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Abstract. In this paper, we characterize a ring with a generalized
adjoint semigroup having a property P and such generalized adjoint
semigroups, where P stands for orthodox, right inverse, inverse, pseu-
doinverse, E-unitary, and completely simple, respectively. Surprisingly,
if R has a GA-semigroup with a property P, then the adjoint semigroup
of R has the property P.
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1. Introduction

Based on the paper [7], we continue our study of generalized adjoint semigroups
(GA-semigroup) of a ring. In the present paper we are concerned with the de-
scription of a ring R with a GA-semigroup having a property P and such GA-
semigroups of R, where P stands for orthodox, right inverse, inverse, pseudoin-
verse, E-unitary, and completely simple, respectively.

Let R be a ring not necessarily with identity. The composition defined by
a◦b = a+b+ab for any a, b ∈ R is usually called the circle or adjoint multiplication
of R. It is well-known that (R, ◦) is a monoid with identity 0, called the circle or
adjoint semigroup of R, denoted by R◦. There are many interesting connections
between a ring and its adjoint semigroup, which were studied in several papers,
for example, [2, 4, 5, 6, 10, 11, 12, 15, 16]. Typical results are to describe the
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adjoint semigroup of a given ring and the ring with a given semigroup as its
adjoint semigroup.

The circle multiplication of a ring satisfies the following generalized distribu-
tive laws:

a ◦ (b + c− d) = a ◦ b + a ◦ c− a ◦ d, (1)

(b + c− d) ◦ a = b ◦ a + c ◦ a− d ◦ a, (2)

which was observed in [1]. Thus as generalizations of the circle multiplication
of a ring, a binary operation � (associative or nonassociative) on an Abelian
group A satisfying the generalized distributive laws have been studied by several
authors making use of different terminologies, for example, pseudo-rings, weak
rings, quasirings, prerings. In [7], we call a binary operation � on R is called a
generalized adjoint multiplication on R, if it satisfies the following conditions:

(i) the associative law: x � (y � z) = (x � y) � z;

(ii) the generalized distributive laws:

x � (y + z) = x � y + x � z − x � 0,

(y + z) � x = y � x + z � x− 0 � x;

(iii) the compatibility: xy = x � y − x � 0− 0 � y + 0 � 0.

The semigroup (R, �) is called a generalized adjoint semigroup of R, abbreviated
GA-semigroup and denoted by R�, which is a generalization of the multiplicative
semigroup and the adjoint semigroup of a ring R. Essentially, the multiplicative
and adjoint semigroup of R are exactly generalized adjoint semigroup of R with
zero and identity, respectively ([7, Theorem 2.14]).

In Section 2, we prove that a GA-semigroup with central idempotents is a
product of a multiplicative semigroup and an adjoint semigroup of ideals. The
GA-semigroups of a strongly regular ring are determined.

The remaining sections are devoted to the description of the rings with a
GA-semigroup having a property P and its such GA-semigroups in terms of the
ring of a Morita context, where P stands for orthodox, right inverse, inverse,
pseudoinverse, E-unitary, and completely simple, respectively. Surprisingly, we
observe the following implication:

R• has the property P ⇒ R� has the property P ⇒ R◦ has the property P,

where R• denotes the multiplicative semigroup of R.
Throughout, the set of idempotents of a semigroup or ring S will be denoted

by E(S). For a ring R denote by R• and R◦ the multiplicative and the adjoint
semigroup of R, respectively. It is easy to see that an element e of a ring R is an
idempotent of R◦ if and only if e + e2 = 0, that is, −e is an idempotent of R•,
and hence E(R) = E(R•) = −E(R◦).

Although a ring R in this paper needs not contain identity, it is convenient to
use a formal identity 1, which can be regarded as the identity of a unitary ring
containing R, since R can be always embedded into a ring with identity 1; for
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example, we can write a ◦ b = (1 + a)(1 + b)− 1 for any a, b ∈ R and write x0 = 1
for any x ∈ R by making use of a formal 1.

A radical ring means a Jacobson radical ring. For the algebraic theory and
terminology on semigroups we will refer to [3, 9, 13].

2. GA-semigroups with central idempotents

Recall that we call a GA-semigroups R� of R affinely isomorphic to the GA-
semigroup S� of the ring S, notionally R� ' S�, if there exists a bijection φ from
R onto S such that

φ(x + y − z) = φ(x) + φ(y)− φ(z) and φ(x � y) = φ(x) � φ(y)

for any x, y, z ∈ M . If R� ' S�, then R ∼= S ([7, Theorem 2.12]). R� is called
(centrally) 0-idempotent if the additive 0 of R is an (central) idempotent in R�

([7]). One should note that (centrally) 0-idempotent is not an affinely isomorphic
invariant. However, we have:

Lemma 2.1. ([7, Lemma 4.1]) Every GA-semigroup containing an (central) idem-
potent is affinely isomorphic to a (centrally) 0-idempotent one.

Lemma 2.2. ([7, Corollary 4.4]) A GA-semigroup R� is (centrally) 0-idempotent
if and only if there exists an ideal extension R̃ of R and an idempotent ε ∈ R̃
(commuting with elements of R) such that x � y = (x + ε)(y + ε) − ε for any
x, y ∈ R.

Let R�
i , i = 1, 2, . . . , n, be GA-semigroups of rings Ri. Then the direct product

n∏
i=1

R�
i is a GA-semigroup of the ring

n∏
i=1

Ri, called the direct product of R�
i , i =

1, 2, . . . , n.

Example 2.3. Let R be a direct sum of ideals R0 and R1. For any x = a + b
and y = a′ + b′, a, a′ ∈ R0, b, b′ ∈ R1, define x � y = a′a + b ◦ b′. Then R� is a
GA-semigroup of R. Clearly, R� ' R•

0 ×R◦
1.

Example 2.4. Let R be a zero ring, i.e., R2 = 0. Define x � y = y for any
x, y ∈ R. Then R� is a GA-semigroup of R, called the right zero GA-semigroup
of R. Symmetrically, one can define the left zero GA-semigroup of R.

Theorem 2.5. R� has a central idempotent if and only if R� ' R•
0×R◦

1 for some
ideals R0 and R1 of R such that R = R0 ⊕R1.

Proof. The sufficiency is immediate. For the necessity, suppose that R contains
a central idempotent e. Without loss of generality, we can assume 0 is a central
idempotent in R� by Lemma 2.1. Then we can complete the proof by taking
R0 = εR and R1 = (1− ε)R from Lemma 2.2. �

A duo ring is a ring in which one-sided ideals are ideals.
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Lemma 2.6. Let R� be a GA-semigroup of a duo ring R. If R� contains idem-
potents, then R� ' R•

0 × R◦
1 × R�

2 × R�
3, where Ri, i = 1, 2, 3, are ideal of R such

that R = R0 ⊕ R1 ⊕ R2 ⊕ R3, R2
2 = R2

3 = 0, R�
2 is the left zero GA-semigroup of

R2, and R�
3 is the right zero GA-semigroup of R3.

Proof. By Lemma 2.1 we can assume that R� is a 0-idempotent GA-semigroup.
Put R0 = εRε, R1 = (1− ε)R(1− ε), R2 = εR(1− ε), and R3 = (1− ε)Rε, where
ε is as in Lemma 2.2. Note that R0 = εR ∩ Rε. Then we have that R0 is an
ideal of R since R is a duo ring. Similarly, R1, R2, and R3 are ideals of R, and
R = R0 ⊕R1 ⊕R2 ⊕R3. The rest is routine. �

Corollary 2.7. Let R� be a GA-semigroup of a commutative π-regular ring. Then
R� ' R•

0 × R◦
1 × R�

2 × R�
3, where Ri, i = 0, 1, 2, 3, are ideals of R such that

R = R0 ⊕ R1 ⊕ R2 ⊕ R3, R2
2 = R2

3 = 0, R�
2 is the left zero GA-semigroup of R2,

and R�
3 is the right zero GA-semigroup of R3.

Theorem 2.8. Any GA-semigroup R� of a strongly regular ring contains central
idempotents, and so R� ' R•

0 × R◦
1 for some ideals R0 and R1 of R such that

R = R0 ⊕R1.

Proof. It follows from [7, Theorem 3.5], Lemma 2.6 and the fact that a strongly
regular ring is a duo ring ([8, Theorem 3.2]). �

Corollary 2.9. The following statements for a ring R are equivalent.

(i) R is a Boolean ring;

(ii) R has a GA-semigroup is a semilattice;

(iii) any GA-semigroup of R is a semilattice.

Proof. (iii)⇒(ii) is trivial.

(ii)⇒(i): If a GA-semigroup R� is a semilattice, then by Theorem 2.5, R� '
R•

0 × R◦
1, where R0 and R1 are ideals of R such that R = R0 ⊕ R1. Since R� is a

semilattice, R•
0 and R◦

1 are semilattices, implying that R is a Boolean ring.

(i)⇒(iii): Let R� be a GA-semigroup of R. Since R is a Boolean ring, by Theorem
2.8, R� ' R•

0×R◦
1, where R0 and R1 are ideals of R such that R = R0⊕R1. Since

R is a Boolean ring, R� is a semilattice. �

3. Orthodox GA-semigroups

Given two rings S and T , denote by S̃ and T̃ the Dorroh extension of S and T ,

respectively. Let R̃ =

(
S̃ U

V T̃

)
be the ring of the Morita context with bimodules

SUT and T VS, which are considered as unitary S̃-T̃ and T̃ -S̃ bimodules in a natural

way, respectively. Let R =

(
S U
V T

)
. Then R is an ideal of R̃. We call R the

ring of the Morita context or a Morita ring, and denote by M(S, T, U, V ). Let
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E11 =

(
1 0
0 0

)
∈ R̃. Then the generalized adjoint multiplication induced by E11

is given by

A �B = AB + AE11 + E11B

= (A + E11)(B + E11)− E11

=

(
s ◦ s′ + uv′ (1 + s)u + ut′

u(1 + s′) + tv′ uu′ + tt′

)

for any A =

(
s u
v t

)
, B =

(
s′ u′

v′ t′

)
∈ R. The semigroup R� is called the

E11-GA-semigroup of R, denoted by M�
11(S, T, U, V ). It is clear that the E11-GA-

semigroup M�
11(S, T, U, V ) is 0-idempotent ([7]).

Theorem 3.1. ([7, Theorem 4.3]) Let R� be a GA-semigroup of R. If R� con-
tains idempotents, then there exists a Morita ring M(S, T, U, V ) such that R ∼=
M(S, T, U, V ) and R� 'M�

11(S, T, U, V ).

A ring R is called adjoint regular if its adjoint semigroup R◦ is a regular semigroup
([5, 11]).

Lemma 3.2. Let R = M(S, T, U, V ) and let R� be the E11-GA-semigroup of R.
If R� is regular, then S is an adjoint regular ring and T is a regular ring.

Proof. Let R0 =

(
S 0
0 0

)
and R1 =

(
0 0
0 T

)
. Then we have R�

0 = R◦
0 ' S◦

and R�
1 = R•

0 ' T •.
Suppose R� is regular. For any a ∈ R0, there exists x ∈ R such that a = a�x�a.

Noting that 0 � a � 0 = E11aE11 = a and 0 � 0 = 0, we see that a = a � 0 � x � 0 � a,
and 0 � x � 0 = E11xE11 ∈ R0, whence R�

0 is regular and so S◦ is regular.

For any t ∈ T , let A =

(
0 0
0 t

)
. Then there exists B =

(
a u
v b

)
∈ R such

that

A = A �B � A =

(
1 0
0 t

) (
1 + a u

v b

) (
1 0
0 t

)
− E11 =

(
a ut
tv tbt

)
,

yielding t = tbt for some b ∈ T . Thus T is a regular ring. �

Lemma 3.3. If a− a � b � a + a � c � a be regular in R� for some b, c ∈ R, then a
is regular in R�.

Proof. Let x = a − a � b � a + a � c � a. Then x = x � y � x for some y ∈ R. Let
z = y − b � a � y + c � a � y. Then

x � y � x = a � (y − b � a � y + c � a � y) � x

= a � z � x

= a � (z − z � a � b + z � a � c) � a.
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Thus

a = a � b � a− a � c � a + a � (z − z � a � b + z � a � c) � a

= a � (b− c + z − z � a � b + z � a � c) � a,

as desired. �

Lemma 3.4. Let R = M(S, T, U, V ) with V U = 0. Then the E11-GA-semigroup
R� is regular if and only if S is an adjoint regular ring, T is a regular ring and
E(S)U = V E(S) = 0, and if so, then

(i) R is an adjoint regular ring;

(ii) E(R�) =

{(
−e− uv u(1− f)
(1− f)v f

)
| e ∈ E(S), f ∈ E(T ), u ∈ U, v ∈ V

}
;

(iii) E(R) =

{(
e + uv uf

fv f

)
| e ∈ E(S), f ∈ E(T ), u ∈ U, v ∈ V

}
.

Proof. Suppose that R� is regular. Then by Lemma 3.2 we see that S is an adjoint
regular ring and T is a regular ring. Now for any e ∈ E(S◦) and u ∈ U there

exists

(
s y
z t

)
such that

(
e u
0 0

)
=

(
e u
0 0

)
�

(
s y
z t

)
�

(
e u
0 0

)
=

(
1 + e u

0 0

) (
1 + s y

z t

) (
1 + e u

0 0

)
− E11

=

(
e ◦ s ◦ e + uz(1 + e) (1 + e ◦ s + uz)u

0 0

)
,

forcing that (e ◦ s)u = 0, since (uz)u = u(zu) = 0. Observing e = −e(e ◦ s), we
can see that eu = −e(e ◦ s)u = 0, from which it follows that E(S◦)U = 0. Since
E(S) = −E(S◦), we have that E(S)U = 0. Symmetrically, V E(S) = 0.

Conversely, suppose that S is an adjoint regular ring, T is a regular ring and
E(S)U = V E(S) = 0. Let I be the ideal of S generated by E(S). Then I is adjoint

regular by [5, Proposition 1] and IU = V I = 0. Let A =

(
s u
v t

)
∈ R, and s =

s◦s′◦s for some s′ ∈ S. Let B =

(
s′ 0
0 0

)
and let C = A−A�B�A+A�B�B�A.

To prove that A is regular in R�, it suffices to prove that C is regular in R� by
Lemma 3.3. A straightforward computation gives

C =

(
s ◦ s′ ◦ s′ ◦ s b

c d

)

for some b ∈ U , c ∈ V , and d ∈ T . Let a = s ◦ s′ ◦ s′ ◦ s. Then C =

(
a b
c d

)
.

Since s ◦ s′ and s′ ◦ s are idempotents of S◦, we have that a ∈ I, and so aU =
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V a = 0 and a = a ◦ a′ ◦ a for some a′ ∈ I. Let d′ ∈ T such that d = dd′d

and let x = a′ + bd′c. Then xU = V x = 0. Let D =

(
x −bd′

−d′c d′

)
. Then a

straightforward calculation shows that

C �D � C =

(
1 + a b

c d

) (
1 + x −bd′

−d′c d′

) (
1 + a b

c d

)
− E11

=

(
(a ◦ x− bd′c) ◦ a b

c d

)
.

But (a ◦ x− bd′c) ◦ a = (a ◦ a′) ◦ a = a. It follows that C �D �C = C, as desired.
To prove (i), let S1 = I + UV . Then S1 is an ideal of S, whence S1 is

an adjoint regular ring by [5, Proposition 1] and clearly S1U = V S1 = 0. Let

R1 =

(
S1 U
V T

)
. Then R1 is an ideal of R and R/R1

∼= S/S1 is a radical ring

since S/I is a radical ring by [6, Lemma 7] or [5, Theorem 3]. To prove R is
adjoint regular, it is sufficient to prove R1 is adjoint regular by [5, Theorem 3]. If

A =

(
s u
v t

)
∈ R1, then s = s ◦ s′ ◦ s for some s′ ∈ S1. Since a regular ring is

adjoint regular by [5, Theorem 1] ([6, Theorem 4], [11, Proposition 2.3]), we have
that T is an adjoint regular ring, implying that t = t ◦ t′ ◦ t for some t′ ∈ T . Let

x = s′ + u(1 + t′)v. Then xU = V x = 0. Let B =

(
x −u(1 + t′)

−(1 + t′)v t′

)
.

Then

A ◦B ◦ A

=

(
1 + s u

v 1 + t

) (
1 + x −u(1 + t′)

−(1 + t′)v 1 + t′

) (
1 + s u

v 1 + t

)
− 1

=

(
(s ◦ x− u(1 + t′)v) ◦ s u

v t

)
.

But (s ◦ x− u(1 + t′)v)◦s = (s ◦ s′)◦s = s. It follows that A◦B ◦A = A, proving
(i).

For e ∈ E(S) and f ∈ E(T ), if uf = fu = 0, then it is easy to verify that(
−e− uv u

v f

)
∈ E(R�). Conversely, let E =

(
s u
v t

)
. If E ∈ E(R�), then

E = E � E =

(
s ◦ s + uv (1 + s)u + ut

v(1 + s) + tv t2

)
, (3)

yielding s = s ◦ s + uv. Thus

s + s2 = −uv. (4)

By (4) (s + s2)2 = u(vu)v = 0, that is, ((−s)− (−s)2)2 = 0. By the R•-version of
[7, Lemma 4.5] there exists an idempotent e′ ∈ E(R) such that s2 = s2e′ = e′s2.
Noting that (s+s2)u = −u(vu) = 0 by (4), we have that su = −s2u = −s2e′u = 0,
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and dually we have that vs = 0. Since s2 + s3 = −suv = 0 by (4), one can deduce
that s2 ∈ E(R). Let e = s2. Then s = −e − uv by (4). Putting f = t, we have
f ∈ E(T ) from (3). Since su = vs = 0, we obtain that ut = tv = 0 from (3). Thus

E =

(
−e− uv u

v f

)
with e ∈ E(S), f ∈ E(T ), and uf = fv = 0, proving (ii).

For e ∈ E(S) and f ∈ E(T ), if u(1 − f) = (1 − f)u = 0, then it is easy to

verify that

(
e + uv u

v f

)
∈ E(R). Conversely, let E =

(
s u
v t

)
∈ E(R). Then

E = E2 =

(
s2 + uv su + ut
vs + tv t2

)
, (5)

yielding s = s2 +uv, that is s− s2 = uv. Similar to the proof of paragraph above,
we have s2 ∈ E(R) and su = vs = 0. Let e = s2 and f = t. Then s = e + uv and
e ∈ E(S) and f ∈ E(R). From (5) we get u = uf and v = fv, proving (iii). �

An orthodox semigroup means a regular semigroup whose idempotents constitute
a subsemigroup. A band is called regular if xyzx = xyxzx for any x, y, z ∈ E(S)
([9]).

It is easy to see that R• is an orthodox semigroup if and only if R is a strongly
regular ring. In [6], we characterize the ring such that R◦ is orthodox, and we
particularly prove that such a ring is a generalized radical ring such that E(R◦) is
a regular band ([6, Theorem 14]), where a generalized radical ring means a ring
whose adjoint semigroup is a union of groups ([2]).

Lemma 3.5. Let R = M(S, T, U, V ). Then E11-GA-semigroup R� is orthodox if
and only if S◦ is an orthodox semigroup, T is a strongly regular ring, E(S)U =
V E(S) = UV = V U = 0. Moreover, if R� is orthodox, then R� are a union of
groups and E(R�) is a regular band.

Proof. Suppose R� is an orthodox semigroup. Then by Lemma 3.4, S◦ and T • are
both orthodox semigroups, and so T is a strongly regular ring. For any x ∈ U and

y ∈ V it is easy to see that

(
0 0
y 0

)
and

(
0 x
0 0

)
are both idempotents of R�.

Since E(R�) is a semigroup,

(
0 0
y 0

)
�
(

0 x
0 0

)
=

(
0 x
y yx

)
is an idempotent

of R�, whence (
0 x
y yx

)
=

(
0 x
y yx

)
�

(
0 x
y yx

)
=

(
1 x
y yx

) (
1 x
y yx

)
− E11

=

(
xy x + xyx

y + yxy yx + (yx)2

)
,

and so xy = 0. Noting that yx is a nilpotent element of T , we see that yx = 0
since T is a strongly regular ring. Thus UV = V U = 0. Since R� is regular, we
have E(S)U = V E(S) = 0 by Lemma 3.4.
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Conversely, suppose S◦ is an orthodox semigroup, T is a strongly regular ring,
and E(S)U = V E(S) = UV = V U = 0. It suffices to prove that R� is a union of
groups and E(R�) is a regular band. By Lemma 3.4,

E(R�) =

{(
e u(1− f)

(1− f)v f

)
| e ∈ E(S◦), f ∈ E(T ), u ∈ U, v ∈ V

}
. (6)

For any A =

(
s u
v t

)
∈ R, there exist s′ ∈ S, e ∈ E(S◦), t ∈ T and f ∈ E(T )

such that s ◦ s′ = s′ ◦ s = e, e ◦ s = s ◦ e = s, and e ◦ s′ = s′ ◦ e = s since S◦ is
a union of groups by [6, Theorem 14], and tt′ = t′t = f and ft = t since T is a
strongly regular ring. Let

B =

(
e (1 + s′)u(1− f)

(1− f)v(1 + s′) f

)
,

C =

(
s′ (1 + s′ ◦ s′)u(1− f)− (1 + s′)ut′

−t′v(1 + s′) t′

)
.

Then B ∈ E(R) by (6), and a computation yields that A � B = B � A = A and
A � C = B, whence R� is completely regular and so it is a union of groups by [3,
Theorem 4.3].

Now we have to prove that E(R�) is a regular band. For E, E ′, E ′′ ∈ E(R�),

if E =

(
e u
v f

)
, E ′ =

(
e′ u′

v′ f ′

)
, E ′′ =

(
e′′ u′′

v′′ f ′′

)
, then uf = fv = u′f ′ =

f ′v′ = u′′f ′′ = f ′′v′′ = 0 by (6). Observe that

E � E ′ =

(
1 + e u

v f

) (
1 + e′ u′

v′ f ′

)
− E11

=

(
e ◦ e′ u′ + uf ′

v + fv′ ff ′

)
. (7)

Since E(S◦) is a band, we have that e ◦ e′ ∈ E(S◦). Since T is a strongly regular
ring, idempotents are contained in the center of T , and so ff ′ ∈ E(T ). Moreover,
(u′ + uf ′)ff ′ = u′f ′f + uff ′ = 0 and similarly ff ′(v + fv′) = 0. It follows from
(6) and (7) that E ◦ E ′ ∈ E(R�). Thus E(R�) is a band. Now we need to prove
E(R�) is regular. By (7), we have that

E � E ′ � E ′′

=

(
1 + e ◦ e′ u′ + uf ′

v + fv′ ff ′

) (
1 + e′′ u′′

v′′ f ′′

)
− E11

=

(
e ◦ e′ ◦ e′′ u′′ + u′f ′′ + uf ′f ′′

v + fv′ + ff ′v′′ ff ′f ′′

)
, (8)
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and by (8) we have

E � E ′ � E ′′ � E

=

(
1 + e ◦ e′ ◦ e′′ u′′ + u′f ′′ + uf ′f ′′

v + fv′ + ff ′v′′ ff ′f ′′

) (
1 + e u

v f

)
− E11

=

(
e ◦ e′ ◦ e′′ ◦ e u + u′′f + u′f ′′f

v + fv′ + ff ′v′′ ff ′f ′′

)
. (9)

Replacing x′′ by x in (8), x ∈ {u, v, e, f}, we get that

E � E ′ � E =

(
e ◦ e′ ◦ e u + u′f
v + fv′ ff ′

)
, (10)

and replacing x′ by x′′ in (10), x ∈ {u, v, e, f}, we get that

E � E ′′ � E =

(
e ◦ e′′ ◦ e u + u′′f
v + fv′′ ff ′′

)
. (11)

Thus by (7) and (11) we have that

E � E ′ � E � E ′′ � E

=

(
1 + e ◦ e′ u′ + uf ′

v + fv′ ff ′

) (
1 + e ◦ e′′ ◦ e u + u′′f

v + fv′′ ff ′′

)
− E11

=

(
e ◦ e′ ◦ e ◦ e′′ ◦ e u + u′′f + u′ff ′′

v + fv′ + ff ′v′′ ff ′f ′′

)
. (12)

Since E(S◦) is a regular band by [6, Theorem 14], we have that E �E ′ �E ′′ �E =
E �E ′ �E �E ′′ �E by (9) and (12). Hence E(R�) is a regular band, and so R� is
an orthodox semigroup. �

Theorem 3.6. The following statements are equivalent for a GA-semigroup R�

of R.

(i) R� is orthodox;

(ii) R� is a union of groups and E(R�) is a regular band;

(iii) R� ' M�
11(S, T, U, V ), where S◦ is an orthodox semigroup, T is a strongly

regular ring, and E(S)U = V E(S) = UV = V U = 0.

Proof. If follows from Lemma 3.5 and Theorem 3.1. �

Theorem 3.7. The following statements are equivalent for a ring R.

(i) R has an orthodox GA-semigroup;

(ii) R◦ is an orthodox semigroup;

(iii) R◦ is a union of groups and E(R◦) is a regular band.
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Proof. (ii)⇔(iii) follows from [6, Theorem 14] and (ii)⇒(i) is trivial. It re-
mains to prove (i)⇒(ii). Suppose that a GA-semigroup R� is orthodox. Then
by Theorem 3.1 and Theorem 3.6 we can assume that R = M(S, T, U, V ) and
R� = M�

11(S, T, U, V ), where S◦ is an orthodox semigroup, T is a strongly regular
ring, and E(S)U = V E(S) = UV = V U = 0. By Lemma 3.4, R is an adjoint
regular ring with

E(R◦) =

{(
e u
v f

)
|e ∈ E(S◦), f ∈ E(T ◦), u(1 + f) = (1 + f)v = 0

}
. (13)

If A =

(
e u
v f

)
and A′ =

(
e′ u′

v′ f ′

)
are both idempotents of R◦, then

A ◦ A′ = (1 + A)(1 + A′)− 1

=

(
1 + e u

v 1 + f

) (
1 + e′ u′

v′ 1 + f ′

)
− 1

=

(
e ◦ e′ u′ + u(1 + f ′)

v + (1 + f)v′ f ◦ f ′

)
.

Since S◦ is orthodox, e ◦ e′ ∈ E(S◦). Since T is a strongly regular ring, f ◦ f ′ =
f ′ ◦ f ∈ E(T ◦). Observing that

(u′ + u(1 + f ′)) (1 + f ′ ◦ f) = u′(1 + f ′)(1 + f) + u(1 + f)(1 + f ′) = 0

and similarly (1 + f ′ ◦ f)(v + (1 + f)v′) = 0, we see that A ◦ A′ ∈ E(R◦) by (13).
Hence E(R◦) is a band. It follows that R◦ is orthodox. �

4. Inverse GA-semigroups

Recall that a semigroup is called a right inverse semigroup if its every principal
left ideal has a unique idempotent generator. According to [18, Theorem 1], a
semigroup S is a right inverse semigroup if and only if S is a regular semigroup
in which the set E(S) of all idempotents is a right regular band, that is xy = yxy
for any x, y ∈ E(S). A semigroup is inverse if it is left and right inverse.

It is clear that R• is inverse if and only if R is a strongly regular ring. A ring
with the inverse adjoint semigroup was studied by [4, 6, 10, 11, 12, 16] and a ring
with the right inverse adjoint semigroup was described in [6].

Lemma 4.1. Let R = M(S, T, U, V ). Then the E11-GA-semigroup R� is right
inverse if and only if S◦ is a right inverse semigroup, T is a strongly regular ring,
and E(S)U = V = 0, and if so, then R◦ is right inverse.

Proof. Suppose that R� is right inverse. Then S◦ is a right inverse semigroup
and T is a strongly regular ring by Lemma 3.2. Noting that R� is orthodox, we

have that E(S)U = 0 by Lemma 3.5. For any v ∈ V , let A =

(
0 0
v 0

)
. Then

A ∈ E(R�), and hence

A = A � 0 = 0 � A � 0 = 0,
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yielding v = 0. It follows that V = 0.
Conversely, suppose that R = M(S, T, U, 0) such that S◦ is a right inverse

semigroup, T is a strongly regular ring and E(S)U = V = 0. Then the E11-GA-
semigroup R� is a regular semigroup with

E(R�) =

{(
e u
0 f

)
| e ∈ E(S◦), f ∈ E(T ), u ∈ U and uf = 0

}
(14)

by Lemma 3.4. For E, E ′ ∈ E(R�), let E =

(
e u
0 f

)
and E ′ =

(
e′ u′

0 f ′

)
. Then

uf = u′f ′ = 0 by (14). Observing that

E � E ′ =

(
1 + e u

0 f

) (
1 + e′ u′

0 f ′

)
− E11 =

(
e � e′ u′ + uf ′

0 ff ′

)
,

E ′ � E � E ′ =

(
1 + e′ u′

0 f ′

) (
1 + e � e′ u′ + uf ′

0 ff ′

)
− E11

=

(
e′ � e � e′ u′ + uf ′ + u′ff ′

0 f ′ff ′

)
=

(
e � e′ u′ + uf ′

0 ff ′

)
= E � E ′,

we see that E(R�) is a right regular band. It follows that R� is a right inverse
semigroup.

We now proceed to prove R◦ is right inverse. It suffices to prove that E(R◦)
is right regular since R◦ is regular by Lemma 3.4. Note that

E(R◦) =

{(
e u
0 f

)
|e ∈ E(S◦), f ∈ E(T ◦), u(1 + f) = 0

}

by Lemma 3.4. For F, F ′ ∈ E(R◦), let F =

(
e u
0 f

)
and F ′ =

(
e′ u′

0 f ′

)
. Then

F ◦ F ′ =

(
e ◦ e′ u′ + u(1 + f ′)

0 f ◦ f ′

)
,

F ′ ◦ F ◦ F ′ =

(
e′ u′

0 f ′

)
◦

(
e ◦ e′ u′ + u(1 + f ′)

0 f ◦ f ′

)
=

(
e′ ◦ e ◦ e′ u′ + u′ + u(1 + f ′) + u′(f ◦ f ′)

0 f ′ ◦ f ◦ f ′

)
= F ◦ F ′,

since E(S◦) is right regular, E(T ◦) is a semilattice, and u′(1+f ◦f ′) = 0. It follows
that E(R◦) is right regular, as required. �
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Theorem 4.2. A ring R has a right inverse GA-semigroup if and only if R◦ is
right inverse. Moreover, a GA-semigroup R� of R is right inverse if and only if
R� 'M�

11(S, T, U, 0), where S◦ is right inverse, T is a strongly regular ring, and
E(S)U = 0.

Proof. It follows from Lemma 4.1 and Theorem 3.1. �

Lemma 4.3. For e ∈ E(R�) and x ∈ R, we have

e + e � x− e � x � e ∈ E(R�) and e + x � e− e � x � e ∈ E(R�).

Proof. Let a = e + e � x− e � x � e, then a � e = e and e � a = a, whence

a � a = a � (e � a) = (a � e) � a = e � a = a.

The other can be proved dually. �

Lemma 4.4. If idempotents of R� commute, then idempotents are central in R�.

Proof. Suppose idempotents of R� commute. For any e ∈ E(R�) and x ∈ R, let
a = e + e � x − e � x � e. Then a ∈ E(R�) by Lemma 4.3, and so e � a = a � e,
yielding e � x = e � x � e. Dually, x � e = e � x � e. Thus e � x = x � e for any
x ∈ R. �

Lemma 4.5. Let R = M(S, T, U, V ). Then the E11-GA-semigroup R� is inverse
if and only if S◦ is an inverse semigroup, T is a strongly regular ring, and U =
V = 0.

Proof. The lemma follows from Lemma 4.1 and its left-hand version. �

Theorem 4.6. The following statements are equivalent for a GA-semigroup R�

of R.

(i) R� is inverse;

(ii) R� is a regular semigroup in which idempotents are all central;

(iii) R� ' R•
0 ×R◦

1, where R0 and R1 are ideals of R such that R = R0⊕R1, R0

is a strongly regular ring and R◦
1 is inverse.

Proof. (i)⇔(ii) follows from Lemma 4.4 and [3, Theorem 1.17]. Since the idem-
potents are central in a ring with inverse adjoint semigroup by [4, Theorem 6] or
[6, Theorem 17], (iii)⇒(ii) is clear. Now suppose R� is inverse. Then by Theorem
3.1 and Lemma 4.5, R� 'M�

11(S, T, 0, 0), where S◦ is inverse and T is a strongly
regular ring. It is clear that M�

11(S, T, 0, 0) ' S◦ × T •, proving (i)⇒(iii). �

Theorem 4.7. A ring R has an inverse GA-semigroup if and only if R◦ is in-
verse.
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Proof. The sufficiency is trivial. For the necessity, if a GA-semigroup R� is inverse,
then by Theorem 4.6, we have that R = R0⊕R1, where R0 and R1 are ideals of R
such that R0 is a strongly regular ring and R◦

1 is inverse. Clearly R◦ ∼= R0 ⊕ R1.
Since the adjoint semigroup of a strongly regular ring is inverse by [4, Theorem
6] or [6, Theorem 17], we have R◦ is inverse. �

Recall that a regular semigroup is called pseudoinverse if and only if eSe is inverse
for any e ∈ E(S), if and only if idempotents of eSe commute for any e ∈ E(S)
([9, IX.3]). We note that R• is pseudoinverse if and only if R is a strongly regular
ring. Since R◦ has identity, R◦ is pseudoinverse if and only if it is inverse. In [6],
we described the ring such that e ◦R ◦ e is inverse for any idempotent e 6= 0.

Lemma 4.8. Let R = M(S, T, U, V ). Then the E11-GA-semigroup R� is pseu-
doinverse if and only if S◦ is an inverse semigroup, T is a strongly regular ring,
and E(S)U = V E(S) = UT = TV = V U = 0, and if so, then R◦ is inverse.

Proof. Suppose R� is pseudoinverse. Then T is a regular ring by Lemma 3.2. For

any f ∈ E(T ) let A =

(
0 0
0 f

)
. Then A ∈ E(R�) and A�R�A =

(
S Uf

fV fTf

)
.

Since A �R �A is inverse, we have by Lemma 4.5 that S◦ is an inverse semigroup,
fTf is a strongly regular ring and Uf = fV = 0. Thus T is a strongly regular ring
and so UT = TV = 0. Noting that V U ⊆ T , one sees that (V U)2 ⊆ V (UT ) = 0,
implying that V U = 0, since T is a strongly regular ring. Since R� is regular,
E(S)U = V E(S) = 0 by Lemma 3.4.

Now we prove the sufficiency. By Lemma 3.4,

E(R�) =

{(
−e− uv u

v f

)
|e ∈ E(S), f ∈ E(T ), u ∈ U, v ∈ V

}
.

For any u ∈ U and v ∈ V let

Eu,v =

{(
−e− uv u

v f

)
|e ∈ E(S) and f ∈ E(T )

}
.

Then E(R) =
⋃

(u,v)∈U×V

Eu,v. For any A, B ∈ E(R�), straightforward computation

shows that A � B = B � A if and only if A, B ∈ Eu,v for some u ∈ U and v ∈ V .
It follows that the commutativity defines an equivalence relation on E(R�) whose
set of equivalence classes consists of Eu,v, (u, v) ∈ U × V . Now for any B ∈ Eu,v,
idempotents of B �R�B commute with B, implying that idempotents of B �R�B
commute. Thus R� is pseudoinverse. We need to prove that R◦ is inverse. To do

this, we observe that R◦ is regular and E(R) =

(
E(S) 0

0 E(T )

)
by Lemma 3.4.

Thus E(R◦) =

(
E(S◦) 0

0 E(T ◦)

)
and E(R◦) is a semilattice. It follows that R◦

is inverse by [3, Theorem 1.17]. �
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Theorem 4.9. A GA-semigroup R� of a ring is a pseudoinverse semigroup if and
only if R� ' M�

11(S, T, U, V ), where S◦ is inverse, T is a strongly regular ring,
and E(S)U = V E(S) = UT = TV = V U = 0.

Proof. It is an immediate consequence of Theorem 3.1 and Lemma 4.8. �

Theorem 4.10. The following statements for a ring R are equivalent.

(i) R has a pseudoinverse GA-semigroup;

(ii) R has an inverse GA-semigroup;

(iii) R◦ is inverse.

Proof. (i)⇔(iii) follows from Lemma 4.8 and (ii)⇔(iii) is Theorem 4.7. �

Theorem 4.11. Every GA-semigroup of R is inverse (orthodox, pseudoinverse)
if and only if R is a strongly regular ring.

Proof. If R• is inverse (orthodox, pseudoinverse), then R is a strongly regular ring.
Conversely, if R is a strongly regular ring, then by Theorem 2.8, R� ' R•

0 × R◦
1

for some ideals R0 and R1 of R such that R = R0⊕R1. Note that R0 and R1 are
strongly regular rings. Then we have that R•

0 and R◦
1 are inverse semigroups, and

so R� is an inverse semigroup. �

5. E-unitary GA-semigroups

Recall that a regular semigroup S is called E-unitary if for any a ∈ S and e ∈ E(S),
ae ∈ E(S) implies a ∈ E(S), and this is equivalent to that ea ∈ E(S) implies
a ∈ E(S) for any e ∈ E(S) and a ∈ S ([9]). Clearly, R• is E-unitary if and
only if R is a Boolean ring, for a0 = 0 for any a ∈ R. In [6], we presented a
characterization of the rings with E-unitary adjoint semigroups.

Lemma 5.1. Let R = M(S, T, U, V ). Then the E11-GA-semigroup R� is E-
unitary if and only if S◦ is E-unitary, T is a Boolean ring, and E(S)U = V E(S) =
UT = TV = UV = V U = 0.

Proof. Suppose that R� is E-unitary. Then S◦ and T • are clearly E-unitary by

Lemma 3.4, and hence T is a Boolean ring. Let A =

(
0 u
v t

)
. Then A � 0 =(

0 0
v 0

)
∈ E(R�), and so

(
0 u
v t

)
∈ E(R�), that is,

(
0 u
v t

)
= A = A � A =

(
1 u
v t

) (
1 u
v t

)
− E11 =

(
uv u + ut

v + tv vu + t2

)
,

from which it follows that UV = UT = TV = 0 and so V U = 0 since (V U)2 = 0
and T is a Boolean ring. Since R� is regular, E(S)U = V E(S) = 0 by Lemma 3.4.
The necessity is proved.
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Now we prove the sufficiency. By Lemma 3.4,

E(R�) =

(
E(S◦) U

V T

)
(15)

since T is a Boolean ring. For any A =

(
s u
v t

)
∈ R and E =

(
e y
z f

)
∈

E(R�), if A � E =

(
s ◦ e (1 + s)y

v tf

)
∈ E(R�), then s ◦ e ∈ E(S◦) by (15), and

so s ∈ E(S◦) since S◦ is E-unitary. Therefore, A ∈ E(R�) by (15). �

Lemma 5.2. If R◦ is E-unitary, then R is a direct sum of a Boolean ring and a
radical ring.

Proof. By [6, Theorem 23], R is an extension of a Boolean ring by a radical ring.
Let B be a Boolean ideal of R such that R/B is a radical ring. Observing that
idempotents of R are central, we see that B is contained in the center of R. For
any a ∈ R there exists b ∈ R such that a ◦ b ∈ B. Let e = a ◦ b. For any f ∈ B,
we have that

f(1− e)a ◦ f(1− e)b = f(1− e)(a ◦ b) = 0.

Since f(1 − e)a ∈ B, we have that f(1 − e)a = 0. Thus (1 − e)a ∈ AnnR(B),
whence a = ea+(1−e)a ∈ B+AnnR(B). Since B is semiprime, B∩AnnR(B) = 0.
Hence R = B ⊕ AnnR(B) and AnnR(B) is a radical ring since R/B is a radical
ring. �

Theorem 5.3. A GA-semigroup R� of a ring R is E-unitary if and only if R� '
M�

11(S, T, U, V ), where S is a direct sum of a Boolean ring with a radical ring, T
is a Boolean ring, and E(S)U = V E(S) = UT = TV = UV = V U = 0.

Proof. It follows from Theorem 3.1, Lemma 5.1, and Lemma 5.2. �

Theorem 5.4. The following conditions are equivalent for a ring R.

(i) R has an E-unitary GA-semigroup;

(ii) R is a direct sum of a Boolean ring with a radical ring;

(iii) R◦ is E-unitary.

Proof. (ii)⇒(iii) and (iii)⇒(i) are clear. Suppose that a GA-semigroup R� of R
is E-unitary. Then by Theorem 5.3 and [7, Theorem 2.12], R ∼= M(S, T, U, V ),
where S is a direct sum of a Boolean ring S1 with a radical ring S2, T is a Boolean
ring, and E(S)U = V E(S) = UT = TV = UV = V U = 0. Thus

R ∼=
(

S1 ⊕ S2 U
V T

)
=

(
S1 0
0 T

)
⊕

(
S2 U
V 0

)
,

and clearly

(
S1 0
0 T

)
is a Boolean ideal and

(
S2 U
V 0

)
is the radical ofM(S, T,

U, V ), proving (i)⇒ (ii). �



X. Du, J. Wang: Regular Generalized Adjoint Semigroups of a Ring 245

Corollary 5.5. A ring has a GA-semigroup which is a band if and only if it is a
direct sum of a Boolean ring with a zero ring.

Proof. Suppose R� is a band. Then R� is E-unitary, and so by Theorem 5.3,
R� ' M�

11(S, T, U, V ), where S is a direct sum of a Boolean ring with a radical
ring, T is a Boolean ring, and E(S)U = V E(S) = UT = TV = UV = V U = 0.
Since R� is a band, S is a Boolean ring, and so SU = V S = 0. Therefore, by [7,

Theorem 2.12], R ∼= M(S, T, U, V ) =

(
S 0
0 T

)
⊕

(
0 U
V 0

)
. Clearly

(
S 0
0 T

)
is a Boolean ideal and

(
0 U
V 0

)
is an ideal such that

(
0 U
V 0

)2

= 0.

Suppose R is a Boolean ideal S and an ideal T such that T 2 = 0. Then the
direct product of S• and the right zero GA-semigroup of T gives a GA-semigroup
of R which is a band. �

6. Completely simple GA-semigroups

If R• is completely 0-simple, then R is a division ring, while if R◦ is completely
0-simple or simple, then R is a division ring or a radical ring ([17, 10]).

If a ∈ R is a unit in R◦, we denote by a− the inverse of a, i.e., the quasi-inverse
of a ([14]).

Lemma 6.1. Let R = M(S, T, U, V ). Then the E11-GA-semigroup R� is com-
pletely simple if and only if S is a radical ring and T = 0, and if so, then R is a
radical ring.

Proof. Suppose that R� is completely simple. Then R� is regular, and so S◦

is a regular semigroup and T is a regular ring by Lemma 3.2. Noting that 0 is
a primitive idempotent of R�, we have that 0 � R � 0 is a group by [3, Lemma
2.47]. Since S◦ ' 0 � R � 0, S is a radical ring. If f is an idempotent of T , then
E11f = fE11 = 0, and so 0 � f = f � 0 = 0, which implies that f = 0 since 0 is
primitive. Thus T = 0.

Conversely, for any

(
a b
c 0

)
,

(
x y
z 0

)
∈ R, we have(

0 0
z(1 + x−) 0

)
�

(
a b
c 0

)
�

(
a− ◦ x (1 + a−)y

0 0

)
=

(
x y
z 0

)
,

whence R� is a simple semigroup. By [9, Proposition II.4.7], it is sufficient to prove

that 0 is a primitive idempotent in R�. Let A =

(
e u
v 0

)
be an idempotent of

R� such that 0 � A = A � 0 = A. Then(
e 0
v 0

)
=

(
e u
0 0

)
=

(
e u
v 0

)
,

yielding u = v = 0. Thus A =

(
e 0
0 0

)
and so e is an idempotent of S◦, forcing

e = 0 since S is a radical ring. Hence A = 0. It follows that 0 is a primitive
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idempotent in R�. We now prove that R is a radical ring. Observing that R◦ is
regular and E(R) = 0 by Lemma 3.4, we see that R◦ is a group, that is, R is a
radical ring. �

Theorem 6.2. A GA-semigroup R� of R is a completely simple semigroup if and
only if R� 'M�

11(S, 0, U, V ), where S is a radical ring.

Proof. It follows from Theorem 3.1 and Lemma 6.1. �

Corollary 6.3. A ring has a completely (0-)simple GA-semigroup if and only if
R is a (division) radical ring.

Proof. Let R� be a GA-semigroup of R. If R� is completely 0-simple, then by [7,
Theorem 2.14], R• ' R� is completely 0-simple, and so R is a division ring. If
R� is completely simple, then R� 'M�

11(S, 0, U, V ), where S is a radical ring by
Theorem 6.2, and so R ∼= M(S, 0, U, V ) is a radical ring by Lemma 6.1 and [7,
Theorem 2.12]. The sufficiency is clear. �

We conclude that

R• has the property P ⇒ R� has the property P

⇒ R◦ has the property P,

where P stands for orthodox, right inverse, inverse, pseudoinverse, E-unitary, and
completely simple, respectively.
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