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Abstract. In the paper we study configurations which can be represented as
families of cyclically inscribed n-gons. The most regular of them arise from quasi
difference sets distinguished in a product of two cyclic groups, but some other more
general techniques which define series of inscribed n-gons are found and studied.
We give conditions which assure the existence of certain automorphisms of the
defined configurations. The automorphism groups of configurations arising from
quasi difference sets is established.
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1. Introduction, basic notions and definitions

In the paper we study configurations which can be represented as families of cyclically in-
scribed n-gons.

Ideas are rather simple: we have k copies W0, . . . ,Wk−1 of an n-gon. The vertices of Wj

are pj,i, where i = 0, . . . , n − 1, and for every i two vertices pj,i and pj,i+1 are joined with a
side lj,i. To inscribe Wj+1 into Wj we need a function fj which assigns to a side lj,i of Wj

the vertex pj+1,fj(i) of Wj+1, which we put on this side. The points of the obtained structure
are all vertices of the given n-gons, and its “lines” are sets of the form {pj,i, pj,i+1, pj+1,fj(i)}.
Thus the family F = {fj : j = 0, . . . , k − 1} defines a structure, which can be interpreted as
a series of cyclically inscribed n-gons. The point is to characterize families F of functions,
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which yield sufficiently regular partial linear spaces (of line rank 3), and to characterize the
obtained structures.

It is more convenient to consider given n-gon as the cyclic group Cn and to define functions
fj in terms of algebraic operations. Then most of the geometric questions can be formulated
and solved within simple algebra. Thus, formally, given a sequence F = (fj : j = 1, . . . , k−1)
of bijections of Cn we set

~FCn = 〈Ck × Cn,LF 〉,

where LF =
{
{(j, i), (j, i+ 1), (j + 1, fj(i))} : i ∈ Cn, j ∈ Ck

}
. Let us note an evident

Fact 1.1. Let fj be a bijection of Cn for every j ∈ Ck and let F = (fj : j ∈ Ck). If 3 ≤ n, k
then the structure ~FCn is a partial linear space with nk lines and nk points, each one of
the rank 3.

A standard example of a configuration, which can be represented in this way is the projective
Pappos configuration, defined as ~FC3 with fj = idC3 for j ∈ C3 (see [1] and Section 4 for
more details).

There are two basic questions investigated in the paper. First – which of the natural trans-
formations of an n-gon W0 can be extended to an automorphism of the whole configuration?
And then, what is the automorphism group of the considered configuration? Many interesting
results concerning automorphism groups of configurations are to be found in [2].

In the paper we follow some standard notation of the theory of partial linear spaces. Let
A = 〈X,L〉 with L ⊆ ℘(X) be a partial linear space. For a, b ∈ X write a ∼ b if a and b are
collinear, i.e. if there is l ∈ L with a, b ∈ l. If a ∼ b and a 6= b we write a, b for the (unique!)
line which joins a and b.

Given an arbitrary group, we shall follow a standard “multiplicative” notation. If the
considered group is abelian, we shall use “additive” notation. Given a group G we denote by
τa the left translation in G, defined by τa(x) = a · x. One more general construction will be
needed. Let us consider an arbitrary finite group G and let D ⊂ G. We set

L = L(G,D) = G/D = {a ·D : a ∈ G}.

Clearly, L ⊆ ℘(G), and, as the left translation τa : G 3 x 7→ a · x ∈ G is a bijection,
|a · D| = |D| for every a ∈ G. Following this notation we can write a · D = τa(D), and
L(G,D) = {τa(D) : a ∈ G}. We set

D(G,D) = 〈G,L(G,D)〉.

Note that an arbitrary n-gon can be represented as D(Cn, {0, 1}).

Fact 1.2. The automorphism group Aut(D(Cn, {0, 1})) is the dihedral group Dn, i.e. the
group of all the maps f of Cn of the form f(i) = εi+ a, where ε = 1,−1.

Proposition 1.3. For every a ∈ G the translation τa is an automorphism of the structure
D(G,D).

Proof. It suffices to note that τa(b ·D) = (a · b) ·D.
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Proposition 1.3 yields, in particular, that D(G,D) = D(G, q ·D) for every q ∈ G. Therefore,
without loss of generality, we can always assume that 1 ∈ D.

Proposition 1.4. If ϕ ∈ Aut(G) then ϕ ∈ Aut(D(G,D)) iff ϕ(D) = q ·D for some q ∈ G.

Proof. For every a ∈ G we need to find b ∈ G with ϕ(a ·D) = ϕ(a) ·ϕ(D) = b ·D. This yields
ϕ(D) = ((ϕ(a))−1 · b) ·D. Conversely, if ϕ(D) = q ·D, for a given a ∈ G we set b = ϕ(a) · q
and we are through.

2. Cyclic inscribed series of polygons

In this section we shall develop “series” ~FCn of n-gons suitably cyclically inscribed one into
the previous one. Recall that point pj+1,fj(i), a point of the (j+1)-th polygon, completes the
i-th side of a j-th n-gon to the line

pj,i, pj,i+1 =
{
pj,i, pj,i+1, pj+1,fj(i)

}
of the considered configuration. Formally, we deal with Ck ×Cn, but here the ring-structure
of Cn is more exploited.

Now, we shall pay attention to some special classes of permutations fj, namely to “linear”
maps of the ring Cn defined by

fj(i) = qj · i+ bj, (1)

where qj, bj ∈ Cn, with GCD(qj, n) = 1 for all j ∈ Ck; this assumption assures that each one
of the maps fj is a bijection of Cn. In view of 1.1, if F consists of linear bijections then the
structure ~FCn is a partial linear space, in fact – a configuration.

If qj = q, bj = b are fixed we write k ~(q,b) Cn = ~F (q,b)Cn, where F (q, b) := (fj : j =
0, . . . , k − 1).
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Figure 1: 3 ~(−2,0) C5
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In the sequel we shall determine when, given some natural automorphism ψ of an n-gon Cn,
the map (0, i) 7→ (0, ψ(i)) of {0} ×Cn ⊆ Ck ×Cn can be extended to an automorphism ψ̃ of
~FCn, where F is a sequence of bijections of Cn. In short we say that ψ can be extended to
ψ̃. Then ψ̃ is determined by a family of bijections gj of Cn such that

ψ̃(j, i) = (j, gj(i)), (2)

where g0 = ψ. If ψ̃ is an automorphism then it maps each two collinear points (j, i) and
(j, i+ 1) onto collinear ones, so for every j the map gj is a collineation of Cn and thus from
1.2 there exist αj ∈ {1,−1} and cj ∈ Cn such that

gj(i) = αj · i+ cj. (3)

Lemma 2.1. If ψ̃ ∈ Aut(~FCn) is defined by (2), where gj are given by (3) then the following
recursive formula holds

αj+1 · fj(i) + cj+1 =

{
fj(αj · i+ cj) for αj = 1
fj(αj · i+ cj − 1) for αj = −1

. (4)

If the system (4) determines a periodic solution αk = α0, ck = c0 then ψ̃ defined by (2), (3)
is an automorphism of ~FCn.

Proof. Note that the map ψ = g0 uniquely determines ψ̃. We have

Lj,i = (j, i), (j, i+ 1) 7−→̃ψ (j, αji+ cj), (j, αj(i+ 1) + cj) = L′
j,i.

The third point of Lj,i is (j+1, fj(i)), and then the third point of L′
j,i is (j+1, αj+1·fj(i)+cj+1)

which, on the other hand is either (j + 1, fj(αji+ cj)) if αj = 1, or (j + 1, fj(αji+ cj − 1)) if
αj = −1. This proves the claim.

As an immediate consequence of 2.1 we have

Corollary 2.2. If elements of F are determined by (1) then the following recursive formula

characterizes a map ψ̃ which is defined by (2), (3) and extends g0:

αj+1bj + cj+1 =

{
qj · cj + bj for α0 = 1
qj · (cj − 1) + bj for α0 = −1

(5)

with αj = α0, for j ∈ Ck.

Proposition 2.3. Let F consist of maps defined by (1) and a ∈ Cn. The following conditions
are equivalent:

(i) the translation τa of Cn can be extended to an automorphism ϕ of ~FCn,

(ii)
∏k−1

s=0 qs · a = a.

If (ii) holds then ϕ is defined by

(j, i) 7−→ϕ (j, τaj
(i)), where a0 = a, aj+1 =

j∏
s=0

qs · a. (6)
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Proof. Substituting in (5) α0 = 1 and c0 = a, we get cj+1 = qj cj, and formulas (2), (3) give

(6). By 2.2, we need ck = c0, i.e. a =
∏k−1

s=0 qs · a, which is our claim.

Immediately we obtain

Corollary 2.4. A translation τa of Cn can be extended to an automorphism ϕ of k~(q,b) Cn

iff aqk = a in Cn. If aqk = a then ϕ is defined by

(j, i) 7−→ϕ (j, τqj ·a(i)). (7)

With similar methods we prove

Proposition 2.5. Let F consist of maps defined by (1), and a ∈ Cn. Define recursively
the sequence a0 = a, aj+1 = qjaj − qj + 2bj for arbitrary j. The following conditions are
equivalent:

(i) the symmetry σa : i 7→ −i+ a of Cn can be extended to an automorphism ϕ of ~FCn,

(ii) the equality a = ak holds in Cn.

If (ii) holds then ϕ is given by

ϕ(j, i) = (j, σaj
(i)). (8)

Proof. Let ϕ be an automorphism of ~FCn which extends σa. After substitution α0 = −1
and c0 = a = a0, from (5) we get cj+1 − bj = qjcj − qj + bj, which gives (8) with cj = aj.
With j = k from 2.2 we obtain a = ak, which is our claim.

Corollary 2.6. Let a ∈ Cn. The symmetry σa : i 7→ −i + a of Cn can be extended to an
automorphism ϕ of k ~(q,b) Cn iff the equality

∑k
s=1 q

s − 2b
∑k−1

s=0 q
s = aqk − a holds in Cn.

The automorphism ϕ is given by

ϕ(j, i) = (j, σaqj−
∑j

s=1 qs+2b
∑k−1

s=0
qs(i)). (9)

Proof. It suffices to note that, in accordance with notation of 2.5, aj = aqj −
∑j

s=1 q
s +

2b
∑k−1

s=0 q
s.

Let fj be a bijection of Cn for j = 0, . . . , k − 1 and let F = (f0, . . . , fk−1). In the sequel we
shall investigate “spiral” automorphisms of F = ~FCn of the form

ϕ(j, i) = (j + 1, gj(i)), (10)

where gj is a bijection of Cn for j = 0, . . . , k − 1. Since ϕ has to be an automorphism, each
gj must be defined by the formula (3), for some αj ∈ {1,−1} and cj ∈ Cn.

Lemma 2.7. If ϕ ∈ Aut(~FCn) is defined by (10), where gj are given by (3) then the
following recursive formulae hold:

fj+1(i) =

{
αj+1 · fj(i− cj) + cj+1 for αj = 1
αj+1 · fj(−i+ cj − 1) + cj+1 for αj = −1

(11)

for j = 0, . . . , k − 1, where f(k−1)+1 = fk = f0.
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Proof. With a standard reasoning we have

L := (j, i), (j, i+ 1) 7−→ϕ (j + 1, αj · i+ cj), (j + 1, αj · (i+ 1) + cj) =: L′.

The third point of L is (j+1, fj(i)) and if αj = 1 then the third point on L′ is (j+2, fj+1(i+
cj)), if αj = −1 then the third point of L′ is (j + 2, fj+1(−i− 1 + cj)). Thus

(j + 1, fj(i)) 7−→
ϕ

{
(j + 2, fj+1(i+ cj)) for αj = 1
(j + 2, fj+1(−i− 1 + cj)) for αj = −1

,

which yields the required formula.

Now, with a simple substitution in the equation (11) of 2.7 we obtain

Corollary 2.8. Let functions fj be defined by the “linear” formulas (1) and let ϕ be defined
by (10), where gj are given by (3). If ϕ ∈ Aut(~FCn) then the following recursive formula
holds:

qj+1 =

{
αj+1qj if αj = 1
−αj+1qj if αj = −1

, (12)

and bj+1 =

{
cj+1 + αj+1bj − αj+1qjcj if αj = 1
cj+1 + αj+1bj + αj+1qj(cj − 1) if αj = −1

. (13)

Consequently, a map defined by (10), (3) can be an automorphism of ~FCn only if qj+1 =
±qj = ±q0. Conversely, if (12), (13) determine periodic solution ck = c0, αk = α0 with
qk = q0, bk = b0 then ϕ is an automorphism of ~FCn.

3. Simple series

From among all the structures ~FCn we distinguish some more regular with the following
observation.

Proposition 3.1. Let F = ~FCn, for a sequence F = (fj : j = 0, . . . , k − 1) of bijections of
Cn. The following conditions are equivalent:

(i) If l1, l2 are two sides of the n-gon {j}×Cn, p1, p2 are two vertices of the n-gon {j+1}×
Cn, pi is on li for i = 1, 2, and l1, l2 have a common vertex then p1, p2 are collinear.

(ii) fj ∈ Dn for every j ∈ Ck.

Proof. Two arbitrary sides l1, l2 as above are of the form

l1 = (j, i1), (j, i1 + 1) and l2 = (j, i2), (j, i2 + 1),

and then p1 = (j + 1, fj(i1)), p2 = (j + 1, fj(i2)). The lines l1, l2 have a common point if
i2 − i1 = ±1, and p1, p2 are collinear if fj(i2) − fj(i2) = ±1. Thus the map fj must be a
collineation of D(Cn, {0, 1}) and, by 1.2, fj ∈ Dn, as required.
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It is seen that if each element fj of F is in Dn, then there are b ∈ Cn and ε ∈ {1,−1} such
that F ∼= ~F ′Cn, where F = (f ′

0, . . . , f
′
k−1) and

f ′
j(i) = i for j = 0, . . . , k − 2, and f ′

k−1(i) = ε · i+ b. (14)

Configurations determined by such families of bijections will be referred to as simple config-
urations.

One can notice that the structure k~(q,b) Cn, with q ∈ {−1, 1}, is a simple configuration
and, when constructed up to (k − 1)-th level, coincides with the structure D(Ck ⊕ Cn,D)
defined in Section 4; the only difference lies in the way of labeling points, but not in their
geometrical arrangement. More formally, this can be stated as follows.

Proposition 3.2. Let F = k ~(q,b) Cn with q ∈ {−1, 1}. Define fj(i) = i for i ∈ Cn and

j = 0, . . . , k − 2, and fk−1(i) = εi+ b̂, where

(i) if q = 1 then ε = 1, b̂ = k · b,
(ii) if q = −1 and k = 2s then ε = 1, b̂ = s, and

(iii) if q = −1 and k = 2s+ 1 then ε = −1, b̂ = b− s.

Then F ∼= ~FCn, where F = (fj : j = 0, . . . , k − 1).

Proof. Let q = 1. Let us consider the map ϕ (a new labeling of points) defined by

ϕ(j, i) = (j, i− j · b).

Clearly, ϕ is a bijection. Let Lj,i = (j, i), (j, i+ 1) = {(j, i), (j, i+ 1), (j + 1, i+ b)} be a line
of F with j < k − 1. Note that the following holds:

Comp: if (j, i′), (j, i′ + 1) are new labels of the points (j, i), (j, i+ 1), and (j + 1, i′′) is on
the line Lj,i then its new label is (j + 1, i′),

as required.
Then we have ϕ(k−1, i) = (k−1, i−(k−1)b), and ϕ(k−1, i+1) = (k−1, i−(k−1)b+1).

The third point of (k − 1, i), (k − 1, i+ 1) is (0, i + b). This gives fk−1(i − (k − 1)b) = i + b
in the new labeling. From this we calculate fk−1(i) = i+ kb.

Now, let q = −1. We define a bijection ψ with the formula

ψ : Ck × Cn 3 (j, i) 7→
{

(j, i− s) for j = 2s – even
(j,−i+ b− s) for j = 2s+ 1 – odd.

Take a line L = Lj,i = {(j, i), (j, i+ 1), (j + 1,−i+ b)} of F. Let j be even, j = 2s. Then ψ
maps L onto the set

ψ(L) = {(j, i− s), (j, i+ 1− s), (j + 1,−(−i+ b) + b− s)} = (j, i− s) +D.

If j = 2s+ 1 is odd then j + 1 = 2(s+ 1) and we have

ψ(L) = {(j,−i+b−s), (j,−(i+1)+b−s), (j+1, (−i+b)− (s+1))} = (j,−i+b−s−1)+D.
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Clearly, Comp holds for the re-labeling defined by ψ.
To determine fk−1 we consider two cases. If k− 1 = 2s then the new labels of the points

(k− 1, i) and (k− 1, i+ 1) are (k− 1, i− s) and (k− 1, i− s+ 1) resp., from which we obtain
fk−1(i− s) = −i+ b. This yields fk−1(i) = −i+ b− s.

Analogously, if k − 1 = 2s+ 1 (i.e. k = 2(s+ 1)) we infer fk−1(−i+ b− s− 1) = −i+ b,
which gives fk−1(i) = i+ (s+ 1).

Let us take a look into the three 9-points configurations 93 (cf. [1]) for a moment. One can
note that the Pappos configuration (93)1 is represented as 3 ~(1,0) C3, the configuration (93)3

is represented as 3 ~(−1,2) C3, or – in view of 3.2 – as ~FC3, where f0 = f1 = idC3 and
f2(i) = −i + 1, and the configuration (93)2 is represented as ~FC3 with f0 = f1 = idC3 ,
f2(i) = i+ 1.

Immediately from 2.3 and 2.5 we find conditions which assure that a map in Dn, i.e. a
translation or a symmetry of Cn, can be extended to a collineation of a simple configuration
which arises as ~FCn.

Proposition 3.3. Let F = ~FCn, where F consists of functions f ′
j defined by (14), and let

ε ∈ {1,−1}.
(i) A translation τa of Cn can be extended to an automorphism of F iff a = ε · a holds in

Cn.

(ii) A symmetry σa of Cn can be extended to an automorphism of F iff the equality (1−ε)·a =
2b− ε · k holds in Cn.

Proof. (i) From (14) we obtain
∏k−1

s=0 qs = ε, so the claim follows directly from 2.3.

(ii) In accordance with notation of 2.5 we obtain a0 = a = a− 0, aj+1 = aj − 1 + 0 = a− j
for j < k − 1, and ak = ε(a − (k − 1)) − ε + 2b. Thus a = ak iff (1 − ε)a = 2b − εk, as
required.

In particular we can find conditions for extending translations and symmetries to collineations
of the structures k ~(q,b) Cn with q = −1, 1. Note that in accordance with the criterion 2.3
every translation of Cn can be extended to an automorphism of k ~(1,b) Cn – in this case we
have, evidently, a1k = a for every a ∈ Cn and every k.

Corollary 3.4. A symmetry σa : (0, y) 7→ (0,−y + a) of Cn can be extended to an automor-
phism of k ~(1,b) Cn iff k(1− 2b) = 0 mod n.

Proof. In accordance with 3.2 and 3.3 we need (1− 1)a = 2kb− 1 · k, which is the claim.

Corollary 3.5. If k is even then every translation τa : (0, y) 7→ (0, y + a) of Cn can be
extended to an automorphism of k~(−1,b) Cn. If k is odd then τa can be extended as above iff
2a = 0 mod n.

Proof. Substituting q = −1 into the conditions of 2.3 we obtain the condition a(−1)k = a.
If k is even then this is a tautology, if k is odd we need 2a = 0 mod n.

Corollary 3.6. If k is even then every symmetry σa : (0, y) 7→ (0,−y + a) of Cn can be
extended to an automorphism of k~(−1,b) Cn; if k is odd then σa can be extended as above iff
2(a− b) = 1 mod n.



K. Petelczyc: Series of Inscribed n-Gons and Rank 3 Configurations 291

Proof. Let q = −1. If k = 2s then in accordance with 3.2 we have ε = 1 and b̂ = s. Then
using 3.3 we should require (1− 1)a = 2b̂− 1 · k, which is a tautology. If k = 2s+ 1 we have

ε = −1 and b̂ = b − s; the requirement (1 − (−1))a = 2(b − s) − (−1) · k of 3.3 gives the
claim.

Now, we shall find “spiral” automorphisms of simple configurations.

Proposition 3.7. Let F = ~FCn, where F consists of functions f ′
j defined by (14) with

ε ∈ {1,−1}. Then the map (0, i) 7→ (1, α0 · i+ c0) can be extended to an automorphism ϕ of
F iff one of the following holds:

(i) if α0 = 1 then ε = 1, or ε = −1, 2c0 = −1;

(ii) if α0 = −1, then ε = 1, 2b = k, or ε = −1, 2b = 2c0 − k + 1.

In such a case ϕ is defined by (10), (3) with

αj = α0 and cj =

{
c0 if α0 = 1
c0 − j if α0 = −1

for j < k − 1,

αk−1 = εα0 and ck−1 =

{
b+ εc0 if α0 = 1
b− ε(c0 − k + 1) if α0 = −1

.

Proof. We substitute q0 = · · · = qk−2 = 1, b0 = · · · = bk−2 = 0, qk−1 = ε, bk−1 = b in the
equations (12) and (13) of 2.8. The required map ϕ exists if (12) and (13) yield qk = 1 = q0
and bk = 0 = b0, with αk = α0, ck = c0.

We obtain, consecutively, for j+1 < k−1: αj+1 = αj = · · · = α0, and then cj+1 = cj = c0
if α0 = 1, or cj+1 = cj − 1 = c0 − (j + 1) if α0 = −1.

Set α0 = 1. For j+1 = k−1 from (12) we get αk−1 = ε, and then (13) yields ck−1 = b+εc0.
Finally, we apply 2.8 for j = k−1 (now j+1 = 0). Then from (12) we obtain qk = 1 = q0,

as required. Let ε = 1, then (13) with bk = b0 yield a tautology. Let ε = −1; then (13) with
bk = b0 = 0 gives 0 = 2c0 + 1.

Now, suppose that α0 = −1. For j + 1 = k − 1 the formula (12) gives αk−1 = −ε and
(13) gives ck−1 = b− ε(c0 − k + 1).

For j + 1 = k from (12) we have qk = 1 = q0, as required. If ε = 1 then αk−1 = −1, so
for j + 1 = k from (13) we obtain bk = k − 2b. Analogously, if ε = −1 with (13) we obtain
bk = 2c0 − 2b− k + 1.
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Figure 2: Neighborhood of a point o
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Proposition 3.8. Let F = ~FCn be a simple configuration, let 3 < k, and let o = (j, i) be
its point. Then the structure determined by points which are collinear with o can be visualized
on the Figure 2. If n > 3 then no other incidence besides those indicated in the figure holds.
If n = 3 then d1 = d2 and points b1, b2 are collinear.

Proof. Set b1 = (j, i − 1), b2 = (j, i + 1), c1 = (j + 1, εj(i − 1) + aj), c2 = (j + 1, εji + aj).
Then o, b1, c1 are on a line m1 and o, b2, c2 are on a line m2 of F. The points c1 and c2 are
collinear and the third point of the line l0 = c1, c2 is d0,

d0 =

{
(j + 1, εj+1(εji+ aj − 1) + aj+1) if εj = 1
(j + 1, εj+1(εji+ aj) + aj+1) if εj = −1

.

Let i = εj−1i
′ + aj−1, then o is on the third line m3, which has points o, a1 = (j − 1, i′),

and a2 = (j − 1, i′ + 1). Consider points d1 = (j − 1, i′ − 1) and d2 = (j − 1, i′ + 2), and
lines l1 = d1, a1 and l2 = d2, a2. Let p1, p2 be the third points of the corresponding lines:
p1 = (j, εj−1(i

′−1)+aj−1) and p2 = (j, εj−1(i
′ +1)+aj−1). Note εj−1(i

′−1)+aj−1 = i−εj−1

and εj1(i
′ + 1) + aj−1 = i + εj−1. Thus if εj−1 = 1 we get p1 = b1 and p2 = b2; if εj−1 = −1

then p1 = b2 and p2 = b1.
If 3 < n then no other collinearity can appear. If n = 3 then i′1 = i′ + 2 and thus

d1 = d2. Moreover, in this case b1, b2 are collinear and the third point of the line b1, b2 is
(j + 1, εj(i+ 1) + aj).

From now on we assume that 3 < k, n. Note that the following holds in every simple
configuration:

Lemma 3.9. If q is a point collinear with o, o 6= q then there is exactly one point q′ collinear
with o such that q′ 6= o and (o, q, q′) is a triangle.

From this we get the rigidity of the automorphism group of the investigated configuration:

Proposition 3.10. Let f ∈ Aut(F), where F is a simple configuration. If f � m = idm for
some line m of F then f = id.

Proof. Let us take into account the schema 2, and assume that f � m0 = idm0 , so f(o) = o,
and f(ai) = ai for i = 1, 2. With the help of 3.9 we obtain f(bi) = bi for i = 1, 2, and then
f(ci) = ci. Note that, consequently, f(di) = di for i = 0, 1, 2. Thus we proved that f(q) = q
for all the points collinear with o, and for every such a point q there is a line l through q such
that f � l = idl. Then, inductively, we get f(q) = q for every point of the configuration.

As an immediate consequence we infer that if f, g are collineations and f(qi) = g(qi) for
i = 0, 1, 2, for three distinct and collinear points q0, q1, q2, then f = g.

The structure formed by the points collinear with a given point o in a simple configuration,
visualised in Figure 2, can be, formally, defined by the following incidence matrix:
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o a1 a2 b1 b2 c1 c2 d0 d1 d2

m0 × × ×
m1 × × ×
m2 × × ×
l0 × × ×
l1 × × ×
l2 × × ×


This – small – configuration has a very regular automorphism group. Let us write Zo for the
set of all points collinear with o and distinct from o. With a careful use of 3.9 and 3.10 we
can calculate

Proposition 3.11. The group O(o) of collineations of the incidence structure visualized in
Figure 2 consists of the maps defined in Table 1. The group O(o) is isomorphic to S3: each
transformation f given in Table 1 is uniquely determined by images of the points d0, d1, d2,
and by images of the lines m0,m1,m2 (or the lines l0, l1, l2) as well. On the other hand, f is
also determined by an image f(q) of just one point q ∈ Zo.

map a1 a2 b1 b2 c1 c2 d1 d2 d0 m0 m1 m2 l0 l1 l2
id a1 a2 b1 b2 c1 c2 d1 d2 d0 m0 m1 m2 l0 l1 l2
σ′ a2 a1 b2 b1 c2 c1 d2 d1 d0 m0 m2 m1 l0 2 l1
σ′′ c2 b2 c1 a2 b1 a1 d0 d2 d1 m2 m1 m0 l1 l0 l2
σ′′′ b1 c1 a1 c2 a2 b2 d1 d0 d2 m1 m0 m2 l2 l1 l0
ρ′ c1 b1 c2 a1 b2 a2 d0 d1 d2 m1 m2 m0 l2 l0 l1
ρ′′ b2 c2 a2 c1 a1 b1 d2 d0 d1 m2 m0 m1 l1 l2 l0

Table 1: Collineations of a neighborhood of a point o

Clearly, if f is a collineation of a simple configuration which fixes a point o then f � Z(o) ∈
O(o). In the sequel we shall determine which of the maps σ′, σ′′, σ′′′, ρ′, ρ′′ defined in Table 1
can be extended to a collineation of the investigated simple configurations for various points
o and labelling of the points collinear with o.

4. Quasi difference sets and associated configurations

Let G be a finite group and D ⊆ G. The technique of difference sets (cf. [3]) can be
successfully used to produce partial linear spaces, not necessarily being linear spaces.

Proposition 4.1. Let n = |D|. The structure D(G,D) is a partial linear space iff for every
c ∈ G \ {1}, either

C1: there is no pair (a, b) ∈ D ×D with ab−1 = c, or

C2: there is the unique pair (a, b) ∈ D ×D with ab−1 = c, or
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C3: there are exactly n pairs (a, b) ∈ D ×D with ab−1 = c.

If this is the case then the number v of points is v = |G|, the number b of lines is b = |G|
|GD| ,

where GD = {q ∈ G : q · D = D} is the stabilizer of D in G, the rank κ of each line is

κ = |D|, and the rank λ of each point is λ = |D|
|GD| .

Proof. Set D = D(G,D). In view of 1.3, it suffices to give conditions which assure that
|D ∩ (q ·D)| ≥ 2 yields D = q ·D. Note that a ∈ D ∩ (q ·D) means that a′ = q · a ∈ D, so
every point a ∈ D ∩ (q ·D) corresponds to a pair a, a′ ∈ D with a′a−1 = q. Since D should
be a partial linear space, each set D ∩ (q ·D) must be empty, a one-element set or be the set
D. The values of the parameters of D are evident.

In the sequel we are mainly interested in configurations, i.e. in partial linear spaces with
constant and equal point rank and line rank (κ = λ and v = b). In view of 4.1, to this aim
we need |GD| = 1.

Proposition 4.2. Let D = D(G,D). The following conditions are equivalent:

(i) D is a configuration.

(ii) For every c ∈ G \ {1} there is at most one pair (a, b) ∈ D ×D with ab−1 = c.

If G is abelian then (ii) is necessary and sufficient for D to be nontrivial in the following
sense: through each point there pass at least two lines.

Proof. Clearly, (ii) implies that (C1) or (C2) of 4.1 holds for every c ∈ G \ {1}, which yields:
(ii) =⇒ (i). Assume (C3) holds for some c 6= 1 and consider two pairs (a, a′), (b, b′) ∈ D ×D
with c = a′a−1 = b′b−1. Then D = c · D so |GD| > 1 and D is not a configuration. This
proves (i) =⇒ (ii).

Now, let G be abelian. Clearly, if D is a configuration then it is nontrivial. Assume
that D is nontrivial, let D = {a1, a2, . . . , an}. Suppose that (C3) holds for some c 6= 1, then
D = c · D, so for every i = 1, . . . , n there is ji with ai = c · aji

(note: ai 6= aji
!) Consider

qi = a1ai
−1 for i = 1, . . . , n. Then qi = aj1aji

−1, so from 4.1 we get D = qi · D. Thus
|GD| ≥ n, and λ ≤ 1, which contradicts assumptions.

As a tricky consequence we obtain

Corollary 4.3. If G is an abelian group then D(G,D) is a partial linear space with point
rank at least two iff it is a configuration.

Note that the condition (ii) of 4.2 can be, informally, read as follows: all the differences ab−1

for a, b ∈ D, a 6= b are pairwise distinct.
As known examples of configurations which are defined in this way we can quote Fano

Configuration D(C7, {0, 1, 3}) (cf. [3] or [2]) which can be represented as a self-inscribed 7-
gon, and Pappos Configuration D(C3 ⊕ C3, {(0, 0), (0, 1), (1, 0)}) (cf. [1], [2], and Section 5),
which can be represented as three cyclically inscribed triangles.
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5. Series determined by quasi difference sets

Now, let us consider the group G being the direct sum of two cyclic groups G = Ck ⊕ Cn,
let D = {(0, 0), (0, 1), (1, 0)}. Set W = D(G,D). Evidently, W = k ~(1,0) Cn and W ∼=
D(Cn ⊕ Ck,D) = n~(1,0) Ck. This yields

Fact 5.1. The structure W can be considered as an n-gon k times inscribed cyclically into
itself, or a k-gon inscribed into itself n times.

Note that the line lj,i = (j, i), (j, i+ 1) of W coincides with (j, i) +D.

Proposition 5.2. The structure W is self-dual, its involutory correlation can be defined by
the formula

(j, i) 7→ l−j,−i.

Proof. If (r, s) ∈ lj,i then (r, s) = (j, i) + d for some d ∈ D. Then (−j,−i) = (−r,−s) + d,
which proves the claim.

Lemma 5.3. Every point (j, i) of W is collinear with exactly 6 distinct points (j + 1, i),
(j, i + 1), (j − 1, i), (j − 1, i + 1), (j, i − 1), and (j + 1, i − 1). Two points a = (j, i) and
b = (r, s) of W are collinear iff a− b is one of the following: (0, 0), (0,±1), (±1, 0), (1,−1),
or (−1, 1).

Proof. Since (j, i) lies on three distinct lines lj,i, lj,i−1, lj−1,i, and each one of them contains 2
points distinct from pi,j, we have 6 points collinear with (j, i). Directly from definition, points
on these three lines are of the form (i, j) + g, where g = (0, 0), (0, 1), (1, 0), (0,−1), (1,−1),
(−1, 0), (−1, 1). Thus the second claim holds.

Evidently, for every a = (r, s) ∈ G the translation τa is an automorphism of W. In particular,
the translation τ(0,1) can be interpreted as a rotation of the corresponding n-gons, and τ(1,0)

is a “jumping” between n-gons. Note that the map τ(1,1) can be interpreted as a “spiral”: it
changes an n-gon and, at the same time, rotates it. The map µ : x 7→ −x (or, more generally,
every map µτa) can be considered in the structure D(Cn, {0, 1}) as an axial symmetry of the
corresponding n-gon. Symmetries of this kind “cannot be extended” to automorphisms of
W. This means that though translations of the group Cn ⊕ Ck are automorphisms of W,
formal symmetries of this group are not geometrical automorphisms. Clearly, with 1.4 we
have

Remark 5.4. If n = k then the map  : G 3 (a, b) 7→ (b, a) is an involutory automorphism
of W.

It seems that the set D ⊆ Cn ⊕Ck gives the most interesting and “intuitive” way of defining
series of cyclically inscribed n-gons. Clearly, defining D(G,B) we can always assume that
(0, 0), (0, 1) ∈ B, since we are, in fact, interested in series of n-gons – and this is the first side
of the first of them. Let us make the following trivial observations.

Remark 5.5. Let g1 be a generator of the group Ck and g2 be a generator of the group Cn.
Set B = {(0, 0), (g1, 0), (0, g2)}. Then W ∼= D(Ck ⊕ Cn, B).
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Proof. Under assumptions, the map f defined by f(j, i) = (g1 · j, g2 · i) is an automorphism
of the group Ck ⊕ Cn, and f(D) = B. Thus f is a required isomorphism.

Remark 5.6. If r is the rank of b ∈ Ck, r < k, and B = {(0, 0), (0, 1), (b, 0)} then
D(Ck ⊕ Cn, B) is a union of k

r
pairwise disjoint copies of D(Cr ⊕ Cn,D).

Proof. Consider an arbitrary point (x, y) ∈ Ck⊕Cn. We note that points which can be joined
with (x, y) by a polygonal path in D(Ck ⊕ Cn, B) are of the form (x+ s1 · b, y+ s2 · 1), which
suffices as an argument.

Remark 5.7. Let B = {(0, 0), (0, 1), (a, b)} be a subset of G = Ck ⊕ Cn such that B =
D(G,B) is a partial linear space. If a = 0 then B is a disjoint union of n copies of
D(Ck, {0, 1, b}).

In accordance with the geometrical intuitions, we assume that the third point of B is (1, b)
((i + 1)-th k-gon inscribed into the i-th one). Set Bb = {(0, 0), (0, 1), (1, b)}. One can see
that D(Ck ⊕ Cn, Bb) = k ~(1,b) Cn. As an immediate consequence of 4.2 (or 1.1) we obtain

Proposition 5.8. For every b ∈ Ck the structure D(G,Bb) =: Bb is a partial linear space,
in fact – a configuration.

Note that the structures obtained in this way need not to be distinct. In the terminology
proposed now, D = B0. Let the maps η1, η2 be defined over Cn ⊕ Cn by

η1(x, y) = (x, y + x) and η2(x, y) = (x+ y, y).

Clearly, η1 and η2 are group automorphisms, and η1(Bb) = Bb+1. Thus (η1)
b(D) = Bb, and

thus (η1)
b is an isomorphism of D(Cn ⊕ Cn,D) onto D(Cn ⊕ Cn, Bb).

Corollary 5.9. All structures of the form D(Cn ⊕ Cn, B) which correspond to series of in-
scribed polygons, are pairwise isomorphic.

The structure D(Cn ⊕ Cn, B) has a lot of automorphisms. We shall briefly discuss them here.
A more general case is discussed in the next section.

Proposition 5.10. Let n = k, define the maps σ1, σ2 by the formulas

σ1(a, b) = (a, (−a)− b) and σ2(a, b) = ((−b)− a, b).

Then σ1 and σ2 are involutory automorphisms of W.

Proof. Clearly, σi ∈ Aut(G). Thus in view of 1.4 it remains to note that σ1(D) = (0,−1)+D
and σ2(D) = (−1, 0) +D.

Let us calculate
(x, y) 7−→σ1 (x,−(x+ y)) 7−→σ2 (y,−(x+ y)) 7−→σ1 (y, x)

and
(x, y) 7−→σ2 (−(x+ y), y) 7−→σ1 (−(x+ y), x) 7−→σ2 (y, x).
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From this we obtain

(σ1)
σ2 =  = (σ2)

σ1 . (15)

Let u = (a, b) ∈ G. Analogously, we have

(x, y) 7−→σ1 (x,−(x+ y)) 7−→τu (x+ a,−(x+ y) + b) 7−→σ1 (x+ a, y − (a+ b)).

This can be written as follows (the dual formula is obtained analogously):

(τu)
σi = τσi(u) for u ∈ G and i = 1, 2. (16)

Proposition 5.10 gives a method of constructing some more symmetries of W.

Proposition 5.11. The composition τ(a,b) ◦ σ1 is an involution iff a = 0 and τ(a,b) ◦ σ2 is an
involution iff b = 0.

Proof. Let τ = τ(a,b). Clearly, τ ◦ σi is an involution iff τσi = τ−1. In view of (16), we need
σi(a, b) = −(a, b). For i = 1 this yields a = 0, and for i = 2 we get b = 0.

Remark 5.12. The map σ1 is an automorphism of D(Ck ⊕ Cn,D) if n|k, and σ2 is an
automorphism if k|n. The formulas (16) hold in corresponding cases.

Proof. Note that to have definition of σ1 meaningful, the conditions i1 = i2 mod n and
j1 = j2 mod k should imply i1 + j1 = i2 + j2 mod n.

On the other hand from 3.4, we obtain immediately

Proposition 5.13. A symmetry σa : (0, y) 7→ (0,−y + a) of Cn can be extended to an auto-
morphism of D(Ck ⊕ Cn,D) iff n|k.

6. Automorphisms

Now, we shall find automorphisms of some of the incidence configurations defined earlier,
arising from series of mutually inscribed n-gons.

First, we shall determine the structure of points collinear with a given one in the structure
D(Ck ⊕ Cn,D). Since it is a simple configuration, structure of incidence formed by these
points was visualized in Figure 2 and described in 3.8.

The corresponding points are:
in D(Ck ⊕ Cn,D): o = (j, i), a1 = (j − 1, i), a2 = (j − 1, i+ 1), b1 = (j, i− 1), b2 = (j, i+ 1),

c1 = (j + 1, i− 1), c2 = (j + 1, i), d0 = (j + 2, i− 1), d1 = (j − 1, i− 1),
d2 = (j − 1, i+ 2).

From now on we assume 3 < k, n. In the following lemmas we assume that o = (j, i), points
a1, a2, b1, b2, c1, c2 are taken in accordance with the above list, and f is a collineation of W.

Lemma 6.1. Assume that f(o) = o and f � Zo = σ′. Then f yields a symmetry with the
center o of the n-gon {j} × Cn. Consequently, such a symmetry must be extendable to an
automorphism of D.
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Proof. In view of 3.11 f(a1) = a2 and f(bs) = b3−s, i.e. f(j, i− 1) = (j, i+ 1). Note that our
assumptions determine images under f of all the points on two lines l1,m1 through b1; from
this we infer f(j, i− 2) = (j, i+ 2). Then, inductively, we get f(i, j − s) = (i, j + s), so f is
a symmetry, as required.

Lemma 6.2. Assume that f(o) = o and f � Zo = σ′′. Then f yields a symmetry of the
k-gon Ck ×{i− 1}. Consequently, such a symmetry must be extendable to an automorphism
of D.

Proof. It suffices to interchange the role of “coordinates” i, j and make use of 3.11 to get
f(j − s, i− 1) = (−j + 1 + s, i− 1).

Lemma 6.3. Assume that f(o) = o and f � Zo = σ′′′. Take i = 0 = j. Then points (s, s)
are fixed under f , and f is defined by the formula f(j, i) = (i, j), so this map must be a
collineation of D.

Proof. In view of 3.11 f interchanges the following pairs of points: a2, c1; a1, b1; d2, d0, and
d1 is fixed. Thus f , , and σ′′′ coincide on the neighbor of the point o. Inductively, f and 
coincide on every point of D, which yields the result.

Lemma 6.4. Assume that f(o) = o and f � Zo = ρ′. Take i = 0 = j. Then f is defined by
the formula f(j, i) = (−(i+ j), j)), so this map must be a collineation of D.

Proof. We note that the maps f , ρ′, and σ1 ◦ σ2 (cf. 5.10) coincide on the neighbor of the
point o. By inductive argument we get our claim.

Elementary properties of the group S3 give that the only subgroups of the group
Aut(D(Ck ⊕ Cn,D))o can be: the group G = {id, σ′, σ′′, σ′′′, ρ′, ρ′′}, a trivial group {id}, a C2

group {id, σt}, where t ∈ {′, ′′, ′′′}, or an alternating group {id, ρ′, ρ′′}, which is generated by

any ρt with t ∈ {′, ′′} (cf. Table 1).
As a consequence of Lemmas 6.1–6.4 we can formulate a characterization of the auto-

morphism group Aut(D(Ck ⊕ Cn,D)). Recall that C2
∼= S2.

Proposition 6.5. Let D = D(Ck ⊕ Cn,D) and G = Aut(D).

(i) If n - k and k - n then |G| = nk and G ∼= Ck ⊕ Cn.

(ii) If n|k and k 6= n then |G| = 2nk.

(iii) ] Dually, if k|n and n 6= k then |G| = 2nk.

(iv) In both cases (ii) and (iii) the group G is the semidirect product S2o(Ck⊕Cn). Moreover,
in the case (ii) if 2 - k then G ∼= Ck ⊕ Dn, and in the case (iii) if 2 - n then and
G ∼= Dk ⊕ Cn.

(v) If n = k then |G| = 6nk and G is the semidirect product S3 o (Cn ⊕ Cn).

Proof. Note that G contains a transitive subgroup of translations, so every F ∈ G can be
written in the form F = τa ◦ f , where f ∈ Go fixes an arbitrary chosen point o. Thus
|G| = nk|Go|. Without loss of generality we can take o = (0, 0).
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Assume there is f ∈ Go such that f � Z0 ∈ {σ′′′, ρ′, ρ′′} (cf. Table 1). From 6.3 and 6.4
we obtain n = k and then |Go| = 6 and elements of Go exhaust all the maps of the Table 1.

Let n 6= k, so f � Zo 6= σ′′′, ρ′, ρ′′. Assume there is f ∈ Go, with f 6= id and f � Zo = σ′

or f � Zo = σ′′. In view of 6.1 and 6.2, by 5.13, n|k or k|n. In the first case f = σ1, and in
the second one f = σ2 (cf. 5.13). In both cases |Go| = 2.

Finally, if n - k and k - n then Go = {id} and (i) holds.
In each one of the corresponding cases an arbitrary automorphism f of D can be written

in the form f = τu ◦ ϕ, where τu with u ∈ Ck ⊕ Cn is a translation, and ϕ ∈ Π, where Π is a
group as follows:

• in the case (ii) – Π = {id, σ1} ∼= S2,

• in the case (iii) – Π = {id, σ2} ∼= S2,

• in the case (v) – Π = {id, σ1, σ2, , σ1σ2, σ2σ1} ∼= S3.

Thus f = τuϕ can be identified with the pair (u, ϕ) ∈ (Ck⊕Cn)×Π. With the formula (16) we
obtain (τu1ϕ1)(τu2ϕ2) = (τu1τϕ1(u2))(ϕ1ϕ2) = τu1+ϕ1(u2)(ϕ1ϕ2). This proves G ∼= Πo(Ck⊕Cn).

To close the proof note that, by the above, every automorphism f of D can be given in
one of the following forms:

f(j, i) = (j + a, i+ b) = τ(a,b)(j, i) (17)

f(j, i) = (j + a,−i− j + b) = µ′
(a,b)(j, i) (18)

f(j, i) = (−j − i+ a, i+ b) = µ′′
(a,b)(j, i) (19)

f =  ◦ g where g = τ(a,b), µ
′
(a,b), µ

′′
(a,b), (20)

where a ∈ Ck and b ∈ Cn are arbitrary. Automorphisms of the type (17) are in G in all the
cases (i)–(v).

Let us consider the case (ii). Then G consists of all the maps defined with formulas (17)
and (18). Note that the group Ck ⊕ Dn can be considered as the family of all the maps
defined with the formula (17) and the following one:

f(j, i) = (j + a,−i+ b) = σ(a,b)(j, i). (21)

Define maps η(a,b) and ν(a,b) with the conditions:

η(a,b)(j, i) = (j + 2a, i+ b− a) and ν(a,b)(j, i) = (j + 2a,−i− j + b− a) (22)

(warning: i, b, i+ b− a ∈ Cn, but a ∈ Ck!). Then we get the following equalities:

τ(c,d) ◦ τ(a,b) = τ(c+a,d+b) and η(c,d) ◦ η(a,b) = η(c+a,d+b),

σ(c,d) ◦ σ(a,b) = τ(c+a,d−b) and ν(c,d) ◦ ν(a,b) = η(c+a,d−b),

σ(c,d) ◦ τ(a,b) = σ(a+c,d−b) and ν(c,d) ◦ η(a,b) = ν(a+c,d−b),

τ(c,d) ◦ σ(a,b) = σ(a+c,b+d) and η(c,d) ◦ ν(a,b) = ν(a+c,b+d).

Let us define the map F by F : τ(a,b) 7→ η(a,b), F : σ(a,b) 7→ ν(a,b). By the above, F is an
isomorphism of the group of transformations defined by (17) and (21) (which is, clearly,
isomorphic with the group Ck⊕Dn) with the group of maps defined by (22). Now, it suffices
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to note that τ(a,b) = η(a
2
, a
2
+b), η(a,b) = τ(2a,b−a), µ

′
(a,b) = ν(a

2
, a
2
+b), and ν(a,b) = µ′

(2a,b−a) to see

that the group defined by (22) coincides with the group defined by (17) and (18). Thus F
yields an automorphism of Ck ⊕Dn and G.

Analogously, in the case (iii) we prove G ∼= Dk ⊕ Cn.
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