Generalized Adjoint Semigroups of a Ring

Xiankun Du Junlin Wang
Department of Mathematics, Jilin University
Changchun 130012, China
e-mail:duxk@jlu.edu.cn

Abstract

In this paper, we introduce generalized adjoint semigroups (GA-semigroups) of a ring R. We construct generalized adjoint semigroups on a ring R by means of bitranslations of R. It is shown that GA-semigroups of a π-regular ring are π-regular. As an application we deduce that in any ring, idempotents can be lifted modulo π-regular ideals. GA-semigroups containing idempotents are described in terms of the ring of a Morita context.

1. Introduction

Let R be a ring not necessarily with identity. The composition defined by $a \circ b=$ $a+b+a b$ for any $a, b \in R$ is usually called the circle or adjoint multiplication of R, which plays a role in the theory of Jacobson radical. It is well-known that (R, \circ) is a monoid with identity 0 , called the circle or adjoint semigroup of R. There are many interesting connections between a ring and its adjoint semigroup, which were studied in several papers, for example, $[8,13,14,16,22,23,24,30,31]$. Typical results are to describe the adjoint semigroup of a given ring and the ring with a given semigroup as its adjoint semigroup.

The circle multiplication of a ring satisfies the following generalized distributive laws:

$$
\begin{align*}
& a \circ(b+c-d)=a \circ b+a \circ c-a \circ d, \tag{1}\\
& (b+c-d) \circ a=b \circ a+c \circ a-d \circ a, \tag{2}
\end{align*}
$$

0138-4821/93 \$ 2.50 © 2006 Heldermann Verlag
or equivalently,

$$
\begin{aligned}
& a \circ(b+c)=a \circ b+a \circ c-a \circ 0, \\
& (b+c) \circ a=b \circ a+c \circ a-0 \circ a,
\end{aligned}
$$

which was observed in [1]. Thus as generalizations of the circle multiplication of a ring, a binary operation \diamond (associative or nonassociative) on an Abelian group A satisfying the generalized distributive laws have been studied by several authors making use of different terminologies, for example, pseudo-ring in [33], weak rings in [10], quasirings in [11], prerings in [3, 4, 29]. In particular, the so-called (m, n) distributive rings studied in $[5,26,27,36]$ also satisfy the generalized distributive laws (1) and (2). To such a system $(A,+, \diamond)$ there corresponds a unique associated ordinary ring. But, in general, even if A is a ring, there may exist no relation between the ring A and the associated ring of $(A,+, \diamond)$. In this paper, we are interested in a binary operation \diamond on a ring R, satisfying the associative law, the generalized distributive laws as (1) and (2), and the compatibility:

$$
x y=x \diamond y-x \diamond 0-0 \diamond y+0 \diamond 0 .
$$

This is equivalent to say that $(R,+, \diamond)$ is a weak ring such that the ring R is exactly the associated ring of $(R,+, \diamond)$. Such a binary operation \diamond is called a generalized adjoint multiplication on R and the semigroup (R, \diamond) is called a generalized adjoint semigroup of R, abbreviated GA-semigroup, which is a generalization of the multiplicative semigroup and the adjoint semigroup of a ring R. Essentially, the multiplicative and adjoint semigroup of R are exactly generalized adjoint semigroups of R with zero and identity, respectively (cf. Theorem 2.14). The other generalization of adjoint multiplication was studied in [21].

The aim of this paper is to describe generalized adjoint semigroups of a ring R. In Section 2, we present a way to construct generalized adjoint multiplications on a ring R by means of bitranslations of R, characterize a GA-semigroup with identity or zero and describe GA-semigroups of a ring with 1 .

In Section 3, we prove that GA-semigroups of a π-regular ring are π-regular.
In Section 4, we first prove that a GA-semigroup containing idempotents can be represented as a GA-semigroup of the ring of a Morita context. Then we present a sufficient condition and a necessary condition for a GA-semigroup to contain idempotents, in virtue of which we prove that in any ring, idempotents can be lifted modulo a π-regular ideal. This generalizes a classical result in ring theory which states that idempotents modulo a nil ideal can be lifted ([28]) and the ring-theoretic analogue of a result of Edwards ([19, Corollary 2]) which extends the well-known Lallement' lemma to eventually regular semigroups (i.e., π-regular semigroups). Finally, we prove that GA-semigroups of rings with DCC on principal right ideals contain idempotents.

In the forthcoming paper [17], we characterize the rings with a GA-semigroup having a property \mathbf{P} and its such GA-semigroups, where \mathbf{P} stands for orthodox, right inverse, inverse, pseudoinverse, E-unitary, and completely simple, respectively.

Although a ring R in this paper needs not contain identity, it is convenient to use a formal identity 1 , which can be regarded as the identity of a unitary ring containing R, since R can be always embedded into a ring with identity 1 ; for example, we can write $a \circ b=(1+a)(1+b)-1$ for any $a, b \in R$ and write $x^{0}=1$ for any $x \in R$ by making use of a formal 1 .

For $x \in R$ and a positive integer n we denote by $x^{[n]}$ the n-th power of x with respect to a generalized adjoint multiplication \diamond, and $x^{[0]}$ stands for an empty word.

A radical ring means a Jacobson radical ring.
For the algebraic theory and terminology on semigroups we will refer to $[9$, 20, 25].

2. A construction of GA-semigroups

Definition 2.1. Let R be a ring. A binary operation \diamond on R is called a generalized adjoint multiplication on R, if it satisfies the following conditions:
(i) the associative law: $x \diamond(y \diamond z)=(x \diamond y) \diamond z$;
(ii) the generalized distributive laws:

$$
\begin{aligned}
& x \diamond(y+z)=x \diamond y+x \diamond z-x \diamond 0, \\
& (y+z) \diamond x=y \diamond x+z \diamond x-0 \diamond x ;
\end{aligned}
$$

(iii) the compatibility: $x y=x \diamond y-x \diamond 0-0 \diamond y+0 \diamond 0$.

The semigroup (R, \diamond) is called a generalized adjoint semigroup of R, abbreviated $G A$-semigroup and denoted by R^{\diamond}.

We now remark that for a binary operation \diamond on R, the generalized distributive laws are equivalent to

$$
\begin{aligned}
& w \diamond(x+y-z)=w \circ x+w \diamond y-w \diamond z \\
& (x+y-z) \diamond w=x \circ w+y \diamond w-z \diamond w .
\end{aligned}
$$

Example 2.2. The multiplicative semigroup R^{\bullet} of a ring R is a GA-semigroup of R with zero 0 . The adjoint semigroup R° of R is a GA-semigroup of R with identity 0 .

Lemma 2.3. For any $x_{i}, y_{j} \in R$, and $p_{i}, q_{j} \in \mathbb{Z}$ with $\sum p_{i}=\sum q_{j}=0$, we have

$$
\left(\sum p_{i} x_{i}\right)\left(\sum q_{j} y_{j}\right)=\sum p_{i} q_{j}\left(x_{i} \diamond y_{j}\right)
$$

Proof. Set $p=\sum p_{i}$, and $q=\sum q_{j}$. Then we have that

$$
\begin{aligned}
& \left(\sum p_{i} x_{i}\right)\left(\sum q_{j} y_{j}\right) \\
& =\sum p_{i} q_{j}\left(x_{i} y_{j}\right) \\
& = \\
& =\sum p_{i} q_{j}\left(x_{i} \diamond y_{j}\right)-\sum p_{i} q_{j}\left(x_{i} \diamond 0\right) \\
& \\
& -\sum p_{i} q_{j}\left(0 \diamond y_{j}\right)+\sum p_{i} q_{j}(0 \diamond 0) \quad \text { (by the compatibility) } \\
& =\sum p_{i} q_{j}\left(x_{i} \diamond y_{j}\right)-q \sum p_{i}\left(x_{i} \diamond 0\right)-p \sum q_{j}\left(0 \diamond y_{j}\right)+p q(0 \diamond 0) \\
& =\sum p_{i} q_{j}\left(x_{i} \diamond y_{j}\right),
\end{aligned}
$$

as desired.
Corollary 2.4. If $x \diamond y=y \diamond x$, then $(x-y)^{n}=\sum_{i=0}^{n}(-1)^{n-i}\binom{n}{i} x^{[i]} \diamond y^{[n-i]}$.
Proof. As the usual binomial theorem, the corollary can be proved by use of an induction on n and Lemma 2.3.

Recall that a bitranslation is a pair $(\lambda, \rho) \in \operatorname{End}\left(R_{R}\right) \times \operatorname{End}\left({ }_{R} R\right)$ such that $x \lambda(y)=\rho(x) y$ for any $x, y \in R$. The set $\Omega(R)$ of all bitranslations of R is a subring of $\operatorname{End}\left(R_{R}\right) \times \operatorname{End}\left({ }_{R} R\right)$ with identity $\left(1_{R}, 1_{R}\right)$, called the translational hull of R. For $a \in R$, let λ_{a} and ρ_{a} be the left and right multiplications by a, respectively. Then $\left(\lambda_{a}, \rho_{a}\right)$ is a bitranslation of R, denoted by π_{a}, and $\pi: a \longmapsto \pi_{a}$ defines a ring homomorphism form R into $\Omega(R)$ such that the image $\pi(R)$ is an ideal of $\Omega(R)$ and the kernel is $\operatorname{Ann}(R)=\{x \in R \mid x R=R x=0\}$. Hence we can identify $a \in R$ with π_{a} and R with $\pi(R)$ whenever $\operatorname{Ann}(R)=0$. A bitranslation $\theta=(\lambda, \rho)$ will be considered as a double operator on R defined by $\theta x=\lambda(x)$ and $x \theta=\rho(x)$ for any $x \in R$. Then $\theta=\theta^{\prime}$ if and only if $\theta x=\theta^{\prime} x$ and $x \theta=x \theta^{\prime}$ for any $x \in R$. A bitranslation θ is called self-permutable if $(\theta x) \theta=\theta(x \theta)$ for any $x \in R([32,34,35])$.

For a self-permutable bitranslation θ, there is no ambiguity if we write $\theta x y \theta^{2} z$, for example.

By an associated pair of R we mean a pair $(\theta, \vartheta) \in \Omega(R) \times R$ satisfying the following conditions:
(i) $\theta \vartheta=\vartheta \theta$;
(ii) θ is self-permutable;
(iii) $\theta^{2}=\theta+\pi_{\vartheta}$.

Theorem 2.5. Let (θ, ϑ) be an associated pair of a ring R and define

$$
\begin{equation*}
x \diamond y=x y+x \theta+\theta y+\vartheta \tag{3}
\end{equation*}
$$

for any $x, y \in R$. Then \diamond is a generalized adjoint multiplication on R (called one induced by (θ, ϑ)). Conversely, every generalized adjoint multiplication \diamond on R can be obtained in this fashion by setting $\vartheta=0 \diamond 0, \theta x=0 \diamond x-0 \diamond 0$ and $x \theta=x \diamond 0-0 \diamond 0$. Moreover, the correspondence $(\theta, \vartheta) \rightarrow \diamond$ is a 1-1 correspondence between the associated pairs of R and generalized adjoint multiplications on R.

Proof. Suppose that (θ, ϑ) is an associated pair of R and the operation \diamond is given by (3). Then the associative law is verified as follows:

$$
\begin{aligned}
& (x \diamond y) \diamond z \\
& =(x y+x \theta+\theta y+\vartheta) \diamond z \quad(\text { by }(3)) \\
& =x y z+x \theta z+\theta y z+\vartheta z+x y \theta+x \theta^{2}+\theta y \theta+\vartheta \theta+\theta z+\vartheta \\
& =x y z+x y \theta+x \theta z+x \vartheta+x \theta+\theta y z+\theta y \theta+\theta z+\vartheta z+\theta \vartheta+\vartheta \\
& =x y z+x y \theta+x \theta z+x \vartheta+x \theta+\theta y z+\theta y \theta+\theta^{2} z+\theta \vartheta+\vartheta \\
& =x \diamond(y z+y \theta+\theta z+\vartheta) \quad(\text { by }(3)) \\
& =x \diamond(y \diamond z) .
\end{aligned}
$$

For the generalized distributive laws, we have that

$$
\begin{aligned}
& x \diamond(y+z) \\
& =x y+x z+x \theta+\theta y+\theta z+\vartheta \quad(\text { by }(3)) \\
& =(x y+x \theta+\theta y+\vartheta)+(x z+x \theta+\theta z+\vartheta)-(x \theta+\vartheta) \\
& =x \diamond y+x \diamond z-x \diamond 0, \quad(\text { by }(3))
\end{aligned}
$$

and similarly $(y+z) \diamond x=y \diamond x+z \diamond x-0 \diamond x$. The compatibility follows from

$$
\begin{align*}
& x \diamond y-x \diamond 0-0 \diamond y+\vartheta \\
& =(x y+x \theta+\theta y+\vartheta)-(x \theta+\vartheta)-(\theta y+\vartheta)+\vartheta \tag{3}\\
& =x y .
\end{align*}
$$

Thus \diamond is a generalized circle multiplication on R.
Conversely, suppose \diamond is a generalized adjoint multiplication on R. Set $\vartheta=$ $0 \diamond 0, \lambda(x)=0 \diamond x-0 \diamond 0, \rho(x)=x \diamond 0-0 \diamond 0$ and $\theta=(\lambda, \rho)$. For any $a, x, y \in R$, we have that

$$
\lambda(x+y)=0 \diamond(x+y)-0 \diamond 0=0 \diamond x+0 \diamond y-2 \vartheta=\lambda(x)+\lambda(y),
$$

$$
\begin{align*}
\lambda(x) a & =(0 \diamond x-0 \diamond 0)(a-0) \\
& =0 \diamond x \diamond a-0 \diamond x \diamond 0-0 \diamond 0 \diamond a+0 \diamond 0 \diamond 0 \tag{byLemma2.3}\\
& =0 \diamond(x \diamond a-x \diamond 0-0 \diamond a+0 \diamond 0)-0 \diamond 0 \\
& =0 \diamond(x a)-0 \diamond 0 \\
& =\lambda(x a),
\end{align*}
$$

which imply that $\lambda \in \operatorname{End}\left(R_{R}\right)$. Symmetrically, $\rho \in \operatorname{End}\left({ }_{R} R\right)$. Note that

$$
\begin{align*}
x \lambda(y) & =(x-0)(0 \diamond y-0 \diamond 0) \\
& =x \diamond 0 \diamond y-x \diamond 0 \diamond 0-0 \diamond 0 \diamond y+0 \diamond 0 \diamond 0 \tag{byLemma2.3}\\
& =(x \diamond 0-0 \diamond 0)(y-0) \quad(\text { by Lemma 2.3) } \\
& =\rho(x) y .
\end{align*}
$$

Thus θ is a bitranslation of R such that $\theta x=0 \diamond x-0 \diamond 0$ and $x \theta=x \diamond 0-0 \diamond 0$. Hence $\theta \vartheta=0 \diamond \vartheta-0 \diamond 0=\vartheta \diamond 0-0 \diamond 0=\vartheta \theta$. Since

$$
\begin{aligned}
& (\theta x) \theta=(0 \diamond x-0 \diamond 0) \diamond 0-0 \diamond 0=0 \diamond x \diamond 0-0 \diamond 0 \diamond 0, \\
& \theta(x \theta)=0 \diamond(x \diamond 0-0 \diamond 0)-0 \diamond 0=0 \diamond x \diamond 0-0 \diamond 0 \diamond 0,
\end{aligned}
$$

we have that $(\theta x) \theta=\theta(x \theta)$, that is, θ is self-permutable. Observing that

$$
\begin{aligned}
& \left(\theta+\pi_{\vartheta}\right) x=\theta x+\vartheta x \\
& =0 \diamond x-0 \diamond 0+\vartheta \diamond x-\vartheta \diamond 0-0 \diamond x+\vartheta \\
& =\vartheta \diamond x-0 \diamond 0-0 \diamond \vartheta+0 \diamond 0 \\
& =\theta(0 \diamond x)-\theta \vartheta \\
& =\theta(0 \diamond x-\vartheta) \\
& =\theta^{2} x,
\end{aligned}
$$

and similarly $x\left(\theta+\pi_{\vartheta}\right)=x \theta^{2}$, we see that $\theta^{2}=\theta+\pi_{\vartheta}$. It follows that (θ, ϑ) is an associated pair of R. Since

$$
x \diamond y=x y+x \diamond 0+0 \diamond y-\vartheta=x y+x \theta+\theta y+\vartheta
$$

we see that \diamond is induced by (θ, ϑ).
If two associated pairs (θ, ϑ) and $\left(\theta^{\prime}, \vartheta^{\prime}\right)$ of R induce the same generalized adjoint multiplication on R, then for any $x, y \in R$ we have

$$
x y+x \theta+\theta y+\vartheta=x y+x \theta^{\prime}+\theta^{\prime} y+\vartheta^{\prime},
$$

and so we have $\vartheta=\vartheta^{\prime}$ by taking $x=y=0, x \theta=x \theta^{\prime}$ by taking $y=0$, and $\theta y=\theta^{\prime} y$ by taking $x=0$, whence $(\theta, \vartheta)=\left(\theta^{\prime}, \vartheta^{\prime}\right)$. Thus the correspondence $(\theta, \vartheta) \rightarrow \diamond$ is a $1-1$ correspondence.

Theorem 2.5 is an analogue of results in $[26,27]$.
Corollary 2.6. If $\operatorname{Ann}(R)=0$, then any generalized adjoint multiplication on R is induced by a bitranslation θ of R such that $\theta^{2}-\theta \in R$, and further there exists a 1-1 correspondence between the set of bitranslations being idempotent modulo $\pi(R)$ and generalized adjoint multiplications on R.

Proof. If $\operatorname{Ann}(R)=0$, then $\Omega(R)$ is an ideal extension of R. Let \diamond be the generalized adjoint multiplication on R induced by an associated pair (θ, ϑ). Then $\theta^{2}-\theta \in R$, and $\theta^{2}=\theta+\pi_{\vartheta}$ implies $\vartheta=\theta^{2}-\theta$ since $\operatorname{Ann}(R)=0$. It is clear that $x \diamond y=(x+\theta)(y+\theta)-\theta$. From Theorem 2.5 the correspondence $\theta \rightarrow \diamond$ is a 1-1 correspondence.

The following corollary will be used freely throughout the rest of this paper.
Corollary 2.7. For any $x_{i}, y_{j} \in R$, and $p_{i}, q_{j} \in \mathbb{Z}$ with $\sum p_{i}=\sum q_{j}=1$, we have

$$
\left(\sum p_{i} x_{i}\right) \diamond\left(\sum q_{j} y_{j}\right)=\sum p_{i} q_{j}\left(x_{i} \diamond y_{j}\right)
$$

Proof. For any $x_{i}, y_{j} \in R$, and $p_{i}, q_{j} \in \mathbb{Z}$ with $\sum p_{i}=\sum q_{j}=1$, we have

$$
\begin{aligned}
& \sum p_{i} q_{j}\left(x_{i} \diamond y_{j}\right) \\
& =\sum p_{i} q_{j}\left(x_{i} y_{j}\right)+\sum p_{i} q_{j}\left(x_{i} \theta\right)+\sum p_{i} q_{j}\left(\theta y_{j}\right)+\sum p_{i} q_{j} \vartheta \\
& =\left(\sum p_{i} x_{i}\right)\left(\sum q_{j} y_{j}\right)+\left(\sum p_{i} x_{i}\right) \theta+\theta\left(\sum q_{j} y_{j}\right)+\vartheta \\
& =\left(\sum p_{i} x_{i}\right) \diamond\left(\sum q_{j} y_{j}\right),
\end{aligned}
$$

as desired.
Corollary 2.8. If $x, y \in R^{\diamond}$ such that $x \diamond y=y \diamond x$ and $p, q \in \mathbb{Z}$ such that $p+q=1$, then

$$
(p x+q y)^{[n]}=\sum_{i=0}^{n} p^{i} q^{n-i}\binom{n}{i} x^{[i]} \diamond y^{[n-i]} .
$$

Proof. As the usual binomial theorem, the corollary can be proved by use of an induction on n and Corollary 2.7.

By an affine subsemigroup of R^{\diamond} we mean a subsemigroup M of R^{\diamond} such that $x+y-z \in S$ for any $x, y, z \in M$.

For example, for an ideal extension \tilde{R} of R (i.e., \tilde{R} is a ring containing R as an ideal) and $a \in \tilde{R}$ such that $a^{2}-a \in R$, then $(R+a, \bullet)$ is an affine subsemigroup of \tilde{R}^{\bullet}. The semigroup ($R+a, \bullet$) was studied in [18] to deal with lifting idempotents.

Definition 2.9. Let M and N be affine subsemigroups of $G A$-semigroups R^{\diamond} and S° of rings R and S, respectively. If there exists a bijection ϕ from M onto N such that

$$
\phi(x+y-z)=\phi(x)+\phi(y)-\phi(z) \text { and } \phi(x \diamond y)=\phi(x) \diamond \phi(y)
$$

for any $x, y, z \in M$, then M and N are called affinely isomorphic, notationally $M \simeq N$.

Corollary 2.10. Let \tilde{R} be an ideal extension of R. Then any $a \in \tilde{R}$ such that $a^{2}-a \in R$ induces a generalized adjoint multiplication on R given by

$$
x \diamond y=(x+a)(y+a)-a
$$

for $x, y \in R$, and R^{\diamond} is affinely isomorphic to the affine subsemigroup $(R+a, \bullet)$ of \tilde{R}^{\bullet}.

Proof. It is clear that a induces a bitranslation θ of R by $\theta x=a x$ and $x \theta=x a$. If $a^{2}-a \in R$, then $\left(\theta, a^{2}-a\right)$ is an associated pair of R and the induced generalized adjoint multiplication on R given by $x \diamond y=x y+x a+a y+\vartheta=(x+a)(y+a)-a$. Let ϕ be a map from R into $R+a$ given by $\phi(x)=x+a$ for any $x \in R$. Then it is easy to check that ϕ is an affine isomorphism from R^{\diamond} onto the affine subsemigroup $(R+a, \bullet)$ of \tilde{R}^{\bullet}.

Lemma 2.11. Let M be an affine subsemigroup of R°. Then

$$
M-M=M-a=\left\{\sum p_{i} s_{i} \mid s_{i} \in M, \text { and } p_{i} \in \mathbb{Z} \text { with } \sum p_{i}=0\right\}
$$

for any $a \in M$, and $M-M$ is a subring of R.
Proof. The proof is a routine computation.
Theorem 2.12. Let M and N be affine subsemigroups of $G A$-semigroups R^{\diamond} and S^{\diamond} of rings R and S, respectively. If $M \simeq N$, then the rings $M-M$ and $N-N$ are isomorphic to each other. In particular, if $R^{\diamond} \simeq S^{\circ}$, then $R \cong S$.

Proof. Suppose ϕ is an affine isomorphism from M onto N. Take a fixed $a \in M$ and let ϕ^{*} be the mapping from M into N defined by $\phi^{*}(x-a)=\phi(x)-\phi(a)$ for any $x \in M$. Then we see that ϕ^{*} is a bijection. Since for any $x, y \in M$,

$$
\begin{aligned}
& \phi^{*}((x-a)-(y-a)) \\
& =\phi^{*}((x-y+a)-a) \\
& =\phi(x-y+a)-\phi(a) \\
& =\phi(x)-\phi(y)+\phi(a)-\phi(a) \\
& =\phi^{*}(x-a)-\phi^{*}(y-a), \\
& \phi^{*}((x-a)(y-a)) \\
& =\phi^{*}(x \diamond y-x \diamond a-a \diamond y+a \diamond a) \\
& =\phi(x \diamond y-x \diamond a-a \diamond y+a \diamond a+a)-\phi(a) \\
& =\phi(x \diamond y)-\phi(x \diamond a)-\phi(a \diamond y)+\phi(a \diamond a)+\phi(a)-\phi(a) \\
& =\phi(x) \diamond \phi(y)-\phi(x) \diamond \phi(a)-\phi(a) \diamond \phi(y)+\phi(a) \diamond \phi(a) \\
& =(\phi(x)-\phi(a))(\phi(y)-\phi(a)) \\
& =\phi^{*}(x-a) \phi^{*}(y-a),
\end{aligned}
$$

we have that ϕ^{*} is a ring isomorphism from the ring $M-M$ onto $N-N$ by Lemma 2.11.

Lemma 2.13. Let M be an affine subsemigroup of R^{\diamond}.
(i) If M has identity, then $M \simeq(M-M, \circ)$;
(ii) If M has zero, then $M \simeq(M-M, \bullet)$.

Proof. Given $e \in(M, \diamond)$, we define $\phi: M \rightarrow M-M$ by $\phi(x)=x-e$. It is clear that $\phi(x+y-z)=\phi(x)+\phi(y)-\phi(z)$. Note that for any $x, y \in M$

$$
\begin{equation*}
(x-e)(y-e)=x \diamond y-x \diamond e-e \diamond y+e \diamond e . \tag{4}
\end{equation*}
$$

Thus, if e is identity of M, then

$$
\begin{aligned}
\phi(x \diamond y) & =x \diamond y-e \\
& =(x-e)(y-e)+x+y-2 e \quad(\text { by }(4)) \\
& =(x-e) \circ(y-e) \\
& =\phi(x) \circ \phi(y)
\end{aligned}
$$

while if e is zero of M, then by (4),

$$
\phi(x \diamond y)=x \diamond y-e=(x-e)(y-e)=\phi(x) \phi(y)
$$

Hence ϕ is an affine isomorphism if e is identity or zero of M.

Theorem 2.14. Let R^{\diamond} be a GA-semigroup of a ring R. Then
(i) R^{\diamond} has identity if and only if $R^{\diamond} \simeq R^{\circ}$;
(ii) R^{\diamond} has zero if and only if $R^{\diamond} \simeq R^{\bullet}$;
(iii) if R has identity, then $R^{\diamond} \simeq R^{\bullet} \simeq R^{\circ}$.

Proof. (i) and (ii) are immediate results of Lemma 2.13. If R has 1 , then $R=\Omega(R)$ and so by Corollary 2.10 there is $a \in R$ such that $x \diamond y=(x+a)(y+a)-a$ for any $x, y \in R$. Clearly, $-a$ is zero of R^{\diamond}. Thus $R^{\diamond} \simeq R^{\bullet}$ by (ii), and $R^{\circ} \simeq R^{\bullet}$ under the affine isomorphism $x \rightarrow 1+x$ from R° onto R^{\bullet}, proving (iii).

3. GA-semigroups of π-regular rings

Recall that a semigroup S is (left, right, completely) π-regular if and only if for any $x \in S$ there exists a positive integer n such that $\left(x^{n} \in S x^{n+1}, x^{n} \in x^{n+1} S\right.$, $\left.x^{n} \in S x^{n+1} \cap x^{n+1} S\right) x^{n} \in x^{n} S x^{n}$.

For a positive integer n, a semigroup S is called (left, right, completely) π_{n} regular if $\left(x^{n} \in S x^{n+1}, x^{n} \in x^{n+1} S, x^{n} \in S x^{n+1} \cap x^{n+1} S\right) x^{n} \in x^{n} S x^{n}$ for any $x \in S$. By a (left, right, completely) π_{0}-regular semigroup we mean a (left, right, completely) π-regular semigroup.

For a non-negative integer n, a ring is called (left, right, completely) π_{n}-regular if its multiplicative semigroup is (left, right, completely) π_{n}-regular.

In [15] we proved that the adjoint semigroup of a π-regular ring is π-regular and in $[16]$, we proved further that the adjoint semigroup of a (left, right, completely) π_{n}-regular ring is (left, right, completely) π_{n}-regular. In this section, we will prove that this is true for GA-semigroups.

Lemma 3.1. For any $a, b, x, y, z \in R$, we have

$$
(a-a \diamond x) z(b-y \diamond b) \in a \diamond R \diamond b-a \diamond R \diamond b .
$$

Proof. Noting that $a \diamond R \diamond b$ is an affine subsemigroup of R^{\diamond}, we see that

$$
\begin{aligned}
& (a-a \diamond x) z(b-y \diamond b) \\
& =(a-a \diamond x)(z-0)(b-y \diamond b) \\
& =a \diamond z \diamond b-a \diamond z \diamond y \diamond b-a \diamond 0 \diamond b+a \diamond 0 \diamond y \diamond b-a \diamond x \diamond z \diamond b \\
& \quad+a \diamond x \diamond z \diamond y \diamond b+a \diamond x \diamond 0 \diamond b-a \diamond x \diamond 0 \diamond y \diamond b \quad(\text { by Lemma 2.3) } \\
& \in a \diamond R \diamond b-a \diamond R \diamond b, \quad(\text { by Lemma 2.11) }
\end{aligned}
$$

completing the proof.

Lemma 3.2. Let $\mathcal{A}=b \diamond R \diamond c-b \diamond R \diamond c$. If x commutes with c in R^{\diamond}, then $a-a \diamond x \in \mathcal{A}$ implies $a-a \diamond x^{[n]} \in \mathcal{A}$ for any positive integer n.

Proof. To prove the lemma, we proceed with an induction on n. It is trivial for $n=1$. Assume $n>1$ and $a-a \diamond x^{[n-1]} \in \mathcal{A}$. Let $a-a \diamond x^{[n-1]}=b \diamond y \diamond c-b \diamond z \diamond c$. Then multiplication (with respect to \diamond) by x on the right shows that

$$
a \diamond x-a \diamond x^{[n]}=b \diamond y \diamond x \diamond c-b \diamond z \diamond x \diamond c,
$$

whence by Lemma 2.11

$$
\begin{aligned}
a-a \diamond x^{[n]} & =a-a \diamond x+a \diamond x-a \diamond x^{[n]} \\
& =a-a \diamond x+b \diamond y \diamond x \diamond c-b \diamond z \diamond x \diamond c \\
& \in \mathcal{A},
\end{aligned}
$$

as desired.
Lemma 3.3. Let a and x commute with each other in R^{\diamond}. Then for any positive integers m and n we have that

$$
\left(a-a^{[m]} \diamond x\right)^{n}=a^{[n]}-a^{[n+m-1]} \diamond y
$$

for some y commuting with a and x in R^{\diamond}.
Proof. By Corollary 2.4,

$$
\begin{aligned}
& \left(a-a^{[m]} \diamond x\right)^{n} \\
& =\sum_{i=0}^{n}(-1)^{n-i}\binom{n}{i} a^{[i]} \diamond\left(a^{[m]} \diamond x\right)^{[n-i]} \\
& =\sum_{i=0}^{n}(-1)^{n-i}\binom{n}{i} a^{[i+m(n-i)]} \diamond x^{[n-i]} \\
& =a^{[n]}-\sum_{i=0}^{n-1}(-1)^{n-i+1}\binom{n}{i} a^{[n+m-1]} \diamond a^{[(m-1)(n-1-i)]} \diamond x^{[n-i]} \\
& =a^{[n]}-a^{[n+m-1]} \diamond \sum_{i=0}^{n-1}(-1)^{n-i+1}\binom{n}{i}\left(a^{[(m-1)(n-1-i)]} \diamond x^{[n-i]}\right),
\end{aligned}
$$

since $\sum_{i=0}^{n-1}(-1)^{n-i+1}\binom{n}{i}=1$. Let

$$
y=\sum_{i=0}^{n-1}(-1)^{n-i+1}\binom{n}{i}\left(a^{[(m-1)(n-1-i)]} \diamond x^{[n-i]}\right) .
$$

Then $(a-a \diamond x)^{n}=a^{[n]}-a^{[n+m-1]} \diamond y$ and it is clear that y commutes with both a and x.

Lemma 3.4. Let $a, w, x, y, z \in R$ such that x, y and z commute with a in R^{\diamond}, and let n be a positive integer, and k and m be non-negative integers not all zero. If

$$
(a-a \diamond x \diamond a)^{n}=(a-a \diamond y)^{k} w(a-z \diamond a)^{m}
$$

then $a^{[n]}=a^{[k]} \diamond u \diamond a^{[m]}$ for some $u \in R$.
Proof. Let $\mathcal{A}=a^{[k]} \diamond R \diamond a^{[m]}-a^{[k]} \diamond R \diamond a^{[m]}$. Then by Lemma 3.3 and Lemma 3.1, we have

$$
a^{[n]}-a^{[n+1]} \diamond r=\left(a^{[k]}-a^{[k]} \diamond s\right) w\left(a^{[m]}-t \diamond a^{[m]}\right) \in \mathcal{A}
$$

for some $r, s, t \in R$ commuting with a. By Lemma 3.2, $a^{[n]}-a^{[n+k+m]} \diamond r \in \mathcal{A}$. Let $a^{[n]}-a^{[n+k+m]} \diamond r=a^{[k]} \diamond b \diamond a^{[m]}-a^{[k]} \diamond c \diamond a^{[m]}$. Then we have that

$$
a^{[n]}=a^{[n+k+m]} \diamond r+a^{[k]} \diamond b \diamond a^{[m]}-a^{[k]} \diamond c \diamond a^{[m]}=a^{[k]} \diamond\left(a^{[n]} \diamond r+b-c\right) \diamond a^{[m]}
$$

as desired.
Theorem 3.5. For a non-negative integer n, if a ring R is (left, right, completely) π_{n}-regular, then so is its any GA-semigroup.

Proof. Let R^{\diamond} be a GA-semigroup of R. If R be a right π_{n}-regular ring for $n \geq 1$, then for any $x \in R$, there exist $y \in R$ such that $\left(x-x^{[3]}\right)^{n}=\left(x-x^{[3]}\right)^{n+1} y$. From Lemma 3.4, we deduce that $x^{[n]}=x^{[n+1]} \diamond z$ for some $z \in R$, whence (R, \diamond) is a right π_{n}-regular semigroup. The remainder can be proved similarly.

4. GA-semigroups with idempotents

Let R^{\diamond} be a GA-semigroup of R. Then R^{\diamond} is called (centrally) 0 -idempotent if the additive 0 of R is an (central) idempotent in R^{\diamond}. Let R^{\diamond} be a 0 -idempotent GA-semigroup induced by the associated pair (θ, ϑ). Then it is clear that $\vartheta=0$ and so θ is idempotent. One should note that (centrally) 0 -idempotent is not an affine isomorphism invariant.

Lemma 4.1. Every GA-semigroup containing (central) idempotents is affinely isomorphic to a (centrally) 0-idempotent one.

Proof. Suppose R^{\diamond} is a GA-semigroup containing an (central) idempotent e. Let $R_{e}=(R, \boxplus, *)$ with

$$
\begin{aligned}
x \boxplus y & =x+y-e, \\
x * y & =(x-e)(y-e)+e,
\end{aligned}
$$

for any $x, y \in R$. Then R_{e} is a ring in which e acts as additive zero and $*$ is clearly an associative binary operation on R_{e}. Denote by \boxminus the minus in R_{e}. Noting that
$x+y-z=x \boxplus y \boxminus z$ for any $x, y, z \in R$, we see that the operation \diamond satisfies the generalized distributive laws in R_{e}, and further we have that

$$
\begin{aligned}
x * y & =(x-e)(y-e)+e \\
& =x \diamond y-x \diamond e-e \diamond y+e \diamond e+e \\
& =x \diamond y \boxminus x \diamond e \boxminus e \diamond y \boxplus e \diamond e \boxplus e \\
& =x \diamond y \boxminus x \diamond e \boxminus e \diamond y \boxplus e \diamond e .
\end{aligned}
$$

Thus \diamond is a GA-multiplication on the ring R_{e} such that R_{e}^{\diamond} is (centrally) 0idempotent. It is easy to see that the identity mapping of R is an affine isomorphism from R^{\diamond} onto R_{e}^{\diamond}.

Given two rings S and T, two bimodules ${ }_{S} U_{T}$ and ${ }_{T} V_{S}$, an S-S-homomorphism $\phi: U \otimes_{T} V \rightarrow S$ and a T - T-homomorphism $\psi: V \otimes_{S} U \rightarrow T$ (write $u v$ for $\phi(u \otimes v)$ and $v u$ for $\psi(v \otimes u))$ such that $u\left(v u^{\prime}\right)=(u v) u^{\prime}$ and $v\left(u v^{\prime}\right)=(v u) v^{\prime}$ for any $u, u^{\prime} \in U$ and $v, v^{\prime} \in V$. Let $R=\left(\begin{array}{cc}S & U \\ V & T\end{array}\right)$ be the set of formal matrices. Then R is a ring with the usual matrix operations, called the ring of the Morita context, or a Morita ring, and denoted by $\mathcal{M}(S, T, U, V)$. Denote by \tilde{S} and \tilde{T} the Dorroh extension of S and T, respectively. Then $\tilde{S}_{\tilde{S}} U_{\tilde{T}}$ and $\tilde{T} V_{\tilde{S}}$ are unitary bimodules in a natural way. Let $\tilde{R}=\left(\begin{array}{cc}\tilde{S} & U \\ V & \tilde{T}\end{array}\right)$. Then \tilde{R} is a unitary ring with the usual matrix operations and R is an ideal of \tilde{R}. Let $E_{11}=\left(\begin{array}{cc}1 & 0 \\ 0 & 0\end{array}\right) \in \tilde{R}$. Then the generalized adjoint multiplication induced by E_{11} is given by

$$
\begin{aligned}
A \diamond B & =A B+A E_{11}+E_{11} B \\
& =\left(A+E_{11}\right)\left(B+E_{11}\right)-E_{11} \\
& =\left(\begin{array}{cc}
s \circ s^{\prime}+u v^{\prime} & (1+s) u+u t^{\prime} \\
u\left(1+s^{\prime}\right)+t v^{\prime} & u u^{\prime}+t t^{\prime}
\end{array}\right)
\end{aligned}
$$

for any $A=\left(\begin{array}{cc}s & u \\ v & t\end{array}\right), B=\left(\begin{array}{cc}s^{\prime} & u^{\prime} \\ v^{\prime} & t^{\prime}\end{array}\right) \in R$. The semigroup R^{\diamond} is called the E_{11}-GA-semigroup of R, denoted by $\mathcal{M}_{11}^{\diamond}(S, T, U, V)$. It is clear that the E_{11}-GAsemigroup $\mathcal{M}_{11}^{\diamond}(S, T, U, V)$ is 0-idempotent.

Lemma 4.2. Let R^{\diamond} be a 0 -idempotent $G A$-semigroup induced by an idempotent self-permutable bitranslation θ, and let $R_{11}=\theta R \theta, R_{10}=\theta R(1-\theta), R_{01}=$ $(1-\theta) R \theta$, and $R_{00}=(1-\theta) R(1-\theta)$. Then
(i) $R=R_{11} \oplus R_{10} \oplus R_{01} \oplus R_{00}$ as additive groups;
(ii) $R_{i j} R_{k l} \subset \delta_{j k} R_{j l}$, where $\delta_{j k}$ is the Kronecker delta, $i, j, k, l=0,1$;
(iii) if we write $x=\sum x_{i j}, y=\sum y_{i j}$, where $x_{i j}, y_{i j} \in R_{i j}, i, j=0,1$, then

$$
\begin{aligned}
x \diamond y & =\left(x_{11} \circ y_{11}+x_{10} y_{01}\right)+\left(x_{10}+x_{11} x_{10}+x_{10} y_{00}\right) \\
& +\left(x_{01}+x_{01} y_{11}+x_{00} y_{01}\right)+\left(x_{01} y_{10}+x_{00} y_{00}\right) ;
\end{aligned}
$$

(iv) $R_{i j}, i, j=0,1$, are subrings of R such that $R_{11}^{\diamond}=R_{11}^{\circ}, R_{00}^{\diamond}=R_{00}^{\circ}, R_{10}^{\diamond}$ is a right zero semigroup, and R_{01}^{\diamond} is a left zero semigroup.
Proof. Since θ is idempotent, the proof of (i) and (ii) is essentially similar to that of Pierce decomposition of a ring. For $x=\sum x_{i j}, y=\sum y_{i j}$, where $x_{i j}, y_{i j} \in R_{i j}$, $i, j=0,1$, we have by (ii) that

$$
\begin{aligned}
x \diamond y & =\left(\sum x_{i j}\right)\left(\sum y_{i j}\right)+\theta\left(\sum x_{i j}\right)+\left(\sum y_{i j}\right) \theta \\
& =\left(\sum x_{i j} y_{k l}\right)+x_{11}+x_{10}+y_{11}+y_{01} \\
& =\left(x_{11} \circ y_{11}+x_{10} y_{01}\right)+\left(y_{10}+x_{11} y_{10}+x_{10} y_{00}\right) \\
& +\left(x_{01}+x_{01} y_{11}+x_{00} y_{01}\right)+\left(x_{01} y_{10}+x_{00} y_{00}\right),
\end{aligned}
$$

proving (iii). If $x, y \in R_{11}$, then

$$
x \diamond y=x y+x \theta+\theta y=x y+x+y=x \circ y,
$$

whence $R_{11}^{\diamond}=R_{11}^{\circ}$, and similarly, $R_{00}^{\circ}=R_{00}^{\circ}$. For any $x, y \in R_{10}$, we have by (ii) that

$$
x \diamond y=x y+x \theta+\theta y=y
$$

which implies that R_{10}^{\diamond} is a right zero semigroup, and similarly R_{01}^{\diamond} is a left zero semigroup, proving (iv).

Theorem 4.3. Let R^{\diamond} be a GA-semigroup of R. If R^{\diamond} contains idempotents, then there exists a Morita ring $\mathcal{M}(S, T, U, V)$ such that $R \cong \mathcal{M}(S, T, U, V)$ and $R^{\diamond} \simeq \mathcal{M}_{11}^{\diamond}(S, T, U, V)$.
Proof. Let R^{\diamond} be a GA-semigroup induced by the associated pair (θ, ϑ). If R^{\diamond} contains idempotents, then by Lemma 4.1, without loss of generality, we may assume that R^{\diamond} is 0 -idempotent. By Lemma 4.2, it is a routine matter to verify that $\mathcal{M}\left(R_{11}, R_{00}, R_{10}, R_{01}\right)$ is a Morita ring in a natural way. By Lemma 4.2 straightforward computation shows that the mapping $\phi: R \rightarrow \mathcal{M}\left(R_{11}, R_{00}, R_{10}, R_{01}\right)$ defined by

$$
\phi(x)=\left(\begin{array}{cc}
\theta x \theta & \theta x(1-\theta) \\
(1-\theta) x \theta & (1-\theta) x(1-\theta)
\end{array}\right)
$$

is a ring isomorphism. Noting that

$$
\begin{aligned}
\phi(x \diamond y) & =\phi(x y+x \theta+\theta y) \\
& =\phi(x) \phi(y)+\phi(x \theta)+\phi(\theta y) \\
& =\phi(x) \phi(y)+\left(\begin{array}{cc}
\theta x \theta & 0 \\
(1-\theta) x \theta & 0
\end{array}\right)+\left(\begin{array}{cc}
\theta y \theta & (1-\theta) y \theta \\
0 & 0
\end{array}\right) \\
& =\phi(x) \diamond \phi(y),
\end{aligned}
$$

we see that ϕ is an affine isomorphism from R^{\diamond} onto the E_{11}-GA-semigroup of $\mathcal{M}\left(R_{11}, R_{00}, R_{10}, R_{01}\right)$.

Corollary 4.4. A GA-semigroup R^{\diamond} is (centrally) 0-idempotent if and only if there exists an ideal extension \tilde{R} with 1 of R and an idempotent $\varepsilon \in \tilde{R}$ (commuting with elements of R) such that $x \diamond y=(x+\varepsilon)(y+\varepsilon)-\varepsilon$ for any $x, y \in R$.

Proof. It follows from Theorem 4.3, the definition of the E_{11}-GA-semigroup and taking $\varepsilon=E_{11}$.

Lemma 4.5. If $\left(a-a^{[2]}\right)^{2}=0$, then there exists an idempotent $e=\sum p_{i} a^{[i]}$ with $\sum p_{i}=1$ such that $a^{[2]}=e \diamond a^{[2]}$.
Proof. By Corollary 2.4, $\left(a-a^{[2]}\right)^{2}=a^{[2]}-2 a^{[3]}+a^{[4]}$, and so

$$
a^{[2]}=2 a^{[3]}-a^{[4]}=a^{[2]} \diamond\left(2 a-a^{[2]}\right)=a^{[2]} \diamond\left(2 a-a^{[2]}\right)^{[2]}=a^{[2]} \diamond\left(2 a-a^{[2]}\right)^{[3]} .
$$

Note that by Corollary 2.8,

$$
\left(2 a-a^{[2]}\right)^{[3]}=8 a^{[3]}-12 a^{[4]}+6 a^{[5]}-a^{[6]}=a^{[2]} \diamond\left(8 a-12 a^{[2]}+6 a^{[3]}-a^{[4]}\right) .
$$

Let $b=8 a-12 a^{[2]}+6 a^{[3]}-a^{[4]}$. Then b commutes with a and $a^{[2]}=a^{[2]} \diamond b \diamond a^{[2]}$. Let $e=a^{[2]} \diamond b$. Then it is clear that e is an idempotent of R^{\diamond} such that $a^{[2]}=e \diamond a^{[2]}$.

Let $\Gamma(R)=\{\theta \in \Omega(R) \mid \theta x=x \theta$ for any $x \in R\}$.
Lemma 4.6. A GA-semigroup of R induced by (θ, ϑ) has (central) idempotents if and only if θ can be lifted to an idempotent of $\Omega(R)$ (contained in $\Gamma(R)$).

Proof. Assume semigroup R^{\diamond} has an idempotent e. Then

$$
e=e \diamond e=e^{2}+e \theta+\theta e+\vartheta,
$$

whence $\pi_{e}=\pi_{e}^{2}+\pi_{e} \theta+\theta \pi_{e}+\pi_{\vartheta}=\pi_{e}^{2}+\pi_{e} \theta+\theta \pi_{e}+\theta^{2}-\theta=\left(\pi_{e}+\theta\right)^{2}-\theta$. Thus $\pi_{e}+\theta$ is idempotent. Moreover, if e is central in R^{\diamond}, then $e \diamond x=x \diamond e$ for any $x \in R$, that is, $e x+e \theta+\theta x+\vartheta=x e+x \theta+\theta e+\vartheta$, and particularly, $e \theta=\theta e$ by taking $x=0$. Thus $\left(\pi_{e}+\theta\right) x=e x+\theta x=x e+x \theta=x\left(\pi_{e}+\theta\right)$, yielding $\pi_{e}+\theta \in \Gamma(R)$.

Assume θ can be lifted to an idempotent of $\Omega(R)$. Then $\pi_{a}+\theta$ is idempotent for some $a \in R$, whence $\pi_{a}=\pi_{a}^{2}+\pi_{a} \theta+\theta \pi_{a}+\theta^{2}-\theta=\pi_{a}^{2}+\pi_{a} \theta+\theta \pi_{a}+\pi_{\vartheta}$. Thus we have $a x=a^{2} x+(a \theta) x+(\theta a) x+\vartheta x=a^{[2]} x$, forcing $\left(a-a^{[2]}\right) R=0$. In particularly, $\left(a-a^{[2]}\right)^{2}=0$, whence R^{\diamond} contains an idempotent $e=\sum p_{i} a^{[i]}$ with $\sum p_{i}=1$ by Lemma 4.5. Further, if $\pi_{a}+\theta$ is an idempotent contained in $\Gamma(R)$. Then for any $x \in R,\left(\pi_{a}+\theta\right) x=x\left(\pi_{a}+\theta\right)$, that is, $a x+\theta x=x a+x \theta$, and particularly $\theta a=a \theta$ by taking $x=a$, whence

$$
a \diamond x=a x+\theta x+a \theta+\vartheta=x a+x \theta+\theta a+\vartheta=x \diamond a .
$$

Hence $e \diamond x=x \diamond e$, that is, e is a central idempotent of R^{\diamond}.
Theorem 4.7. Consider the following conditions:
(i) every GA-semigroup of R contains (central) idempotents;
(ii) in any ideal extension \tilde{R} of R, idempotents of \tilde{R} / R can be lifted to idempotents of \tilde{R} (contained in the centralizer of R in \tilde{R});
(iii) idempotents of $\Omega(R) / \pi(R)$ can be lifted to idempotents of $\Omega(R)$ (contained in $\Gamma(R)$). Then $(\mathrm{iii}) \Rightarrow(\mathrm{i}) \Rightarrow(\mathrm{ii})$. Moreover, if $\operatorname{Ann}(R)=0$, then (i), (ii) and (iii) are equivalent.

Proof. (iii) \Rightarrow (i) follows from Lemma 4.6.
(i) \Rightarrow (ii): If $a \in \tilde{R}$ and $a^{2}-a \in R$, then the pair (θ, ϑ) defined by

$$
\theta x=a x, x \theta=x a, \text { and } \vartheta=a^{2}-a
$$

is an associated pair and so $x \diamond y=x y+x a+a y+a^{2}-a$ defines a GA-multiplication on R. If e is an idempotent of R^{\diamond}, then $e=e^{2}+e a+a e+a^{2}-a=(e+a)^{2}-a$, and so $e+a$ is an idempotent of \tilde{R}. Further if e is a central idempotent of R^{\diamond}, then $e \diamond x=x \diamond e$ for any $x \in R$, that is

$$
e x+e a+a x+\vartheta=x e+x a+a e+\vartheta
$$

and particularly, $e a=a e$ by taking $x=0$. Thus $(e+a) x=e x+a x=x e+x a=$ $x(e+a)$, which implies that $e+a$ is contained in the centralizer of R in \tilde{R}.

The remainder is clear.
The following corollary is independently interesting, which is a generalization of a classical result in ring theory which states that idempotents modulo a nil ideal can be lifted ([28]) and is a generalization of ring-theoretic analogue of a result of Edwards ([19, Corollary 2]) which extends the well-known Lallement's lemma to eventually regular semigroups (i.e., π-regular semigroups).

Theorem 4.8. In any ring, idempotents modulo a π-regular ideal can be lifted.
Proof. By Theorem 3.5, any GA-semigroup of a π-regular ring contains idempotent, and so by Theorem 4.7 idempotents modulo a π-regular ideal can be lifted.

If R is a ring with $E C I$, then idempotents can be lifted from $\Omega(R) / R$ to $\Omega(R)$ ([7, Corollary 3.6]), and so any GA-semigroup of R contains idempotents by Theorem 4.7. Particularly, every GA-semigroup of a biregular ring contains idempotents. On the other hand, there is a ring such that idempotents modulo the radical cannot be lifted. Hence a GA-semigroup of a radical ring need not contain idempotents.

A semigroup S is called completely primitive if the left ideal $S e$ and the right ideal $e S$ are minimal for every idempotent e of $S([6])$. A completely primitive semigroup S has kernel which is completely simple and contains all of idempotents of $S([9])$.

Lemma 4.9. Let R^{\diamond} be a GA-semigroup of a radical ring R. If R^{\diamond} contains idempotents, then R^{\diamond} is completely primitive.

Proof. Let e be an idempotent of $R^{\diamond \text {. Then it is sufficient to prove that } e \diamond R \diamond e}$ is a group. Since $e \diamond R \diamond e \simeq(e \diamond R \diamond e-e \diamond R \diamond e, \circ)$ by Lemma 2.11 and Lemma 2.13, we have to prove that $e \diamond R \diamond e-e \diamond R \diamond e$ is a radical ring. By Corollary 4.4, there are an ideal extension \tilde{R} of R and an idempotent $\varepsilon \in \tilde{R}$ such that $x \diamond y=(x+\varepsilon)(y+\varepsilon)-\varepsilon$ for any $x, y \in R$. Thus $e \diamond R \diamond e-e \diamond R \diamond e=$ $(e+\varepsilon)(R+\varepsilon)(e+\varepsilon)-(e+\varepsilon)(R+\varepsilon)(e+\varepsilon)=(e+\varepsilon) R(e+\varepsilon)$. Since $e \diamond e=e$, we have that $e+\varepsilon$ is an idempotent of \tilde{R} and so it is easy to see that $(e+\varepsilon) R(e+\varepsilon)$ is a radical ring since R is a radical ring.

Lemma 4.9 is a GA-semigroup version of [18, Theorem 1 (b)-(c)]. Actually, many results in [18] can be reexplained in terms of GA-semigroup.

Theorem 4.10. Any GA-semigroup of a nil ring is a completely primitive π regular semigroup.

Proof. It follows from Theorem 3.5 and Lemma 4.9.
Theorem 4.11. Let R be a ring with descending chain condition for principal right ideals. Then any GA-semigroup of R is completely π-regular. Particularly, any $G A$-semigroup of a right Artinian ring is completely π-regular.

Proof. If R is a ring with descending chain condition for principal right ideals, then R is completely π-regular by Dischinger [12, Theorem 1] and Azumaya [2, Lemma 1].

References

[1] Andrunakievic, V. A.: Halbradikale Ringe. (Russian) Izv. Akad. Nauk SSSR, Ser. Mat. 12 (1948), 129-178 (1948).

Zbl 0029.24802
[2] Azumaya, G.: Strongly π-regular rings. J. Fac. Sci. Hokkaido Univ. 12 (1954), 34-39.

Zbl 0058.02503
[3] Batbedat, A.: Préanneaux idempotents. Atti Accad. Naz. Lincei 55 (1973), 325-330 (1974).

Zbl 0333.08001
[4] Batbedat, A.: Algebras, prerings, semirings and rectangular bands. Semigroup Forum 30 (1984), 231-233. Zbl 0554.16013
[5] Beaumont, R. A.: Generalized rings. Proc. Am. Math. Soc. 9 (1959), 876881.

Zbl 0092.26902
[6] Bogdanović, S.; Ćirić, M.: Primitive π-regular semigroups. Proc. Japan Acad., Ser. A 68 (1992), 334-337. Zbl 0813.20070
[7] Burgess, W. D.; Raphael, R. M.: Ideal extensions of rings-some topological aspects. Commun. Algebra 23 (1995), 3815-3830.

Zbl 0834.16029
[8] Clark, W. E.: Generalized radical rings. Canad, J. Math. 20 (1968), 88-94.
[9] Clifford, A. H.; Preston, G. B.: The Algebraic Theory of Semigroups. Vol. 1, Am. Math. Soc., Providence, RI, 1961. Zbl 0111.03403
[10] Climescu, A.: On a new class of weak rings. Bull. Ist. Politehn. Iasi 10 (1964), 1-4. Zbl 0139.02802
[11] Čupona, Ǵ.: On quasirings. Bull Soc. Math. Phys. Macédoine 20 (1969), 19-22.

Zbl 0216.34003
[12] Dischinger, F.: Sur Les Anneaux Fortement π-réguliers. C. R. Acad. Sci. Paris 238A (1976), 571-573. Zbl 0338.16001
[13] Du, X.: The structure of generalized radical rings. Northeastern Math. J. 4 (1988), 101-114. Zbl 0665.16007
[14] Du, X.: The rings with regular adjoint semigroups. Northeastern Math. J. 4 (1988), 463-468.

Zbl 0697.16007
[15] Du, X.; Yang, Y.: The adjoint semigroup of a π-regular ring. Acta Sci. Nat. Univ. Jilinensis 3 (2001), 35-37.

Zbl pre01832470
[16] Du, X.: The adjoint semigroup of a ring. Commun. Algebra 30 (2002), 45074525.

Zbl 1030.16012
[17] Du, X.: Regular generalized adjoint semigroups of a ring. (to appear).
[18] Eckstein, F.: Semigroup methods in ring theory. J. Algebra 12 (1969), 177190.

Zbl 0179.33501
[19] Edwards, P. M.: Eventually regular semigroups. Bull. Austr. Math. Soc. 28 (1983), 23-38.

Zbl 0511.20044
[20] Grillet, P. A.: Semigroups: an Introduction to the Structure Theory. Pure Appl. Math. 193, Marcel Dekker, Inc., New York 1995. Zbl 0830.20079 Zbl 0874.20039
[21] Heatherly, H.: Adjoint groups and semigroups of rings. Riv. Mat. Pura Appl. 6 (1990), 105-108. Zbl 0716.16020
[22] Heatherly, H.; Tucci, R. P.: The circle semigroup of a ring. Acta Math. Hung. 90 (2001), 231-242.

Zbl 0973.20059
[23] Heatherly, H. E.; Tucci, R. P.: Adjoint regular rings. Int. J. Math. Math. Sci. 30 (2002), 459-466.

Zbl 1014.16020
[24] Heatherly, H.; Tucci, R. P.: Adjoint clifford rings. Acta Math. Hung. 95 (2002), 75-82. Zbl 0997.16015
[25] Howie, J. M.: An Introduction to Semigroup Theory. Academic Press, New York 1976. Zbl 0355.20056
[26] Hsiang, W. Y.: On the distributive law. Proc. Amer. Math. Soc. 11 (1960), 348-355.

Zbl 0094.01902
[27] Hsiang, W. C.; Hsiang, W. Y.: A Note on the Theory of (m, n)-Distributive Rings. Arch. Math. 11 (1960), 88-90. Zbl 0094.01903
[28] Jacobson, N.: Structure of Rings. Amer. Math. Soc. Colloq. Publ. 37, Am. Math. Soc., Providence, RI, 1956. Zbl 0073.02002
[29] Janin, P.: Une généralisation de la notion d'anneau: Préanneaux. C. R. Acad. Sci. Paris, Sér. A 269 (1969), A62-A64.

Zbl 0202.03901
[30] Kelarev, A. V.: Generalized radical semigroup rings. Southeast Asian Bull. Math. 21 (1997), 85-90.

Zbl 0890.16009
[31] Kelarev, A. V.: On rings with inverse adjoint semigroups. Southeast Asian Bull. Math. 23 (1999), 431-436.
[32] MacLane, S.: Extension and obstractions for rings. Ill. J. Math. 2 (1958), 316-345.

Zbl 0081.03303
[33] Natarajan, N. S.: Rings with generalised distributive laws. J. Indian Math. Soc. (N.S.) 28 (1964), 1-6.

Zbl 0136.30102
[34] Petrich, M.: On the ring of bitranslations of certain rings. Acta Math. Acad. Sci. Hung. 20 (1969), 111-120.

Zbl 0175.02901
[35] Petrich, M.: Ideal extensions of rings. Acta Math. Hung. 45 (1985), 263-283. Zbl 0582.16011
[36] Saito, T.: On (m, n)-distributive division rings. Proc. Japan Acad. 37 (1961), 69-71.

Zbl 0104.02904
[37] Szász, F. A.: Radical of Rings. John Wiley \& Sons, New York 1981.
Zbl 0461.16009

Received November 5, 2005

