Hajós' Theorem and the Partition Lemma

Sándor Szabó

Department of Mathematics, University of Bahrain P. O. Box 32038, State of Bahrain

Abstract. If a finite abelian group is a direct product of cyclic subsets, then at least one of the factors must be a subgroup. This result is due to G. Hajós. The purpose of this paper is to show that Hajós' theorem can be proved using the so-called partition lemma.

MSC 2000: 20K01 (primary); 52C22 (secondary) Keywords: factorization of finite abelian groups, Hajós-Rédei theory

1. Introduction

Let G be a finite abelian group written multiplicatively with identity element e. If A_1, \ldots, A_n are subsets of G such that the product $A_1 \cdots A_n$ is direct and gives G, then we say that the equation $G = A_1 \cdots A_n$ is a *factorization* of G. In the most commonly encountered situation G is a direct product of its subgroups. However, in this paper it will not be assumed that A_1, \ldots, A_n are subgroups of G. A subset A of G is called *cyclic* if it is in the form

$$A = \{e, a, a^2, \dots, a^{p-1}\},\tag{1}$$

where p is a prime and $|a| \ge p$. G. Hajós [2] proved that if a finite abelian group is factored into cyclic subsets, then at least one of the factors must be a subgroup.

A subset A of G is *periodic* if there is a $g \in G$ such that Ag = A and $g \neq e$. The element g is called a *period* of A. All the periods of A together with the identity element form a subgroup H of G. Further, there is a subset X of G such that the product XH is direct and is equal to A. If A is a periodic subset of G, $e \in A$ and A contains a prime number of elements, then A is a subgroup of G.

For a character χ and a subset A of G the notation $\chi(A)$ stands for

$$\sum_{a \in A} \chi(a)$$

^{0138-4821/93 \$ 2.50 © 2005} Heldermann Verlag

The set of characters χ of G for which $\chi(A) = 0$ we call the *annihilator* of A and will denote it by Ann(A). For a character χ and a subgroup H of $G \chi(H) = 0$ if and only if there is an element h of H with $\chi(h) \neq 1$. Equivalently, $\chi(H) = 0$ if and only if $H \not\subset \text{Ker}(\chi)$ or if χ is not the principal character on H.

Suppose that the subset A of G is periodic, that is, A = XH, where X is a subset and H is a subgroup of G. Then clearly $Ann(H) \subset Ann(A)$. The converse is also true. Namely, if A is a subset and H is a subgroup of G such that $Ann(H) \subset Ann(A)$, then there is an $X \subset G$ for which A = XH, where the product is direct. This is Theorem 1 of [3].

Suppose that a subset A of G is a disjoint union of two periodic subsets, that is, there are subsets X, Y and subgroups H, K of G such that $A = XH \cup YK$, where the products XH, YK are direct. Then clearly $Ann(H) \cap Ann(K) \subset Ann(A)$. The converse is also true. Namely, if A is a subset and H, K are subgroups of G such that

 $\operatorname{Ann}(H) \cap \operatorname{Ann}(K) \subset \operatorname{Ann}(A),$

then there are subsets X, Y of G for which

 $A = XH \cup YK,$

where the union is disjoint and the products XH, YK are direct. This is Theorem 2 of [3]. We refer to this result as partition lemma.

The partition lemma plays a key part in proving various results about periodic factorizations. For examples see [1], [5], and [6]. The purpose of this note is to show that Hajós' theorem also can be proved by a standard application of the partition lemma.

2. Preliminaries

The structure of the annihilator of the cyclic subset (1) can be described easily. Namely, $\operatorname{Ann}(A)$ is the difference of two subgroups of the character group of G. If $\chi(a) = 1$, then $\chi(A) = p$ and so $\chi \notin \operatorname{Ann}(A)$. If $\chi(a) \neq 1$, then

$$\chi(A) = 1 + \chi(a) + \chi(a^2) + \dots + \chi(a^{p-1}) = \frac{1 - \chi(a^p)}{1 - \chi(a)}.$$

From which it follows that Ann(A) consists of each character χ of G with $\chi(a) \neq 1$ and $\chi(a^p) = 1$.

To the cyclic subset (1) we assign the subgroup $K = \langle a^p \rangle$. It is clear that A is a subgroup of G if and only if $K = \{e\}$. Putting this in an other form A is periodic if and only if $K = \{e\}$.

Assume that G = AB is a factorization and χ is a non-principal character of G. Then

$$0 = \chi(G) = \chi(AB) = \chi(A)\chi(B)$$

and it follows that $\chi(A) = 0$ or $\chi(B) = 0$. If $\chi \in Ann(K)$, then $\chi(a^p) \neq 1$. Hence $\chi(A) \neq 0$ and so $\chi(B) = 0$. This means that $Ann(K) \subset Ann(B)$. There is a neat elementary proof for Hajós' theorem for *p*-groups. See for instance [4] pages 157–161. From this reason we deal only with the non-*p*-group case of Hajós' theorem. Hajós' theorem can be stated in a sharper form and we need this sharper version. Let $G = A_1 \cdots A_n$ be a factorization of the finite abelian group G into the cyclic subsets A_1, \ldots, A_n . Suppose that $A_1 = H_1$ is a subgroup of G. Now, $G^{(1)} = A_2^{(1)} \cdots A_n^{(1)}$ is a factorization of the factor group $G^{(1)} = G/H_1$, where $A_i^{(1)} = (A_iH_1)/H_1$. If $A_2^{(1)}$ is a subgroup of $G^{(1)}$, then $A_1A_2 = H_2$ is a subgroup of G and $G^{(2)} = A_3^{(2)} \cdots A_n^{(2)}$ is a factorization of the factor group $G^{(2)} = G/H_2$, where $A_i^{(2)} = (A_iH_2)/H_2$. Continuing in this way finally we get that there is a permutation B_1, \ldots, B_n of the factors A_1, \ldots, A_n such that the partial products

$$B_1, B_1B_2, \ldots, B_1B_2 \cdots B_n$$

are subgroups of G.

We say that the subset A of G is replaceable by A' if G = A'B is a factorization of G whenever G = AB is a factorization of G. We need only the next two replacement results. If G = AB is a factorization and g is an element of G, then multiplying the factorization by g we get the factorization G = Gg = (Ag)B. This means that A can be replaced by Ag for each $g \in G$. Note that A is periodic if and only if Ag is periodic. The other replacement result we need reads as follows. The cyclic subset (1) can be replaced by

$$A' = \{e, a^r, a^{2r}, \dots, a^{(p-1)r}\}$$

for each integer r that is relatively prime to p. This is Lemma 1 of [4] page 158.

3. The result

After all these preparations we are now ready to prove Hajós' theorem for non-*p*-groups.

Theorem 1. Let G be a finite abelian non-p-group and let

$$G = A_1 \cdots A_n \tag{2}$$

be a factorization of G, where A_1, \ldots, A_n are cyclic subsets of prime order. Then at least one of the factors must be a subgroup of G.

Proof. Let

$$A_i = \{e, a_i, a_i^2, \dots, a_i^{p_i - 1}\}$$

be a typical factor in factorization (2) and let $K_i = \langle a_i^{p_i} \rangle$ be the subgroup assigned to A_i . We call the quantity

$$w(A_1,\ldots,A_n) = |a_1|\cdots|a_n|$$

the weight of the factorization (2). Assume the contrary that none of the factors in (2) is a subgroup of G, that is, $K_i \neq \{e\}$ for each $i, 1 \leq i \leq n$. We choose counter examples with the smallest possible n. Among these counter examples we pick one with minimal weight.

Consider all the factors among A_1, \ldots, A_n whose order is p_1 . Let they be A_1, \ldots, A_s . If $|a_i|$ is a p_1 power for each $i, 1 \leq i \leq s$, then $A_1 \cdots A_s$ forms a factorization of the p_1 component of G. From this by Lemma 3 of [4] page 160, it follows that one of A_1, \ldots, A_s is a subgroup. This is not the case so one of a_1, \ldots, a_s , say a_1 , is not a p_1 -element. There is a prime r such that $r \mid |a_1|$ and $r \neq p_1$. In factorization (2) replace A_1 by

$$A'_1 = \{e, a_1^r, a_1^{2r}, \dots, a_1^{(p_1 - 1)r}\}$$

to get the factorization $G = A'_1 A_2 \cdots A_n$. As $|a_1^r| < |a_1|$, it follows that

$$w(A'_1, A_2, \ldots, A_n) < w(A_1, \ldots, A_n).$$

The weight of the factorization decreased so one of the factors A'_1, A_2, \ldots, A_n is a subgroup of G. This can only be A'_1 .

There is a permutation B_1, \ldots, B_n of the factors A'_1, A_2, \ldots, A_n such that $B_1 = A'_1$ and the partial products

$$B_1, B_1B_2, \ldots, B_1B_2 \cdots B_n$$

are subgroups of G. We may assume that the permutation is the identity since this is only a matter of relabelling the factors. So the partial products

$$A_1', A_1'A_2, \ldots, A_1'A_2 \cdots A_n$$

are subgroups of G.

Let $H_i = A'_1 A_2 \cdots A_i$ and $C_i = A_{i+1} \cdots A_n$. Note that as $a_i \in H_i$, it follows that $K_i \subset H_i$.

From the factorization $G = A_1C_1$ it follows that $0 = \chi(C_1)$ for each $\chi \in \text{Ann}(K_1)$, that is, $\text{Ann}(K_1) \subset \text{Ann}(C_1)$. As $C_1 = A_2C_2$ we get that $0 = \chi(A_2)\chi(C_2)$ for each $\chi \in \text{Ann}(K_1) \subset \text{Ann}(C_1)$. Hence

$$\operatorname{Ann}(K_1) \cap \operatorname{Ann}(K_2) \subset \operatorname{Ann}(C_2).$$

By the partition lemma there are subsets X_2 , Y_2 of G such that

$$C_2 = X_2 K_1 \cup Y_2 K_2$$

where the union is disjoint and the products are direct. If there is an element y_2 of Y_2 , then in the factorization $G = H_2C_2$ the factor C_2 can be replaced by $y_2^{-1}C_2$ to get the factorization $G = H_2(y_2^{-1}C_2)$. But here $K_2 \subset H_2$ and $K_2 \subset y_2^{-1}C_2$ violates the factorization as $K_2 \neq \{e\}$. Thus $Y_2 = \emptyset$ and so $C_2 = X_2K_1$. This is equivalent to $\operatorname{Ann}(K_1) \subset \operatorname{Ann}(C_2)$.

As $C_2 = A_3C_3$, it follows that $0 = \chi(A_3)\chi(C_3)$ for each $\chi \in Ann(K_1) \subset Ann(C_2)$. Therefore

$$\operatorname{Ann}(K_1) \cap \operatorname{Ann}(K_3) \subset \operatorname{Ann}(C_3).$$

By the partition lemma there are subsets X_3 , Y_3 of G such that

$$C_3 = X_3 K_1 \cup Y_3 K_3,$$

where the union is disjoint and the products are direct. If there is an element $y_3 \in Y_3$, then in the factorization $G = H_3C_3$ the factor C_3 can be replaced by $y_3^{-1}C_3$ to get the factorization $G = H_2(y_3^{-1}C_3)$. But here $K_3 \subset H_3$ and $K_3 \subset y_3^{-1}C_3$ violates the factorization as $K_3 \neq \{e\}$. Thus $Y_3 = \emptyset$ and so $C_3 = X_3K_1$. This is equivalent to $\operatorname{Ann}(K_1) \subset \operatorname{Ann}(C_3)$.

Using $C_3 = A_4C_4$ it follows that $0 = \chi(A_4)\chi(C_4)$ for each $\chi \in Ann(K_1) \subset Ann(C_3)$. Therefore

$$\operatorname{Ann}(K_1) \cap \operatorname{Ann}(K_4) \subset \operatorname{Ann}(C_4).$$

By the partition lemma there are subsets X_4 , Y_4 of G such that

$$C_4 = X_4 K_1 \cup Y_4 K_4,$$

where the union is disjoint and the products are direct. If there is an element $y_4 \in Y_4$, then the factorization $G = H_4(y_4^{-1}Y_4)$ leads to the contradiction $K_4 \subset H_4 \cap (y_4^{-1}Y_4) = \{e\}$. Thus $Y_4 = \emptyset$ and consequently $C_4 = X_4 K_1$.

Continuing in this way finally we get that $C_{n-1} = X_{n-1}K_1$. But $C_{n-1} = A_n$ and it follows that $A_n = K_1$. This contradiction completes the proof.

References

- Corrádi, K.; Szabó, S.: The size of an annihilator in a factorization. Math. Pannonica 9 (1998), 195–204.
 Zbl 0927.20037
- [2] Hajós, G.: Uber einfache und mehrfache Bedeckung des n-dimensionalen Raumes mit einem Würfelgitter. Math. Z. 47 (1941), 427–467.
 Zbl 0025.25401 and JFM 67.0137.04
- [3] Sands, A. D.; Szabó, S.: Factorization of periodic subsets. Acta Math. Hung. 57 (1991), 159–167.
 Zbl 0754.20014
- [4] Stein, S.; Szabó, S.: Algebra and Tiling. Carus Mathematical Monograph 25, MAA, 1994.
- [5] Szabó, S.; Amin, K.: Factoring abelian groups of order p^4 . Math. Pannonica 7 (1996), 197–207. Zbl 0858.20039
- [6] Szabó, S.: Factoring a certain type of 2-group by subsets. Riv. Mat. Univ. Parma, V. Ser. 6 (1997), 25–29.
 Zbl 0931.20040

Received November 1, 2003