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Abstract. This is a continuation of [16] where the complete diagram of metric
normalizers of the fundamental group G= ⊗3 in Isom H2 will be determined (Table
2). Thus we completely classify the symmetry groups N/G of the 3− surface,
i.e. the connected sum of 3 projective planes, into 12 normalizer classes, up to
topological equivariance, by the algorithm for fundamental domains, developed in
[9], [10], [11] and [15], aided by computer. Our algorithm is applicable for any
compact surface with exponential complexity by the genus g.

1. Introduction

The possible isometry groups of compact non-orientable surfaces have seemingly not been
investigated intensively yet. The orientable Riemann surfaces, however, have a vast literature
(see e.g. [1], [4], [8], [15], [18], [19]). A Riemann surface of genus g+ (g ≥ 2) may have an
orientation preserving isometry group N/G of finite order at most 84(g − 1), as it is well-
known [19]. Here G=Og is the fundamental group of the connected sum of g tori and N is a
normalizer group of G in Isom+H2, i.e. in the orientation preserving isometry group of the
hyperbolic plane. This estimate is sharp for some g’s, e.g. for g = 3 first (see e.g. [8]).
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By our knowledge, an analogous estimate is not proved for a non-orientable compact surface
of genus g = 3 whose universal covering space, as above, may have a hyperbolic metric of
constant negative curvature, fixed to K = −1 in the following.

We may speak about a g− surface H2/G, for simplicity, where a discontinuous fixed-point-free
isometry group, denoted and presented by

G = ⊗g := (a1, a2, . . . , ag − a1a1a2a2 . . . agag (= 1)) g ≥ 3, (1.1)

acts on the hyperbolic plane H2. We shall use the Conway-Macbeath denotation of orbifold
signature as for any corresponding hyperbolic normalizer N and for the orbit space (orb-
ifold surface) H2/N as well. It is well-known [19] that the signature determines the group
up to homeomorphism equivariance (see Section 3). Moreover, isomorphic groups, acting
discontinuously on E2 or on H2, will necessarily be equivariant. That means, e.g.

Og h1, . . . , hr ∗ h11, . . . , h1c1 ∗ · · · ∗ hq1 , . . . , hqcq (1.2)

denotes an orientable orbifold surface as connected sum of g tori; with r rotation centres of
orders h1, . . . , hr (≥ 2), respectively, up to a permutation; with q boundary components with
ci dihedral corners of orders hi1, . . . , hici

(≥ 2), respectively, up to a cyclic permutation on
the i-th (1 ≤ i ≤ q) component, according to the fixed positive orientation. The boundary
components, separated by stars (∗), may be permuted, too. For non-orientable orbifolds

h1, . . . , hr ∗ h11, . . . , h1c1 ∗ · · · ∗ hq1, . . . , hqcq⊗g (1.3)

means a connected sum of g cross caps, i.e. projective planes, the other data are as above,
but the cyclic order of the dihedral corners may be reversed on any boundary component
independently.

Of course, any date above can be missing. The empty signature means the sphere with
the trivial group action. In our Tables 1–4 of normalizers e.g. N=24∗ denotes the orbifold
surface of genus zero (a topological sphere), with two rotation centres of order 2 and 4; with
one boundary component without any dihedral corner on it. This can be described by a
fundamental domain FN in Fig. 2.b, and by a corresponding presentation.

N = 24∗ = (h1, h2, m− h2
1, h

4
2, m

2, mh1h2mh−1
2 h1) (1.4)

as a general algorithmical scheme (Poincaré algorithm [12]) shows. Another normalizer
N=2∗⊗ describes the orbifold with one cross cup, with one rotation centre of order 2, with
one boundary component without any dihedral corner on it. Fig. 3 shows a fundamental
domain FN and the presentation

N = 2∗⊗ = (m,h, t, g −m2, h2, mtmt−1, hggt) (1.5)

(see [16] case 2. aabcbC).

In Table 2 you see our result that the surface 3− has 2 maximal, i.e. not extendable, symmetry
groups: ∗2223/G of order 12 and ∗2224/G of order 8. The other groups N/G (G= ⊗3)
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are their subgroups, having a lattice structure. This is in (a rough) analogy to the 17 classes
of the Euclidean (E2) plane crystallographic groups N/T, where

N1 = p6mm = ∗236 and N2 = p4mm = ∗244 (1.6)

are the maximal normalizers (without additional translation) of the torus group

T = p1 =O = (a1, b1 − a1b1a
−1
1 b−1

1 (= 1)). (1.7)

Therefore, our classification can be considered as an extension of the 17 discontinuous E2

groups to those of the other compact surfaces of hyperbolic metric. The computer imple-
mentation of [15] has listed the 65 combinatorial fundamental domains (Table 1) for the
3− surface H2/⊗3. The general algorithm, for finding all the fundamental domains for g−

surface in [9, 10], [11] is based on the fixed-point-free pairings on a 2g-gon, with one vertex
class, at least one side pairing is orientation reversing, then comes a tree graph construction
with additional vertices. Along this graph the surface is cut and unfolded onto a topological
polygon at most of 6(g − 1) sides, at most of 2(g − 1) vertex classes, in each class 3 vertices
at least (this process is indicated in Fig. 4.a–b).

In [16] the 8 hexagonal domains with its neighbourhoods provided us the 6 cases of 3
generator systems of locally minimal closed geodesics (Fig. 3). Now, the possible isometries
of H2, transforming these systems onto themselves, extend G= ⊗3 to all possible normalizers
N with a corresponding fundamental domain FN whose finitely many representative N/G-
images necessarily tile at least one from the 65 domains. Our task is the procedure to find
FN and N from FG.

In such a way we obtain not only the possible groups N/G but also the possible nor-
malizer tilings of the 3− surface H2/G up to a combinatorial (topological) equivalence of
domains FN. Of course, different fundamental domains for G=⊗3 may induce the same do-
main for a normalizer N, i.e. equivariant tilings for the 3− surface H2/G (see e.g. Fig. 1. c–e,
4. a–b). But combinatorially different FN’s for fixed N will be distinguished as providing
different tilings for H2/G. Our Table 1 lists the typical maximal normalizer(s) N for each
FG, sometimes not uniquely, that can be tiled by an appropriate FN. By Table 2 we can
turn to other fundamental tilings by symmetry breakings of subgroup actions.

Then the complete classification of fundamental tilings with FN’s for the 3− surface by [9] is
relatively easy but it would be too lengthy to list here. The authors will send it on request
of the interested reader. As an information we list all the combinatorially different polygon
symbols FN in Table 3 for occurring normalizers N by [11].

We formulate the main results in our

Theorem. The 3− surface, as a connected sum of 3 projective planes, allows hyperbolic
(H2) metric structures such that 12 isometry groups N/G can act on the 3− surface, induced
by normalizers N of the fundamental group G = ⊗3 in the isometry group of H2, up to
homeomorphism equivariance. These 12 normalizers N provide 65 + 58 fundamental tilings
for our 3− surface H2/G (Tables 1–4).
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2. The general strategy by illustrating examples

As it has already been mentioned in [16], the general construction of universal covering allows
us to consider any compact non-orientable surface as an orbit structure Π2/G. Here Π2 is
a complete simply connected plane, one of S2, E2, H2, i.e. the sphere, Euclidean and
hyperbolic plane, respectively, and G is an isometry group acting on Π2 freely and with a
compact fundamental domain FG (a topological polygon), endowed with consecutive side
pairings (Fig. 1. a–b)

ai : s−1
ai
→ sai

, a−1
i : sai

→ s−1
ai

, 1 ≤ i ≤ g (2.1)

of orientation reversing isometries (glide reflections). This leads to the canonical presentation
of the fundamental group G as described in (1.1).

S2, g = 1 leads to the projective plane,
E2, g = 2 leads to the Klein bottle,
H2, g ≥ 3 leads to the other non-orientable compact surfaces, e.g. to our 3− surface, being
discussed. (2.2)

A glide reflection as a product of 3 line reflections

a = m1m2m = m1mm2 = mm1m2, m ⊥ m1, m2 (2.3)

has an invariant line denoted by m (for simplicity) serving locally (in a small tape) minimal
closed geodesics for the surface Π2/G, represented by FG as well. Any orbit

PG := {P γ ∈ Π2 : γ ∈ G by (1.1)} (2.3)

is a point of Π2/G ∼ FG, and the metric, the topology of the surface can be derived naturally.
Note that the sides of FG may be continuous curves, not only straight lines.

Of course, Π2/G may have many fundamental domains according to other presentation of
G which may lead to other metrics of the surface Π2/G ∼ FG with other symmetry groups.
These cause the difficulties of the problem.

Fig. 1. a shows us the seemingly most symmetric tiling of H2 by (1.1), g = 3, derived from
the canonical regular hexagons 6/1. The barycentric subdivision into (π/2, π/6, π/6) triangles
with · · · dotted, - - - dashed, and — continuous side lines indicates also the σ0− , σ1− , σ2−

adjacencies, respectively, for a D-symbol, described also in [16] (see [7] as well).
The polygon symbol aabbcc induces also the side pairing generators by (2.1). After hav-

ing distinguished an identity (denoted by 1) fundamental domain FG = F , its neighbouring

images will be Fa−1
1 , F a1 , . . . , F a−1

3 , F a3 and so on: Faiγ denotes the γ-image of Fai , i.e. the
ai-neighbour of Fγ along the side aγ

i , i.e. (F γ)γ−1aiγ the image of Fγ under the γ-conjugate
of ai. These hold also for barycentric triangles and their orbits. The formula

(σiC)γ = σi(C
γ) (2.4)

indicates an associativity law for any barycentric triangle C, i = 0, 1, 2; γ ∈ G (e.g.

σ0(3
a−1
1 ) = (σ03)a−1

1 = 4a−1
1 in Fig. 1.b).
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In Fig. 1.a and its fragment in Fig. 1.b there are drawn the invariant lines of ai’s and of
their conjugates by dick — lines. These represent the locally minimal closed geodesics of the
surface H2/G ∼ FG. E.g. M1M2 is such a line of the midpoint polygon M1 . . . M2g of the
fundamental polygon V1 . . . V2g.

It is easy to see now that the diagonals of V1 . . . V2g and the side lines of M1 . . . M2g will be
the reflection lines for the generating line reflections of the maximal normalizer for G = ⊗3.
The reflection lines dissect the barycentric triangles, e.g. we denote them in Fig. 1.b by

m12 : 2 ↔ 2′, m2g1 : 1 ↔ 1′ (2.5)

as reflections, moreover, m1 in OV1 and m2g in OV2g determine the fundamental domain
FN = (1, 2) of this maximal normalizer N=∗2223, |N/G| = 12.

Remark 2.1. In Fig. 1.b we have indicated the general construction scheme for any g−

surface, g ≥ 3. This shows our natural general conjecture that

Ng− = ∗222g with |N/G| = 4g,
as reflection group in the (π/2, π/2, π/2, π/g) quadrangle,
is the maximal normalizer of G = ⊗g

in the isometry group Isom H2 of the hyperbolic plane. (2.6)

We intend to prove this conjecture in a forthcoming paper.

Fig. 1.c–e show the typical phenomena of our topic. Fig. 1.a with the tiling of FN− images
under N = ∗2223 provides also other fundamental domains for G = ⊗3, tiled by FN− images.
See also Fig. 4.a–b for 12-gonal domains.

Expressing the side pairing generators of FG from those of FN, by GωN, we obtain the
homomorphism

N → N/G, n → nG = Gn =: n (2.7)

as a criterion of correctness of FN. E.g. a1 = m61m12m1, m12 ⊥ m61, m1 (Fig. 1.b, g = 3),
induces m61 = m1m12 = m12m1, denoted also by m61 ∼ m12m1 = M12. Here M12 = m12m1 =
m1m12 is the point reflection in the point M12 := m1 ∩m12. The geometric presentation of
N by FN

N :=∗2223=(m1, m12, m61, m6−m2
1, m

2
12, m

2
61, m

2
6, (m1m12)

2, (m12m61)
2, (m61m6)

2, (m6m1)
3),

(2.8)
as a Coxeter’s reflection group, and the homomorphism above provide us the geometric
presentation.

∗2223/G := D3 ×D1 = (m6, m1, M12 −m2
6, m

2
1, M

2

12, (m6m1)
3, (m1M12)

2, (m6M12)
2) (2.9)

as a direct product of two dihedral groups. Only the last relation needs checking, but we
have just started with this.

Fig. 2.a shows the other most symmetric G-tiling by the fundamental octagon 8/22 with
symbol abcdaBcD with two vertex G-classes, 4 vertices in each. This FG provides the side
pairing generators

g1 : sa−1 → sa, g3 : sc−1 → sc as glide reflections

t2 : sb → sB, t4 : sd → sD as translations (2.9)
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with the corresponding invariant line segments, as locally minimal closed geodesics, g1, g2

are orientation reversing, t2 and t4 preserve the orientation.
A translation is a product of two line reflections or of two point reflections as

t = m1m2 = m1mmm2 = A1A2 with m ⊥ m1, m2,

m1m = mm1 = A1, mm2 = m2m = A2 (2.10)

show, in general. The line m = A1A2 contains the locally minimal closed geodesics.
FG provides the presentation (the relations for the vertex classes ◦ and •, respectively):

G = (g1, t2, g3, t4 − ◦ : g1t
−1
2 g3t

−1
2 (= 1), • : g1t4g

−1
3 t4). (2.11)

FG can be chosen as a regular octagon with π/2 angles. Then the reflections in the sides of
FN = (1, 16) generate

N = ∗2224 :=

(m1, m2, m3, m4 − m2
1, m

2
2, m

2
3, m

2
4, (m1m2)

2, (m2m3)
2, (m3m4)

2, (m4m1)
4), (2.12)

|N/G| = 8,

the maximal normalizer, mapping the invariant line system of the generators onto itself. The
expressions

g1 = m2m1m4m1m4, t−1
4 = m3m1m4m1 (2.13)

induce the homomorphism N→N/G, m2 ∼ (m1m4)
2 = (m4m1)

2, m3 ∼ m1m4m1 and

∗2224/G := D4 = (m1, m4 − m2
1, m

2
4, (m1m4)

4) (2.14)

of order 8. Fig. 2.a shows the barycentric subdivision of FG-tiling and a neighbourhood of
the two typical non-G-image vertices. Thus we obtain the 6/5 hexagon of polygon symbol
a’b’a’c’b’c’ whose angles are π/2, π/4, π/4, π/2, π/4, π/4 at the vertices G-equivalent to the
octagon centre O. We see that the 6/5 hexagon (Fig. 3) with π/3 angles and its G-tiling
with normalizer N= 2∗222 can be extended by a combinatorial (equivariant, G-preserving
homeomorphic change) to a more symmetric G-tiling with richer normalizer ∗2224, but the
domains then do not tile the regular hexagon.

Remark 2.2. Our construction scheme can be generalized again for regular 4(g − 1)-gon
with side pairing glide reflection and translation each of number g − 1, with g − 1 vertex
classes, 4 vertices in each with π/2 angles. Then Ng− = ∗222[2(g − 1)] is conjectured as
second richest normalizer.

In Fig. 2.b there are indicated the 3 possibilities of index 2 subgroups 24∗, ∗22222, 2∗222,
each normalizing ⊗3, whose fundamental domains contain two ones of ∗2224.

Fig. 5 shows how to derive the maximal subgroups, of index 2 and 3, respectively (invari-
ant: —– or not: - - - in Table 2), of normalizer ∗2223 as well. Further maximal subgroups
of 23∗ in Fig. 6 and of 2∗33 in Fig. 7 are indicated by our conventions, followed here for
illustration.
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3. The completeness proof of our classification

The basic tool is the algorithmic enumeration of fundamental domains for any compact plane
group of given signature [9], [10], [11], namely, for the fundamental group G of a compact
surface and for its normalizer N (see Tables 1–3). The diagram

Π2
j 3 Pj

gi ∈ G < Isom Π2
j - P gi

j ∈ Π2
j(= H2)

Nk 3 nk

? P gink

?

nk ∈ Nk < Isom Π2
j

‖

Π2
j 3 P nk

j g′i ∈ Gi

- P
nkg′i
j ∈ Π2

j

(3.1)

symbolizes how the fundamental group Gi = {gi} acts on the universal covering plane Π2
j =

{Pj} to form the orbit plane Π2
j/Gi as a surface, and how a Gi-normalizer Nk < Isom Π2

j ,

mapping any Gi-orbit PGi
j onto another one P nkGi

j = PGink
j for any nk ∈ Nk, induces an

isometry group Gi/Nk of the surface:

Gi / Nk < Isom Πj, thus nkGi = Gink ∈ Gi/Nk (3.2)

as usual. Here Π2
j is either S2 or E2 or H2. Gi and Nk will be determined up to a homeo-

morphism equivariance by the signature described in the introduction.

Definition. The action of G1 on Π2
1 is ϕ-equivariant to that of G2 on Π2

2 if there is a
homeomorphism

ϕ : Π2
1 → Π2

2 : P1 → P2 := Pϕ
1 such that G2 = ϕ−1Gϕ. (3.3)

If the same ϕ above yields N2 = ϕ−1N1ϕ, then N1/G1 and N2/G2 are also called equivariant.
If N2 > ϕ−1N1ϕ then N2/G2 > N1/G1, i.e. N2 provides a richer symmetry group of Π2

2/G2

than N1 provides that for Π2
1/G1.

Isomorphic, i.e. equivariant normalizers N’s of G form an equivalence class, and we are
interested in determining the different classes and their subgroup relations. Here the relations
of groups and maximal (proper) subgroups are satisfactory.

Any G (and N) is defined (will be determined) by a fundamental (topological) polygon
FG (FN) with their side pairing isometries as generators, first in a combinatorial way, then
metrically in a plane Π2 by its signature. Hence the vertex classes with their stabilizers
and the corresponding defining relations have been determined by a polygon symbol up to a
combinatorial equivalence as indicated and illustrated above.
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Although we may have many combinatorially different domains FG (FN) – our algorithm [9],
[10], [11] enumerates all of them. Any FG by its barycentric subdivision and its G-images,
at the neighbourhoods of non G-equivalent sides and vertices, by defining relations, gives us
– in a finite algorithmic procedure – complete information on the systems of locally minimal
closed geodesics as on the orientation preserving ones as on the orientation reversing ones
and on their G-images as well. Any element n of a normalizer N maps these systems onto
itself, now metrically if the domain FG is well deformed by a homeomorphism ϕ. Then we
determine FN step by step.

At present we have not developed such an algorithm yet as GAP (see e.g. [1]) for automor-
phisms for certain finitely presented groups, but our method seems to be applicable to that
problem and for certain general theory as mentioned in Remark 2.1–2.

Of course, any FG can be deformed in such a way that any possible normalizer N occurs,
since any combinatorial FG can be cut and glue onto any other one by the usual topological
procedure. But now we can concentrate on the cases where the N-images of FN tile FG by
the representatives of N/G, and this is a finite procedure.

For G = ⊗3 we have 65 types of fundamental (topological) polygons as listed in Table 1 by
computer. We examined each of them with the above respects of view. From the combina-
torial structure of FG we selected a normalizer element and cut FG into a smaller domain
with induced side pairing step by step, first by combinatorial line reflection, then by rotations
especially by halfturn, glide reflection and translation, preserving the G-equivalence of sides.
We always check the homomorphism criterion (see (2.7)) for any candidate N (see Fig. 8.a–b
with 10/20 and 12/5, moreover Fig. 9.a–b for checking). Thus we obtain an FN and so N by
its presentation, then N/G, moreover, the smallest FN for FG, so the richest N and N/G
with tiling FG by the images of FN under representatives of N/G as required.

In this way we obtained Table 2 from Table 1 by Table 3 and by a careful analysis.

Our most symmetric 12-gons for FG in Fig. 4.a–b illustrate the procedure. Fig. 4.a shows how
to derive 12/2 aabcddCeffEB from the canonical side paired hexagon. By cutting along
the edges of a tree graph, numbered by 1, . . . , 6, we get 6 pieces. Then we glue them by the
side pairing of the hexagon, considering also the vertex domains and the defining relation.
Thus we get a 12-gon with the induced side pairing transformations and presentation

G := (g1, t2, t3, g4, t5, g6 − ◦g1g1t2, � t2t
−1
5 t−1

3 , � g4g4t
−1
3 , • g6g6t

−1
5 ) = ⊗3. (3.4)

From this we read the invariant line system, e.g. the same line (along sides 1) for glide
reflection g1 and translation t2 = g1g1, and form the metric 12-gon with indicated angles at
the vertices.

We promptly notice the maximal D3-symmetry of this combinatorial 12-gon and choose its
metric data by the dihedral isometry group D3. But first we analyse the effect of introducing
the line reflection m (in Fig. 4.a), only. Then we take an FN1 as any 7-gon, bounded by the
reflection line segment on m. The generators of G in (3.4) induce a side pairing of the 7-gon:

a line reflection m2 on side 2, since mm2 = t2, i.e. m ∼ m2 by N1/G;

a point reflection M1 in the midpoint M1 of side 1, since g1 = M1m, i.e. m ∼ M1 by
N1/G; the other side pairings with g6 and t5 = g6g6 do not change, since mg6m =
g−1
4 , mt5m = t−1

3 .
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Thus, we get the presentation

N1 := (m,M1, m2, t5, g6 −m2, M2
1 , m2

2, mM1m2M1, mt5m2t
−1
5 , g6g6t

−1
5 ) =: 2∗⊗, |N1/G| = 2

(3.5)
with a polygon symbol (easy to understand, see Table 3).

FN1 ∼ −a2A− bccB, and by m ∼ M1 ∼ m2

N1/G = D1 := (m−m2) = C2 := (M1 −M
2

1) = D1 = (m2 −m2
2). (3.6)

This leads to exactly one tiling of the 3− surface which can be derived from FG = 10/12
as well, if we glue the two 7-gons together at the midpoint M1 by point reflection M1 (see
Fig. 1.d).

To introduce a 3-turn to our 12/2 we have 5 logically different possibilities for FN2 with the
same (equivariant) normalizer

N2 = (r, g1, t2 − r3, g1g1t2, (rt2)
3) =: 33⊗ (3.7)

where we have chosen FN2 with two � vertices, representing a new 3-turn centre, |N2/G| = 3.

To this FN2 we could introduce the line reflections m′ and m′′ to get a new normalizer to G
(Fig. 4.a)

N3 = (r, m′, M, m′′−r3, (m′)2, M2, (m′′)2, m′rm′′r−1, m′Mm′′M) =: 23∗, |N3/G| = 6 (3.8)

with FN3 . But this FN3 does not tile our 12-gon. Another one does that.

Now we introduce the line reflections m and m̃ together (Fig. 4.a) to get the newer normalizer
to G as follows

N4 := (m, M1, m2, m̃−m2, M2
1 , m2

2, m̃
2, mM1m2M1, (m2m̃)3, (m̃m)3) =2 ∗33, (N4/G) = 6.

(3.9)
The last possible extension of N4 to the maximal normalizer of G is the introduction of
reflection m′ to dissect FN4 into two copies of domain FN. Hence we get N=∗2223 with
|N/G| = 12, as indicated formerly. FN tiles our 12-gon by its representative N/G-images
(see Fig. 1.a and Section 2).

Further extension of N, to normalize G, is not possible, because the only symmetry of
FN is the line reflection in OM1 (Fig. 4.a), however, this does not preserve the invariant line
system (locally minimal closed geodesics) of H2/G.

A similar discussion of the 12-gon in Fig. 4.b will no more be detailed. The first reflection m
leads again to N1 = 2∗⊗ with combinatorially other domain.

The extension by 3-turn about centre O leads to N2 = 33⊗ with various domains, again. In
this case N3 = 23∗, then N4 = 2∗33 and N = ∗2223 with appropriate tiling domains can
also be constructed.

Table 1 contains the maximal normalizer for each FG, given by its polygon symbol, such that
an FN tiles FG by its representative N/G-images. Tables 1 and 3 refer to each other in our
classification of tilings for 3− surface. Namely, from pieces of FN we can glue an FG with
appropriate side pairings to obtain the fixed-point-free group G = ⊗3.
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4. The Riemann-Hurwitz equation and the proof of non-existence

Although we have indicated the finiteness of symmetries of any compact surface, we cite an
algorithmic procedure to prove this fact in a constructive way.

It is well-known [19] that the combinatorial measure of a surface of genus g+ (orientable,
α = 2), or of genus g− (non-orientable, α = 1) is 4− 2αg. Its fundamental group is denoted
by Og = G or ⊗g = G, respectively.

The symmetry group N/G is characterized by the normalizer N of G in Isom Π2. Π2 is
the hyperbolic plane H2 if 2αg > 2, assumed now. N maps any G-orbit onto itself.

Say, N has a signature (1.2) or (1.3) above, but with genus γ, orientability β. The
combinatorial measure of FN (or of N) provides the Riemann-Hurwitz formula:

4− 2αg

n
= 4− 2βγ − 2

l∑
i=1

(
1− 1

hi

)
− 2q −

q∑
j=1

[ lj∑
k=1

(
1− 1

hjk

)]
, (4.1)

i.e.

2
l∑

i=1

1

hi

+

q∑
j=1

[ lj∑
k=1

1

hjk

]
+

2αg − 4

n
= −4 + 2βγ + 2q + 2l + l1 + · · ·+ lq (4.2)

holds as a necessary condition, where N/G = n is the order of the group N/G. We assume
for the (may be empty) rotation orders

2 ≤ h1 ≤ · · · ≤ hl ∈ � (natural numbers), (4.3)

for the dihedral corners (may be empty)

2 ≤ hjk ∈ �; 1 ≤ j ≤ q, 1 ≤ k ≤ lj. (4.4)

The hjk’s will be ordered first into non-decreasing sequence, then they will be reordered into
(may be empty) cycles of the q boundary components by the given orientation (β = 2), or
reordered into “circle” orders in non-orientable case (β = 1).

Furthermore, hi|n and 2hjk|n hold as necessary divisibility conditions.
The equation (4.2) can be solved by a systematic algorithm for any fixed 2αg by exp(g)

complexity. See our case G = ⊗3 in Table 4.
Our non-existence proof is based on the 65 fundamental domains of G = ⊗3 in Table

1. The “algebraic” solutions in Table 4 provide the possible normalizers, for each candidate
of them a fundamental polygon FN with typical stabilizers (rotational and dihedral centres).
These have to be “killed”, as fixed points, by gluing n copies of FN and by a new side pairing
of the new fundamental domain for G:

FG =
⋃n

i=1F
ni
N , ni ∈ N, representing N/G. (4.5)

But the side pairing has to be preserved by the symmetries of N according to the 65 possi-
bilities in Table 1. In Table 4 we have just listed the 12 realizable solutions and the other
non-realizable ones as well by careful analysis.

As a typical non-existence example, we choose solution 〈7〉 ∗2∗, n = 4. In Fig. 10.a we
consider a typical fundamental domain of ∗2∗ [10] by polygon symbol
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−2− a− A =F∗2∗. (4.6)

By the maximal dihedral stabilizer mm of ∗2∗ we have to glue 4 copies of F∗2∗ to have an FG

with appropriate side pairing. Among the combinatorial octagons, however, we do not find
any convenient side pairing whose mm-symmetries yield an F∗2∗ domain. The candidates in
Table 1 all exclude F∗2∗.

Similarly in Fig. 10.b, we consider the solution 〈33〉 ∗255, n = 20. F∗255 is a reflection
triangle with angles π/2, π/5, π/5. We have to find an appropriate side pairing for the double
pentagon, i.e. octagon with 2 vertex classes, with angle sum 2π in each class, etc. We can
not satisfy the necessary conditions without contradiction.

Of course, we might elaborate a general algorithm to obtain all the possible normalizers and
their fundamental tilings for any g−-surface (and for any g+-surface as well). The method of
D-symbols seems to be effective for this reason (see [6]). Then we have to examine all possible
2g-gons up to 6(g − 1)-gons as [10] indicated, but the procedure is of highly exponentional
complexity by g [15].
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 6/1 aabbcc 2*33 / 3m, 6 

 2 aabcbC ⊗3 / 1, 1 

 3 aabcBC 2*⊗ / m, 2 

 4 aabccb 2*222 / mm, 4 

 5 abacbc *2224 / mm o m, 8 

 6 abacbC 2** / m, 2 

 7 abacBC 2** / m, 2 

 8 abcaBC 2*222 / mm, 4 

 8/1 aabbcddC → 6/4 

 2 aabcbdCd 2*⊗ / m, 2 

 3 aabcbddc 2*⊗ / m, 2 

 4 aabcBdcD 222* / m, 2 

 5 aabcBdCD 2** / m, 2 

 6 aabcdbCd 2** / m, 2 

 7 aabcdBCD 2*⊗ / m, 2 

 8 aabcdBdc ⊗3 /1, 1 

 9 aabcdcDB → 6/6 

 10 aabcdCDB → 6/5 

 11 aabcddcB → 6/8 

 12 abacbdcD ⊗3 / 1, 1 

 13 abacbdCD ⊗3 / 1, 1 

 14 abacBdCd 2*⊗ / m, 2 

 15 abacdbCD 2*⊗ / m, 2 

 16 abacdbdc *2223 / mm o 3, 12 

 17 abacdBcD ⊗3 / 1, 1 

 18 abAcdbDc *22222 / mm, 4 

 19 abAcdBDc *22222 / mm, 4 

 20 abcadBCD 2*⊗ / m, 2 

 21 abcadcbD 2*⊗ / m, 2 

 22 abcdaBcD *2224 / 4m, 8 

 and *2223 / 2 o 3m, 12 

 

  10/1 aabcbdeeDc → 10/16 

 2 aabccBdeeD 2*⊗ / m, 2 

 3 aabcdbeCed ⊗3 / 1, 1 

 4 aabcdBeCDE 2*⊗ / m, 2 

 5 aabcdBedcE 222* / m, 2 

 6 aabcdceDeB → 8/16 

 7 aabcdCedEB → 8/19 

 8 aabcdCeDEB → 8/18 

 9 aabcdecDeB → 8/18 

 10 aabcdeCDEB → 8/16 

 11 aabcdeCedB → 8/15 

 12 aabcdeeDcB *2223 / m o 3m, 12 

 13 abacdbeCDE ⊗3 / 1, 1 

 14 abacdbedcE ⊗3 / 1, 1 

 15 abacdBceDe 2*⊗ / m, 2 

 16 abacdBeCed 2*⊗ / m, 2 

 17 abacdCbedE 222* / m, 2 

 18 abacdCbeDE 2** / m, 2 

 19 abacdeBcDe 2** / m, 2 

 20 abcadBeCDe 2*222 / m o 2, 4 

 21 abcadcebDE ⊗3 / 1, 1 

 22 abcadcedBE 2*⊗ / m, 2 

 23 abcAdeBCEd 2*222 / mm, 4 

 24 abcAdecbEd 2*222 / mm, 4 

 12/1 aabcdceffEdB 2*⊗ / m, 2 

 2 aabcddCeffEB *2223 / 3m o m, 12 

 3 aabcdecfDfeB → 12/11 

 4 aabcdeCfDEFB → 10/23 

 5 aabcdeCfedFB → 10/23 

 6 abacdeBcfDfe 2*⊗ / m, 2 

 7 abacdeCbfDEF 2*⊗ / m, 2 

 8 abacdeCbfedF 222* / m, 2 

 9 abcadeBdfCEf *2223 / 3m o m, 12 

 10 abcadecfDbEF 2*⊗ / m, 2 

 11 abcadecfeBdF 2*⊗ / m, 2 
 

Table 1. The list of fundamental domains for 3− surface with their typical maximal tiling
normalizers with factors and indices |N/G|



E. Molnár, E. Stettner: Symmetry Groups and Fundamental Tilings for . . . 31

Table 2. Relations of (maximal) subgroups N/G by normalizers N: —– invariant ones - - -
- noninvariant ones
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222* (13 domains): —a2Ab2Bc2C, —a2Ab2c2C2B, —a2b2B2c2CA, —a2b2c2C2B2A, 
 —a2A—b2Bc2C, —a2A—b2c2C2B, —a2A—b2B—c2C,  
 —a2Abc2Cd2DB, —ab2Bc2Cd2DA, —ab2Bc2d2D2CA,  
 —a2bc2Cd2DB2A, —a2A—bc2cd2DB, —ab2Bcd2De2ECA 

2** (4):  —a2Ab—B, —a—A—b2B, —a2b—B2A, —ab—Bc2CA 

2*⊗⊗ (16):  — ab2Ba, —a2ba2b, —a2b2b2A, —a—ab2B, —a2b—a2b,  
 —a—a—b2B, —abac2Cb, —abbAc2C, —abbc2CA, —abc2CbA,  
 — ab2cb2cA, —a2bccBA, —a2A—bccB, —ab—ac2Cb, —ab2BcddCA, 
 — abc2CdbdA 

3,3⊗⊗ (8): a3a3b3B3, a3b3a3b3, aab3Bc3C, aab3c3C3B, a3Ab3cb3c, a3Abc3Cb, 
 aabc3Cd3DB, a3ABc3CdBd 

24* (5):  —a2Ab4B, —a4b2B4A, —a2b4B2A, —a2A—b4B, —ab2Bc4CA 

*22222 (1): —2—2—2—2—2 

2*222 (2):  —2—2—2a2A2, —2—2—2—a2A 

2*33 (2):  —3—3a2A3, —3—3—a2A 

23* (5): —a2Ab3B, —a3b2B3A, —a2b3B2A, —a2A—b3B, —ab2Bc3CA 

*2224 (1):  —2—2—2—4 

*2223 (1):  —2—2—2—3 

65+ 
58 tili ngs 

Table 3. The list of polygon symbols FN by [11] for non-trivial normalizers N of G = ⊗3.
In the symbols . . . a . . . a . . . refers to side pairing by glide reflection . . . b . . . B . . . refers
to hyperbolic translation, — refers to line reflection; . . . anb . . . means rotation or dihedral
centre of order n at joint of a and b, . . . c2C . . . refers to halfturn about the midpoint of a
side, . . . dnD . . . refers to rotation of order n at joint of d and D.
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1  〈 1 〉  N = G = ⊗ 3, n=1 
I .   � � � � � q = 4 ,  2l + l 1 + … + l q � �  
I . i   2 l + l 1 + … + l q = 2 
I . i . 1   l = 1 

〈 2 〉  2  2⊗ ,  n = 2;  〈 3 〉 �
2,  n = 2;  2  〈 4 〉 2 * ⊗⊗ ,  n = 2;  3 〈 5 〉 2 * * ,  n = 2 

I . i . 2 l 1 = 2  no solution  
I . i . 3   l 1 = 1  l 2 = 1  no solution 
I . i i   2 l + l 1 + … + l q = 1 
I . i i . 1 l 1 = 1 
〈 6〉 *2 ⊗ ,  n=4; 〈 7〉 *2*,   n=4, 
I I .   � � � � � q = 2 ,  2l + l 1 + … + l q � �  
I I . i   2 l + l 1 + … + l q = 6 
I I . i . 1   l = 3 

〈 8 〉 2 2 2 ⊗ ,  n = 2;  4  〈 9 〉 2 2 2 * ,  n = 2 
I I . i i   2 l + l 1 + … + l q = 5 
I I . i i . 1   l = 2 ,  l 1 = 1 

〈 1 0 〉 2 2 * 2 ,  n = 4 
I I .  i i . 2   l = 1 ,  l 1 = 3 

5  〈 1 1 〉 2 * 2 2 2 ,  n = 4;  
I I . i i . 3   l = 0 ,  l 1 = 5 

6  〈 1 2 〉 * 2 2 2 2 2 ,  n = 4;  
I I . i i i   2 l + l 1 + … + l q = 4 
I I .  i i i . 1   l = 2 

〈 1 3 〉 2 4 ⊗ ,  n = 4;  7  〈 1 4 〉 2 4 * ,  n = 4;  〈 1 5 〉 2 3 ⊗ ,  n = 6;  8  〈 1 6 〉 2 3 * ,  n = 6;  

9 〈 1 7 〉 3 3 ⊗⊗ ,  n = 3;  
I I . i i i . 2   l = 1 , l 1 = 2 

〈 1 8 〉 2 * 2 3 ,  n = 1 2;  〈 1 9 〉 2 * 2 4;  n = 8;  10 〈 2 0 〉 2 * 3 3 ,  n = 6 
I I . i i i . 3   l 1 = 4 

11 〈 2 1 〉 * 2 2 2 3 ,  n = 1 2;  12  〈 2 2 〉 * 2 2 2 4 ,  n = 8;  〈 2 3 〉 * 2 2 3 3 ,  n = 6;  * 2 3 2 3 ,  
n = 6;  

I I . i v   2 l + l 1 + … + l q = 3 
I I . i v . 1   l = 1 ,  l 1 = 1 

〈 2 4 〉 3 * 4 ,  n = 2 4;  〈 2 5 〉 3 * 6 ,  n = 1 2 
I I . i v . 2   l = 0 ,  l 1 = 3 
〈 2 6 〉 * 2 3 7 ,  n = 8 4;  〈 2 7 〉 * 2 3 8 ,  n = 4 8;  〈 2 8 〉 * 2 , 3 ,9 ,  n = 3 6;  
〈 2 9 〉 * 2 , 3 , 1 2 ,  n = 2 4;  〈 3 0 〉 * 2 , 4 , 5 ,  n = 4 0;  〈 3 1 〉 * 2 4 6 ,  n = 2 4;  
〈 3 2 〉 * 2 4 8 ,  n = 1 6;  〈 3 3 〉 * 2 , 5 , 5 ,  n = 2 0;  〈 3 4 〉 * 2 6 6 ,  n = 1 2;  〈 3 5 〉 * 3 3 4;  
n = 2 4;  〈 3 6 〉 * 3 3 6 ,  n = 1 2;  〈 3 7 〉 * 4 4 4 ,  n = 8 
I I I .   2g+ 2q = 0  serves only orientable possibiliti es, no geometric realizations of 
normalizers for G = 3⊗  
I I I . i   2 l + l 1 + … + l q = 1 0 
I I I . i . 1 l = 5 

〈 3 8 〉 2 2 2 2 2 ,  n = 2 
I I I . i i   2 l + l 1 + … + l q = 8 
I I I . i i . 1   l = 4 

〈 3 9 〉 2 2 2 3 ,  n = 6;  〈 4 0 〉 2 2 2 4 ,  n = 4 
I I I . i i i   2 l + l 1 + … + l q = 6 
I I I . i i i . 1  l = 3 

〈 4 1 〉 2 3 7 ,  n = 4 2;  〈 4 2 〉 2 3 8 ,  n = 2 4;  〈 4 3 〉 2 3 9 ,  n = 1 8;  〈 4 4 〉 2 3 , 1 2;  n = 1 2  
〈 4 5 〉 2 4 5 ,  n = 2 0;  〈 4 6 〉 2 4 6 ,  n = 1 2;  〈 4 7 〉 2 4 8 ,  n = 8;  〈 4 8 〉 2 5 5 ,  n = 1 0;  
〈 4 9 〉 2 6 6 ,  n = 6;  〈 5 0 〉 3 3 4 ,  n = 1 2;  〈 5 1 〉 3 3 6 ,  n = 6;  〈 5 2 〉 4 4 4 ,  n = 4 

Table 4. The solution for Riemann-Hurwitz equation, g− = 3, α = 1, G = ⊗3. � indicates
proper normalizer N, 〈 〉 for algebraic solution
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a)

b) c) 8/22: abcdaBcD
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d) 10/12: aabcdeeDcB e) 8/16: abacdbdc

Figure 1. a) The 6/1 tiling of polygon symbol aabbcc, its barycentric subdivision; b)
maximal normalizer for g− surface, g = 3, its fundamental domain FN = (1, 2); c)–e) some
domains for 3− surface with tilings by FN

a) 8/22: abcdaBcD
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b)

Figure 2. a) Derivation of a hexagon from an octagon and vice versa; b) the subgroup relation
of normalizers ∗2224 . 24∗, ∗2224 . 2∗222 and ∗2224 . ∗22222, respectively
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Figure 3. Hexagonal domains with generating closed geodesics and some typical normalizers
for the 3− surface from [16]

a)
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b)

Figure 4. a) Two 12-gonal fundamental domains for G = ⊗3 with maximal normalizer
N = ∗2223 leading to equivariant tilings. a) 12/2: aabcddCeffEB; b) 12/9: abcadeBd-
fCEf

a)

b)

Figure 5. Maximal subgroups of ∗2223 by Fig. 1.a; a) of index 2; b) of index 3 (non-invariant)
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a)

b)

Figure 6. Maximal subgroups of 23∗; a) of index 3; b) of index 2.

Figure 7. Maximal non-invariant subgroups of 2∗33 of index 3

a) b)

Figure 8. Extreme symmetries a) by glide reflection 10/20: abcadBeCDe, N = 2∗222;
b) by translation 12/5: aabcdeCfedFB, N = 2∗222
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a) b)

Figure 9. Extension of FG 10/19: abacdeBcDe to FN; a) by glide reflection to N = 2∗⊗,
b) by reflection to N = 2∗∗

a)

Figure 10. a) Non-existence for ∗2∗, b) for ∗255
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