{\prime} f \tag{10}\\
v+f v^{\prime} & f f^{\prime}
\end{array}\right),
$$

and replacing x^{\prime} by $x^{\prime \prime}$ in (10), $x \in\{u, v, e, f\}$, we get that

$$
E \diamond E^{\prime \prime} \diamond E=\left(\begin{array}{cc}
e \circ e^{\prime \prime} \circ e & u+u^{\prime \prime} f \tag{11}\\
v+f v^{\prime \prime} & f f^{\prime \prime}
\end{array}\right) .
$$

Thus by (7) and (11) we have that

$$
\begin{align*}
& E \diamond E^{\prime} \diamond E \diamond E^{\prime \prime} \diamond E \\
& =\left(\begin{array}{cc}
1+e \circ e^{\prime} & u^{\prime}+u f^{\prime} \\
v+f v^{\prime} & f f^{\prime}
\end{array}\right)\left(\begin{array}{cc}
1+e \circ e^{\prime \prime} \circ e & u+u^{\prime \prime} f \\
v+f v^{\prime \prime} & f f^{\prime \prime}
\end{array}\right)-E_{11} \\
& =\left(\begin{array}{cc}
e \circ e^{\prime} \circ e \circ e^{\prime \prime} \circ e & u+u^{\prime \prime} f+u^{\prime} f f^{\prime \prime} \\
v+f v^{\prime}+f f^{\prime} v^{\prime \prime} & f f^{\prime} f^{\prime \prime}
\end{array}\right) . \tag{12}
\end{align*}
$$

Since $\mathcal{E}\left(S^{\circ}\right)$ is a regular band by [6, Theorem 14], we have that $E \diamond E^{\prime} \diamond E^{\prime \prime} \diamond E=$ $E \diamond E^{\prime} \diamond E \diamond E^{\prime \prime} \diamond E$ by (9) and (12). Hence $\mathcal{E}\left(R^{\diamond}\right)$ is a regular band, and so R^{\diamond} is an orthodox semigroup.

Theorem 3.6. The following statements are equivalent for a $G A$-semigroup R^{\diamond} of R.
(i) R^{\diamond} is orthodox;
(ii) R^{\diamond} is a union of groups and $\mathcal{E}\left(R^{\diamond}\right)$ is a regular band;
(iii) $R^{\diamond} \simeq \mathcal{M}_{11}^{\diamond}(S, T, U, V)$, where S° is an orthodox semigroup, T is a strongly regular ring, and $\mathcal{E}(S) U=V \mathcal{E}(S)=U V=V U=0$.

Proof. If follows from Lemma 3.5 and Theorem 3.1.
Theorem 3.7. The following statements are equivalent for a ring R.
(i) R has an orthodox $G A$-semigroup;
(ii) R° is an orthodox semigroup;
(iii) R° is a union of groups and $\mathcal{E}\left(R^{\circ}\right)$ is a regular band.

Proof. (ii) \Leftrightarrow (iii) follows from [6, Theorem 14] and (ii) \Rightarrow (i) is trivial. It remains to prove $(\mathrm{i}) \Rightarrow(\mathrm{ii})$. Suppose that a GA-semigroup R^{\diamond} is orthodox. Then by Theorem 3.1 and Theorem 3.6 we can assume that $R=\mathcal{M}(S, T, U, V)$ and $R^{\diamond}=\mathcal{M}_{11}^{\diamond}(S, T, U, V)$, where S° is an orthodox semigroup, T is a strongly regular ring, and $\mathcal{E}(S) U=V \mathcal{E}(S)=U V=V U=0$. By Lemma 3.4, R is an adjoint regular ring with

$$
\mathcal{E}\left(R^{\circ}\right)=\left\{\left.\left(\begin{array}{ll}
e & u \tag{13}\\
v & f
\end{array}\right) \right\rvert\, e \in \mathcal{E}\left(S^{\circ}\right), f \in \mathcal{E}\left(T^{\circ}\right), u(1+f)=(1+f) v=0\right\} .
$$

If $A=\left(\begin{array}{cc}e & u \\ v & f\end{array}\right)$ and $A^{\prime}=\left(\begin{array}{cc}e^{\prime} & u^{\prime} \\ v^{\prime} & f^{\prime}\end{array}\right)$ are both idempotents of R°, then

$$
\begin{aligned}
A \circ A^{\prime} & =(1+A)\left(1+A^{\prime}\right)-1 \\
& =\left(\begin{array}{cc}
1+e & u \\
v & 1+f
\end{array}\right)\left(\begin{array}{cc}
1+e^{\prime} & u^{\prime} \\
v^{\prime} & 1+f^{\prime}
\end{array}\right)-1 \\
& =\left(\begin{array}{cc}
e \circ e^{\prime} & u^{\prime}+u\left(1+f^{\prime}\right) \\
v+(1+f) v^{\prime} & f \circ f^{\prime}
\end{array}\right) .
\end{aligned}
$$

Since S° is orthodox, $e \circ e^{\prime} \in \mathcal{E}\left(S^{\circ}\right)$. Since T is a strongly regular ring, $f \circ f^{\prime}=$ $f^{\prime} \circ f \in \mathcal{E}\left(T^{\circ}\right)$. Observing that

$$
\left(u^{\prime}+u\left(1+f^{\prime}\right)\right)\left(1+f^{\prime} \circ f\right)=u^{\prime}\left(1+f^{\prime}\right)(1+f)+u(1+f)\left(1+f^{\prime}\right)=0
$$

and similarly $\left(1+f^{\prime} \circ f\right)\left(v+(1+f) v^{\prime}\right)=0$, we see that $A \circ A^{\prime} \in \mathcal{E}\left(R^{\circ}\right)$ by (13). Hence $\mathcal{E}\left(R^{\circ}\right)$ is a band. It follows that R° is orthodox.

4. Inverse GA-semigroups

Recall that a semigroup is called a right inverse semigroup if its every principal left ideal has a unique idempotent generator. According to [18, Theorem 1], a semigroup S is a right inverse semigroup if and only if S is a regular semigroup in which the set $\mathcal{E}(S)$ of all idempotents is a right regular band, that is $x y=y x y$ for any $x, y \in \mathcal{E}(S)$. A semigroup is inverse if it is left and right inverse.

It is clear that R^{\bullet} is inverse if and only if R is a strongly regular ring. A ring with the inverse adjoint semigroup was studied by $[4,6,10,11,12,16]$ and a ring with the right inverse adjoint semigroup was described in [6].

Lemma 4.1. Let $R=\mathcal{M}(S, T, U, V)$. Then the $E_{11}-G A$-semigroup R^{\diamond} is right inverse if and only if S° is a right inverse semigroup, T is a strongly regular ring, and $\mathcal{E}(S) U=V=0$, and if so, then R° is right inverse.

Proof. Suppose that R° is right inverse. Then S° is a right inverse semigroup and T is a strongly regular ring by Lemma 3.2. Noting that R^{\diamond} is orthodox, we have that $\mathcal{E}(S) U=0$ by Lemma 3.5. For any $v \in V$, let $A=\left(\begin{array}{cc}0 & 0 \\ v & 0\end{array}\right)$. Then $A \in \mathcal{E}\left(R^{\diamond}\right)$, and hence

$$
A=A \diamond 0=0 \diamond A \diamond 0=0,
$$

yielding $v=0$. It follows that $V=0$.
Conversely, suppose that $R=\mathcal{M}(S, T, U, 0)$ such that S° is a right inverse semigroup, T is a strongly regular ring and $\mathcal{E}(S) U=V=0$. Then the E_{11}-GAsemigroup R^{\diamond} is a regular semigroup with

$$
\mathcal{E}\left(R^{\diamond}\right)=\left\{\left.\left(\begin{array}{cc}
e & u \tag{14}\\
0 & f
\end{array}\right) \right\rvert\, e \in \mathcal{E}\left(S^{\circ}\right), f \in \mathcal{E}(T), u \in U \text { and } u f=0\right\}
$$

by Lemma 3.4. For $E, E^{\prime} \in \mathcal{E}\left(R^{\diamond}\right)$, let $E=\left(\begin{array}{cc}e & u \\ 0 & f\end{array}\right)$ and $E^{\prime}=\left(\begin{array}{cc}e^{\prime} & u^{\prime} \\ 0 & f^{\prime}\end{array}\right)$. Then $u f=u^{\prime} f^{\prime}=0$ by (14). Observing that

$$
\begin{aligned}
E \diamond E^{\prime} & =\left(\begin{array}{cc}
1+e & u \\
0 & f
\end{array}\right)\left(\begin{array}{cc}
1+e^{\prime} & u^{\prime} \\
0 & f^{\prime}
\end{array}\right)-E_{11}=\left(\begin{array}{cc}
e \diamond e^{\prime} & u^{\prime}+u f^{\prime} \\
0 & f f^{\prime}
\end{array}\right), \\
E^{\prime} \diamond E \diamond E^{\prime} & =\left(\begin{array}{cc}
1+e^{\prime} & u^{\prime} \\
0 & f^{\prime}
\end{array}\right)\left(\begin{array}{cc}
1+e \diamond e^{\prime} & u^{\prime}+u f^{\prime} \\
0 & f f^{\prime}
\end{array}\right)-E_{11} \\
& =\left(\begin{array}{cc}
e^{\prime} \diamond e \diamond e^{\prime} & u^{\prime}+u f^{\prime}+u^{\prime} f f^{\prime} \\
0 & f^{\prime} f f^{\prime}
\end{array}\right) \\
& =\left(\begin{array}{cc}
e \diamond e^{\prime} & u^{\prime}+u f^{\prime} \\
0 & f f^{\prime}
\end{array}\right) \\
& =E \diamond E^{\prime},
\end{aligned}
$$

we see that $\mathcal{E}\left(R^{\diamond}\right)$ is a right regular band. It follows that R^{\diamond} is a right inverse semigroup.

We now proceed to prove R° is right inverse. It suffices to prove that $\mathcal{E}\left(R^{\circ}\right)$ is right regular since R° is regular by Lemma 3.4. Note that

$$
\mathcal{E}\left(R^{\circ}\right)=\left\{\left.\left(\begin{array}{cc}
e & u \\
0 & f
\end{array}\right) \right\rvert\, e \in \mathcal{E}\left(S^{\circ}\right), f \in \mathcal{E}\left(T^{\circ}\right), u(1+f)=0\right\}
$$

by Lemma 3.4. For $F, F^{\prime} \in \mathcal{E}\left(R^{\circ}\right)$, let $F=\left(\begin{array}{cc}e & u \\ 0 & f\end{array}\right)$ and $F^{\prime}=\left(\begin{array}{cc}e^{\prime} & u^{\prime} \\ 0 & f^{\prime}\end{array}\right)$. Then

$$
\begin{aligned}
& F \circ F^{\prime}=\left(\begin{array}{cc}
e \circ e^{\prime} & u^{\prime}+u\left(1+f^{\prime}\right) \\
0 & f \circ f^{\prime}
\end{array}\right), \\
F^{\prime} \circ F \circ F^{\prime} & =\left(\begin{array}{cc}
e^{\prime} & u^{\prime} \\
0 & f^{\prime}
\end{array}\right) \circ\left(\begin{array}{cc}
e \circ e^{\prime} & u^{\prime}+u\left(1+f^{\prime}\right) \\
0 & f \circ f^{\prime}
\end{array}\right) \\
& =\left(\begin{array}{cc}
e^{\prime} \circ e \circ e^{\prime} & u^{\prime}+u^{\prime}+u\left(1+f^{\prime}\right)+u^{\prime}\left(f \circ f^{\prime}\right) \\
0 & f^{\prime} \circ f \circ f^{\prime}
\end{array}\right) \\
& =F \circ F^{\prime},
\end{aligned}
$$

since $\mathcal{E}\left(S^{\circ}\right)$ is right regular, $\mathcal{E}\left(T^{\circ}\right)$ is a semilattice, and $u^{\prime}\left(1+f \circ f^{\prime}\right)=0$. It follows that $\mathcal{E}\left(R^{\circ}\right)$ is right regular, as required.

Theorem 4.2. A ring R has a right inverse $G A$-semigroup if and only if R° is right inverse. Moreover, a GA-semigroup R^{\diamond} of R is right inverse if and only if $R^{\circ} \simeq \mathcal{M}_{11}^{\diamond}(S, T, U, 0)$, where S° is right inverse, T is a strongly regular ring, and $\mathcal{E}(S) U=0$.

Proof. It follows from Lemma 4.1 and Theorem 3.1.
Lemma 4.3. For $e \in \mathcal{E}\left(R^{\diamond}\right)$ and $x \in R$, we have

$$
e+e \diamond x-e \diamond x \diamond e \in \mathcal{E}\left(R^{\diamond}\right) \text { and } e+x \diamond e-e \diamond x \diamond e \in \mathcal{E}\left(R^{\diamond}\right) .
$$

Proof. Let $a=e+e \diamond x-e \diamond x \diamond e$, then $a \diamond e=e$ and $e \diamond a=a$, whence

$$
a \diamond a=a \diamond(e \diamond a)=(a \diamond e) \diamond a=e \diamond a=a .
$$

The other can be proved dually.

Lemma 4.4. If idempotents of R^{\diamond} commute, then idempotents are central in R^{\diamond}.
Proof. Suppose idempotents of R^{\diamond} commute. For any $e \in \mathcal{E}\left(R^{\diamond}\right)$ and $x \in R$, let $a=e+e \diamond x-e \diamond x \diamond e$. Then $a \in \mathcal{E}\left(R^{\diamond}\right)$ by Lemma 4.3, and so $e \diamond a=a \diamond e$, yielding $e \diamond x=e \diamond x \diamond e$. Dually, $x \diamond e=e \diamond x \diamond e$. Thus $e \diamond x=x \diamond e$ for any $x \in R$.

Lemma 4.5. Let $R=\mathcal{M}(S, T, U, V)$. Then the $E_{11}-G A$-semigroup R^{\diamond} is inverse if and only if S° is an inverse semigroup, T is a strongly regular ring, and $U=$ $V=0$.

Proof. The lemma follows from Lemma 4.1 and its left-hand version.

Theorem 4.6. The following statements are equivalent for a GA-semigroup R^{\diamond} of R.
(i) R^{\diamond} is inverse;
(ii) R^{\diamond} is a regular semigroup in which idempotents are all central;
(iii) $R^{\diamond} \simeq R_{0}^{\bullet} \times R_{1}^{\circ}$, where R_{0} and R_{1} are ideals of R such that $R=R_{0} \oplus R_{1}, R_{0}$ is a strongly regular ring and R_{1}° is inverse.

Proof. (i) \Leftrightarrow (ii) follows from Lemma 4.4 and [3, Theorem 1.17]. Since the idempotents are central in a ring with inverse adjoint semigroup by [4, Theorem 6] or $\left[6\right.$, Theorem 17], (iii) \Rightarrow (ii) is clear. Now suppose R^{\diamond} is inverse. Then by Theorem 3.1 and Lemma $4.5, R^{\diamond} \simeq \mathcal{M}_{11}^{\diamond}(S, T, 0,0)$, where S° is inverse and T is a strongly regular ring. It is clear that $\mathcal{M}_{11}^{\circ}(S, T, 0,0) \simeq S^{\circ} \times T^{\bullet}$, proving (i) \Rightarrow (iii).

Theorem 4.7. A ring R has an inverse $G A$-semigroup if and only if R° is inverse.

Proof. The sufficiency is trivial. For the necessity, if a GA-semigroup R^{\diamond} is inverse, then by Theorem 4.6, we have that $R=R_{0} \oplus R_{1}$, where R_{0} and R_{1} are ideals of R such that R_{0} is a strongly regular ring and R_{1}° is inverse. Clearly $R^{\circ} \cong R_{0} \oplus R_{1}$. Since the adjoint semigroup of a strongly regular ring is inverse by [4, Theorem $6]$ or $\left[6\right.$, Theorem 17], we have R° is inverse.

Recall that a regular semigroup is called pseudoinverse if and only if $e S e$ is inverse for any $e \in \mathcal{E}(S)$, if and only if idempotents of $e S e$ commute for any $e \in \mathcal{E}(S)$ ([9, IX.3]). We note that R^{\bullet} is pseudoinverse if and only if R is a strongly regular ring. Since R° has identity, R° is pseudoinverse if and only if it is inverse. In [6], we described the ring such that $e \circ R \circ e$ is inverse for any idempotent $e \neq 0$.

Lemma 4.8. Let $R=\mathcal{M}(S, T, U, V)$. Then the $E_{11}-G A$-semigroup R^{\diamond} is pseudoinverse if and only if S° is an inverse semigroup, T is a strongly regular ring, and $\mathcal{E}(S) U=V \mathcal{E}(S)=U T=T V=V U=0$, and if so, then R° is inverse.

Proof. Suppose R^{\diamond} is pseudoinverse. Then T is a regular ring by Lemma 3.2. For any $f \in \mathcal{E}(T)$ let $A=\left(\begin{array}{ll}0 & 0 \\ 0 & f\end{array}\right)$. Then $A \in \mathcal{E}\left(R^{\diamond}\right)$ and $A \diamond R \diamond A=\left(\begin{array}{cc}S & U f \\ f V & f T f\end{array}\right)$. Since $A \diamond R \diamond A$ is inverse, we have by Lemma 4.5 that S° is an inverse semigroup, $f T f$ is a strongly regular ring and $U f=f V=0$. Thus T is a strongly regular ring and so $U T=T V=0$. Noting that $V U \subseteq T$, one sees that $(V U)^{2} \subseteq V(U T)=0$, implying that $V U=0$, since T is a strongly regular ring. Since R^{\diamond} is regular, $\mathcal{E}(S) U=V \mathcal{E}(S)=0$ by Lemma 3.4.

Now we prove the sufficiency. By Lemma 3.4,

$$
\mathcal{E}\left(R^{\diamond}\right)=\left\{\left.\left(\begin{array}{cc}
-e-u v & u \\
v & f
\end{array}\right) \right\rvert\, e \in \mathcal{E}(S), f \in \mathcal{E}(T), u \in U, v \in V\right\} .
$$

For any $u \in U$ and $v \in V$ let

$$
\mathcal{E}_{u, v}=\left\{\left.\left(\begin{array}{cc}
-e-u v & u \\
v & f
\end{array}\right) \right\rvert\, e \in \mathcal{E}(S) \text { and } f \in \mathcal{E}(T)\right\} .
$$

Then $\mathcal{E}(R)=\bigcup_{(u, v) \in U \times V} \mathcal{E}_{u, v}$. For any $A, B \in \mathcal{E}\left(R^{\diamond}\right)$, straightforward computation shows that $A \diamond B=B \diamond A$ if and only if $A, B \in \mathcal{E}_{u, v}$ for some $u \in U$ and $v \in V$. It follows that the commutativity defines an equivalence relation on $\mathcal{E}\left(R^{\diamond}\right)$ whose set of equivalence classes consists of $\mathcal{E}_{u, v},(u, v) \in U \times V$. Now for any $B \in \mathcal{E}_{u, v}$, idempotents of $B \diamond R \diamond B$ commute with B, implying that idempotents of $B \diamond R \diamond B$ commute. Thus R° is pseudoinverse. We need to prove that R° is inverse. To do this, we observe that R° is regular and $\mathcal{E}(R)=\left(\begin{array}{cc}\mathcal{E}(S) & 0 \\ 0 & \mathcal{E}(T)\end{array}\right)$ by Lemma 3.4. Thus $\mathcal{E}\left(R^{\circ}\right)=\left(\begin{array}{cc}\mathcal{E}\left(S^{\circ}\right) & 0 \\ 0 & \mathcal{E}\left(T^{\circ}\right)\end{array}\right)$ and $\mathcal{E}\left(R^{\circ}\right)$ is a semilattice. It follows that R° is inverse by [3, Theorem 1.17].

Theorem 4.9. A GA-semigroup R^{\diamond} of a ring is a pseudoinverse semigroup if and only if $R^{\diamond} \simeq \mathcal{M}_{11}^{\diamond}(S, T, U, V)$, where S° is inverse, T is a strongly regular ring, and $\mathcal{E}(S) U=V \mathcal{E}(S)=U T=T V=V U=0$.

Proof. It is an immediate consequence of Theorem 3.1 and Lemma 4.8.

Theorem 4.10. The following statements for a ring R are equivalent.
(i) R has a pseudoinverse $G A$-semigroup;
(ii) R has an inverse $G A$-semigroup;
(iii) R° is inverse.

Proof. (i) \Leftrightarrow (iii) follows from Lemma 4.8 and (ii) \Leftrightarrow (iii) is Theorem 4.7.

Theorem 4.11. Every GA-semigroup of R is inverse (orthodox, pseudoinverse) if and only if R is a strongly regular ring.

Proof. If R^{\bullet} is inverse (orthodox, pseudoinverse), then R is a strongly regular ring. Conversely, if R is a strongly regular ring, then by Theorem $2.8, R^{\diamond} \simeq R_{0}^{\bullet} \times R_{1}^{\circ}$ for some ideals R_{0} and R_{1} of R such that $R=R_{0} \oplus R_{1}$. Note that R_{0} and R_{1} are strongly regular rings. Then we have that R_{0}^{\bullet} and R_{1}° are inverse semigroups, and so R^{\diamond} is an inverse semigroup.

5. E-unitary GA-semigroups

Recall that a regular semigroup S is called E-unitary if for any $a \in S$ and $e \in \mathcal{E}(S)$, $a e \in \mathcal{E}(S)$ implies $a \in \mathcal{E}(S)$, and this is equivalent to that ea $\in \mathcal{E}(S)$ implies $a \in \mathcal{E}(S)$ for any $e \in \mathcal{E}(S)$ and $a \in S([9])$. Clearly, R^{\bullet} is E-unitary if and only if R is a Boolean ring, for $a 0=0$ for any $a \in R$. In [6], we presented a characterization of the rings with E-unitary adjoint semigroups.

Lemma 5.1. Let $R=\mathcal{M}(S, T, U, V)$. Then the $E_{11}-G A$-semigroup R^{\diamond} is E unitary if and only if S° is E-unitary, T is a Boolean ring, and $\mathcal{E}(S) U=V \mathcal{E}(S)=$ $U T=T V=U V=V U=0$.

Proof. Suppose that R^{\diamond} is E-unitary. Then S° and T^{\bullet} are clearly E-unitary by Lemma 3.4, and hence T is a Boolean ring. Let $A=\left(\begin{array}{cc}0 & u \\ v & t\end{array}\right)$. Then $A \diamond 0=$ $\left(\begin{array}{cc}0 & 0 \\ v & 0\end{array}\right) \in \mathcal{E}\left(R^{\diamond}\right)$, and so $\left(\begin{array}{cc}0 & u \\ v & t\end{array}\right) \in \mathcal{E}\left(R^{\diamond}\right)$, that is,

$$
\left(\begin{array}{cc}
0 & u \\
v & t
\end{array}\right)=A=A \diamond A=\left(\begin{array}{cc}
1 & u \\
v & t
\end{array}\right)\left(\begin{array}{cc}
1 & u \\
v & t
\end{array}\right)-E_{11}=\left(\begin{array}{cc}
u v & u+u t \\
v+t v & v u+t^{2}
\end{array}\right)
$$

from which it follows that $U V=U T=T V=0$ and so $V U=0$ since $(V U)^{2}=0$ and T is a Boolean ring. Since R^{\diamond} is regular, $\mathcal{E}(S) U=V \mathcal{E}(S)=0$ by Lemma 3.4. The necessity is proved.

Now we prove the sufficiency. By Lemma 3.4,

$$
\mathcal{E}\left(R^{\diamond}\right)=\left(\begin{array}{cc}
\mathcal{E}\left(S^{\circ}\right) & U \tag{15}\\
V & T
\end{array}\right)
$$

since T is a Boolean ring. For any $A=\left(\begin{array}{cc}s & u \\ v & t\end{array}\right) \in R$ and $E=\left(\begin{array}{cc}e & y \\ z & f\end{array}\right) \in$ $\mathcal{E}\left(R^{\diamond}\right)$, if $A \diamond E=\left(\begin{array}{cc}s \circ e & (1+s) y \\ v & t f\end{array}\right) \in \mathcal{E}\left(R^{\diamond}\right)$, then $s \circ e \in \mathcal{E}\left(S^{\circ}\right)$ by (15), and so $s \in \mathcal{E}\left(S^{\circ}\right)$ since S° is E-unitary. Therefore, $A \in \mathcal{E}\left(R^{\circ}\right)$ by (15).

Lemma 5.2. If R° is E-unitary, then R is a direct sum of a Boolean ring and a radical ring.
Proof. By [6, Theorem 23], R is an extension of a Boolean ring by a radical ring. Let B be a Boolean ideal of R such that R / B is a radical ring. Observing that idempotents of R are central, we see that B is contained in the center of R. For any $a \in R$ there exists $b \in R$ such that $a \circ b \in B$. Let $e=a \circ b$. For any $f \in B$, we have that

$$
f(1-e) a \circ f(1-e) b=f(1-e)(a \circ b)=0
$$

Since $f(1-e) a \in B$, we have that $f(1-e) a=0$. Thus $(1-e) a \in A n n_{R}(B)$, whence $a=e a+(1-e) a \in B+A n n_{R}(B)$. Since B is semiprime, $B \cap A n n_{R}(B)=0$. Hence $R=B \oplus A n n_{R}(B)$ and $A n n_{R}(B)$ is a radical ring since R / B is a radical ring.

Theorem 5.3. A GA-semigroup R^{\diamond} of a ring R is E-unitary if and only if $R^{\diamond} \simeq$ $\mathcal{M}_{11}^{\otimes}(S, T, U, V)$, where S is a direct sum of a Boolean ring with a radical ring, T is a Boolean ring, and $\mathcal{E}(S) U=V \mathcal{E}(S)=U T=T V=U V=V U=0$.
Proof. It follows from Theorem 3.1, Lemma 5.1, and Lemma 5.2.
Theorem 5.4. The following conditions are equivalent for a ring R.
(i) R has an E-unitary $G A$-semigroup;
(ii) R is a direct sum of a Boolean ring with a radical ring;
(iii) R° is E-unitary.

Proof. (ii) \Rightarrow (iii) and (iii) \Rightarrow (i) are clear. Suppose that a GA-semigroup R^{\diamond} of R is E-unitary. Then by Theorem 5.3 and [7, Theorem 2.12], $R \cong \mathcal{M}(S, T, U, V)$, where S is a direct sum of a Boolean ring S_{1} with a radical ring S_{2}, T is a Boolean ring, and $\mathcal{E}(S) U=V \mathcal{E}(S)=U T=T V=U V=V U=0$. Thus

$$
R \cong\left(\begin{array}{cc}
S_{1} \oplus S_{2} & U \\
V & T
\end{array}\right)=\left(\begin{array}{cc}
S_{1} & 0 \\
0 & T
\end{array}\right) \oplus\left(\begin{array}{cc}
S_{2} & U \\
V & 0
\end{array}\right)
$$

and clearly $\left(\begin{array}{cc}S_{1} & 0 \\ 0 & T\end{array}\right)$ is a Boolean ideal and $\left(\begin{array}{cc}S_{2} & U \\ V & 0\end{array}\right)$ is the radical of $\mathcal{M}(S, T$, $U, V)$, proving (i) \Rightarrow (ii).

Corollary 5.5. A ring has a GA-semigroup which is a band if and only if it is a direct sum of a Boolean ring with a zero ring.
Proof. Suppose R^{\diamond} is a band. Then R^{\diamond} is E-unitary, and so by Theorem 5.3, $R^{\diamond} \simeq \mathcal{M}_{11}^{\diamond}(S, T, U, V)$, where S is a direct sum of a Boolean ring with a radical ring, T is a Boolean ring, and $\mathcal{E}(S) U=V \mathcal{E}(S)=U T=T V=U V=V U=0$. Since R^{\diamond} is a band, S is a Boolean ring, and so $S U=V S=0$. Therefore, by [7, Theorem 2.12], $R \cong \mathcal{M}(S, T, U, V)=\left(\begin{array}{cc}S & 0 \\ 0 & T\end{array}\right) \oplus\left(\begin{array}{cc}0 & U \\ V & 0\end{array}\right)$. Clearly $\left(\begin{array}{cc}S & 0 \\ 0 & T\end{array}\right)$ is a Boolean ideal and $\left(\begin{array}{cc}0 & U \\ V & 0\end{array}\right)$ is an ideal such that $\left(\begin{array}{cc}0 & U \\ V & 0\end{array}\right)^{2}=0$.

Suppose R is a Boolean ideal S and an ideal T such that $T^{2}=0$. Then the direct product of $S^{\bullet \bullet}$ and the right zero GA-semigroup of T gives a GA-semigroup of R which is a band.

6. Completely simple GA-semigroups

If R^{\bullet} is completely 0 -simple, then R is a division ring, while if R° is completely 0 -simple or simple, then R is a division ring or a radical ring ($[17,10]$).

If $a \in R$ is a unit in R°, we denote by a^{-}the inverse of a, i.e., the quasi-inverse of $a([14])$.

Lemma 6.1. Let $R=\mathcal{M}(S, T, U, V)$. Then the $E_{11}-G A$-semigroup R^{\diamond} is completely simple if and only if S is a radical ring and $T=0$, and if so, then R is a radical ring.
Proof. Suppose that R^{\diamond} is completely simple. Then R^{\diamond} is regular, and so S° is a regular semigroup and T is a regular ring by Lemma 3.2. Noting that 0 is a primitive idempotent of R^{\diamond}, we have that $0 \diamond R \diamond 0$ is a group by [3, Lemma 2.47]. Since $S^{\circ} \simeq 0 \diamond R \diamond 0, S$ is a radical ring. If f is an idempotent of T, then $E_{11} f=f E_{11}=0$, and so $0 \diamond f=f \diamond 0=0$, which implies that $f=0$ since 0 is primitive. Thus $T=0$.

Conversely, for any $\left(\begin{array}{cc}a & b \\ c & 0\end{array}\right),\left(\begin{array}{cc}x & y \\ z & 0\end{array}\right) \in R$, we have

$$
\left(\begin{array}{cc}
0 & 0 \\
z\left(1+x^{-}\right) & 0
\end{array}\right) \diamond\left(\begin{array}{cc}
a & b \\
c & 0
\end{array}\right) \diamond\left(\begin{array}{cc}
a^{-} \circ x & \left(1+a^{-}\right) y \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
x & y \\
z & 0
\end{array}\right),
$$

whence R^{\diamond} is a simple semigroup. By [9, Proposition II.4.7], it is sufficient to prove that 0 is a primitive idempotent in R^{\diamond}. Let $A=\left(\begin{array}{ll}e & u \\ v & 0\end{array}\right)$ be an idempotent of R^{\diamond} such that $0 \diamond A=A \diamond 0=A$. Then

$$
\left(\begin{array}{ll}
e & 0 \\
v & 0
\end{array}\right)=\left(\begin{array}{ll}
e & u \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
e & u \\
v & 0
\end{array}\right)
$$

yielding $u=v=0$. Thus $A=\left(\begin{array}{cc}e & 0 \\ 0 & 0\end{array}\right)$ and so e is an idempotent of S°, forcing $e=0$ since S is a radical ring. Hence $A=0$. It follows that 0 is a primitive
idempotent in R^{\diamond}. We now prove that R is a radical ring. Observing that R° is regular and $\mathcal{E}(R)=0$ by Lemma 3.4, we see that R° is a group, that is, R is a radical ring.

Theorem 6.2. A GA-semigroup R^{\diamond} of R is a completely simple semigroup if and only if $R^{\diamond} \simeq \mathcal{M}_{11}^{\diamond}(S, 0, U, V)$, where S is a radical ring.

Proof. It follows from Theorem 3.1 and Lemma 6.1.

Corollary 6.3. A ring has a completely (0-)simple GA-semigroup if and only if R is a (division) radical ring.

Proof. Let R^{\diamond} be a GA-semigroup of R. If R^{\diamond} is completely 0 -simple, then by [7, Theorem 2.14], $R^{\bullet} \simeq R^{\diamond}$ is completely 0 -simple, and so R is a division ring. If R^{\diamond} is completely simple, then $R^{\diamond} \simeq \mathcal{M}_{11}^{\diamond}(S, 0, U, V)$, where S is a radical ring by Theorem 6.2, and so $R \cong \mathcal{M}(S, 0, U, V)$ is a radical ring by Lemma 6.1 and [7, Theorem 2.12]. The sufficiency is clear.

We conclude that

$$
\begin{aligned}
R^{\bullet} \text { has the property } \mathbf{P} & \Rightarrow R^{\circ} \text { has the property } \mathbf{P} \\
& \Rightarrow R^{\circ} \text { has the property } \mathbf{P},
\end{aligned}
$$

where \mathbf{P} stands for orthodox, right inverse, inverse, pseudoinverse, E-unitary, and completely simple, respectively.

References

[1] Andrunakievic, V. A.: Halbradikale Ringe. (Russian) Izv. Akad. Nauk SSSR, Ser. Mat. 12 (1948), 129-178 (1948). Zbl 0029.24802
[2] Clark, W. E.: Generalized radical rings. Canad, J. Math. 20 (1968), 88-94. Zbl 0172.04602
[3] Clifford, A. H.; Preston, G. B.: The Algebraic Theory of Semigroups. Vol. 1, Am. Math. Soc., Providence, RI, 1961. Zbl 0111.03403
[4] Du, X.: The structure of generalized radical rings. Northeastern Math. J. 4 (1988), 101-114.

Zbl 0665.16007
[5] Du, X.: The rings with regular adjoint semigroups. Northeastern Math. J. 4 (1988), 463-468.

Zbl 0697.16007
[6] Du, X.: The adjoint semigroup of a ring. Commun. Algebra 30 (2002), 45074525.

Zbl 1030.16012
[7] Du, X.: Generalized adjoint semigroups of a ring, (to appear).
[8] Goodearl, K. R.: Von Neumann Regular Rings. Pitman, London 1979.
[9] Grillet, P. A.: Semigroups: an Introduction to the Structure Theory. Pure Appl. Math. 193, Marcel Dekker, Inc., New York 1995. Zbl 0830.20079 Zbl 0874.20039
[10] Heatherly, H.; Tucci, R. P.: The circle semigroup of a ring. Acta Math. Hung. 90 (2001), 231-242. Zbl 0973.20059
[11] Heatherly, H. E.; Tucci, R. P.: Adjoint regular rings. Int. J. Math. Math. Sci. 30 (2002), 459-466.

Zbl 1014.16020
[12] Heatherly, H.; Tucci, R. P.: Adjoint Clifford rings. Acta Math. Hung. 95 (2002), 75-82.

Zbl 0997.16015
[13] Howie, J. M.: An Introduction to Semigroup Theory. Academic Press, New York 1976.

Zbl 0355.20056
[14] Jacobson, N.: Structure of Rings. Amer. Math. Soc. Colloq. Publ. 37, Am. Math. Soc., Providence, RI, 1956.

Zbl 0073.02002
[15] Kelarev, A. V.: Generalized radical semigroup rings. Southeast Asian Bull. Math. 21 (1997), 85-90.

Zbl 0890.16009
[16] Kelarev, A. V.: On rings with inverse adjoint semigroups. Southeast Asian Bull. Math. 23 (1999), 431-436.

Zbl 0945.16017
[17] Petrich, M.: Rings and Semigroups. Lecture Notes in Mathematics 380, Springer-Verlag, New York 1974.

Zbl 0278.20068
[18] Venkatesan, P. S.: Right (Left) inverse semigroups. J. Algebra 31 (1974), 209-217.

Zbl 0301.20058

Received November 5, 2005

