Series of Inscribed \boldsymbol{n}-Gons and Rank 3 Configurations

Krzysztof Petelczyc
Institute of Mathematics, University of Biatystok
ul. Akademicka 2, 15-267 Biatystok, Poland

Abstract

In the paper we study configurations which can be represented as families of cyclically inscribed n-gons. The most regular of them arise from quasi difference sets distinguished in a product of two cyclic groups, but some other more general techniques which define series of inscribed n-gons are found and studied. We give conditions which assure the existence of certain automorphisms of the defined configurations. The automorphism groups of configurations arising from quasi difference sets is established.

MSC 2000: 51D20, 51E26
Keywords: configuration, partial linear space, difference set, quasi difference set, cyclic group, dihedral group

1. Introduction, basic notions and definitions

In the paper we study configurations which can be represented as families of cyclically inscribed n-gons.

Ideas are rather simple: we have k copies W_{0}, \ldots, W_{k-1} of an n-gon. The vertices of W_{j} are $p_{j, i}$, where $i=0, \ldots, n-1$, and for every i two vertices $p_{j, i}$ and $p_{j, i+1}$ are joined with a side $l_{j, i}$. To inscribe W_{j+1} into W_{j} we need a function f_{j} which assigns to a side $l_{j, i}$ of W_{j} the vertex $p_{j+1, f_{j}(i)}$ of W_{j+1}, which we put on this side. The points of the obtained structure are all vertices of the given n-gons, and its "lines" are sets of the form $\left\{p_{j, i}, p_{j, i+1}, p_{j+1, f_{j}(i)}\right\}$. Thus the family $F=\left\{f_{j}: j=0, \ldots, k-1\right\}$ defines a structure, which can be interpreted as a series of cyclically inscribed n-gons. The point is to characterize families F of functions,
which yield sufficiently regular partial linear spaces (of line rank 3), and to characterize the obtained structures.

It is more convenient to consider given n-gon as the cyclic group C_{n} and to define functions f_{j} in terms of algebraic operations. Then most of the geometric questions can be formulated and solved within simple algebra. Thus, formally, given a sequence $F=\left(f_{j}: j=1, \ldots, k-1\right)$ of bijections of C_{n} we set

$$
\circledast_{F} C_{n}=\left\langle C_{k} \times C_{n}, \mathcal{L}_{F}\right\rangle,
$$

where $\mathcal{L}_{F}=\left\{\left\{(j, i),(j, i+1),\left(j+1, f_{j}(i)\right)\right\}: i \in C_{n}, j \in C_{k}\right\}$. Let us note an evident
Fact 1.1. Let f_{j} be a bijection of C_{n} for every $j \in C_{k}$ and let $F=\left(f_{j}: j \in C_{k}\right)$. If $3 \leq n, k$ then the structure $\circledast_{F} C_{n}$ is a partial linear space with $n k$ lines and $n k$ points, each one of the rank 3 .

A standard example of a configuration, which can be represented in this way is the projective Pappos configuration, defined as $\circledast_{F} C_{3}$ with $f_{j}=i d_{C_{3}}$ for $j \in C_{3}$ (see [1] and Section 4 for more details).

There are two basic questions investigated in the paper. First - which of the natural transformations of an n-gon W_{0} can be extended to an automorphism of the whole configuration? And then, what is the automorphism group of the considered configuration? Many interesting results concerning automorphism groups of configurations are to be found in [2].

In the paper we follow some standard notation of the theory of partial linear spaces. Let $\mathfrak{A}=\langle X, \mathcal{L}\rangle$ with $\mathcal{L} \subseteq \wp(X)$ be a partial linear space. For $a, b \in X$ write $a \sim b$ if a and b are collinear, i.e. if there is $l \in \mathcal{L}$ with $a, b \in l$. If $a \sim b$ and $a \neq b$ we write $\overline{a, b}$ for the (unique!) line which joins a and b.

Given an arbitrary group, we shall follow a standard "multiplicative" notation. If the considered group is abelian, we shall use "additive" notation. Given a group G we denote by τ_{a} the left translation in G, defined by $\tau_{a}(x)=a \cdot x$. One more general construction will be needed. Let us consider an arbitrary finite group G and let $D \subset G$. We set

$$
\mathcal{L}=\mathcal{L}_{(G, D)}=G / D=\{a \cdot D: a \in G\} .
$$

Clearly, $\mathcal{L} \subseteq \wp(G)$, and, as the left translation $\tau_{a}: G \ni x \mapsto a \cdot x \in G$ is a bijection, $|a \cdot D|=|D|$ for every $a \in G$. Following this notation we can write $a \cdot D=\tau_{a}(D)$, and $\mathcal{L}_{(G, D)}=\left\{\tau_{a}(D): a \in G\right\}$. We set

$$
\mathbf{D}(G, D)=\left\langle G, \mathcal{L}_{(G, D)}\right\rangle
$$

Note that an arbitrary n-gon can be represented as $\mathbf{D}\left(C_{n},\{0,1\}\right)$.
Fact 1.2. The automorphism group $\operatorname{Aut}\left(\mathbf{D}\left(C_{n},\{0,1\}\right)\right)$ is the dihedral group D_{n}, i.e. the group of all the maps f of C_{n} of the form $f(i)=\varepsilon i+a$, where $\varepsilon=1,-1$.

Proposition 1.3. For every $a \in G$ the translation τ_{a} is an automorphism of the structure $\mathbf{D}(G, D)$.

Proof. It suffices to note that $\tau_{a}(b \cdot D)=(a \cdot b) \cdot D$.

Proposition 1.3 yields, in particular, that $\mathbf{D}(G, D)=\mathbf{D}(G, q \cdot D)$ for every $q \in G$. Therefore, without loss of generality, we can always assume that $1 \in D$.

Proposition 1.4. If $\varphi \in \operatorname{Aut}(G)$ then $\varphi \in \operatorname{Aut}(\mathbf{D}(G, D))$ iff $\varphi(D)=q \cdot D$ for some $q \in G$.
Proof. For every $a \in G$ we need to find $b \in G$ with $\varphi(a \cdot D)=\varphi(a) \cdot \varphi(D)=b \cdot D$. This yields $\varphi(D)=\left((\varphi(a))^{-1} \cdot b\right) \cdot D$. Conversely, if $\varphi(D)=q \cdot D$, for a given $a \in G$ we set $b=\varphi(a) \cdot q$ and we are through.

2. Cyclic inscribed series of polygons

In this section we shall develop "series" $\circledast_{F} C_{n}$ of n-gons suitably cyclically inscribed one into the previous one. Recall that point $p_{j+1, f_{j}(i)}$, a point of the $(j+1)$-th polygon, completes the i-th side of a j-th n-gon to the line

$$
\overline{p_{j, i}, p_{j, i+1}}=\left\{p_{j, i}, p_{j, i+1}, p_{j+1, f_{j}(i)}\right\}
$$

of the considered configuration. Formally, we deal with $C_{k} \times C_{n}$, but here the ring-structure of C_{n} is more exploited.

Now, we shall pay attention to some special classes of permutations f_{j}, namely to "linear" maps of the ring C_{n} defined by

$$
\begin{equation*}
f_{j}(i)=q_{j} \cdot i+b_{j} \tag{1}
\end{equation*}
$$

where $q_{j}, b_{j} \in C_{n}$, with $\operatorname{GCD}\left(q_{j}, n\right)=1$ for all $j \in C_{k}$; this assumption assures that each one of the maps f_{j} is a bijection of C_{n}. In view of 1.1, if F consists of linear bijections then the structure $\circledast_{F} C_{n}$ is a partial linear space, in fact - a configuration.

If $q_{j}=q, b_{j}=b$ are fixed we write $k \circledast_{(q, b)} C_{n}=\circledast_{F(q, b)} C_{n}$, where $F(q, b):=\left(f_{j}: j=\right.$ $0, \ldots, k-1)$.

Figure 1: $3 \circledast_{(-2,0)} C_{5}$

In the sequel we shall determine when, given some natural automorphism ψ of an n-gon C_{n}, the map $(0, i) \mapsto(0, \psi(i))$ of $\{0\} \times C_{n} \subseteq C_{k} \times C_{n}$ can be extended to an automorphism $\widetilde{\psi}$ of ${\underset{\sim}{*}}_{F} C_{n}$, where F is a sequence of bijections of C_{n}. In short we say that ψ can be extended to $\widetilde{\psi}$. Then $\widetilde{\psi}$ is determined by a family of bijections g_{j} of C_{n} such that

$$
\begin{equation*}
\widetilde{\psi}(j, i)=\left(j, g_{j}(i)\right), \tag{2}
\end{equation*}
$$

where $g_{0}=\psi$. If $\widetilde{\psi}$ is an automorphism then it maps each two collinear points (j, i) and $(j, i+1)$ onto collinear ones, so for every j the map g_{j} is a collineation of C_{n} and thus from 1.2 there exist $\alpha_{j} \in\{1,-1\}$ and $c_{j} \in C_{n}$ such that

$$
\begin{equation*}
g_{j}(i)=\alpha_{j} \cdot i+c_{j} . \tag{3}
\end{equation*}
$$

Lemma 2.1. If $\widetilde{\psi} \in \operatorname{Aut}\left(\circledast_{F} C_{n}\right)$ is defined by (2), where g_{j} are given by (3) then the following recursive formula holds

$$
\alpha_{j+1} \cdot f_{j}(i)+c_{j+1}=\left\{\begin{array}{ll}
f_{j}\left(\alpha_{j} \cdot i+c_{j}\right) & \text { for } \alpha_{j}=1 \tag{4}\\
f_{j}\left(\alpha_{j} \cdot i+c_{j}-1\right) & \text { for } \alpha_{j}=-1
\end{array} .\right.
$$

If the system (4) determines a periodic solution $\alpha_{k}=\alpha_{0}, c_{k}=c_{0}$ then $\tilde{\psi}$ defined by (2), (3) is an automorphism of $\circledast_{F} C_{n}$.
Proof. Note that the map $\psi=g_{0}$ uniquely determines $\tilde{\psi}$. We have

$$
L_{j, i}=\overline{(j, i),(j, i+1)} \stackrel{\widetilde{\psi}}{\longmapsto} \overline{\left(j, \alpha_{j} i+c_{j}\right),\left(j, \alpha_{j}(i+1)+c_{j}\right)}=L_{j, i}^{\prime} .
$$

The third point of $L_{j, i}$ is $\left(j+1, f_{j}(i)\right)$, and then the third point of $L_{j, i}^{\prime}$ is $\left(j+1, \alpha_{j+1} \cdot f_{j}(i)+c_{j+1}\right)$ which, on the other hand is either $\left(j+1, f_{j}\left(\alpha_{j} i+c_{j}\right)\right)$ if $\alpha_{j}=1$, or $\left(j+1, f_{j}\left(\alpha_{j} i+c_{j}-1\right)\right)$ if $\alpha_{j}=-1$. This proves the claim.
As an immediate consequence of 2.1 we have
Corollary 2.2. If elements of F are determined by (1) then the following recursive formula characterizes a map $\widetilde{\psi}$ which is defined by (2), (3) and extends g_{0} :

$$
\alpha_{j+1} b_{j}+c_{j+1}= \begin{cases}q_{j} \cdot c_{j}+b_{j} & \text { for } \alpha_{0}=1 \tag{5}\\ q_{j} \cdot\left(c_{j}-1\right)+b_{j} & \text { for } \alpha_{0}=-1\end{cases}
$$

with $\alpha_{j}=\alpha_{0}$, for $j \in C_{k}$.
Proposition 2.3. Let F consist of maps defined by (1) and $a \in C_{n}$. The following conditions are equivalent:
(i) the translation τ_{a} of C_{n} can be extended to an automorphism φ of $\circledast_{F} C_{n}$,
(ii) $\prod_{s=0}^{k-1} q_{s} \cdot a=a$.

If (ii) holds then φ is defined by

$$
\begin{equation*}
(j, i) \stackrel{\varphi}{\longmapsto}\left(j, \tau_{a_{j}}(i)\right), \text { where } a_{0}=a, a_{j+1}=\prod_{s=0}^{j} q_{s} \cdot a . \tag{6}
\end{equation*}
$$

Proof. Substituting in (5) $\alpha_{0}=1$ and $c_{0}=a$, we get $c_{j+1}=q_{j} c_{j}$, and formulas (2), (3) give (6). By 2.2, we need $c_{k}=c_{0}$, i.e. $a=\prod_{s=0}^{k-1} q_{s} \cdot a$, which is our claim.

Immediately we obtain
Corollary 2.4. A translation τ_{a} of C_{n} can be extended to an automorphism φ of $k \circledast_{(q, b)} C_{n}$ iff $a q^{k}=a$ in C_{n}. If $a q^{k}=a$ then φ is defined by

$$
\begin{equation*}
(j, i) \stackrel{\varphi}{\longmapsto}\left(j, \tau_{q^{j} \cdot a}(i)\right) . \tag{7}
\end{equation*}
$$

With similar methods we prove
Proposition 2.5. Let F consist of maps defined by (1), and $a \in C_{n}$. Define recursively the sequence $a_{0}=a, a_{j+1}=q_{j} a_{j}-q_{j}+2 b_{j}$ for arbitrary j. The following conditions are equivalent:
(i) the symmetry $\sigma_{a}: i \mapsto-i+a$ of C_{n} can be extended to an automorphism φ of $\circledast_{F} C_{n}$,
(ii) the equality $a=a_{k}$ holds in C_{n}.

If (ii) holds then φ is given by

$$
\begin{equation*}
\varphi(j, i)=\left(j, \sigma_{a_{j}}(i)\right) \tag{8}
\end{equation*}
$$

Proof. Let φ be an automorphism of $\circledast_{F} C_{n}$ which extends σ_{a}. After substitution $\alpha_{0}=-1$ and $c_{0}=a=a_{0}$, from (5) we get $c_{j+1}-b_{j}=q_{j} c_{j}-q_{j}+b_{j}$, which gives (8) with $c_{j}=a_{j}$. With $j=k$ from 2.2 we obtain $a=a_{k}$, which is our claim.
Corollary 2.6. Let $a \in C_{n}$. The symmetry $\sigma_{a}: i \mapsto-i+a$ of C_{n} can be extended to an automorphism φ of $k \circledast(q, b) C_{n}$ iff the equality $\sum_{s=1}^{k} q^{s}-2 b \sum_{s=0}^{k-1} q^{s}=a q^{k}-a$ holds in C_{n}. The automorphism φ is given by

$$
\begin{equation*}
\varphi(j, i)=\left(j, \sigma_{\left.a q^{j}-\sum_{s=1}^{j} q^{s}+2 b \sum_{s=0}^{k-1} q^{s}(i)\right)}\right. \tag{9}
\end{equation*}
$$

Proof. It suffices to note that, in accordance with notation of 2.5, $a_{j}=a q^{j}-\sum_{s=1}^{j} q^{s}+$ $2 b \sum_{s=0}^{k-1} q^{s}$.

Let f_{j} be a bijection of C_{n} for $j=0, \ldots, k-1$ and let $F=\left(f_{0}, \ldots, f_{k-1}\right)$. In the sequel we shall investigate "spiral" automorphisms of $\mathfrak{F}=\circledast_{F} C_{n}$ of the form

$$
\begin{equation*}
\varphi(j, i)=\left(j+1, g_{j}(i)\right) \tag{10}
\end{equation*}
$$

where g_{j} is a bijection of C_{n} for $j=0, \ldots, k-1$. Since φ has to be an automorphism, each g_{j} must be defined by the formula (3), for some $\alpha_{j} \in\{1,-1\}$ and $c_{j} \in C_{n}$.
Lemma 2.7. If $\varphi \in \operatorname{Aut}\left(\circledast_{F} C_{n}\right)$ is defined by (10), where g_{j} are given by (3) then the following recursive formulae hold:

$$
f_{j+1}(i)= \begin{cases}\alpha_{j+1} \cdot f_{j}\left(i-c_{j}\right)+c_{j+1} & \text { for } \alpha_{j}=1 \tag{11}\\ \alpha_{j+1} \cdot f_{j}\left(-i+c_{j}-1\right)+c_{j+1} & \text { for } \alpha_{j}=-1\end{cases}
$$

for $j=0, \ldots, k-1$, where $f_{(k-1)+1}=f_{k}=f_{0}$.

Proof. With a standard reasoning we have

$$
L:=\overline{(j, i),(j, i+1)} \stackrel{\varphi}{\longmapsto} \overline{\left(j+1, \alpha_{j} \cdot i+c_{j}\right),\left(j+1, \alpha_{j} \cdot(i+1)+c_{j}\right)}=: L^{\prime} .
$$

The third point of L is $\left(j+1, f_{j}(i)\right)$ and if $\alpha_{j}=1$ then the third point on L^{\prime} is $\left(j+2, f_{j+1}(i+\right.$ $\left.c_{j}\right)$), if $\alpha_{j}=-1$ then the third point of L^{\prime} is $\left(j+2, f_{j+1}\left(-i-1+c_{j}\right)\right)$. Thus

$$
\left(j+1, f_{j}(i)\right) \stackrel{\varphi}{\longmapsto} \begin{cases}\left(j+2, f_{j+1}\left(i+c_{j}\right)\right) & \text { for } \alpha_{j}=1 \\ \left(j+2, f_{j+1}\left(-i-1+c_{j}\right)\right) & \text { for } \alpha_{j}=-1\end{cases}
$$

which yields the required formula.
Now, with a simple substitution in the equation (11) of 2.7 we obtain
Corollary 2.8. Let functions f_{j} be defined by the "linear" formulas (1) and let φ be defined by (10), where g_{j} are given by (3). If $\varphi \in \operatorname{Aut}\left(\circledast_{F} C_{n}\right)$ then the following recursive formula holds:

$$
\begin{align*}
q_{j+1} & = \begin{cases}\alpha_{j+1} q_{j} & \text { if } \alpha_{j}=1 \\
-\alpha_{j+1} q_{j} & \text { if } \alpha_{j}=-1,\end{cases} \tag{12}\\
b_{j+1} & = \begin{cases}c_{j+1}+\alpha_{j+1} b_{j}-\alpha_{j+1} q_{j} c_{j} & \text { if } \alpha_{j}=1 \\
c_{j+1}+\alpha_{j+1} b_{j}+\alpha_{j+1} q_{j}\left(c_{j}-1\right) & \text { if } \alpha_{j}=-1 .\end{cases} \tag{13}
\end{align*}
$$

Consequently, a map defined by (10), (3) can be an automorphism of $\circledast_{F} C_{n}$ only if $q_{j+1}=$ $\pm q_{j}= \pm q_{0}$. Conversely, if (12), (13) determine periodic solution $c_{k}=c_{0}, \alpha_{k}=\alpha_{0}$ with $q_{k}=q_{0}, b_{k}=b_{0}$ then φ is an automorphism of $\circledast_{F} C_{n}$.

3. Simple series

From among all the structures $\circledast_{F} C_{n}$ we distinguish some more regular with the following observation.

Proposition 3.1. Let $\mathfrak{F}=\circledast_{F} C_{n}$, for a sequence $F=\left(f_{j}: j=0, \ldots, k-1\right)$ of bijections of C_{n}. The following conditions are equivalent:
(i) If l_{1}, l_{2} are two sides of the n-gon $\{j\} \times C_{n}, p_{1}, p_{2}$ are two vertices of the n-gon $\{j+1\} \times$ C_{n}, p_{i} is on l_{i} for $i=1,2$, and l_{1}, l_{2} have a common vertex then p_{1}, p_{2} are collinear.
(ii) $f_{j} \in D_{n}$ for every $j \in C_{k}$.

Proof. Two arbitrary sides l_{1}, l_{2} as above are of the form

$$
l_{1}=\overline{\left(j, i_{1}\right),\left(j, i_{1}+1\right)} \text { and } l_{2}=\overline{\left(j, i_{2}\right),\left(j, i_{2}+1\right)},
$$

and then $p_{1}=\left(j+1, f_{j}\left(i_{1}\right)\right)$, $p_{2}=\left(j+1, f_{j}\left(i_{2}\right)\right)$. The lines l_{1}, l_{2} have a common point if $i_{2}-i_{1}= \pm 1$, and p_{1}, p_{2} are collinear if $f_{j}\left(i_{2}\right)-f_{j}\left(i_{2}\right)= \pm 1$. Thus the map f_{j} must be a collineation of $\mathbf{D}\left(C_{n},\{0,1\}\right)$ and, by $1.2, f_{j} \in D_{n}$, as required.

It is seen that if each element f_{j} of F is in D_{n}, then there are $b \in C_{n}$ and $\varepsilon \in\{1,-1\}$ such that $\mathfrak{F} \cong \circledast_{F^{\prime}} C_{n}$, where $F=\left(f_{0}^{\prime}, \ldots, f_{k-1}^{\prime}\right)$ and

$$
\begin{equation*}
f_{j}^{\prime}(i)=i \text { for } j=0, \ldots, k-2, \text { and } f_{k-1}^{\prime}(i)=\varepsilon \cdot i+b \tag{14}
\end{equation*}
$$

Configurations determined by such families of bijections will be referred to as simple configurations.

One can notice that the structure $k \circledast_{(q, b)} C_{n}$, with $q \in\{-1,1\}$, is a simple configuration and, when constructed up to $(k-1)$-th level, coincides with the structure $\mathbf{D}\left(C_{k} \oplus C_{n}, \mathcal{D}\right)$ defined in Section 4; the only difference lies in the way of labeling points, but not in their geometrical arrangement. More formally, this can be stated as follows.

Proposition 3.2. Let $\mathfrak{F}=k \circledast_{(q, b)} C_{n}$ with $q \in\{-1,1\}$. Define $f_{j}(i)=i$ for $i \in C_{n}$ and $j=0, \ldots, k-2$, and $f_{k-1}(i)=\varepsilon i+\widehat{b}$, where
(i) if $q=1$ then $\varepsilon=1, \widehat{b}=k \cdot b$,
(ii) if $q=-1$ and $k=2 s$ then $\varepsilon=1, \widehat{b}=s$, and
(iii) if $q=-1$ and $k=2 s+1$ then $\varepsilon=-1, \widehat{b}=b-s$.

Then $\mathfrak{F} \cong \circledast_{F} C_{n}$, where $F=\left(f_{j}: j=0, \ldots, k-1\right)$.
Proof. Let $q=1$. Let us consider the map φ (a new labeling of points) defined by

$$
\varphi(j, i)=(j, i-j \cdot b)
$$

Clearly, φ is a bijection. Let $L_{j, i}=\overline{(j, i),(j, i+1)}=\{(j, i),(j, i+1),(j+1, i+b)\}$ be a line of \mathfrak{F} with $j<k-1$. Note that the following holds:

Comp: if $\left(j, i^{\prime}\right),\left(j, i^{\prime}+1\right)$ are new labels of the points $(j, i),(j, i+1)$, and $\left(j+1, i^{\prime \prime}\right)$ is on the line $L_{j, i}$ then its new label is $\left(j+1, i^{\prime}\right)$,
as required.
Then we have $\varphi(k-1, i)=(k-1, i-(k-1) b)$, and $\varphi(k-1, i+1)=(k-1, i-(k-1) b+1)$. The third point of $\overline{(k-1, i),(k-1, i+1)}$ is $(0, i+b)$. This gives $f_{k-1}(i-(k-1) b)=i+b$ in the new labeling. From this we calculate $f_{k-1}(i)=i+k b$.

Now, let $q=-1$. We define a bijection ψ with the formula

$$
\psi: C_{k} \times C_{n} \ni(j, i) \mapsto \begin{cases}(j, i-s) & \text { for } j=2 s-\text { even } \\ (j,-i+b-s) & \text { for } j=2 s+1-\text { odd }\end{cases}
$$

Take a line $L=L_{j, i}=\{(j, i),(j, i+1),(j+1,-i+b)\}$ of \mathfrak{F}. Let j be even, $j=2 s$. Then ψ maps L onto the set

$$
\psi(L)=\{(j, i-s),(j, i+1-s),(j+1,-(-i+b)+b-s)\}=(j, i-s)+\mathcal{D}
$$

If $j=2 s+1$ is odd then $j+1=2(s+1)$ and we have
$\psi(L)=\{(j,-i+b-s),(j,-(i+1)+b-s),(j+1,(-i+b)-(s+1))\}=(j,-i+b-s-1)+\mathcal{D}$.

Clearly, Comp holds for the re-labeling defined by ψ.
To determine f_{k-1} we consider two cases. If $k-1=2 s$ then the new labels of the points $(k-1, i)$ and $(k-1, i+1)$ are $(k-1, i-s)$ and $(k-1, i-s+1)$ resp., from which we obtain $f_{k-1}(i-s)=-i+b$. This yields $f_{k-1}(i)=-i+b-s$.

Analogously, if $k-1=2 s+1$ (i.e. $k=2(s+1)$) we infer $f_{k-1}(-i+b-s-1)=-i+b$, which gives $f_{k-1}(i)=i+(s+1)$.

Let us take a look into the three 9 -points configurations 9_{3} (cf. [1]) for a moment. One can note that the Pappos configuration $\left(9_{3}\right)_{1}$ is represented as $3 \circledast(1,0) C_{3}$, the configuration $\left(9_{3}\right)_{3}$ is represented as $3 \circledast_{(-1,2)} C_{3}$, or - in view of 3.2 - as $\circledast_{F} C_{3}$, where $f_{0}=f_{1}=i d_{C_{3}}$ and $f_{2}(i)=-i+1$, and the configuration $\left(9_{3}\right)_{2}$ is represented as $\circledast_{F} C_{3}$ with $f_{0}=f_{1}=i d_{C_{3}}$, $f_{2}(i)=i+1$.

Immediately from 2.3 and 2.5 we find conditions which assure that a map in D_{n}, i.e. a translation or a symmetry of C_{n}, can be extended to a collineation of a simple configuration which arises as $\circledast_{F} C_{n}$.

Proposition 3.3. Let $\mathfrak{F}=\circledast_{F} C_{n}$, where F consists of functions f_{j}^{\prime} defined by (14), and let $\varepsilon \in\{1,-1\}$.
(i) A translation τ_{a} of C_{n} can be extended to an automorphism of \mathfrak{F} iff $a=\varepsilon \cdot a$ holds in C_{n}.
(ii) A symmetry σ_{a} of C_{n} can be extended to an automorphism of \mathfrak{F} iff the equality $(1-\varepsilon) \cdot a=$ $2 b-\varepsilon \cdot k$ holds in C_{n}.

Proof. (i) From (14) we obtain $\prod_{s=0}^{k-1} q_{s}=\varepsilon$, so the claim follows directly from 2.3.
(ii) In accordance with notation of 2.5 we obtain $a_{0}=a=a-0, a_{j+1}=a_{j}-1+0=a-j$ for $j<k-1$, and $a_{k}=\varepsilon(a-(k-1))-\varepsilon+2 b$. Thus $a=a_{k}$ iff $(1-\varepsilon) a=2 b-\varepsilon k$, as required.

In particular we can find conditions for extending translations and symmetries to collineations of the structures $k \circledast_{(q, b)} C_{n}$ with $q=-1,1$. Note that in accordance with the criterion 2.3 every translation of C_{n} can be extended to an automorphism of $k \circledast_{(1, b)} C_{n}$ - in this case we have, evidently, $a 1^{k}=a$ for every $a \in C_{n}$ and every k.

Corollary 3.4. A symmetry $\sigma_{a}:(0, y) \mapsto(0,-y+a)$ of C_{n} can be extended to an automorphism of $k \circledast_{(1, b)} C_{n}$ iff $k(1-2 b)=0 \bmod n$.

Proof. In accordance with 3.2 and 3.3 we need $(1-1) a=2 k b-1 \cdot k$, which is the claim.
Corollary 3.5. If k is even then every translation $\tau_{a}:(0, y) \mapsto(0, y+a)$ of C_{n} can be extended to an automorphism of $k \circledast_{(-1, b)} C_{n}$. If k is odd then τ_{a} can be extended as above iff $2 a=0 \bmod n$.

Proof. Substituting $q=-1$ into the conditions of 2.3 we obtain the condition $a(-1)^{k}=a$. If k is even then this is a tautology, if k is odd we need $2 a=0 \bmod n$.

Corollary 3.6. If k is even then every symmetry $\sigma_{a}:(0, y) \mapsto(0,-y+a)$ of C_{n} can be extended to an automorphism of $k \circledast_{(-1, b)} C_{n}$; if k is odd then σ_{a} can be extended as above iff $2(a-b)=1 \bmod n$.

Proof. Let $q=-1$. If $k=2 s$ then in accordance with 3.2 we have $\varepsilon=1$ and $\widehat{b}=s$. Then using 3.3 we should require $(1-1) a=2 \widehat{b}-1 \cdot k$, which is a tautology. If $k=2 s+1$ we have $\varepsilon=-1$ and $\widehat{b}=b-s$; the requirement $(1-(-1)) a=2(b-s)-(-1) \cdot k$ of 3.3 gives the claim.

Now, we shall find "spiral" automorphisms of simple configurations.
Proposition 3.7. Let $\mathfrak{F}=\circledast_{F} C_{n}$, where F consists of functions f_{j}^{\prime} defined by (14) with $\varepsilon \in\{1,-1\}$. Then the map $(0, i) \mapsto\left(1, \alpha_{0} \cdot i+c_{0}\right)$ can be extended to an automorphism φ of \mathfrak{F} iff one of the following holds:
(i) if $\alpha_{0}=1$ then $\varepsilon=1$, or $\varepsilon=-1,2 c_{0}=-1$;
(ii) if $\alpha_{0}=-1$, then $\varepsilon=1,2 b=k$, or $\varepsilon=-1,2 b=2 c_{0}-k+1$.

In such a case φ is defined by (10), (3) with

$$
\begin{gathered}
\alpha_{j}=\alpha_{0} \quad \text { and } \quad c_{j}=\left\{\begin{array}{ll}
c_{0} & \text { if } \alpha_{0}=1 \\
c_{0}-j & \text { if } \alpha_{0}=-1
\end{array} \quad \text { for } j<k-1,\right. \\
\alpha_{k-1}=\varepsilon \alpha_{0} \quad \text { and } \quad c_{k-1}= \begin{cases}b+\varepsilon c_{0} & \text { if } \alpha_{0}=1 \\
b-\varepsilon\left(c_{0}-k+1\right) & \text { if } \alpha_{0}=-1\end{cases}
\end{gathered}
$$

Proof. We substitute $q_{0}=\cdots=q_{k-2}=1, b_{0}=\cdots=b_{k-2}=0, q_{k-1}=\varepsilon, b_{k-1}=b$ in the equations (12) and (13) of 2.8. The required map φ exists if (12) and (13) yield $q_{k}=1=q_{0}$ and $b_{k}=0=b_{0}$, with $\alpha_{k}=\alpha_{0}, c_{k}=c_{0}$.

We obtain, consecutively, for $j+1<k-1: \alpha_{j+1}=\alpha_{j}=\cdots=\alpha_{0}$, and then $c_{j+1}=c_{j}=c_{0}$ if $\alpha_{0}=1$, or $c_{j+1}=c_{j}-1=c_{0}-(j+1)$ if $\alpha_{0}=-1$.

Set $\alpha_{0}=1$. For $j+1=k-1$ from (12) we get $\alpha_{k-1}=\varepsilon$, and then (13) yields $c_{k-1}=b+\varepsilon c_{0}$.
Finally, we apply 2.8 for $j=k-1$ (now $j+1=0$). Then from (12) we obtain $q_{k}=1=q_{0}$, as required. Let $\varepsilon=1$, then (13) with $b_{k}=b_{0}$ yield a tautology. Let $\varepsilon=-1$; then (13) with $b_{k}=b_{0}=0$ gives $0=2 c_{0}+1$.

Now, suppose that $\alpha_{0}=-1$. For $j+1=k-1$ the formula (12) gives $\alpha_{k-1}=-\varepsilon$ and (13) gives $c_{k-1}=b-\varepsilon\left(c_{0}-k+1\right)$.

For $j+1=k$ from (12) we have $q_{k}=1=q_{0}$, as required. If $\varepsilon=1$ then $\alpha_{k-1}=-1$, so for $j+1=k$ from (13) we obtain $b_{k}=k-2 b$. Analogously, if $\varepsilon=-1$ with (13) we obtain $b_{k}=2 c_{0}-2 b-k+1$.

Figure 2: Neighborhood of a point o

Proposition 3.8. Let $\mathfrak{F}=\circledast_{F} C_{n}$ be a simple configuration, let $3<k$, and let $o=(j, i)$ be its point. Then the structure determined by points which are collinear with o can be visualized on the Figure 2. If $n>3$ then no other incidence besides those indicated in the figure holds. If $n=3$ then $d_{1}=d_{2}$ and points b_{1}, b_{2} are collinear.

Proof. Set $b_{1}=(j, i-1), b_{2}=(j, i+1), c_{1}=\left(j+1, \varepsilon_{j}(i-1)+a_{j}\right), c_{2}=\left(j+1, \varepsilon_{j} i+a_{j}\right)$. Then o, b_{1}, c_{1} are on a line m_{1} and o, b_{2}, c_{2} are on a line m_{2} of \mathfrak{F}. The points c_{1} and c_{2} are collinear and the third point of the line $l_{0}=\overline{c_{1}, c_{2}}$ is d_{0},

$$
d_{0}=\left\{\begin{array}{ll}
\left(j+1, \varepsilon_{j+1}\left(\varepsilon_{j} i+a_{j}-1\right)+a_{j+1}\right) & \text { if } \varepsilon_{j}=1 \\
\left(j+1, \varepsilon_{j+1}\left(\varepsilon_{j} i+a_{j}\right)+a_{j+1}\right) & \text { if } \varepsilon_{j}=-1
\end{array} .\right.
$$

Let $i=\varepsilon_{j-1} i^{\prime}+a_{j-1}$, then o is on the third line m_{3}, which has points $o, a_{1}=\left(j-1, i^{\prime}\right)$, and $a_{2}=\left(j-1, i^{\prime}+1\right)$. Consider points $d_{1}=\left(j-1, i^{\prime}-1\right)$ and $d_{2}=\left(j-1, i^{\prime}+2\right)$, and lines $l_{1}=\overline{d_{1}, a_{1}}$ and $l_{2}=\overline{d_{2}, a_{2}}$. Let p_{1}, p_{2} be the third points of the corresponding lines: $p_{1}=\left(j, \varepsilon_{j-1}\left(i^{\prime}-1\right)+a_{j-1}\right)$ and $p_{2}=\left(j, \varepsilon_{j-1}\left(i^{\prime}+1\right)+a_{j-1}\right)$. Note $\varepsilon_{j-1}\left(i^{\prime}-1\right)+a_{j-1}=i-\varepsilon_{j-1}$ and $\varepsilon_{j_{1}}\left(i^{\prime}+1\right)+a_{j-1}=i+\varepsilon_{j-1}$. Thus if $\varepsilon_{j-1}=1$ we get $p_{1}=b_{1}$ and $p_{2}=b_{2}$; if $\varepsilon_{j-1}=-1$ then $p_{1}=b_{2}$ and $p_{2}=b_{1}$.

If $3<n$ then no other collinearity can appear. If $n=3$ then $i_{1}^{\prime}=i^{\prime}+2$ and thus $d_{1}=d_{2}$. Moreover, in this case b_{1}, b_{2} are collinear and the third point of the line $\overline{b_{1}, b_{2}}$ is $\left(j+1, \varepsilon_{j}(i+1)+a_{j}\right)$.

From now on we assume that $3<k, n$. Note that the following holds in every simple configuration:

Lemma 3.9. If q is a point collinear with $o, o \neq q$ then there is exactly one point q^{\prime} collinear with o such that $q^{\prime} \neq o$ and $\left(o, q, q^{\prime}\right)$ is a triangle.

From this we get the rigidity of the automorphism group of the investigated configuration:
Proposition 3.10. Let $f \in \operatorname{Aut}(\mathfrak{F})$, where \mathfrak{F} is a simple configuration. If $f \upharpoonright m=i d_{m}$ for some line m of \mathfrak{F} then $f=i d$.

Proof. Let us take into account the schema 2, and assume that $f \upharpoonright m_{0}=i d_{m_{0}}$, so $f(o)=o$, and $f\left(a_{i}\right)=a_{i}$ for $i=1,2$. With the help of 3.9 we obtain $f\left(b_{i}\right)=b_{i}$ for $i=1,2$, and then $f\left(c_{i}\right)=c_{i}$. Note that, consequently, $f\left(d_{i}\right)=d_{i}$ for $i=0,1,2$. Thus we proved that $f(q)=q$ for all the points collinear with o, and for every such a point q there is a line l through q such that $f \upharpoonright l=i d_{l}$. Then, inductively, we get $f(q)=q$ for every point of the configuration.

As an immediate consequence we infer that if f, g are collineations and $f\left(q_{i}\right)=g\left(q_{i}\right)$ for $i=0,1,2$, for three distinct and collinear points q_{0}, q_{1}, q_{2}, then $f=g$.

The structure formed by the points collinear with a given point o in a simple configuration, visualised in Figure 2, can be, formally, defined by the following incidence matrix:
$\left[\begin{array}{c|c|c|c|c|c|c|c|c|c|c} & o & a_{1} & a_{2} & b_{1} & b_{2} & c_{1} & c_{2} & d_{0} & d_{1} & d_{2} \\ \hline m_{0} & \times & \times & \times & & & & & & & \\ \hline m_{1} & \times & & & \times & & \times & & & & \\ \hline m_{2} & \times & & & & \times & & \times & & & \\ \hline l_{0} & & & & & & \times & \times & \times & & \\ \hline l_{1} & & \times & & \times & & & & & \times & \\ \hline l_{2} & & & \times & & \times & & & & & \times\end{array}\right]$

This - small - configuration has a very regular automorphism group. Let us write Z_{o} for the set of all points collinear with o and distinct from o. With a careful use of 3.9 and 3.10 we can calculate

Proposition 3.11. The group $\mathfrak{O}_{(o)}$ of collineations of the incidence structure visualized in Figure 2 consists of the maps defined in Table 1. The group $\mathfrak{O}_{(o)}$ is isomorphic to S_{3} : each transformation f given in Table 1 is uniquely determined by images of the points d_{0}, d_{1}, d_{2}, and by images of the lines m_{0}, m_{1}, m_{2} (or the lines l_{0}, l_{1}, l_{2}) as well. On the other hand, f is also determined by an image $f(q)$ of just one point $q \in Z_{o}$.

map	a_{1}	a_{2}	b_{1}	b_{2}	c_{1}	c_{2}	d_{1}	d_{2}	d_{0}	m_{0}	m_{1}	m_{2}	l_{0}	l_{1}	l_{2}
$i d$	a_{1}	a_{2}	b_{1}	b_{2}	c_{1}	c_{2}	d_{1}	d_{2}	d_{0}	m_{0}	m_{1}	m_{2}	l_{0}	l_{1}	l_{2}
σ^{\prime}	a_{2}	a_{1}	b_{2}	b_{1}	c_{2}	c_{1}	d_{2}	d_{1}	d_{0}	m_{0}	m_{2}	m_{1}	l_{0}	2	l_{1}
$\sigma^{\prime \prime}$	c_{2}	b_{2}	c_{1}	a_{2}	b_{1}	a_{1}	d_{0}	d_{2}	d_{1}	m_{2}	m_{1}	m_{0}	l_{1}	l_{0}	l_{2}
$\sigma^{\prime \prime \prime}$	b_{1}	c_{1}	a_{1}	c_{2}	a_{2}	b_{2}	d_{1}	d_{0}	d_{2}	m_{1}	m_{0}	m_{2}	l_{2}	l_{1}	l_{0}
ρ^{\prime}	c_{1}	b_{1}	c_{2}	a_{1}	b_{2}	a_{2}	d_{0}	d_{1}	d_{2}	m_{1}	m_{2}	m_{0}	l_{2}	l_{0}	l_{1}
$\rho^{\prime \prime}$	b_{2}	c_{2}	a_{2}	c_{1}	a_{1}	b_{1}	d_{2}	d_{0}	d_{1}	m_{2}	m_{0}	m_{1}	l_{1}	l_{2}	l_{0}

Table 1: Collineations of a neighborhood of a point o

Clearly, if f is a collineation of a simple configuration which fixes a point o then $f \upharpoonright Z_{(o)} \in$ $\mathfrak{O}_{(o)}$. In the sequel we shall determine which of the maps $\sigma^{\prime}, \sigma^{\prime \prime}, \sigma^{\prime \prime \prime}, \rho^{\prime}, \rho^{\prime \prime}$ defined in Table 1 can be extended to a collineation of the investigated simple configurations for various points o and labelling of the points collinear with o.

4. Quasi difference sets and associated configurations

Let G be a finite group and $D \subseteq G$. The technique of difference sets (cf. [3]) can be successfully used to produce partial linear spaces, not necessarily being linear spaces.

Proposition 4.1. Let $n=|D|$. The structure $\mathbf{D}(G, D)$ is a partial linear space iff for every $c \in G \backslash\{1\}$, either

C 1 : there is no pair $(a, b) \in D \times D$ with $a b^{-1}=c$, or
C 2 : there is the unique pair $(a, b) \in D \times D$ with $a b^{-1}=c$, or

C3: there are exactly n pairs $(a, b) \in D \times D$ with $a b^{-1}=c$.
If this is the case then the number v of points is $v=|G|$, the number b of lines is $b=\frac{|G|}{\left|G_{D}\right|}$, where $G_{D}=\{q \in G: q \cdot D=D\}$ is the stabilizer of D in G, the rank \varkappa of each line is $\varkappa=|D|$, and the rank λ of each point is $\lambda=\frac{|D|}{\left|G_{D}\right|}$.

Proof. Set $\mathfrak{D}=\mathbf{D}(G, D)$. In view of 1.3, it suffices to give conditions which assure that $|D \cap(q \cdot D)| \geq 2$ yields $D=q \cdot D$. Note that $a \in D \cap(q \cdot D)$ means that $a^{\prime}=q \cdot a \in D$, so every point $a \in D \cap(q \cdot D)$ corresponds to a pair $a, a^{\prime} \in D$ with $a^{\prime} a^{-1}=q$. Since \mathfrak{D} should be a partial linear space, each set $D \cap(q \cdot D)$ must be empty, a one-element set or be the set D. The values of the parameters of \mathfrak{D} are evident.

In the sequel we are mainly interested in configurations, i.e. in partial linear spaces with constant and equal point rank and line rank $(\varkappa=\lambda$ and $v=b)$. In view of 4.1, to this aim we need $\left|G_{D}\right|=1$.

Proposition 4.2. Let $\mathfrak{D}=\mathbf{D}(G, D)$. The following conditions are equivalent:
(i) \mathfrak{D} is a configuration.
(ii) For every $c \in G \backslash\{1\}$ there is at most one pair $(a, b) \in D \times D$ with $a b^{-1}=c$.

If G is abelian then (ii) is necessary and sufficient for \mathfrak{D} to be nontrivial in the following sense: through each point there pass at least two lines.

Proof. Clearly, (ii) implies that (C1) or (C2) of 4.1 holds for every $c \in G \backslash\{1\}$, which yields: (ii) \Longrightarrow (i). Assume (C3) holds for some $c \neq 1$ and consider two pairs (a, a^{\prime}), $\left(b, b^{\prime}\right) \in D \times D$ with $c=a^{\prime} a^{-1}=b^{\prime} b^{-1}$. Then $D=c \cdot D$ so $\left|G_{D}\right|>1$ and \mathfrak{D} is not a configuration. This proves (i) \Longrightarrow (ii).

Now, let G be abelian. Clearly, if \mathfrak{D} is a configuration then it is nontrivial. Assume that \mathfrak{D} is nontrivial, let $D=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. Suppose that (C3) holds for some $c \neq 1$, then $D=c \cdot D$, so for every $i=1, \ldots, n$ there is j_{i} with $a_{i}=c \cdot a_{j_{i}}$ (note: $a_{i} \neq a_{j_{i}}!$) Consider $q_{i}=a_{1} a_{i}^{-1}$ for $i=1, \ldots, n$. Then $q_{i}=a_{j_{1}} a_{j_{i}}{ }^{-1}$, so from 4.1 we get $D=q_{i} \cdot D$. Thus $\left|G_{D}\right| \geq n$, and $\lambda \leq 1$, which contradicts assumptions.

As a tricky consequence we obtain
Corollary 4.3. If G is an abelian group then $\mathbf{D}(G, D)$ is a partial linear space with point rank at least two iff it is a configuration.

Note that the condition (ii) of 4.2 can be, informally, read as follows: all the differences $a b^{-1}$ for $a, b \in D, a \neq b$ are pairwise distinct.

As known examples of configurations which are defined in this way we can quote Fano Configuration $\mathbf{D}\left(C_{7},\{0,1,3\}\right)$ (cf. [3] or [2]) which can be represented as a self-inscribed 7gon, and Pappos Configuration $\mathbf{D}\left(C_{3} \oplus C_{3},\{(0,0),(0,1),(1,0)\}\right)$ (cf. [1], [2], and Section 5), which can be represented as three cyclically inscribed triangles.

5. Series determined by quasi difference sets

Now, let us consider the group G being the direct sum of two cyclic groups $G=C_{k} \oplus C_{n}$, let $\mathcal{D}=\{(0,0),(0,1),(1,0)\}$. Set $\mathfrak{W J}=\mathbf{D}(G, \mathcal{D})$. Evidently, $\mathfrak{W}=k \circledast_{(1,0)} C_{n}$ and $\mathfrak{W} \cong$ $\mathbf{D}\left(C_{n} \oplus C_{k}, \mathcal{D}\right)=n \circledast_{(1,0)} C_{k}$. This yields

Fact 5.1. The structure \mathfrak{W} can be considered as an n-gon k times inscribed cyclically into itself, or a k-gon inscribed into itself n times.

Note that the line $l_{j, i}=\overline{(j, i),(j, i+1)}$ of \mathfrak{W} coincides with $(j, i)+\mathcal{D}$.
Proposition 5.2. The structure \mathfrak{W} is self-dual, its involutory correlation can be defined by the formula

$$
(j, i) \mapsto l_{-j,-i} .
$$

Proof. If $(r, s) \in l_{j, i}$ then $(r, s)=(j, i)+d$ for some $d \in \mathcal{D}$. Then $(-j,-i)=(-r,-s)+d$, which proves the claim.

Lemma 5.3. Every point (j, i) of \mathfrak{W} is collinear with exactly 6 distinct points $(j+1, i)$, $(j, i+1),(j-1, i),(j-1, i+1),(j, i-1)$, and $(j+1, i-1)$. Two points $a=(j, i)$ and $b=(r, s)$ of \mathfrak{W} are collinear iff $a-b$ is one of the following: $(0,0),(0, \pm 1),(\pm 1,0),(1,-1)$, or $(-1,1)$.

Proof. Since (j, i) lies on three distinct lines $l_{j, i}, l_{j, i-1}, l_{j-1, i}$, and each one of them contains 2 points distinct from $p_{i, j}$, we have 6 points collinear with (j, i). Directly from definition, points on these three lines are of the form $(i, j)+g$, where $g=(0,0),(0,1),(1,0),(0,-1),(1,-1)$, $(-1,0),(-1,1)$. Thus the second claim holds.

Evidently, for every $a=(r, s) \in G$ the translation τ_{a} is an automorphism of \mathfrak{W}. In particular, the translation $\tau_{(0,1)}$ can be interpreted as a rotation of the corresponding n-gons, and $\tau_{(1,0)}$ is a "jumping" between n-gons. Note that the map $\tau_{(1,1)}$ can be interpreted as a "spiral": it changes an n-gon and, at the same time, rotates it. The map $\mu: x \mapsto-x$ (or, more generally, every map $\mu \tau_{a}$) can be considered in the structure $\mathbf{D}\left(C_{n},\{0,1\}\right)$ as an axial symmetry of the corresponding n-gon. Symmetries of this kind "cannot be extended" to automorphisms of \mathfrak{W}. This means that though translations of the group $C_{n} \oplus C_{k}$ are automorphisms of \mathfrak{W}, formal symmetries of this group are not geometrical automorphisms. Clearly, with 1.4 we have

Remark 5.4. If $n=k$ then the map $\jmath: G \ni(a, b) \mapsto(b, a)$ is an involutory automorphism of \mathfrak{W}.

It seems that the set $\mathcal{D} \subseteq C_{n} \oplus C_{k}$ gives the most interesting and "intuitive" way of defining series of cyclically inscribed n-gons. Clearly, defining $\mathbf{D}(G, B)$ we can always assume that $(0,0),(0,1) \in B$, since we are, in fact, interested in series of n-gons - and this is the first side of the first of them. Let us make the following trivial observations.

Remark 5.5. Let g_{1} be a generator of the group C_{k} and g_{2} be a generator of the group C_{n}. Set $B=\left\{(0,0),\left(g_{1}, 0\right),\left(0, g_{2}\right)\right\}$. Then $\mathfrak{W} \cong \mathbf{D}\left(C_{k} \oplus C_{n}, B\right)$.

Proof. Under assumptions, the map f defined by $f(j, i)=\left(g_{1} \cdot j, g_{2} \cdot i\right)$ is an automorphism of the group $C_{k} \oplus C_{n}$, and $f(\mathcal{D})=B$. Thus f is a required isomorphism.

Remark 5.6. If r is the rank of $b \in C_{k}, r<k$, and $B=\{(0,0),(0,1),(b, 0)\}$ then $\mathbf{D}\left(C_{k} \oplus C_{n}, B\right)$ is a union of $\frac{k}{r}$ pairwise disjoint copies of $\mathbf{D}\left(C_{r} \oplus C_{n}, \mathcal{D}\right)$.

Proof. Consider an arbitrary point $(x, y) \in C_{k} \oplus C_{n}$. We note that points which can be joined with (x, y) by a polygonal path in $\mathbf{D}\left(C_{k} \oplus C_{n}, B\right)$ are of the form $\left(x+s_{1} \cdot b, y+s_{2} \cdot 1\right)$, which suffices as an argument.

Remark 5.7. Let $B=\{(0,0),(0,1),(a, b)\}$ be a subset of $G=C_{k} \oplus C_{n}$ such that $\mathfrak{B}=$ $\mathbf{D}(G, B)$ is a partial linear space. If $a=0$ then \mathfrak{B} is a disjoint union of n copies of $\mathbf{D}\left(C_{k},\{0,1, b\}\right)$.

In accordance with the geometrical intuitions, we assume that the third point of B is $(1, b)$ $\left((i+1)\right.$-th k-gon inscribed into the i-th one). Set $B_{b}=\{(0,0),(0,1),(1, b)\}$. One can see that $\mathbf{D}\left(C_{k} \oplus C_{n}, B_{b}\right)=k \circledast{ }_{(1, b)} C_{n}$. As an immediate consequence of 4.2 (or 1.1) we obtain

Proposition 5.8. For every $b \in C_{k}$ the structure $\mathbf{D}\left(G, B_{b}\right)=: \mathfrak{B}_{b}$ is a partial linear space, in fact - a configuration.

Note that the structures obtained in this way need not to be distinct. In the terminology proposed now, $\mathcal{D}=B_{0}$. Let the maps η_{1}, η_{2} be defined over $C_{n} \oplus C_{n}$ by

$$
\eta_{1}(x, y)=(x, y+x) \text { and } \eta_{2}(x, y)=(x+y, y) .
$$

Clearly, η_{1} and η_{2} are group automorphisms, and $\eta_{1}\left(B_{b}\right)=B_{b+1}$. Thus $\left(\eta_{1}\right)^{b}(\mathcal{D})=B_{b}$, and thus $\left(\eta_{1}\right)^{b}$ is an isomorphism of $\mathbf{D}\left(C_{n} \oplus C_{n}, \mathcal{D}\right)$ onto $\mathbf{D}\left(C_{n} \oplus C_{n}, B_{b}\right)$.

Corollary 5.9. All structures of the form $\mathbf{D}\left(C_{n} \oplus C_{n}, B\right)$ which correspond to series of inscribed polygons, are pairwise isomorphic.

The structure $\mathbf{D}\left(C_{n} \oplus C_{n}, B\right)$ has a lot of automorphisms. We shall briefly discuss them here. A more general case is discussed in the next section.

Proposition 5.10. Let $n=k$, define the maps σ_{1}, σ_{2} by the formulas

$$
\sigma_{1}(a, b)=(a,(-a)-b) \text { and } \sigma_{2}(a, b)=((-b)-a, b) .
$$

Then σ_{1} and σ_{2} are involutory automorphisms of \mathfrak{W}.
Proof. Clearly, $\sigma_{i} \in \operatorname{Aut}(G)$. Thus in view of 1.4 it remains to note that $\sigma_{1}(\mathcal{D})=(0,-1)+\mathcal{D}$ and $\sigma_{2}(\mathcal{D})=(-1,0)+\mathcal{D}$.

Let us calculate

$$
(x, y) \stackrel{\sigma_{1}}{\longmapsto} \quad(x,-(x+y)) \stackrel{\sigma_{2}}{\longmapsto} \quad(y,-(x+y)) \stackrel{\sigma_{1}}{\longmapsto} \quad(y, x)
$$

and

$$
(x, y) \stackrel{\sigma_{2}}{\longmapsto}(-(x+y), y) \stackrel{\sigma_{1}}{\longmapsto}(-(x+y), x) \stackrel{\sigma_{2}}{\longmapsto}(y, x) .
$$

From this we obtain

$$
\begin{equation*}
\left(\sigma_{1}\right)^{\sigma_{2}}=\jmath=\left(\sigma_{2}\right)^{\sigma_{1}} . \tag{15}
\end{equation*}
$$

Let $u=(a, b) \in G$. Analogously, we have

$$
(x, y) \stackrel{\sigma_{1}}{\longmapsto}(x,-(x+y)) \stackrel{\tau_{u}}{\longrightarrow} \quad(x+a,-(x+y)+b) \stackrel{\sigma_{1}}{\longmapsto} \quad(x+a, y-(a+b)) .
$$

This can be written as follows (the dual formula is obtained analogously):

$$
\begin{equation*}
\left(\tau_{u}\right)^{\sigma_{i}}=\tau_{\sigma_{i}(u)} \text { for } u \in G \text { and } i=1,2 . \tag{16}
\end{equation*}
$$

Proposition 5.10 gives a method of constructing some more symmetries of \mathfrak{W}.
Proposition 5.11. The composition $\tau_{(a, b)} \circ \sigma_{1}$ is an involution iff $a=0$ and $\tau_{(a, b)} \circ \sigma_{2}$ is an involution iff $b=0$.

Proof. Let $\tau=\tau_{(a, b)}$. Clearly, $\tau \circ \sigma_{i}$ is an involution iff $\tau^{\sigma_{i}}=\tau^{-1}$. In view of (16), we need $\sigma_{i}(a, b)=-(a, b)$. For $i=1$ this yields $a=0$, and for $i=2$ we get $b=0$.

Remark 5.12. The map σ_{1} is an automorphism of $\mathbf{D}\left(C_{k} \oplus C_{n}, \mathcal{D}\right)$ if $n \mid k$, and σ_{2} is an automorphism if $k \mid n$. The formulas (16) hold in corresponding cases.

Proof. Note that to have definition of σ_{1} meaningful, the conditions $i_{1}=i_{2} \bmod n$ and $j_{1}=j_{2} \bmod k$ should imply $i_{1}+j_{1}=i_{2}+j_{2} \bmod n$.

On the other hand from 3.4, we obtain immediately
Proposition 5.13. A symmetry $\sigma_{a}:(0, y) \mapsto(0,-y+a)$ of C_{n} can be extended to an automorphism of $\mathbf{D}\left(C_{k} \oplus C_{n}, \mathcal{D}\right)$ iff $n \mid k$.

6. Automorphisms

Now, we shall find automorphisms of some of the incidence configurations defined earlier, arising from series of mutually inscribed n-gons.

First, we shall determine the structure of points collinear with a given one in the structure $\mathbf{D}\left(C_{k} \oplus C_{n}, \mathcal{D}\right)$. Since it is a simple configuration, structure of incidence formed by these points was visualized in Figure 2 and described in 3.8.
The corresponding points are:

$$
\text { in } \begin{aligned}
\mathbf{D}\left(C_{k} \oplus C_{n}, \mathcal{D}\right): & o=(j, i), a_{1}=(j-1, i), a_{2}=(j-1, i+1), b_{1}=(j, i-1), b_{2}=(j, i+1), \\
& c_{1}=(j+1, i-1), c_{2}=(j+1, i), d_{0}=(j+2, i-1), d_{1}=(j-1, i-1), \\
& d_{2}=(j-1, i+2) .
\end{aligned}
$$

From now on we assume $3<k, n$. In the following lemmas we assume that $o=(j, i)$, points $a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2}$ are taken in accordance with the above list, and f is a collineation of \mathfrak{W}.

Lemma 6.1. Assume that $f(o)=o$ and $f \upharpoonright Z_{o}=\sigma^{\prime}$. Then f yields a symmetry with the center o of the n-gon $\{j\} \times C_{n}$. Consequently, such a symmetry must be extendable to an automorphism of \mathfrak{D}.

Proof. In view of $3.11 f\left(a_{1}\right)=a_{2}$ and $f\left(b_{s}\right)=b_{3-s}$, i.e. $f(j, i-1)=(j, i+1)$. Note that our assumptions determine images under f of all the points on two lines l_{1}, m_{1} through b_{1}; from this we infer $f(j, i-2)=(j, i+2)$. Then, inductively, we get $f(i, j-s)=(i, j+s)$, so f is a symmetry, as required.

Lemma 6.2. Assume that $f(o)=o$ and $f \upharpoonright Z_{o}=\sigma^{\prime \prime}$. Then f yields a symmetry of the k-gon $C_{k} \times\{i-1\}$. Consequently, such a symmetry must be extendable to an automorphism of \mathfrak{D}.

Proof. It suffices to interchange the role of "coordinates" i, j and make use of 3.11 to get $f(j-s, i-1)=(-j+1+s, i-1)$.

Lemma 6.3. Assume that $f(o)=o$ and $f \upharpoonright Z_{o}=\sigma^{\prime \prime \prime}$. Take $i=0=j$. Then points (s, s) are fixed under f, and f is defined by the formula $f(j, i)=(i, j)$, so this map must be a collineation of \mathfrak{D}.

Proof. In view of $3.11 f$ interchanges the following pairs of points: $a_{2}, c_{1} ; a_{1}, b_{1} ; d_{2}, d_{0}$, and d_{1} is fixed. Thus f, \jmath, and $\sigma^{\prime \prime \prime}$ coincide on the neighbor of the point o. Inductively, f and \jmath coincide on every point of \mathfrak{D}, which yields the result.

Lemma 6.4. Assume that $f(o)=o$ and $f \upharpoonright Z_{o}=\rho^{\prime}$. Take $i=0=j$. Then f is defined by the formula $f(j, i)=(-(i+j), j))$, so this map must be a collineation of \mathfrak{D}.

Proof. We note that the maps f, ρ^{\prime}, and $\sigma_{1} \circ \sigma_{2}$ (cf. 5.10) coincide on the neighbor of the point o. By inductive argument we get our claim.

Elementary properties of the group S_{3} give that the only subgroups of the group $\operatorname{Aut}\left(\mathbf{D}\left(C_{k} \oplus C_{n}, \mathcal{D}\right)\right)_{o}$ can be: the group $G=\left\{i d, \sigma^{\prime}, \sigma^{\prime \prime}, \sigma^{\prime \prime \prime}, \rho^{\prime}, \rho^{\prime \prime}\right\}$, a trivial group $\{i d\}$, a C_{2} group $\left\{i d, \sigma^{t}\right\}$, where $t \in\left\{^{\prime},{ }^{\prime \prime},{ }^{\prime \prime \prime}\right\}$, or an alternating group $\left\{i d, \rho^{\prime}, \rho^{\prime \prime}\right\}$, which is generated by any ρ^{t} with $t \in\left\{^{\prime},{ }^{\prime \prime}\right\}$ (cf. Table 1).

As a consequence of Lemmas 6.1-6.4 we can formulate a characterization of the automorphism group $\operatorname{Aut}\left(\mathbf{D}\left(C_{k} \oplus C_{n}, \mathcal{D}\right)\right)$. Recall that $C_{2} \cong S_{2}$.

Proposition 6.5. Let $\mathfrak{D}=\mathbf{D}\left(C_{k} \oplus C_{n}, \mathcal{D}\right)$ and $\mathfrak{G}=\operatorname{Aut}(\mathfrak{D})$.
(i) If $n \nmid k$ and $k \nmid n$ then $|\mathfrak{G}|=n k$ and $\mathfrak{G} \cong C_{k} \oplus C_{n}$.
(ii) If $n \mid k$ and $k \neq n$ then $|\mathfrak{G}|=2 n k$.
(iii)] Dually, if $k \mid n$ and $n \neq k$ then $|\mathfrak{G}|=2 n k$.
(iv) In both cases (ii) and (iii) the group \mathfrak{G} is the semidirect product $S_{2} \rtimes\left(C_{k} \oplus C_{n}\right)$. Moreover, in the case (ii) if $2 \nmid k$ then $\mathfrak{G} \cong C_{k} \oplus D_{n}$, and in the case (iii) if $2 \nmid n$ then and $\mathfrak{G} \cong D_{k} \oplus C_{n}$.
(v) If $n=k$ then $|\mathfrak{G}|=6 n k$ and \mathfrak{G} is the semidirect product $S_{3} \rtimes\left(C_{n} \oplus C_{n}\right)$.

Proof. Note that \mathfrak{G} contains a transitive subgroup of translations, so every $F \in \mathfrak{G}$ can be written in the form $F=\tau_{a} \circ f$, where $f \in \mathfrak{G}_{o}$ fixes an arbitrary chosen point o. Thus $|\mathfrak{G}|=n k\left|\mathfrak{G}_{o}\right|$. Without loss of generality we can take $o=(0,0)$.

Assume there is $f \in \mathfrak{G}_{o}$ such that $f \upharpoonright Z_{0} \in\left\{\sigma^{\prime \prime \prime}, \rho^{\prime}, \rho^{\prime \prime}\right\}$ (cf. Table 1). From 6.3 and 6.4 we obtain $n=k$ and then $\left|\mathfrak{G}_{o}\right|=6$ and elements of \mathfrak{G}_{o} exhaust all the maps of the Table 1.

Let $n \neq k$, so $f \upharpoonright Z_{o} \neq \sigma^{\prime \prime \prime}, \rho^{\prime}, \rho^{\prime \prime}$. Assume there is $f \in \mathfrak{G}_{o}$, with $f \neq i d$ and $f \upharpoonright Z_{o}=\sigma^{\prime}$ or $f \upharpoonright Z_{o}=\sigma^{\prime \prime}$. In view of 6.1 and 6.2, by 5.13, $n \mid k$ or $k \mid n$. In the first case $f=\sigma_{1}$, and in the second one $f=\sigma_{2}$ (cf. 5.13). In both cases $\left|\mathfrak{G}_{o}\right|=2$.

Finally, if $n \nmid k$ and $k \nmid n$ then $\mathfrak{G}_{o}=\{i d\}$ and (i) holds.
In each one of the corresponding cases an arbitrary automorphism f of \mathfrak{D} can be written in the form $f=\tau_{u} \circ \varphi$, where τ_{u} with $u \in C_{k} \oplus C_{n}$ is a translation, and $\varphi \in \Pi$, where Π is a group as follows:

- in the case (ii) - $\Pi=\left\{i d, \sigma_{1}\right\} \cong S_{2}$,
- in the case (iii) - $\Pi=\left\{i d, \sigma_{2}\right\} \cong S_{2}$,
- in the case (v) $-\Pi=\left\{i d, \sigma_{1}, \sigma_{2}, \jmath, \sigma_{1} \sigma_{2}, \sigma_{2} \sigma_{1}\right\} \cong S_{3}$.

Thus $f=\tau_{u} \varphi$ can be identified with the pair $(u, \varphi) \in\left(C_{k} \oplus C_{n}\right) \times \Pi$. With the formula (16) we obtain $\left(\tau_{u_{1}} \varphi_{1}\right)\left(\tau_{u_{2}} \varphi_{2}\right)=\left(\tau_{u_{1}} \tau_{\varphi_{1}\left(u_{2}\right)}\right)\left(\varphi_{1} \varphi_{2}\right)=\tau_{u_{1}+\varphi_{1}\left(u_{2}\right)}\left(\varphi_{1} \varphi_{2}\right)$. This proves $\mathfrak{G} \cong \Pi \rtimes\left(C_{k} \oplus C_{n}\right)$.

To close the proof note that, by the above, every automorphism f of \mathfrak{D} can be given in one of the following forms:

$$
\begin{align*}
f(j, i) & =(j+a, i+b)=\tau_{(a, b)}(j, i) \tag{17}\\
f(j, i) & =(j+a,-i-j+b)=\mu_{(a, b)}^{\prime}(j, i) \tag{18}\\
f(j, i) & =(-j-i+a, i+b)=\mu_{(a, b)}^{\prime \prime}(j, i) \tag{19}\\
f & =j \circ g \text { where } g=\tau_{(a, b)}, \mu_{(a, b)}, \mu_{(a, b)}^{\prime \prime}, \tag{20}
\end{align*}
$$

where $a \in C_{k}$ and $b \in C_{n}$ are arbitrary. Automorphisms of the type (17) are in \mathfrak{G} in all the cases (i)-(v).

Let us consider the case (ii). Then \mathfrak{G} consists of all the maps defined with formulas (17) and (18). Note that the group $C_{k} \oplus D_{n}$ can be considered as the family of all the maps defined with the formula (17) and the following one:

$$
\begin{equation*}
f(j, i)=(j+a,-i+b)=\sigma_{(a, b)}(j, i) . \tag{21}
\end{equation*}
$$

Define maps $\eta_{(a, b)}$ and $\nu_{(a, b)}$ with the conditions:

$$
\begin{equation*}
\eta_{(a, b)}(j, i)=(j+2 a, i+b-a) \text { and } \nu_{(a, b)}(j, i)=(j+2 a,-i-j+b-a) \tag{22}
\end{equation*}
$$

(warning: $i, b, i+b-a \in C_{n}$, but $a \in C_{k}$!). Then we get the following equalities:

$$
\begin{aligned}
\tau_{(c, d)} \circ \tau_{(a, b)} & =\tau_{(c+a, d+b)} \\
\sigma_{(c, d)} \circ \sigma_{(a, b)} & =\tau_{(c+a, d-b)}
\end{aligned} \quad \text { and } \quad \begin{array}{lll}
& \eta_{(c, d)} \circ \eta_{(a, b)}=\eta_{(c+a, d+b)}, \\
\sigma_{(c, d)} \circ \tau_{(a, b)} & =\sigma_{(a+c, d-b)} & \text { and }
\end{array} \quad \nu_{(c, d)} \circ \eta_{(a, b)}=\eta_{(c+a, d-b)}=\nu_{(a+c, d-b)},
$$

Let us define the map F by $F: \tau_{(a, b)} \mapsto \eta_{(a, b)}, F: \sigma_{(a, b)} \mapsto \nu_{(a, b)}$. By the above, F is an isomorphism of the group of transformations defined by (17) and (21) (which is, clearly, isomorphic with the group $C_{k} \oplus D_{n}$) with the group of maps defined by (22). Now, it suffices
to note that $\tau_{(a, b)}=\eta_{\left(\frac{a}{2}, \frac{a}{2}+b\right)}, \eta_{(a, b)}=\tau_{(2 a, b-a)}, \mu_{(a, b)}^{\prime}=\nu_{\left(\frac{a}{2}, \frac{a}{2}+b\right)}$, and $\nu_{(a, b)}=\mu_{(2 a, b-a)}^{\prime}$ to see that the group defined by (22) coincides with the group defined by (17) and (18). Thus F yields an automorphism of $C_{k} \oplus D_{n}$ and \mathfrak{G}.

Analogously, in the case (iii) we prove $\mathfrak{G} \cong D_{k} \oplus C_{n}$.

References

[1] Hilbert, D.; Cohn-Vossen, P.: Anschauliche Geometrie. Springer-Verlag, Berlin 1996. Zbl 0847.01034
[2] Levi, H.: Geometrische Konfigurationen. Verlag von S. Hirzel, Leipzig 1929.
JFM 55.0351.03
[3] Lipski, W.; Marek, W.: Analiza kombinatoryczna. PWN, Warszawa 1986. Zbl 0662.05001

Received December 15, 2002

