Regular Generalized Adjoint Semigroups of a Ring

Xiankun Du Junlin Wang

Department of Mathematics, Jilin University Changchun 130012, China e-mail: duxk@jlu.edu.cn

Abstract. In this paper, we characterize a ring with a generalized adjoint semigroup having a property \mathbf{P} and such generalized adjoint semigroups, where \mathbf{P} stands for orthodox, right inverse, inverse, pseudoinverse, *E*-unitary, and completely simple, respectively. Surprisingly, if *R* has a GA-semigroup with a property \mathbf{P} , then the adjoint semigroup of *R* has the property \mathbf{P} .

MSC 2000: 16N20, 16Y99, 20M25

Keywords: circle multiplication, generalized adjoint semigroup, orthodox semigroup, inverse semigroup

1. Introduction

Based on the paper [7], we continue our study of generalized adjoint semigroups (GA-semigroup) of a ring. In the present paper we are concerned with the description of a ring R with a GA-semigroup having a property \mathbf{P} and such GA-semigroups of R, where \mathbf{P} stands for orthodox, right inverse, inverse, pseudoinverse, E-unitary, and completely simple, respectively.

Let R be a ring not necessarily with identity. The composition defined by $a \circ b = a+b+ab$ for any $a, b \in R$ is usually called the circle or adjoint multiplication of R. It is well-known that (R, \circ) is a monoid with identity 0, called the circle or adjoint semigroup of R, denoted by R° . There are many interesting connections between a ring and its adjoint semigroup, which were studied in several papers, for example, [2, 4, 5, 6, 10, 11, 12, 15, 16]. Typical results are to describe the

0138-4821/93 \$ 2.50 © 2006 Heldermann Verlag

adjoint semigroup of a given ring and the ring with a given semigroup as its adjoint semigroup.

The circle multiplication of a ring satisfies the following generalized distributive laws:

$$a \circ (b + c - d) = a \circ b + a \circ c - a \circ d, \tag{1}$$

$$(b+c-d) \circ a = b \circ a + c \circ a - d \circ a, \tag{2}$$

which was observed in [1]. Thus as generalizations of the circle multiplication of a ring, a binary operation \diamond (associative or nonassociative) on an Abelian group A satisfying the generalized distributive laws have been studied by several authors making use of different terminologies, for example, pseudo-rings, weak rings, quasirings, prerings. In [7], we call a binary operation \diamond on R is called a generalized adjoint multiplication on R, if it satisfies the following conditions:

- (i) the associative law: $x \diamond (y \diamond z) = (x \diamond y) \diamond z$;
- (ii) the generalized distributive laws:

$$\begin{aligned} x \diamond (y+z) &= x \diamond y + x \diamond z - x \diamond 0, \\ (y+z) \diamond x &= y \diamond x + z \diamond x - 0 \diamond x; \end{aligned}$$

(iii) the compatibility: $xy = x \diamond y - x \diamond 0 - 0 \diamond y + 0 \diamond 0$.

The semigroup (R, \diamond) is called a generalized adjoint semigroup of R, abbreviated GA-semigroup and denoted by R^{\diamond} , which is a generalization of the multiplicative semigroup and the adjoint semigroup of a ring R. Essentially, the multiplicative and adjoint semigroup of R are exactly generalized adjoint semigroup of R with zero and identity, respectively ([7, Theorem 2.14]).

In Section 2, we prove that a GA-semigroup with central idempotents is a product of a multiplicative semigroup and an adjoint semigroup of ideals. The GA-semigroups of a strongly regular ring are determined.

The remaining sections are devoted to the description of the rings with a GA-semigroup having a property \mathbf{P} and its such GA-semigroups in terms of the ring of a Morita context, where \mathbf{P} stands for orthodox, right inverse, inverse, pseudoinverse, *E*-unitary, and completely simple, respectively. Surprisingly, we observe the following implication:

 R^{\bullet} has the property $\mathbf{P} \Rightarrow R^{\circ}$ has the property $\mathbf{P} \Rightarrow R^{\circ}$ has the property \mathbf{P} ,

where R^{\bullet} denotes the multiplicative semigroup of R.

Throughout, the set of idempotents of a semigroup or ring S will be denoted by $\mathcal{E}(S)$. For a ring R denote by R^{\bullet} and R° the multiplicative and the adjoint semigroup of R, respectively. It is easy to see that an element e of a ring R is an idempotent of R° if and only if $e + e^2 = 0$, that is, -e is an idempotent of R^{\bullet} , and hence $\mathcal{E}(R) = \mathcal{E}(R^{\bullet}) = -\mathcal{E}(R^{\circ})$.

Although a ring R in this paper needs not contain identity, it is convenient to use a formal identity 1, which can be regarded as the identity of a unitary ring containing R, since R can be always embedded into a ring with identity 1; for example, we can write $a \circ b = (1+a)(1+b) - 1$ for any $a, b \in R$ and write $x^0 = 1$ for any $x \in R$ by making use of a formal 1.

A radical ring means a Jacobson radical ring. For the algebraic theory and terminology on semigroups we will refer to [3, 9, 13].

2. GA-semigroups with central idempotents

Recall that we call a GA-semigroups R^{\diamond} of R affinely isomorphic to the GA-semigroup S^{\diamond} of the ring S, notionally $R^{\diamond} \simeq S^{\diamond}$, if there exists a bijection ϕ from R onto S such that

$$\phi(x+y-z) = \phi(x) + \phi(y) - \phi(z)$$
 and $\phi(x \diamond y) = \phi(x) \diamond \phi(y)$

for any $x, y, z \in M$. If $R^{\diamond} \simeq S^{\diamond}$, then $R \cong S$ ([7, Theorem 2.12]). R^{\diamond} is called (centrally) 0-idempotent if the additive 0 of R is an (central) idempotent in R^{\diamond} ([7]). One should note that (centrally) 0-idempotent is not an affinely isomorphic invariant. However, we have:

Lemma 2.1. ([7, Lemma 4.1]) Every GA-semigroup containing an (central) idempotent is affinely isomorphic to a (centrally) 0-idempotent one.

Lemma 2.2. ([7, Corollary 4.4]) A GA-semigroup R^{\diamond} is (centrally) 0-idempotent if and only if there exists an ideal extension \tilde{R} of R and an idempotent $\varepsilon \in \tilde{R}$ (commuting with elements of R) such that $x \diamond y = (x + \varepsilon)(y + \varepsilon) - \varepsilon$ for any $x, y \in R$.

Let R_i^{\diamond} , i = 1, 2, ..., n, be GA-semigroups of rings R_i . Then the direct product $\prod_{i=1}^{n} R_i^{\diamond}$ is a GA-semigroup of the ring $\prod_{i=1}^{n} R_i$, called the direct product of R_i^{\diamond} , i = 1, 2, ..., n.

Example 2.3. Let R be a direct sum of ideals R_0 and R_1 . For any x = a + b and y = a' + b', $a, a' \in R_0$, $b, b' \in R_1$, define $x \diamond y = a'a + b \circ b'$. Then R^{\diamond} is a GA-semigroup of R. Clearly, $R^{\diamond} \simeq R_0^{\diamond} \times R_1^{\diamond}$.

Example 2.4. Let R be a zero ring, i.e., $R^2 = 0$. Define $x \diamond y = y$ for any $x, y \in R$. Then R^{\diamond} is a GA-semigroup of R, called the right zero GA-semigroup of R. Symmetrically, one can define the left zero GA-semigroup of R.

Theorem 2.5. R^{\diamond} has a central idempotent if and only if $R^{\diamond} \simeq R_0^{\bullet} \times R_1^{\circ}$ for some ideals R_0 and R_1 of R such that $R = R_0 \oplus R_1$.

Proof. The sufficiency is immediate. For the necessity, suppose that R contains a central idempotent e. Without loss of generality, we can assume 0 is a central idempotent in R^{\diamond} by Lemma 2.1. Then we can complete the proof by taking $R_0 = \varepsilon R$ and $R_1 = (1 - \varepsilon)R$ from Lemma 2.2.

A duo ring is a ring in which one-sided ideals are ideals.

Lemma 2.6. Let R^{\diamond} be a GA-semigroup of a duo ring R. If R^{\diamond} contains idempotents, then $R^{\diamond} \simeq R_0^{\bullet} \times R_1^{\circ} \times R_2^{\diamond} \times R_3^{\diamond}$, where R_i , i = 1, 2, 3, are ideal of R such that $R = R_0 \oplus R_1 \oplus R_2 \oplus R_3$, $R_2^2 = R_3^2 = 0$, R_2^{\diamond} is the left zero GA-semigroup of R_2 , and R_3^{\diamond} is the right zero GA-semigroup of R_3 .

Proof. By Lemma 2.1 we can assume that R^{\diamond} is a 0-idempotent GA-semigroup. Put $R_0 = \varepsilon R \varepsilon$, $R_1 = (1 - \varepsilon) R (1 - \varepsilon)$, $R_2 = \varepsilon R (1 - \varepsilon)$, and $R_3 = (1 - \varepsilon) R \varepsilon$, where ε is as in Lemma 2.2. Note that $R_0 = \varepsilon R \cap R \varepsilon$. Then we have that R_0 is an ideal of R since R is a duo ring. Similarly, R_1 , R_2 , and R_3 are ideals of R, and $R = R_0 \oplus R_1 \oplus R_2 \oplus R_3$. The rest is routine.

Corollary 2.7. Let R^{\diamond} be a GA-semigroup of a commutative π -regular ring. Then $R^{\diamond} \simeq R_0^{\diamond} \times R_1^{\circ} \times R_2^{\diamond} \times R_3^{\diamond}$, where R_i , i = 0, 1, 2, 3, are ideals of R such that $R = R_0 \oplus R_1 \oplus R_2 \oplus R_3$, $R_2^2 = R_3^2 = 0$, R_2^{\diamond} is the left zero GA-semigroup of R_2 , and R_3^{\diamond} is the right zero GA-semigroup of R_3 .

Theorem 2.8. Any GA-semigroup R^{\diamond} of a strongly regular ring contains central idempotents, and so $R^{\diamond} \simeq R_0^{\bullet} \times R_1^{\circ}$ for some ideals R_0 and R_1 of R such that $R = R_0 \oplus R_1$.

Proof. It follows from [7, Theorem 3.5], Lemma 2.6 and the fact that a strongly regular ring is a duo ring ([8, Theorem 3.2]). \Box

Corollary 2.9. The following statements for a ring R are equivalent.

- (i) R is a Boolean ring;
- (ii) R has a GA-semigroup is a semilattice;
- (iii) any GA-semigroup of R is a semilattice.

Proof. (iii) \Rightarrow (ii) is trivial.

(ii) \Rightarrow (i): If a GA-semigroup R^{\diamond} is a semilattice, then by Theorem 2.5, $R^{\diamond} \simeq R_0^{\bullet} \times R_1^{\circ}$, where R_0 and R_1 are ideals of R such that $R = R_0 \oplus R_1$. Since R^{\diamond} is a semilattice, R_0^{\bullet} and R_1° are semilattices, implying that R is a Boolean ring.

(i) \Rightarrow (iii): Let R^{\diamond} be a GA-semigroup of R. Since R is a Boolean ring, by Theorem 2.8, $R^{\diamond} \simeq R_0^{\bullet} \times R_1^{\circ}$, where R_0 and R_1 are ideals of R such that $R = R_0 \oplus R_1$. Since R is a Boolean ring, R^{\diamond} is a semilattice.

3. Orthodox GA-semigroups

Given two rings S and T, denote by \tilde{S} and \tilde{T} the Dorroh extension of S and T, respectively. Let $\tilde{R} = \begin{pmatrix} \tilde{S} & U \\ V & \tilde{T} \end{pmatrix}$ be the ring of the Morita context with bimodules ${}_{S}U_{T}$ and ${}_{T}V_{S}$, which are considered as unitary $\tilde{S}-\tilde{T}$ and $\tilde{T}-\tilde{S}$ bimodules in a natural way, respectively. Let $R = \begin{pmatrix} S & U \\ V & T \end{pmatrix}$. Then R is an ideal of \tilde{R} . We call R the ring of the Morita context or a Morita ring, and denote by $\mathcal{M}(S,T,U,V)$. Let $E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \in \tilde{R}$. Then the generalized adjoint multiplication induced by E_{11} is given by

$$A \diamond B = AB + AE_{11} + E_{11}B$$

= $(A + E_{11})(B + E_{11}) - E_{11}$
= $\begin{pmatrix} s \circ s' + uv' & (1 + s)u + ut' \\ u(1 + s') + tv' & uu' + tt' \end{pmatrix}$

for any $A = \begin{pmatrix} s & u \\ v & t \end{pmatrix}$, $B = \begin{pmatrix} s' & u' \\ v' & t' \end{pmatrix} \in R$. The semigroup R^{\diamond} is called the E_{11} -GA-semigroup of R, denoted by $\mathcal{M}_{11}^{\diamond}(S, T, U, V)$. It is clear that the E_{11} -GA-semigroup $\mathcal{M}_{11}^{\diamond}(S, T, U, V)$ is 0-idempotent ([7]).

Theorem 3.1. ([7, Theorem 4.3]) Let R^{\diamond} be a GA-semigroup of R. If R^{\diamond} contains idempotents, then there exists a Morita ring $\mathcal{M}(S, T, U, V)$ such that $R \cong \mathcal{M}(S, T, U, V)$ and $R^{\diamond} \simeq \mathcal{M}^{\diamond}_{11}(S, T, U, V)$.

A ring R is called adjoint regular if its adjoint semigroup R° is a regular semigroup ([5, 11]).

Lemma 3.2. Let $R = \mathcal{M}(S, T, U, V)$ and let R^{\diamond} be the E_{11} -GA-semigroup of R. If R^{\diamond} is regular, then S is an adjoint regular ring and T is a regular ring.

Proof. Let $R_0 = \begin{pmatrix} S & 0 \\ 0 & 0 \end{pmatrix}$ and $R_1 = \begin{pmatrix} 0 & 0 \\ 0 & T \end{pmatrix}$. Then we have $R_0^{\diamond} = R_0^{\diamond} \simeq S^{\diamond}$ and $R_1^{\diamond} = R_0^{\bullet} \simeq T^{\bullet}$.

Suppose R^{\diamond} is regular. For any $a \in R_0$, there exists $x \in R$ such that $a = a \diamond x \diamond a$. Noting that $0 \diamond a \diamond 0 = E_{11} a E_{11} = a$ and $0 \diamond 0 = 0$, we see that $a = a \diamond 0 \diamond x \diamond 0 \diamond a$, and $0 \diamond x \diamond 0 = E_{11} x E_{11} \in R_0$, whence R_0^{\diamond} is regular and so S^{\diamond} is regular.

and $0 \diamond x \diamond 0 = E_{11}xE_{11} \in R_0$, whence R_0^{\diamond} is regular and so S^{\diamond} is regular. For any $t \in T$, let $A = \begin{pmatrix} 0 & 0 \\ 0 & t \end{pmatrix}$. Then there exists $B = \begin{pmatrix} a & u \\ v & b \end{pmatrix} \in R$ such that

$$A = A \diamond B \diamond A = \begin{pmatrix} 1 & 0 \\ 0 & t \end{pmatrix} \begin{pmatrix} 1+a & u \\ v & b \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & t \end{pmatrix} - E_{11} = \begin{pmatrix} a & ut \\ tv & tbt \end{pmatrix},$$

yielding t = tbt for some $b \in T$. Thus T is a regular ring.

Lemma 3.3. If $a - a \diamond b \diamond a + a \diamond c \diamond a$ be regular in R^{\diamond} for some $b, c \in R$, then a is regular in R^{\diamond} .

Proof. Let $x = a - a \diamond b \diamond a + a \diamond c \diamond a$. Then $x = x \diamond y \diamond x$ for some $y \in R$. Let $z = y - b \diamond a \diamond y + c \diamond a \diamond y$. Then

$$\begin{aligned} x \diamond y \diamond x &= a \diamond (y - b \diamond a \diamond y + c \diamond a \diamond y) \diamond x \\ &= a \diamond z \diamond x \\ &= a \diamond (z - z \diamond a \diamond b + z \diamond a \diamond c) \diamond a. \end{aligned}$$

Thus

$$a = a \diamond b \diamond a - a \diamond c \diamond a + a \diamond (z - z \diamond a \diamond b + z \diamond a \diamond c) \diamond a$$
$$= a \diamond (b - c + z - z \diamond a \diamond b + z \diamond a \diamond c) \diamond a,$$

as desired.

Lemma 3.4. Let $R = \mathcal{M}(S, T, U, V)$ with VU = 0. Then the E_{11} -GA-semigroup R^{\diamond} is regular if and only if S is an adjoint regular ring, T is a regular ring and $\mathcal{E}(S)U = V\mathcal{E}(S) = 0$, and if so, then

(i) R is an adjoint regular ring;

(ii)
$$\mathcal{E}(R^{\diamond}) = \left\{ \begin{pmatrix} -e - uv & u(1 - f) \\ (1 - f)v & f \end{pmatrix} \mid e \in \mathcal{E}(S), f \in \mathcal{E}(T), u \in U, v \in V \right\};$$

(iii) $\mathcal{E}(R) = \left\{ \begin{pmatrix} e + uv & uf \\ fv & f \end{pmatrix} \mid e \in \mathcal{E}(S), f \in \mathcal{E}(T), u \in U, v \in V \right\}.$

Proof. Suppose that R^{\diamond} is regular. Then by Lemma 3.2 we see that S is an adjoint regular ring and T is a regular ring. Now for any $e \in \mathcal{E}(S^{\diamond})$ and $u \in U$ there exists $\begin{pmatrix} s & y \\ z & t \end{pmatrix}$ such that

$$\begin{pmatrix} e & u \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} e & u \\ 0 & 0 \end{pmatrix} \diamond \begin{pmatrix} s & y \\ z & t \end{pmatrix} \diamond \begin{pmatrix} e & u \\ 0 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 1+e & u \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1+s & y \\ z & t \end{pmatrix} \begin{pmatrix} 1+e & u \\ 0 & 0 \end{pmatrix} - E_{11}$$
$$= \begin{pmatrix} e \circ s \circ e + uz(1+e) & (1+e \circ s + uz)u \\ 0 & 0 \end{pmatrix},$$

forcing that $(e \circ s)u = 0$, since (uz)u = u(zu) = 0. Observing $e = -e(e \circ s)$, we can see that $eu = -e(e \circ s)u = 0$, from which it follows that $\mathcal{E}(S^{\circ})U = 0$. Since $\mathcal{E}(S) = -\mathcal{E}(S^{\circ})$, we have that $\mathcal{E}(S)U = 0$. Symmetrically, $V\mathcal{E}(S) = 0$.

Conversely, suppose that S is an adjoint regular ring, T is a regular ring and $\mathcal{E}(S)U = V\mathcal{E}(S) = 0$. Let I be the ideal of S generated by $\mathcal{E}(S)$. Then I is adjoint regular by [5, Proposition 1] and IU = VI = 0. Let $A = \begin{pmatrix} s & u \\ v & t \end{pmatrix} \in R$, and $s = s \circ s' \circ s$ for some $s' \in S$. Let $B = \begin{pmatrix} s' & 0 \\ 0 & 0 \end{pmatrix}$ and let $C = A - A \diamond B \diamond A + A \diamond B \diamond B \diamond A$. To prove that A is regular in R^\diamond , it suffices to prove that C is regular in R^\diamond by Lemma 3.3. A straightforward computation gives

$$C = \left(\begin{array}{cc} s \circ s' \circ s' \circ s & b \\ c & d \end{array}\right)$$

for some $b \in U$, $c \in V$, and $d \in T$. Let $a = s \circ s' \circ s' \circ s$. Then $C = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Since $s \circ s'$ and $s' \circ s$ are idempotents of S° , we have that $a \in I$, and so aU =

-

Va = 0 and $a = a \circ a' \circ a$ for some $a' \in I$. Let $d' \in T$ such that d = dd'dand let x = a' + bd'c. Then xU = Vx = 0. Let $D = \begin{pmatrix} x & -bd' \\ -d'c & d' \end{pmatrix}$. Then a straightforward calculation shows that

$$C \diamond D \diamond C = \begin{pmatrix} 1+a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1+x & -bd' \\ -d'c & d' \end{pmatrix} \begin{pmatrix} 1+a & b \\ c & d \end{pmatrix} - E_{11}$$
$$= \begin{pmatrix} (a \circ x - bd'c) \circ a & b \\ c & d \end{pmatrix}.$$

But $(a \circ x - bd'c) \circ a = (a \circ a') \circ a = a$. It follows that $C \diamond D \diamond C = C$, as desired.

To prove (i), let $S_1 = I + UV$. Then S_1 is an ideal of S, whence S_1 is an adjoint regular ring by [5, Proposition 1] and clearly $S_1U = VS_1 = 0$. Let $R_1 = \begin{pmatrix} S_1 & U \\ V & T \end{pmatrix}$. Then R_1 is an ideal of R and $R/R_1 \cong S/S_1$ is a radical ring since S/I is a radical ring by [6, Lemma 7] or [5, Theorem 3]. To prove R is adjoint regular, it is sufficient to prove R_1 is adjoint regular by [5, Theorem 3]. If $A = \begin{pmatrix} s & u \\ v & t \end{pmatrix} \in R_1$, then $s = s \circ s' \circ s$ for some $s' \in S_1$. Since a regular ring is adjoint regular by [5, Theorem 1] ([6, Theorem 4], [11, Proposition 2.3]), we have that T is an adjoint regular ring, implying that $t = t \circ t' \circ t$ for some $t' \in T$. Let x = s' + u(1 + t')v. Then xU = Vx = 0. Let $B = \begin{pmatrix} x & -u(1 + t') \\ -(1 + t')v & t' \end{pmatrix}$. Then

$$A \circ B \circ A$$

$$= \begin{pmatrix} 1+s & u \\ v & 1+t \end{pmatrix} \begin{pmatrix} 1+x & -u(1+t') \\ -(1+t')v & 1+t' \end{pmatrix} \begin{pmatrix} 1+s & u \\ v & 1+t \end{pmatrix} - 1$$

$$= \begin{pmatrix} (s \circ x - u(1+t')v) \circ s & u \\ v & t \end{pmatrix}.$$

But $(s \circ x - u(1 + t')v) \circ s = (s \circ s') \circ s = s$. It follows that $A \circ B \circ A = A$, proving (i).

For $e \in \mathcal{E}(S)$ and $f \in \mathcal{E}(T)$, if uf = fu = 0, then it is easy to verify that $\begin{pmatrix} -e - uv & u \\ v & f \end{pmatrix} \in \mathcal{E}(R^{\diamond})$. Conversely, let $E = \begin{pmatrix} s & u \\ v & t \end{pmatrix}$. If $E \in \mathcal{E}(R^{\diamond})$, then

$$E = E \diamond E = \begin{pmatrix} s \circ s + uv & (1+s)u + ut \\ v(1+s) + tv & t^2 \end{pmatrix},$$
(3)

yielding $s = s \circ s + uv$. Thus

$$s + s^2 = -uv. (4)$$

By (4) $(s+s^2)^2 = u(vu)v = 0$, that is, $((-s) - (-s)^2)^2 = 0$. By the R^{\bullet} -version of [7, Lemma 4.5] there exists an idempotent $e' \in \mathcal{E}(R)$ such that $s^2 = s^2e' = e's^2$. Noting that $(s+s^2)u = -u(vu) = 0$ by (4), we have that $su = -s^2u = -s^2e'u = 0$,

and dually we have that vs = 0. Since $s^2 + s^3 = -suv = 0$ by (4), one can deduce that $s^2 \in \mathcal{E}(R)$. Let $e = s^2$. Then s = -e - uv by (4). Putting f = t, we have $f \in \mathcal{E}(T)$ from (3). Since su = vs = 0, we obtain that ut = tv = 0 from (3). Thus

 $E = \begin{pmatrix} -e - uv & u \\ v & f \end{pmatrix} \text{ with } e \in \mathcal{E}(S), f \in \mathcal{E}(T), \text{ and } uf = fv = 0, \text{ proving (ii)}.$ For $e \in \mathcal{E}(S)$ and $f \in \mathcal{E}(T)$, if u(1 - f) = (1 - f)u = 0, then it is easy to verify that $\begin{pmatrix} e + uv & u \\ v & f \end{pmatrix} \in \mathcal{E}(R)$. Conversely, let $E = \begin{pmatrix} s & u \\ v & t \end{pmatrix} \in \mathcal{E}(R)$. Then

$$E = E^2 = \begin{pmatrix} s^2 + uv & su + ut \\ vs + tv & t^2 \end{pmatrix},$$
(5)

yielding $s = s^2 + uv$, that is $s - s^2 = uv$. Similar to the proof of paragraph above, we have $s^2 \in \mathcal{E}(R)$ and su = vs = 0. Let $e = s^2$ and f = t. Then s = e + uv and $e \in \mathcal{E}(S)$ and $f \in \mathcal{E}(R)$. From (5) we get u = uf and v = fv, proving (iii).

An orthodox semigroup means a regular semigroup whose idempotents constitute a subsemigroup. A band is called regular if xyzx = xyxzx for any $x, y, z \in \mathcal{E}(S)$ ([9]).

It is easy to see that R^{\bullet} is an orthodox semigroup if and only if R is a strongly regular ring. In [6], we characterize the ring such that R° is orthodox, and we particularly prove that such a ring is a generalized radical ring such that $\mathcal{E}(R^{\circ})$ is a regular band ([6, Theorem 14]), where a generalized radical ring means a ring whose adjoint semigroup is a union of groups ([2]).

Lemma 3.5. Let $R = \mathcal{M}(S, T, U, V)$. Then E_{11} -GA-semigroup R^{\diamond} is orthodox if and only if S° is an orthodox semigroup, T is a strongly regular ring, $\mathcal{E}(S)U =$ $V\mathcal{E}(S) = UV = VU = 0$. Moreover, if R^{\diamond} is orthodox, then R^{\diamond} are a union of groups and $\mathcal{E}(R^{\diamond})$ is a regular band.

Proof. Suppose R^{\diamond} is an orthodox semigroup. Then by Lemma 3.4, S^{\diamond} and T^{\bullet} are both orthodox semigroups, and so T is a strongly regular ring. For any $x \in U$ and $y \in V$ it is easy to see that $\begin{pmatrix} 0 & 0 \\ y & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix}$ are both idempotents of R^{\diamond} . Since $\mathcal{E}(R^{\diamond})$ is a semigroup, $\begin{pmatrix} 0 & 0 \\ y & 0 \end{pmatrix} \diamond \begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & x \\ y & yx \end{pmatrix}$ is an idempotent of R^\diamond , whence

$$\begin{pmatrix} 0 & x \\ y & yx \end{pmatrix} = \begin{pmatrix} 0 & x \\ y & yx \end{pmatrix} \diamond \begin{pmatrix} 0 & x \\ y & yx \end{pmatrix}$$
$$= \begin{pmatrix} 1 & x \\ y & yx \end{pmatrix} \begin{pmatrix} 1 & x \\ y & yx \end{pmatrix} - E_{11}$$
$$= \begin{pmatrix} xy & x + xyx \\ y + yxy & yx + (yx)^2 \end{pmatrix},$$

and so xy = 0. Noting that yx is a nilpotent element of T, we see that yx = 0since T is a strongly regular ring. Thus UV = VU = 0. Since R^{\diamond} is regular, we have $\mathcal{E}(S)U = V\mathcal{E}(S) = 0$ by Lemma 3.4.

Conversely, suppose S° is an orthodox semigroup, T is a strongly regular ring, and $\mathcal{E}(S)U = V\mathcal{E}(S) = UV = VU = 0$. It suffices to prove that R^{\diamond} is a union of groups and $\mathcal{E}(R^{\diamond})$ is a regular band. By Lemma 3.4,

$$\mathcal{E}(R^{\diamond}) = \left\{ \begin{pmatrix} e & u(1-f) \\ (1-f)v & f \end{pmatrix} \mid e \in \mathcal{E}(S^{\diamond}), f \in \mathcal{E}(T), u \in U, v \in V \right\}.$$
(6)

For any $A = \begin{pmatrix} s & u \\ v & t \end{pmatrix} \in R$, there exist $s' \in S$, $e \in \mathcal{E}(S^\circ)$, $t \in T$ and $f \in \mathcal{E}(T)$ such that $s \circ s' = s' \circ s = e$, $e \circ s = s \circ e = s$, and $e \circ s' = s' \circ e = s$ since S° is a union of groups by [6, Theorem 14], and tt' = t't = f and ft = t since T is a strongly regular ring. Let

$$B = \begin{pmatrix} e & (1+s')u(1-f) \\ (1-f)v(1+s') & f \end{pmatrix},$$

$$C = \begin{pmatrix} s' & (1+s' \circ s')u(1-f) - (1+s')ut' \\ -t'v(1+s') & t' \end{pmatrix}.$$

Then $B \in \mathcal{E}(R)$ by (6), and a computation yields that $A \diamond B = B \diamond A = A$ and $A \diamond C = B$, whence R^{\diamond} is completely regular and so it is a union of groups by [3, Theorem 4.3].

Now we have to prove that $\mathcal{E}(R^\diamond)$ is a regular band. For $E, E', E'' \in \mathcal{E}(R^\diamond)$, if $E = \begin{pmatrix} e & u \\ v & f \end{pmatrix}$, $E' = \begin{pmatrix} e' & u' \\ v' & f' \end{pmatrix}$, $E'' = \begin{pmatrix} e'' & u'' \\ v'' & f'' \end{pmatrix}$, then uf = fv = u'f' = f'v' = u''f'' = f''v'' = 0 by (6). Observe that

$$E \diamond E' = \begin{pmatrix} 1+e & u \\ v & f \end{pmatrix} \begin{pmatrix} 1+e' & u' \\ v' & f' \end{pmatrix} - E_{11}$$
$$= \begin{pmatrix} e \circ e' & u'+uf' \\ v+fv' & ff' \end{pmatrix}.$$
(7)

Since $\mathcal{E}(S^{\circ})$ is a band, we have that $e \circ e' \in \mathcal{E}(S^{\circ})$. Since T is a strongly regular ring, idempotents are contained in the center of T, and so $ff' \in \mathcal{E}(T)$. Moreover, (u' + uf')ff' = u'f'f + uff' = 0 and similarly ff'(v + fv') = 0. It follows from (6) and (7) that $E \circ E' \in \mathcal{E}(R^{\circ})$. Thus $\mathcal{E}(R^{\circ})$ is a band. Now we need to prove $\mathcal{E}(R^{\circ})$ is regular. By (7), we have that

$$E \diamond E' \diamond E'' = \begin{pmatrix} 1 + e \circ e' & u' + uf' \\ v + fv' & ff' \end{pmatrix} \begin{pmatrix} 1 + e'' & u'' \\ v'' & f'' \end{pmatrix} - E_{11} = \begin{pmatrix} e \circ e' \circ e'' & u'' + u'f'' + uf'f'' \\ v + fv' + ff'v'' & ff'f'' \end{pmatrix},$$
(8)

and by (8) we have

$$E \diamond E' \diamond E'' \diamond E = \begin{pmatrix} 1 + e \circ e' \circ e'' & u'' + u'f'' + uf'f'' \\ v + fv' + ff'v'' & ff'f'' \end{pmatrix} \begin{pmatrix} 1 + e & u \\ v & f \end{pmatrix} - E_{11} = \begin{pmatrix} e \circ e' \circ e'' \circ e & u + u''f + u'f''f \\ v + fv' + ff'v'' & ff'f'' \end{pmatrix}.$$
(9)

Replacing x'' by x in (8), $x \in \{u, v, e, f\}$, we get that

$$E \diamond E' \diamond E = \begin{pmatrix} e \circ e' \circ e & u + u'f \\ v + fv' & ff' \end{pmatrix}, \tag{10}$$

and replacing x' by x'' in (10), $x \in \{u, v, e, f\}$, we get that

$$E \diamond E'' \diamond E = \begin{pmatrix} e \circ e'' \circ e & u + u''f \\ v + fv'' & ff'' \end{pmatrix}.$$
 (11)

Thus by (7) and (11) we have that

$$E \diamond E' \diamond E \diamond E'' \diamond E$$

$$= \begin{pmatrix} 1 + e \circ e' & u' + uf' \\ v + fv' & ff' \end{pmatrix} \begin{pmatrix} 1 + e \circ e'' \circ e & u + u''f \\ v + fv'' & ff'' \end{pmatrix} - E_{11}$$

$$= \begin{pmatrix} e \circ e' \circ e \circ e'' \circ e & u + u''f + u'ff'' \\ v + fv' + ff'v'' & ff'f'' \end{pmatrix}.$$
(12)

Since $\mathcal{E}(S^{\circ})$ is a regular band by [6, Theorem 14], we have that $E \diamond E' \diamond E'' \diamond E = E \diamond E' \diamond E \diamond E'' \diamond E$ by (9) and (12). Hence $\mathcal{E}(R^{\diamond})$ is a regular band, and so R^{\diamond} is an orthodox semigroup.

Theorem 3.6. The following statements are equivalent for a GA-semigroup R^{\diamond} of R.

- (i) R^{\diamond} is orthodox;
- (ii) R^{\diamond} is a union of groups and $\mathcal{E}(R^{\diamond})$ is a regular band;
- (iii) $R^{\diamond} \simeq \mathcal{M}^{\diamond}_{11}(S, T, U, V)$, where S^{\diamond} is an orthodox semigroup, T is a strongly regular ring, and $\mathcal{E}(S)U = V\mathcal{E}(S) = UV = VU = 0$.

Proof. If follows from Lemma 3.5 and Theorem 3.1.

Theorem 3.7. The following statements are equivalent for a ring R.

- (i) R has an orthodox GA-semigroup;
- (ii) R° is an orthodox semigroup;
- (iii) R° is a union of groups and $\mathcal{E}(R^{\circ})$ is a regular band.

Proof. (ii) \Leftrightarrow (iii) follows from [6, Theorem 14] and (ii) \Rightarrow (i) is trivial. It remains to prove (i) \Rightarrow (ii). Suppose that a GA-semigroup R^{\diamond} is orthodox. Then by Theorem 3.1 and Theorem 3.6 we can assume that $R = \mathcal{M}(S, T, U, V)$ and $R^{\diamond} = \mathcal{M}_{11}^{\diamond}(S, T, U, V)$, where S^{\diamond} is an orthodox semigroup, T is a strongly regular ring, and $\mathcal{E}(S)U = V\mathcal{E}(S) = UV = VU = 0$. By Lemma 3.4, R is an adjoint regular ring with

$$\mathcal{E}(R^{\circ}) = \left\{ \begin{pmatrix} e & u \\ v & f \end{pmatrix} | e \in \mathcal{E}(S^{\circ}), f \in \mathcal{E}(T^{\circ}), u(1+f) = (1+f)v = 0 \right\}.$$
(13)

If
$$A = \begin{pmatrix} e & u \\ v & f \end{pmatrix}$$
 and $A' = \begin{pmatrix} e' & u' \\ v' & f' \end{pmatrix}$ are both idempotents of R° , then

$$A \circ A' = (1+A)(1+A') - 1$$

$$= \begin{pmatrix} 1+e & u \\ v & 1+f \end{pmatrix} \begin{pmatrix} 1+e' & u' \\ v' & 1+f' \end{pmatrix} - 1$$

$$= \begin{pmatrix} e \circ e' & u'+u(1+f') \\ v+(1+f)v' & f \circ f' \end{pmatrix}.$$

Since S° is orthodox, $e \circ e' \in \mathcal{E}(S^{\circ})$. Since T is a strongly regular ring, $f \circ f' = f' \circ f \in \mathcal{E}(T^{\circ})$. Observing that

$$(u' + u(1 + f'))(1 + f' \circ f) = u'(1 + f')(1 + f) + u(1 + f)(1 + f') = 0$$

and similarly $(1 + f' \circ f)(v + (1 + f)v') = 0$, we see that $A \circ A' \in \mathcal{E}(R^\circ)$ by (13). Hence $\mathcal{E}(R^\circ)$ is a band. It follows that R° is orthodox.

4. Inverse GA-semigroups

Recall that a semigroup is called a right inverse semigroup if its every principal left ideal has a unique idempotent generator. According to [18, Theorem 1], a semigroup S is a right inverse semigroup if and only if S is a regular semigroup in which the set $\mathcal{E}(S)$ of all idempotents is a right regular band, that is xy = yxyfor any $x, y \in \mathcal{E}(S)$. A semigroup is inverse if it is left and right inverse.

It is clear that R^{\bullet} is inverse if and only if R is a strongly regular ring. A ring with the inverse adjoint semigroup was studied by [4, 6, 10, 11, 12, 16] and a ring with the right inverse adjoint semigroup was described in [6].

Lemma 4.1. Let $R = \mathcal{M}(S, T, U, V)$. Then the E_{11} -GA-semigroup R^{\diamond} is right inverse if and only if S° is a right inverse semigroup, T is a strongly regular ring, and $\mathcal{E}(S)U = V = 0$, and if so, then R° is right inverse.

Proof. Suppose that R^{\diamond} is right inverse. Then S^{\diamond} is a right inverse semigroup and T is a strongly regular ring by Lemma 3.2. Noting that R^{\diamond} is orthodox, we have that $\mathcal{E}(S)U = 0$ by Lemma 3.5. For any $v \in V$, let $A = \begin{pmatrix} 0 & 0 \\ v & 0 \end{pmatrix}$. Then $A \in \mathcal{E}(R^{\diamond})$, and hence

$$A = A \diamond 0 = 0 \diamond A \diamond 0 = 0,$$

yielding v = 0. It follows that V = 0.

Conversely, suppose that $R = \mathcal{M}(S, T, U, 0)$ such that S° is a right inverse semigroup, T is a strongly regular ring and $\mathcal{E}(S)U = V = 0$. Then the E_{11} -GAsemigroup R^{\diamond} is a regular semigroup with

$$\mathcal{E}(R^{\diamond}) = \left\{ \begin{pmatrix} e & u \\ 0 & f \end{pmatrix} \mid e \in \mathcal{E}(S^{\diamond}), f \in \mathcal{E}(T), u \in U \text{ and } uf = 0 \right\}$$
(14)

by Lemma 3.4. For $E, E' \in \mathcal{E}(R^{\diamond})$, let $E = \begin{pmatrix} e & u \\ 0 & f \end{pmatrix}$ and $E' = \begin{pmatrix} e' & u' \\ 0 & f' \end{pmatrix}$. Then uf = u'f' = 0 by (14). Observing that

$$E \diamond E' = \begin{pmatrix} 1+e & u \\ 0 & f \end{pmatrix} \begin{pmatrix} 1+e' & u' \\ 0 & f' \end{pmatrix} - E_{11} = \begin{pmatrix} e \diamond e' & u'+uf' \\ 0 & ff' \end{pmatrix},$$

$$E' \diamond E \diamond E' = \begin{pmatrix} 1+e' & u' \\ 0 & f' \end{pmatrix} \begin{pmatrix} 1+e \diamond e' & u'+uf' \\ 0 & ff' \end{pmatrix} - E_{11}$$

$$= \begin{pmatrix} e' \diamond e \diamond e' & u'+uf'+u'ff' \\ 0 & f'ff' \end{pmatrix}$$

$$= \begin{pmatrix} e \diamond e' & u'+uf' \\ 0 & ff' \end{pmatrix}$$

$$= E \diamond E',$$

we see that $\mathcal{E}(R^{\diamond})$ is a right regular band. It follows that R^{\diamond} is a right inverse semigroup.

We now proceed to prove R° is right inverse. It suffices to prove that $\mathcal{E}(R^{\circ})$ is right regular since R° is regular by Lemma 3.4. Note that

$$\mathcal{E}(R^{\circ}) = \left\{ \left(\begin{array}{cc} e & u \\ 0 & f \end{array} \right) | e \in \mathcal{E}(S^{\circ}), f \in \mathcal{E}(T^{\circ}), u(1+f) = 0 \right\}$$

by Lemma 3.4. For $F, F' \in \mathcal{E}(R^{\circ})$, let $F = \begin{pmatrix} e & u \\ 0 & f \end{pmatrix}$ and $F' = \begin{pmatrix} e' & u' \\ 0 & f' \end{pmatrix}$. Then

$$F \circ F' = \left(\begin{array}{cc} e \circ e' & u' + u(1+f') \\ 0 & f \circ f' \end{array}\right),$$

$$F' \circ F \circ F' = \begin{pmatrix} e' & u' \\ 0 & f' \end{pmatrix} \circ \begin{pmatrix} e \circ e' & u' + u(1+f') \\ 0 & f \circ f' \end{pmatrix}$$
$$= \begin{pmatrix} e' \circ e \circ e' & u' + u' + u(1+f') + u'(f \circ f') \\ 0 & f' \circ f \circ f' \end{pmatrix}$$
$$= F \circ F',$$

since $\mathcal{E}(S^{\circ})$ is right regular, $\mathcal{E}(T^{\circ})$ is a semilattice, and $u'(1+f \circ f') = 0$. It follows that $\mathcal{E}(R^{\circ})$ is right regular, as required. \Box

Theorem 4.2. A ring R has a right inverse GA-semigroup if and only if \mathbb{R}° is right inverse. Moreover, a GA-semigroup \mathbb{R}^{\diamond} of R is right inverse if and only if $\mathbb{R}^{\diamond} \simeq \mathcal{M}_{11}^{\diamond}(S, T, U, 0)$, where S° is right inverse, T is a strongly regular ring, and $\mathcal{E}(S)U = 0$.

Proof. It follows from Lemma 4.1 and Theorem 3.1.

Lemma 4.3. For $e \in \mathcal{E}(R^{\diamond})$ and $x \in R$, we have

$$e + e \diamond x - e \diamond x \diamond e \in \mathcal{E}(R^{\diamond}) \text{ and } e + x \diamond e - e \diamond x \diamond e \in \mathcal{E}(R^{\diamond}).$$

Proof. Let $a = e + e \diamond x - e \diamond x \diamond e$, then $a \diamond e = e$ and $e \diamond a = a$, whence

$$a \diamond a = a \diamond (e \diamond a) = (a \diamond e) \diamond a = e \diamond a = a$$

The other can be proved dually.

Lemma 4.4. If idempotents of R^{\diamond} commute, then idempotents are central in R^{\diamond} .

Proof. Suppose idempotents of R^{\diamond} commute. For any $e \in \mathcal{E}(R^{\diamond})$ and $x \in R$, let $a = e + e \diamond x - e \diamond x \diamond e$. Then $a \in \mathcal{E}(R^{\diamond})$ by Lemma 4.3, and so $e \diamond a = a \diamond e$, yielding $e \diamond x = e \diamond x \diamond e$. Dually, $x \diamond e = e \diamond x \diamond e$. Thus $e \diamond x = x \diamond e$ for any $x \in R$.

Lemma 4.5. Let $R = \mathcal{M}(S, T, U, V)$. Then the E_{11} -GA-semigroup R^{\diamond} is inverse if and only if S° is an inverse semigroup, T is a strongly regular ring, and U = V = 0.

Proof. The lemma follows from Lemma 4.1 and its left-hand version. \Box

Theorem 4.6. The following statements are equivalent for a GA-semigroup R^{\diamond} of R.

- (i) R^{\diamond} is inverse;
- (ii) R^{\diamond} is a regular semigroup in which idempotents are all central;
- (iii) $R^{\diamond} \simeq R_0^{\bullet} \times R_1^{\circ}$, where R_0 and R_1 are ideals of R such that $R = R_0 \oplus R_1$, R_0 is a strongly regular ring and R_1° is inverse.

Proof. (i) \Leftrightarrow (ii) follows from Lemma 4.4 and [3, Theorem 1.17]. Since the idempotents are central in a ring with inverse adjoint semigroup by [4, Theorem 6] or [6, Theorem 17], (iii) \Rightarrow (ii) is clear. Now suppose R^{\diamond} is inverse. Then by Theorem 3.1 and Lemma 4.5, $R^{\diamond} \simeq \mathcal{M}_{11}^{\diamond}(S, T, 0, 0)$, where S° is inverse and T is a strongly regular ring. It is clear that $\mathcal{M}_{11}^{\diamond}(S, T, 0, 0) \simeq S^{\circ} \times T^{\bullet}$, proving (i) \Rightarrow (ii). \Box

Theorem 4.7. A ring R has an inverse GA-semigroup if and only if R° is inverse.

Proof. The sufficiency is trivial. For the necessity, if a GA-semigroup R^{\diamond} is inverse, then by Theorem 4.6, we have that $R = R_0 \oplus R_1$, where R_0 and R_1 are ideals of R such that R_0 is a strongly regular ring and R_1^{\diamond} is inverse. Clearly $R^{\diamond} \cong R_0 \oplus R_1$. Since the adjoint semigroup of a strongly regular ring is inverse by [4, Theorem 6] or [6, Theorem 17], we have R^{\diamond} is inverse.

Recall that a regular semigroup is called pseudoinverse if and only if eSe is inverse for any $e \in \mathcal{E}(S)$, if and only if idempotents of eSe commute for any $e \in \mathcal{E}(S)$ ([9, IX.3]). We note that R^{\bullet} is pseudoinverse if and only if R is a strongly regular ring. Since R° has identity, R° is pseudoinverse if and only if it is inverse. In [6], we described the ring such that $e \circ R \circ e$ is inverse for any idempotent $e \neq 0$.

Lemma 4.8. Let $R = \mathcal{M}(S, T, U, V)$. Then the E_{11} -GA-semigroup R° is pseudoinverse if and only if S° is an inverse semigroup, T is a strongly regular ring, and $\mathcal{E}(S)U = V\mathcal{E}(S) = UT = TV = VU = 0$, and if so, then R° is inverse.

Proof. Suppose R^{\diamond} is pseudoinverse. Then T is a regular ring by Lemma 3.2. For any $f \in \mathcal{E}(T)$ let $A = \begin{pmatrix} 0 & 0 \\ 0 & f \end{pmatrix}$. Then $A \in \mathcal{E}(R^{\diamond})$ and $A \diamond R \diamond A = \begin{pmatrix} S & Uf \\ fV & fTf \end{pmatrix}$. Since $A \diamond R \diamond A$ is inverse, we have by Lemma 4.5 that S^{\diamond} is an inverse semigroup, fTf is a strongly regular ring and Uf = fV = 0. Thus T is a strongly regular ring and so UT = TV = 0. Noting that $VU \subseteq T$, one sees that $(VU)^2 \subseteq V(UT) = 0$, implying that VU = 0, since T is a strongly regular ring. Since R^{\diamond} is regular, $\mathcal{E}(S)U = V\mathcal{E}(S) = 0$ by Lemma 3.4.

Now we prove the sufficiency. By Lemma 3.4,

$$\mathcal{E}(R^{\diamond}) = \left\{ \begin{pmatrix} -e - uv & u \\ v & f \end{pmatrix} | e \in \mathcal{E}(S), f \in \mathcal{E}(T), u \in U, v \in V \right\}.$$

For any $u \in U$ and $v \in V$ let

$$\mathcal{E}_{u,v} = \left\{ \left(\begin{array}{cc} -e - uv & u \\ v & f \end{array} \right) | e \in \mathcal{E}(S) \text{ and } f \in \mathcal{E}(T) \right\}.$$

Then $\mathcal{E}(R) = \bigcup_{(u,v) \in U \times V} \mathcal{E}_{u,v}$. For any $A, B \in \mathcal{E}(R^{\diamond})$, straightforward computation

shows that $A \diamond B = B \diamond A$ if and only if $A, B \in \mathcal{E}_{u,v}$ for some $u \in U$ and $v \in V$. It follows that the commutativity defines an equivalence relation on $\mathcal{E}(R^{\diamond})$ whose set of equivalence classes consists of $\mathcal{E}_{u,v}$, $(u,v) \in U \times V$. Now for any $B \in \mathcal{E}_{u,v}$, idempotents of $B \diamond R \diamond B$ commute with B, implying that idempotents of $B \diamond R \diamond B$ commute. Thus R^{\diamond} is pseudoinverse. We need to prove that R° is inverse. To do this, we observe that R° is regular and $\mathcal{E}(R) = \begin{pmatrix} \mathcal{E}(S) & 0\\ 0 & \mathcal{E}(T) \end{pmatrix}$ by Lemma 3.4. Thus $\mathcal{E}(R^{\circ}) = \begin{pmatrix} \mathcal{E}(S^{\circ}) & 0\\ 0 & \mathcal{E}(T^{\circ}) \end{pmatrix}$ and $\mathcal{E}(R^{\circ})$ is a semilattice. It follows that R° is inverse by [3, Theorem 1.17]. **Theorem 4.9.** A GA-semigroup R^{\diamond} of a ring is a pseudoinverse semigroup if and only if $R^{\diamond} \simeq \mathcal{M}_{11}^{\diamond}(S, T, U, V)$, where S^{\diamond} is inverse, T is a strongly regular ring, and $\mathcal{E}(S)U = V\mathcal{E}(S) = UT = TV = VU = 0$.

Proof. It is an immediate consequence of Theorem 3.1 and Lemma 4.8. \Box

Theorem 4.10. The following statements for a ring R are equivalent.

- (i) R has a pseudoinverse GA-semigroup;
- (ii) R has an inverse GA-semigroup;
- (iii) R° is inverse.

Proof. (i) \Leftrightarrow (iii) follows from Lemma 4.8 and (ii) \Leftrightarrow (iii) is Theorem 4.7.

Theorem 4.11. Every GA-semigroup of R is inverse (orthodox, pseudoinverse) if and only if R is a strongly regular ring.

Proof. If R^{\bullet} is inverse (orthodox, pseudoinverse), then R is a strongly regular ring. Conversely, if R is a strongly regular ring, then by Theorem 2.8, $R^{\diamond} \simeq R_0^{\bullet} \times R_1^{\circ}$ for some ideals R_0 and R_1 of R such that $R = R_0 \oplus R_1$. Note that R_0 and R_1 are strongly regular rings. Then we have that R_0^{\bullet} and R_1° are inverse semigroups, and so R^{\diamond} is an inverse semigroup.

5. *E*-unitary GA-semigroups

Recall that a regular semigroup S is called E-unitary if for any $a \in S$ and $e \in \mathcal{E}(S)$, $ae \in \mathcal{E}(S)$ implies $a \in \mathcal{E}(S)$, and this is equivalent to that $ea \in \mathcal{E}(S)$ implies $a \in \mathcal{E}(S)$ for any $e \in \mathcal{E}(S)$ and $a \in S$ ([9]). Clearly, R^{\bullet} is E-unitary if and only if R is a Boolean ring, for a0 = 0 for any $a \in R$. In [6], we presented a characterization of the rings with E-unitary adjoint semigroups.

Lemma 5.1. Let $R = \mathcal{M}(S, T, U, V)$. Then the E_{11} -GA-semigroup R^{\diamond} is E-unitary if and only if S^{\diamond} is E-unitary, T is a Boolean ring, and $\mathcal{E}(S)U = V\mathcal{E}(S) = UT = TV = UV = VU = 0$.

Proof. Suppose that R^{\diamond} is *E*-unitary. Then S^{\diamond} and T^{\bullet} are clearly *E*-unitary by Lemma 3.4, and hence *T* is a Boolean ring. Let $A = \begin{pmatrix} 0 & u \\ v & t \end{pmatrix}$. Then $A \diamond 0 = \begin{pmatrix} 0 & 0 \\ v & 0 \end{pmatrix} \in \mathcal{E}(R^{\diamond})$, and so $\begin{pmatrix} 0 & u \\ v & t \end{pmatrix} \in \mathcal{E}(R^{\diamond})$, that is, $\begin{pmatrix} 0 & u \\ v & t \end{pmatrix} = A = A \diamond A = \begin{pmatrix} 1 & u \\ v & t \end{pmatrix} \begin{pmatrix} 1 & u \\ v & t \end{pmatrix} - E_{11} = \begin{pmatrix} uv & u + ut \\ v + tv & vu + t^2 \end{pmatrix}$,

from which it follows that UV = UT = TV = 0 and so VU = 0 since $(VU)^2 = 0$ and T is a Boolean ring. Since R^{\diamond} is regular, $\mathcal{E}(S)U = V\mathcal{E}(S) = 0$ by Lemma 3.4. The necessity is proved. Now we prove the sufficiency. By Lemma 3.4,

$$\mathcal{E}(R^{\diamond}) = \begin{pmatrix} \mathcal{E}(S^{\diamond}) & U \\ V & T \end{pmatrix}$$
(15)

since T is a Boolean ring. For any $A = \begin{pmatrix} s & u \\ v & t \end{pmatrix} \in R$ and $E = \begin{pmatrix} e & y \\ z & f \end{pmatrix} \in \mathcal{E}(R^{\diamond})$, if $A \diamond E = \begin{pmatrix} s \circ e & (1+s)y \\ v & tf \end{pmatrix} \in \mathcal{E}(R^{\diamond})$, then $s \circ e \in \mathcal{E}(S^{\circ})$ by (15), and

so
$$s \in \mathcal{E}(S^{\circ})$$
 since S° is *E*-unitary. Therefore, $A \in \mathcal{E}(R^{\circ})$ by (15).

Lemma 5.2. If R° is *E*-unitary, then *R* is a direct sum of a Boolean ring and a radical ring.

Proof. By [6, Theorem 23], R is an extension of a Boolean ring by a radical ring. Let B be a Boolean ideal of R such that R/B is a radical ring. Observing that idempotents of R are central, we see that B is contained in the center of R. For any $a \in R$ there exists $b \in R$ such that $a \circ b \in B$. Let $e = a \circ b$. For any $f \in B$, we have that

$$f(1-e)a \circ f(1-e)b = f(1-e)(a \circ b) = 0.$$

Since $f(1-e)a \in B$, we have that f(1-e)a = 0. Thus $(1-e)a \in Ann_R(B)$, whence $a = ea + (1-e)a \in B + Ann_R(B)$. Since B is semiprime, $B \cap Ann_R(B) = 0$. Hence $R = B \oplus Ann_R(B)$ and $Ann_R(B)$ is a radical ring since R/B is a radical ring.

Theorem 5.3. A GA-semigroup R^{\diamond} of a ring R is E-unitary if and only if $R^{\diamond} \simeq \mathcal{M}_{11}^{\diamond}(S, T, U, V)$, where S is a direct sum of a Boolean ring with a radical ring, T is a Boolean ring, and $\mathcal{E}(S)U = V\mathcal{E}(S) = UT = TV = UV = VU = 0$.

Proof. It follows from Theorem 3.1, Lemma 5.1, and Lemma 5.2.

Theorem 5.4. The following conditions are equivalent for a ring R.

- (i) R has an E-unitary GA-semigroup;
- (ii) R is a direct sum of a Boolean ring with a radical ring;
- (iii) R° is *E*-unitary.

Proof. (ii) \Rightarrow (iii) and (iii) \Rightarrow (i) are clear. Suppose that a GA-semigroup R^{\diamond} of R is E-unitary. Then by Theorem 5.3 and [7, Theorem 2.12], $R \cong \mathcal{M}(S, T, U, V)$, where S is a direct sum of a Boolean ring S_1 with a radical ring S_2 , T is a Boolean ring, and $\mathcal{E}(S)U = V\mathcal{E}(S) = UT = TV = UV = VU = 0$. Thus

$$R \cong \begin{pmatrix} S_1 \oplus S_2 & U \\ V & T \end{pmatrix} = \begin{pmatrix} S_1 & 0 \\ 0 & T \end{pmatrix} \oplus \begin{pmatrix} S_2 & U \\ V & 0 \end{pmatrix},$$

and clearly $\begin{pmatrix} S_1 & 0 \\ 0 & T \end{pmatrix}$ is a Boolean ideal and $\begin{pmatrix} S_2 & U \\ V & 0 \end{pmatrix}$ is the radical of $\mathcal{M}(S, T, U, V)$, proving (i) \Rightarrow (ii).

Corollary 5.5. A ring has a GA-semigroup which is a band if and only if it is a direct sum of a Boolean ring with a zero ring.

Proof. Suppose R^{\diamond} is a band. Then R^{\diamond} is *E*-unitary, and so by Theorem 5.3, $R^{\diamond} \simeq \mathcal{M}_{11}^{\diamond}(S, T, U, V)$, where *S* is a direct sum of a Boolean ring with a radical ring, *T* is a Boolean ring, and $\mathcal{E}(S)U = V\mathcal{E}(S) = UT = TV = UV = VU = 0$. Since R^{\diamond} is a band, *S* is a Boolean ring, and so SU = VS = 0. Therefore, by [7, Theorem 2.12], $R \cong \mathcal{M}(S, T, U, V) = \begin{pmatrix} S & 0 \\ 0 & T \end{pmatrix} \oplus \begin{pmatrix} 0 & U \\ V & 0 \end{pmatrix}$. Clearly $\begin{pmatrix} S & 0 \\ 0 & T \end{pmatrix}$ is a Boolean ideal and $\begin{pmatrix} 0 & U \\ V & 0 \end{pmatrix}$ is an ideal such that $\begin{pmatrix} 0 & U \\ V & 0 \end{pmatrix}^2 = 0$. Suppose *R* is a Boolean ideal *S* and an ideal *T* such that $T^2 = 0$. Then the

Suppose R is a Boolean ideal S and an ideal T such that $T^2 = 0$. Then the direct product of S^{\bullet} and the right zero GA-semigroup of T gives a GA-semigroup of R which is a band.

6. Completely simple GA-semigroups

If R^{\bullet} is completely 0-simple, then R is a division ring, while if R° is completely 0-simple or simple, then R is a division ring or a radical ring ([17, 10]).

If $a \in R$ is a unit in R° , we denote by a^{-} the inverse of a, i.e., the quasi-inverse of a ([14]).

Lemma 6.1. Let $R = \mathcal{M}(S, T, U, V)$. Then the E_{11} -GA-semigroup R^{\diamond} is completely simple if and only if S is a radical ring and T = 0, and if so, then R is a radical ring.

Proof. Suppose that R^{\diamond} is completely simple. Then R^{\diamond} is regular, and so S^{\diamond} is a regular semigroup and T is a regular ring by Lemma 3.2. Noting that 0 is a primitive idempotent of R^{\diamond} , we have that $0 \diamond R \diamond 0$ is a group by [3, Lemma 2.47]. Since $S^{\diamond} \simeq 0 \diamond R \diamond 0$, S is a radical ring. If f is an idempotent of T, then $E_{11}f = fE_{11} = 0$, and so $0 \diamond f = f \diamond 0 = 0$, which implies that f = 0 since 0 is primitive. Thus T = 0.

Conversely, for any $\begin{pmatrix} a & b \\ c & 0 \end{pmatrix}$, $\begin{pmatrix} x & y \\ z & 0 \end{pmatrix} \in R$, we have

$$\left(\begin{array}{cc} 0 & 0 \\ z(1+x^{-}) & 0 \end{array}\right) \diamond \left(\begin{array}{cc} a & b \\ c & 0 \end{array}\right) \diamond \left(\begin{array}{cc} a^{-} \circ x & (1+a^{-})y \\ 0 & 0 \end{array}\right) = \left(\begin{array}{cc} x & y \\ z & 0 \end{array}\right),$$

whence R^{\diamond} is a simple semigroup. By [9, Proposition II.4.7], it is sufficient to prove that 0 is a primitive idempotent in R^{\diamond} . Let $A = \begin{pmatrix} e & u \\ v & 0 \end{pmatrix}$ be an idempotent of R^{\diamond} such that $0 \diamond A = A \diamond 0 = A$. Then

$$\left(\begin{array}{cc} e & 0 \\ v & 0 \end{array}\right) = \left(\begin{array}{cc} e & u \\ 0 & 0 \end{array}\right) = \left(\begin{array}{cc} e & u \\ v & 0 \end{array}\right),$$

yielding u = v = 0. Thus $A = \begin{pmatrix} e & 0 \\ 0 & 0 \end{pmatrix}$ and so e is an idempotent of S° , forcing e = 0 since S is a radical ring. Hence A = 0. It follows that 0 is a primitive

idempotent in R^{\diamond} . We now prove that R is a radical ring. Observing that R° is regular and $\mathcal{E}(R) = 0$ by Lemma 3.4, we see that R° is a group, that is, R is a radical ring.

Theorem 6.2. A GA-semigroup R^{\diamond} of R is a completely simple semigroup if and only if $R^{\diamond} \simeq \mathcal{M}_{11}^{\diamond}(S, 0, U, V)$, where S is a radical ring.

Proof. It follows from Theorem 3.1 and Lemma 6.1.

Corollary 6.3. A ring has a completely (0-)simple GA-semigroup if and only if R is a (division) radical ring.

Proof. Let R^{\diamond} be a GA-semigroup of R. If R^{\diamond} is completely 0-simple, then by [7, Theorem 2.14], $R^{\bullet} \simeq R^{\diamond}$ is completely 0-simple, and so R is a division ring. If R^{\diamond} is completely simple, then $R^{\diamond} \simeq \mathcal{M}^{\diamond}_{11}(S, 0, U, V)$, where S is a radical ring by Theorem 6.2, and so $R \cong \mathcal{M}(S, 0, U, V)$ is a radical ring by Lemma 6.1 and [7, Theorem 2.12]. The sufficiency is clear.

We conclude that

$$R^{\bullet}$$
 has the property $\mathbf{P} \Rightarrow R^{\diamond}$ has the property \mathbf{P}
 $\Rightarrow R^{\circ}$ has the property \mathbf{P} ,

where \mathbf{P} stands for orthodox, right inverse, inverse, pseudoinverse, *E*-unitary, and completely simple, respectively.

References

- Andrunakievic, V. A.: *Halbradikale Ringe*. (Russian) Izv. Akad. Nauk SSSR, Ser. Mat. **12** (1948), 129–178 (1948).
 Zbl 0029.24802
- [2] Clark, W. E.: Generalized radical rings. Canad, J. Math. 20 (1968), 88–94.
 Zbl 0172.04602
- Clifford, A. H.; Preston, G. B.: The Algebraic Theory of Semigroups. Vol. 1, Am. Math. Soc., Providence, RI, 1961.
 Zbl 0111.03403
- [4] Du, X.: The structure of generalized radical rings. Northeastern Math. J. 4 (1988), 101–114.
 Zbl 0665.16007
- [5] Du, X.: The rings with regular adjoint semigroups. Northeastern Math. J. 4 (1988), 463-468.
 Zbl 0697.16007
- [6] Du, X.: The adjoint semigroup of a ring. Commun. Algebra 30 (2002), 4507–4525.
 Zbl 1030.16012
- [7] Du, X.: Generalized adjoint semigroups of a ring, (to appear).
- [8] Goodearl, K. R.: Von Neumann Regular Rings. Pitman, London 1979.

<u>Zbl 0411.16007</u>

- [9] Grillet, P. A.: Semigroups: an Introduction to the Structure Theory. Pure Appl. Math. 193, Marcel Dekker, Inc., New York 1995.
 Zbl 0830.20079 Zbl 0874.20039
- [10] Heatherly, H.; Tucci, R. P.: *The circle semigroup of a ring*. Acta Math. Hung.
 90 (2001), 231–242.
 Zbl 0973.20059
- [11] Heatherly, H. E.; Tucci, R. P.: Adjoint regular rings. Int. J. Math. Math. Sci. 30 (2002), 459–466.
 Zbl 1014.16020
- [12] Heatherly, H.; Tucci, R. P.: Adjoint Clifford rings. Acta Math. Hung. 95 (2002), 75–82.
 Zbl 0997.16015
- [13] Howie, J. M.: An Introduction to Semigroup Theory. Academic Press, New York 1976.
 Zbl 0355.20056
- [14] Jacobson, N.: Structure of Rings. Amer. Math. Soc. Colloq. Publ. 37, Am. Math. Soc., Providence, RI, 1956.
 Zbl 0073.02002
- [15] Kelarev, A. V.: Generalized radical semigroup rings. Southeast Asian Bull. Math. 21 (1997), 85–90.
 Zbl 0890.16009
- [16] Kelarev, A. V.: On rings with inverse adjoint semigroups. Southeast Asian Bull. Math. 23 (1999), 431–436.
 Zbl 0945.16017
- [17] Petrich, M.: *Rings and Semigroups*. Lecture Notes in Mathematics 380, Springer-Verlag, New York 1974.
 Zbl 0278.20068
- [18] Venkatesan, P. S.: *Right (Left) inverse semigroups.* J. Algebra **31** (1974), 209–217. Zbl 0301.20058

Received November 5, 2005