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Abstract. In this article we obtain optimal estimates for the eigenval-
ues of a natural operator KT# for locally strongly convex centro-affine
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1. Introduction

Throughout this article we assume n ≥ 2. An immersed hypersurface f : M →
Rn+1 in an affine (n + 1)-space Rn+1 is called an affine hypersurface with relative
normalization if there is a transversal vector field ξ such that Dξ has its image in
f∗(TpM), where D is the canonical flat connection on Rn+1.

A hypersurface f : M → Rn+1 is called centro-affine if its position vector field is
always transversal to f∗(TM) in Rn+1. In this case, for any vector fields X, Y
tangent to M , one can decompose DXf∗(Y ) into its tangential and transverse
components. This is written as

DXf∗(Y ) = f∗(∇XY ) + hf (X, Y )f, (1.1)

where hf is a symmetric tensor of type (0, 2) and ξ = f .
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Throughout this article, we assume that hf is definite, so hf defines a semi-
Riemannian metric on M . In order to consider only a positive definite metric
we now make the following changes: if hf is negative definite, we introduce a
transversal vector field ξ = −f and a (0, 2)-tensor given by h = −hf .

It is well-known that the centro-affine metric h is definite if and only if the
hypersurface is locally strongly convex. For this the following terminology is used:

(i) The centro-affine hypersurface M is said to be of elliptic type if, for any
point f(p) ∈ Rn+1 with p ∈ M , the origin of Rn+1 and the hypersurface
are on the same side of the tangent hyperplane f∗(TpM); in this case the
centro-affine normal vector field is given by ξ = −f .

(ii) The centro-affine hypersurface M is said to be of hyperbolic type if, for any
point f(p) ∈ Rn+1, the origin of Rn+1 and the hypersurface are on the
different side of the tangent hyperplane f∗(TpM); in this case the centro-
affine normal vector field is given by ξ = f .

An affine hypersurface f : M → Rn+1 is called a graph hypersurface if we choose
as affine transversal field a constant vector field. For a graph hypersurface we also
have the decomposition (1.1) as well. Again in case that h is non-degenerate, it
defines a semi-Riemannian metric, called the Calabi metric of the graph hyper-
surface.

Let ∇̂ denote the Levi-Civita connection of h and let K be the difference tensor
∇−∇̂ on M . Then, for each X ∈ TpM , KX : Y 7→ K(X, Y ) is an endomorphism
of TpM . By taking the trace of K, one obtains a so-called Tchebychev form

T (X) :=
1

n
trace {Y → K(X, Y ) }. (1.2)

The Tchebychev vector field T# can then be defined by

h(T#, X) = T (X). (1.3)

The Tchebychev form and Tchebychev vector field play an important role in
centro-affine differential geometry.

For each integer k ∈ [2, n], we define an invariant θ̂k on the affine hypersurface
M in the same way as in [1] (see Section 3 for details).

The main results of this article are the following optimal estimates for the
eigenvalues of the operator KT# :
(I) For a locally strongly convex centro-affine hypersurface M in Rn+1 we have:

(I-a) If θ̂k 6= ε at a point p ∈ M , then every eigenvalue of the operator
KT# at p is greater than (n−1

n
)(ε− θ̂k(p)).

(I-b) If θ̂k = ε at a point p, every eigenvalue of KT# at p is ≥ 0, where
ε = 1 or −1 according to M is of elliptic or hyperbolic type.

(II) For a graph hypersurface M in Rn+1 we have:
(II-a) If θ̂k 6= 0 at a point p ∈ M , every eigenvalue of the operator KT# at

p is greater than (1−n
n

)θ̂k(p).

(II-b) If θ̂k = 0 at a point p ∈ M , every eigenvalue of KT# at p is ≥ 0.
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The proofs of the main results base on the equation of Gauss using the same idea
introduced in earlier author’s articles [1, 2]. This is done in Section 4. Several
immediate applications of our eigenvalue estimates of the operator KT# are given
in Section 5. In the last two sections, we provide some non-trivial examples to
illustrate that our eigenvalue estimates are optimal for both centro-affine and
graph hypersurfaces.

2. Preliminaries

We recall some basic facts about centro-affine and graph hypersurfaces. For the
details, see [3, 4, 5, 6].

Let f : M → Rn+1 be a centro-affine hypersurface with centro-affine normal
ξ. We assume that the centro-affine hypersurface is definite. As we already
mentioned earlier, the centro-affine normal on the hypersurface is chosen in such
way that the metric h is positive definite.

The centro-affine structure equations are given by

DXf∗(Y ) = f∗(∇XY ) + h(X, Y )ξ, (2.1)

DXξ = ∓f∗(X), (2.2)

where DXξ = −f∗(X) or DXξ = f∗(X) according to ξ = −f or ξ = f respectively.
The corresponding equations of Gauss and Codazzi are given respectively by

R(X, Y )Z = h(Y, Z)X − h(X, Z)Y, (2.3)

(∇Xh)(Y, Z) = (∇Y h)(X, Z). (2.4)

The cubic form is the totally symmetric (0, 3)-tensor field C(X, Y, Z) = (∇Xh)
(Y, Z).

Let ∇̂, K̂ and R̂ denote the Levi-Civita connection, the sectional curvature
and the curvature tensor of h, respectively. The difference tensor K is then given
by

KXY = K(X, Y ) = ∇XY − ∇̂XY, (2.5)

which is a symmetric (1, 2)-tensor field. The difference tensor K and the cubic
form C are related by

C(X, Y, Z) = −2h(KXY, Z). (2.6)

It is well-known that for centro-affine hypersurfaces we have

h(KXY, Z) = h(Y, KXZ), (2.7)

R̂(X,Y )Z = KY KXZ −KXKY Z + ε(h(Y, Z)X − h(X, Z)Y ), (2.8)

(∇̂K)(X, Y, Z) = (∇̂K)(Y, Z,X) = (∇̂K)(Z,X, Y ), (2.9)

where ε = 1 if M is of elliptic type and ε = −1 if M is of hyperbolic type. It
follows from (2.7) that the endomorphism KX is self-adjoint with respect to h.
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When f : M → Rn+1 is a graph hypersurface, we have (1.1), (2.1), (2.4), (2.5),
(2.6), (2.7) and (2.9) as well. However, (2.2), (2.3) and (2.8) shall be replaced by

DXξ = R(X, Y )Z = 0, (2.10)

R̂(X, Y )Z = KY KXZ −KXKY Z. (2.11)

3. Invariant θ̂k and relative K-null space

Let M be a centro-affine or graph hypersurface with positive definite metric h.
Denote by K̂(π) the sectional curvature of a 2-plane section π ⊂ TpM relative to
h. The scalar curvature τ̂ at p is then defined by

τ̂(p) =
∑

1≤i<j≤n

K̂ij, (3.1)

where K̂ij = K̂(ei ∧ ej) and e1, . . . , en is an h-orthonormal basis of TpM .
Assume that Lk is a k-plane section of TpM and X a unit vector in Lk with

respect to h. We choose an h-orthonormal basis {e1, . . . , ek} of Lk with e1 = X.
Then the k-Ricci curvature ŜLk(X) and the scalar curvature τ̂(Lk) are defined
respectively by

ŜLk(X) = K̂12 + · · ·+ K̂1k, (3.2)

τ̂(Lk) =
∑

1≤i<j≤k

Kij. (3.3)

Obviously, ŜL2 and τ̂(L2) are nothing but the sectional curvature K̂(L2). And
ŜLn and τ̂(Ln) are the Ricci and scalar curvatures relative to h.

For each integer k ∈ [2, n], we define the invariant θ̂k on M by (cf. [1, 2])

θ̂k(p) =

(
1

k − 1

)
sup
Lk,X

ŜLk(X), p ∈ TpM, (3.4)

where Lk runs over all linear k-subspaces in the tangent space TpM at p and X
runs over all h-unit vectors in Lk.

The relative K-null space NK
p of M in Rn+1 is defined by

NK
p = {X ∈ TpM : K(X, Y ) = 0 for all Y ∈ TpM}. (3.5)

When dimNK
p is constant, NK = Up∈MNK

p defines a subbundle of the tangent
bundle, called the relative K-null subbundle.

4. Optimal estimates for eigenvalues of the operator

For centro-affine hypersurface in Rn+1 we have the following result.

Theorem 4.1. Let f : M → Rn+1 be a locally strongly convex centro-affine hy-
persurface in Rn+1. Then, for any integer k ∈ [2, n], we have:
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(1) If θ̂k 6= ε at a point p ∈ M , then every eigenvalue of KT# at p is greater
than

(
n−1

n

)
(ε− θ̂k(p)).

(2) If θ̂k(p) = ε, every eigenvalue of KT# at p is ≥ 0.

(3) A nonzero vector X ∈ TpM is an eigenvector of the operator KT# with

eigenvalue
(

n−1
n

)
(ε − θ̂k(p)) if and only if θ̂k(p) = ε and X lies in the

relative K-null space NK
p at p,

where ε = 1 or −1 according to M is of elliptic or hyperbolic type.

Proof. Assume that f : M → Rn+1 is a locally strongly convex centro-affine
hypersurface in Rn+1. Let {e1, . . . , en} be an arbitrary h-orthonormal basis of
TpM . From the definition of Tchebychev vector field, (2.8) and (3.1) we have

2τ̂ = n(n− 1)ε + h(K, K)− n2h(T#, T#). (4.1)

It is well-known that every endomorphism A of TpM satisfies

n h(A, A) ≥ (trace A)2, (4.2)

with equality holding if and only if A is proportional to the identity map I. By
applying (4.1) and (4.2), we obtain

2τ̂ ≥ n(n− 1)ε− n(n− 1)h(T#, T#) (4.3)

with the equality holding at p if and only if we have

(a) KT# is proportional to the identity map and

(b) KZ = 0 for Z perpendicular to T# at p.

Let Li1···ik be the k-plane section spanned by the orthonormal vectors ei1 , . . . , eik .
It follows from (3.2) and (3.3) that

τ̂(Li1···ik) =
1

2

∑
i∈{i1,... ,ik}

ŜLi1···ik
(ei), (4.4)

τ̂(p) =
(k − 2)!(n− k)!

(n− 2)!

∑
1≤i1<···<ik≤n

τ̂(Li1···ik). (4.5)

By combining (3.4), (4.4) and (4.5) we find

τ̂ ≤ n(n− 1)

2
θ̂k. (4.6)

Thus (4.3) and (4.6) ensure that

h(T#, T#) ≥ ε− θ̂k. (4.7)

Hence the Tchebychev vector field T# vanishes at a point p only when θ̂k(p) ≥ ε.
Therefore, if T#(p) = 0, statements (1) and (2) of Theorem 4.1 hold automatically.
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Next, let us assume that T#(p) 6= 0. Since KT# is self-adjoint with respect to
h, we may choose an h-orthonormal basis e1, . . . , en of TpM which diagonalizes
the operator KT# . Let e∗1 be the h-unit vector at p in the direction of T# and let
us choose h-orthonormal vectors e∗2, . . . , e∗n at p perpendicular to T#. Then we
have

Ke∗1
=


a1 0 . . . 0
0 a2 . . . 0
...

...
. . .

...
0 0 . . . an

 (4.8)

and trace (Ke∗r) = 0 for r = 2, . . . , n.
Let us put Kr∗

ij = h(K(ei, ej), e
∗
r). Then (2.8) implies that

Kij = ε− aiaj +
n∑

r=2

(
Kr∗

ij

)2 − n∑
r=2

Kr∗

ii Kr∗

jj , 1 ≤ i 6= j ≤ n. (4.9)

Now, by applying the same argument as the proof of Theorem 1 of [1], we obtain

a1(a1 + · · ·+ an) ≥ (n− 1)
(
ε− θ̂k(p)

)
+ a2

1 ≥ (n− 1)
(
ε− θ̂k(p)

)
, (4.10)

with both equality holding if and only if we have ŜL(e1) = θ̂k(p) and a1 = Kr∗
1j = 0

for r = 2, . . . , n; j = 2, . . . , n. The same inequality holds if the lower index 1 in
(4.10) were replaced by any j ∈ {2, . . . , n}. Hence, we have

KT# ≥ n− 1

n

(
ε− θ̂k(p)

)
I. (4.11)

If KT#X = n−1
n

(
ε − θ̂k(p)

)
X holds for some nonzero vector X ∈ TpM , then X

is an eigenvector of KT# with eigenvalue (n − 1)
(
ε − θ̂k(p)

)
/n. Without loss of

generality, we may choose e1 = X/
√

h(X, X). In this case we get

a1(a1 + · · ·+ an) = (n− 1)
(
ε− θ̂k(p)

)
. (4.12)

On the other hand, from (4.10) and (4.12), we find a1 = 0 and θ̂k(p) = ε. More-
over, we know from (4.10) that e1 lies in the relative K-null space NK

p . Conse-
quently, we obtain statements (1) and (2) of Theorem 4.1 and also one part of
statement (3). The remaining part of statement (3) is obvious.

For graph hypersurfaces we have the following.

Theorem 4.2. Let f : M → Rn+1 be a graph hypersurface in Rn+1 with positive
definite Calabi metric. Then, for any integer k ∈ [2, n], we have:

(1) If θ̂k 6= 0 at a point p ∈ M , then every eigenvalue of KT# at p is greater
than

(
1−n

n

)
θ̂k(p).

(2) If θ̂k = 0 at p, then every eigenvalue of KT# at p is ≥ 0.
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(3) A nonzero vector X ∈ TpM is an eigenvector of the operator KT# with

eigenvalue
(

1−n
n

)
θ̂k(p) if and only if we have θ̂k(p) = 0 and X ∈ NK

p .

Proof. For graph hypersurfaces in Rn+1 we have

R̂(X, Y )Z = KY KXZ −KXKY Z. (4.13)

Thus, by applying the same argument given in Theorem 4.1, we obtain Theorem
4.2.

5. Some applications

When k = 2, statement (1) of Theorem 4.1 implies immediately the following.

Corollary 5.1. Let f : M → Rn+1 be a locally strongly convex centro-affine
hypersurface in Rn+1. If sup K̂ 6= ε at a point p ∈ M , then every eigenvalue of
the operator KT# at p is greater than

(
n−1

n

)
(ε− sup K̂(p)).

Similarly, if we denote by sup Ŝ(p) the supremum of the Ricci curvature of (M, h)
at a point p ∈ M , then statement (1) of Theorem 4.1 with k = n implies imme-
diately the following.

Corollary 5.2. Let f : M → Rn+1 be a locally strongly convex centro-affine
hypersurface in Rn+1. If sup Ŝ 6= ε at a point p ∈ M , then every eigenvalue of
the operator KT# at p is greater than

(
n−1

n

)
(ε− sup Ŝ(p)).

From Theorem 4.1 we also obtain the following.

Corollary 5.3. Let f : M → Rn+1 be a locally strongly convex centro-affine
hypersurface in Rn+1. If we have θ̂k < ε on M for some integer k ∈ [2, n], then
every eigenvalue of KT# is positive.

Theorem 4.1 also gives rise to the following simple geometric characterization of
hyper-ellipsoids and two-sheeted hyperboloids.

Corollary 5.4. An elliptic centro-affine hypersurface M in Rn+1 is centroaffinely
equivalent to an open portion of a hyperellipsoid if and only if we have nKT# =
(n− 1)(1− θ̂k)I on M for some integer k ∈ [2, n].

Proof. Let f : M → Rn+1 be an elliptic centro-affine hypersurface in Rn+1.
If M is an open portion of a hyperellipsoid, then K vanishes identically which
implies that KT# = 0. Hence, according to (2.10), (M, h) is of constant curvature
one. Therefore we obtain θ̂2 = · · · = θ̂n = 1. Consequently, we have nKT# =
(n− 1)(1− θ̂k)I identically.

Conversely, let us assume that nKT# = (n− 1)(1− θ̂k)I holds identically for
some integer k ∈ [2, n], then statement (3) of Theorem 4.1 implies that every
tangent vector of M lies in the relative K-null subbundle. In this case K vanishes
identically on M . Consequently, by applying a theorem of Berwald [6, Section
7.1.1], we conclude that M is centroaffinely equivalent to an open portion of a
hyper-ellipsoid centered at the origin.
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Corollary 5.5. A hyperbolic centro-affine hypersurface M in Rn+1 is centroaffin-
ely equivalent to an open portion of a two-sheeted hyperboloid if and only if, for
some integer k ∈ [2, n], we have nKT# = (1− n)(1 + θ̂k)I identically on M .

Proof. This can be done in the same way as Corollary 5.4.

Similarly Theorem 4.2 implies the following.

Corollary 5.6. Let f : M → Rn+1 be a graph hypersurface with positive definite
Calabi metric. If we have either sup K̂ 6= 0 or sup Ŝ 6= 0 at a point p ∈ M , then
every eigenvalue of the operator KT# is greater than

(
1−n

n

)
sup K̂ at p.

Corollary 5.7. Let f : M → Rn+1 be a graph hypersurface with positive definite
Calabi metric. If there exists an integer k ∈ [2, n] such that θ̂k < 0 holds on M ,
then every eigenvalue of KT# is positive.

From Corollaries 5.3 and 5.7 we obtain the following.

Corollary 5.8. Let M be a Riemannian n-manifold. If there exists an integer
k ∈ [2, n] such that θ̂k(p) < 1 at some point p ∈ M , then M cannot be realized as
an elliptic proper affine hypersphere in Rn+1.

Corollary 5.9. Let M be a Riemannian n-manifold. If there exists an integer
k ∈ [2, n] such that θ̂k(p) < −1 at some point p ∈ M , then M cannot be realized
as a hyperbolic proper affine hypersphere in Rn+1.

Corollary 5.10. Let M be a Riemannian n-manifold. If there exists an integer
k ∈ [2, n] such that θ̂k(p) < 0 at some point p ∈ M , then M cannot be realized as
an improper affine hypersphere in Rn+1.

6. Some examples of centro-affine hypersurfaces

In this section we provide some examples of locally strongly convex centro-affine
hypersurfaces. From these examples we know that the eigenvalue estimates given
in Theorem 4.1 are best possible.

Example 6.1. Let M be the elliptic locally strongly convex centro-affine hyper-
surface defined by:

ebs

(
e(b−1−b)s, sin(ax2), . . . , sin(axn)

n−1∏
j=2

cos(axj),
n∏

j=2

cos(axj)

)
, (6.1)

with a =
√

1− b2, b ∈ (0, 1). Then the affine metric h on M is

h = ds2 + dx2
2 + cos2(ax2)dx2

3 + · · ·+
n−1∏
j=2

cos2(axj)dx2
n. (6.2)
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The Levi-Civita connection of h satisfies

∇̂∂ /∂s
∂

∂s
= ∇̂∂/∂s

∂

∂xk

= ∇̂∂/∂x2

∂

∂x2

= 0,

∇̂∂/∂xi

∂

∂xj

= −a tan(axi)
∂

∂xj

, 2 ≤ i < j,

∇̂∂/∂xj

∂

∂xj

= a

j−1∑
k=2

(
sin(2axk)

2

j−1∏
l=k+1

cos2(axl)

)
∂

∂xk

, j = 3, . . . , n.

(6.3)

It follows from (6.1) and (6.2) that K̂1j = 0 and K̂jk = a2 for 2 ≤ j 6= k ≤ n.
Hence we have

θ̂n =

(
n− 2

n− 1

)
(1− b2). (6.4)

On the other hand, from (6.1) and a straight-forward computation, we find

∇∂/∂s
∂

∂s
=

(
b +

1

b

)
∂

∂s
, ∇∂/∂s

∂

∂xj

= b
∂

∂xj

,

∇∂/∂xi

∂

∂xj

= −a tan(axi)
∂

∂xj

, 2 ≤ i < j ≤ n,

∇∂/∂xj

∂

∂xj

= b

j−1∏
i=2

cos2(axi)
∂

∂s
+ a

j−1∑
k=2

(
sin(2axk)

2

j−1∏
l=k+1

cos2(axl)

)
∂

∂xk

(6.5)

for j = 2, . . . , n. By applying (2.5), (6.3) and (6.5) we find

K

(
∂

∂s
,

∂

∂s

)
=

(
b +

1

b

)
∂

∂s
, K

(
∂

∂s
,

∂

∂xj

)
= b

∂

∂xj

,

K

(
∂

∂xj

,
∂

∂xj

)
= b

j−1∏
i=2

cos2(axi)
∂

∂s
, K

(
∂

∂xi

,
∂

∂xj

)
= 0

(6.6)

for 2 ≤ i 6= j ≤ n. Therefore we obtain from (1.3), (6.2) and (6.6) that

T# =

(
b +

1

nb

)
∂

∂s
, KT#

(
∂

∂xj

)
= λj

∂

∂xj

, λj = b2 +
1

n
(6.7)

for j = 2, . . . , n. Consequently, we conclude that the eigenvalue λj of the operator
KT# associated with eigenvector ∂/∂xj satisfies

λj −
n− 1

n

(
1− θ̂n

)
=

2b2

n
−→ 0 as b → 0.

Example 6.2. Consider the hyperbolic locally strongly convex centro-affine hy-
persurface defined by:

ebs

(
e−(b−1+b)s, sinh(ax2), . . . , sinh(axn)

n−1∏
j=2

cosh(axj),
n∏

j=2

cosh(axj)

)
(6.8)
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with a =
√

1 + b2, b ∈ (0,∞). The induced affine metric h of this hypersurface is
given by

h = ds2 + dx2
2 + cosh2(ax2)dx2

3 + · · ·+
n−1∏
j=2

cosh2(axj)dx2
n, (6.9)

which implies that K̂1j = 0, K̂jk = −a2 for 2 ≤ j 6= k ≤ n. Hence we have

θ̂n =

(
2− n

n− 1

)
(1 + b2). (6.10)

From (2.1), (2.5), (6.8) and a straight-forward computation we find

K

(
∂

∂s
,

∂

∂s

)
=

(
b− 1

b

)
∂

∂s
, K

(
∂

∂s
,

∂

∂xj

)
= b

∂

∂xj

,

K

(
∂

∂xj

,
∂

∂xj

)
= b

j−1∏
i=2

cosh2(axi)
∂

∂s
, K

(
∂

∂xi

,
∂

∂xj

)
= 0

(6.11)

for 2 ≤ i 6= j ≤ n. Therefore we have

T# =

(
b− 1

nb

)
∂

∂s
, KT#

(
∂

∂xj

)
=

(
b2 − 1

n

)
∂

∂xj

, j = 2, . . . , n. (6.12)

Consequently, the eigenvalue λj of the operator KT# associated with eigenvector
∂/∂xj satisfies

λj +
n− 1

n

(
1 + θ̂n

)
=

2b2

n
−→ 0 as b → 0.

Examples 6.1 and 6.2 show that the eigenvalue estimate given in statement (1) of
Theorem 4.1 is optimal for locally strongly convex centro-affine hypersurfaces of
both elliptic and hyperbolic types.

Example 6.3. Consider the following elliptic centro-affine locally strongly convex
hypersurface:

5

(
sin x1, sin x2 cos x1, . . . , sin xn−1

n−2∏
j=1

cos xj,

e
1
2
(b+

√
b2−4)xn

n−1∏
j=1

cos xj, e
1
2
(b+

√
b2−4)xn

n−1∏
j=1

cos xj

) (6.13)

with b > 2. The affine metric of this hypersurface is given by

h = dx2
1 + cos2 x1dx2

2 + · · ·+
n−1∏
j=1

cos2 xjdx2
n. (6.14)
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It follows from (6.14) that θ̂k = 1 for k = 2, . . . , n.
On the other hand, from (6.13) and a direct computation, we have

K

(
∂

∂xi

,
∂

∂xj

)
= K

(
∂

∂xj

,
∂

∂xn

)
= 0, K

(
∂

∂xn

,
∂

∂xn

)
= b

∂

∂xn
(6.15)

for 1 ≤ i, j ≤ n− 1, which ensures that

T# =

(
b

n

n−1∏
j=1

sec2 xj

)
∂

∂xn

, KT#

(
∂

∂xj

)
= 0, j = 1, . . . , n− 1. (6.16)

Example 6.4. Let M be the hyperbolic locally strongly convex centro-affine hy-
persurface defined by(

sinh x1, sinh x2 cosh x1, . . . , sinh xn−1

n−2∏
j=1

cos xj,

e
1
2
(b+

√
b2+4)xn

n−1∏
j=1

cosh xj, e
1
2
(b−

√
b2+4)xn

n−1∏
j=1

cosh xj

)
,

(6.17)

with nonzero b. Since the induced affine metric is given by

h = dx2
1 + cosh2 x1dx2

2 + · · ·+
n−1∏
j=1

cosh2 xjdx2
n, (6.18)

thus we have θ̂2 = · · · = θ̂n = −1.
On the other hand, by (6.17) and a straight-forward computation, we find

K

(
∂

∂xi

,
∂

∂xj

)
= K

(
∂

∂xj

,
∂

∂xn

)
= 0, K

(
∂

∂xn

,
∂

∂xn

)
= b

∂

∂xn
(6.19)

for 1 ≤ i, j ≤ n− 1. Hence we obtain

T# =
b

n

n−1∏
j=1

sech 2xj
∂

∂xn

, KT#

(
∂

∂xj

)
= 0, j = 1, . . . , n− 1. (6.20)

Clearly, Examples 6.3 and 6.4 illustrate that the estimate given in statement (2)
of Theorem 4.1 is optimal for locally strongly convex centro-affine hypersurfaces
of both elliptic and hyperbolic types.

7. Examples of graph hypersurfaces

Example 7.1. Consider the graph hypersurface M in Rn+1:(
u2, . . . , un,

s4

4
+

n∑
j=2

u2
j ,

s2

4

)
(7.1)
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with constant affine normal ξ given by (0, . . . , 0,−1) and Calabi metric given by
h = ds2 + s−2 (du2

2 + · · ·+ du2
n) .

A direct computation shows that K̂1j = −s−2 and K̂ij = −1 for 2 ≤ i 6= j ≤ n.
Thus we get

θ̂2 = · · · = θ̂n =

−
1

s2
if s2 ≥ 1;

−1 if s2 < 1.
(7.2)

From (7.1) and a straight-forward computation, we find

K

(
∂

∂s
,

∂

∂s

)
=

3

s

∂

∂s
, K

(
∂

∂s
,

∂

∂uj

)
=

1

s

∂

∂uj

,

K

(
∂

∂ui

,
∂

∂uj

)
= 0, K

(
∂

∂uj

,
∂

∂uj

)
=

1

s3

∂

∂s
, 2 ≤ i 6= j ≤ n,

(7.3)

which yields

T# =
(n + 2)

ns

∂

∂s
, KT#

(
∂

∂uj

)
= λj

∂

∂uj

, λj =
(n + 2)

ns2
(7.4)

for j = 2, . . . , n. Hence we obtain

λj −
(

1− n

n

)
θ̂k =

3

ns2
−→ 0 as s →∞. (7.5)

This example shows that the estimate given in statement (1) of Theorem 4.2 is
optimal.

Example 7.2. Consider the graph hypersurface M in Rn+1:(
u2, . . . , un, e

u1 , u1 −
1

2

n∑
j=2

u2
j

)
(7.6)

with affine normal ξ = (0, . . . , 0,−1) and Calabi metric h = du2
1 + · · · + du2

n.
Obviously, we have θ̂2 = · · · = θ̂n = 0. It follows from (7.6) that

K

(
∂

∂u1

,
∂

∂u1

)
=

∂

∂u1

, K

(
∂

∂u1

,
∂

∂uj

)
= K

(
∂

∂ui

,
∂

∂uj

)
= 0 (7.7)

for i, j = 2, . . . , n. Thus we have

T# =
1

n

∂

∂u1

, KT#

(
∂

∂uj

)
= 0 (7.8)

for j = 2, . . . , n.

The last example illustrates that the estimate given in statement (2) of Theorem
4.2 is optimal as well.
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