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Abstract. We prove an analog of a lemma by Mal’tsev and deduce the following
analog of a result of Rosenberg [11]: let Q be a finite poset with n elements, let
k denote the k-element chain, and let h be an integer such that 2 ≤ h < n ≤ k.
Consider the set of all order-preserving maps from Q to k whose image contains
at most h elements, viewed as an n-ary relation µQ,h on k. Then an l-ary order-
preserving operation f on k preserves this relation if and only if it is either (i)
essentially unary or (ii) the cardinality of f(e(Q)) is at most h for every isotone
map e : Q → kl. In other words, if an increasing k-colouring of the grid kl assigns
more than h colours to a homomorphic image of the poset Q, then there is such
an image that lies in a subgrid G1 × . . .×Gl where each Gi has size at most h, or
otherwise the colouring depends only on one variable.
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1. Introduction and Results

Let k ≥ 2 be a positive integer. We let k denote the k-element chain, i.e. the poset on
k = {1, 2, . . . , k} with the usual ordering of the integers. Let A be a finite set, |A| ≥ 2 and
let l ≥ 1 be a positive integer. An operation of arity l on A is a function f : Al → A. An
operation of arity l is also said to be l-ary. Let G1, . . . , Gl, H be non-empty sets, and let
S ⊆ G1 ×G2 × · · · ×Gl. A function

f : S −→ H
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is said to depend on the j-th variable if there exist ai ∈ Gi (i = 1, . . . , l) and bj ∈ Gj such
that

f(a1, . . . , aj−1, aj, aj+1, . . . , al) 6= f(a1, . . . , aj−1, bj, aj+1, . . . , al).

The function f is essentially unary if it depends on at most one of its variables; otherwise it
is essentially at least binary. In 1958, Jablonskii proved the following:

Lemma 1.1. [5] Let f be an l-ary operation on k, k ≥ 3. If f is essentially at least binary
and its image contains at least 3 elements then there exist l sets Gi ⊆ k each containing at
most 2 elements, and l-tuples x = (x1, . . . , xl), y = (y1, . . . , yl) and z = (z1, . . . , zl) such that
xi, yi, zi ∈ Gi for all i = 1, . . . , l and f(x), f(y) and f(z) are distinct.

This was later improved slightly by Mal’tsev:

Lemma 1.2. [9] Let f be an l-ary operation on k, k ≥ 3. If f is essentially at least binary
and its image contains at least 3 elements then there exist l-tuples x = (x1, . . . , xl), y =
(y1, . . . , yl) and z = (z1, . . . , zl) and an index 1 ≤ i ≤ l such that xj = yj for all j 6= i,
yi = zi, and f(x), f(y) and f(z) are distinct.

If f is an s-ary operation on A and g1, . . . , gs are operations on A of arity l, then the
composition of f and g1, . . . , gs is the l-ary operation h defined by

h(x1, . . . , xl) = f(g1(x1, . . . , xl), . . . , gs(x1, . . . , xl)).

A projection is an operation π which satisfies

π(x1, . . . , xl) = xi

for all x1, . . . , xl ∈ A. A clone on A is a set of operations of finite arity on A which contains
all projections and is closed under composition.1 It is well-known that clones admit a purely
relational presentation, which we proceed to describe. Let n ≥ 1 be a positive integer. A
relation of arity n on A is a subset of An. We say that the l-ary operation f preserves the
n-ary relation θ if the following holds: given any n× l matrix M whose columns are in θ, if
we apply f to the rows of M then the resulting column is in θ. If R is a set of relations of
finite arity on A then Pol R denotes the set of all operations on A that preserve each relation
in R. It is easy to verify that Pol R is a clone, and in fact, it can be shown that every clone
on A is of this form.

Let h be an integer such that 2 ≤ h < k. It is well-known and easy to verify that the
following sets of operations are clones: Bh consists of all operations whose image contains at
most h elements or that are essentially unary. These so-called Burle clones (see [1]) admit
a simple relational description, first stated by I. G. Rosenberg in 1977. Let n be a positive
integer such that 2 ≤ h < n ≤ k. Define µn,h as the n-ary relation on k that consists of all
n-tuples a = (a1, . . . , an) such that |{a1, . . . , an}| ≤ h. Rosenberg’s result is easy to deduce
from Mal’tsev’s lemma:

1We refer the reader to [13] for basic results and terminology concerning clones.
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Theorem 1.3. [11] Let 2 ≤ h < n ≤ k. An l-ary operation f on k is in Pol µn,h if and only
if either (i) f is unary or (ii) the image of f contains at most h elements.

Proof. If f is unary or the image of f contains at most h elements then it clearly preserves
the relation µn,h. Conversely suppose that f depends on at least two variables and that its
image contains at least h + 1 elements. Let a1, . . . , ah+1 be distinct values in the image of
f , and let ui be elements of kl such that f(ui) = ai for all i. We may assume that x = u1,
y = u2 and z = u3 are l-tuples with the properties guaranteed by the last lemma. Let M be
any n× l matrix whose h + 1 first rows are the ui. Then M has all its columns in µn,h, but
f maps it to an n-tuple with at least h + 1 distinct entries, so f does not preserve µn,h. 2

A class of clones that has attracted a great deal of attention in the last few years is that
of so-called isotone clones, i.e. clones of the form Pol ≤ where ≤ is a partial order on A
(see for example [2], [3], [4], [6], [7], [8], [10], [12].) While studying clones of the form Pol ≤
where ≤ denotes a total order, we discovered with A. Krokhin that many of their subclones
admit a description not unlike that of the Burle clones. Our characterisation required a
result concerning the relational description of these clones which is the main result of the
present paper. More precisely, let Pol ≤ denote the clone of all order-preserving operations
on the k-element chain (as usual, a map f from a poset P to a poset Q is order-preserving
if f(x) ≤ f(y) in Q whenever x ≤ y in P ). We determined in [4] that for k ≤ 5 the number
of subclones of Pol ≤ that contain all unary order-preserving maps (the so-called monoidal
interval, see [13]) is finite. This question remains open for k ≥ 6, but our investigations
showed that the interval of clones, although possibly finite, has a very intricate structure.
We now describe some of the clones in this interval.

As above, let k, h, n be integers such that 2 ≤ h < n ≤ k. Let Q be a poset on n elements.
We say that the poset Q′ is an extension of Q if Q and Q′ have the same base set and
every comparability of Q is also a comparability of Q′. We shall assume that the base set
of Q is {1, 2, . . . , n} and we’ll use the symbol v to denote the ordering of Q. An n-tuple
a = (a1, . . . , an) of elements of k respects the ordering Q if ai ≤ aj whenever i v j. Define
µQ,h as the n-ary relation on k that consists of all n-tuples a that respect the ordering Q
and such that |{a1, . . . , an}| ≤ h. Let CQ,h denote the set of all order-preserving operations
on k that are either (i) essentially unary or that satisfy the following: (ii) f is l-ary and for
every order-preserving map e : Q → (k)l the set f(e(Q)) contains at most h elements. For
convenience, let Cn,h denote the clone CQ,h when Q is the n-element antichain; obviously
we have that Cn,h = Bh ∩ Pol ≤. Notice also that if Q is the n-element antichain, then
µQ,h = µn,h.

To illustrate, consider the 4-element poset Q (the 4-crown) on {1, 2, 3, 4} where 3 and 4
cover 1 and 2 and these are the only coverings. Then for any 2 ≤ h ≤ 3 the relation µQ,h

consists of all tuples (a, b, c, d) with at most h distinct entries and such that a ≤ c, a ≤ d,
b ≤ c and b ≤ d.

For another example, consider an ordering Q on {1, 2, . . . , n} where only 1 and 2 are compa-
rable. Then it is easy to verify that the clone CQ,h consists of all order-preserving operations
f on k that are either essentially unary, or have the following property: if the image under
f of an (h + 1)-element set S ⊆ kl contains h + 1 distinct elements, then S must be an
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antichain. However, suppose that the image of f contains more than h elements; certainly
there are two comparable elements in kl with different values under f , but this means we
can find a set S as above which is not an antichain; hence f is essentially unary. This shows
that for this particular choice of Q we have CQ,h = Cn,h.

Clearly the clones Pol µQ,h and CQ,h are subclones of the clone Pol ≤ of all order-preserving
operations on the k-element chain, unless Q is the n-element antichain. Indeed, if Q has
at least one comparability it guarantees that every operation that preserves µQ,h is order-
preserving. The system of inclusions between these clones appears intricate and quite inter-
esting. We have the following easy inclusion:

Lemma 1.4. Let 2 ≤ h < n ≤ k. Then CQ,h ⊆ Pol µQ,h for all n-element posets Q.

Proof. Let f ∈ CQ,h be l-ary and let M be an n× l matrix whose columns are in µQ,h. If we
apply f to the rows of M then the resulting column f(M) respects the ordering of Q since f
is order-preserving. If f is unary and depends only on the i-th variable, it follows that f(M)
contains at most h entries, since the i-th column contains at most h entries; thus f preserves
µQ,h. If f is not essentially unary, consider the map e : Q → (k)l that sends i to the i-th
row of M . By definition of µQ,h this map is order-preserving, and hence f(M) = f(e(Q))
contains at most h elements. Consequently, f(M) ∈ µQ,h and this completes the proof. 2

Our main result is that in fact CQ,h = Pol µQ,h for all h and for all non-trivial n-element
posets Q. In other words, for any Q, the order-preserving operations that preserve µQ,h are
exactly those operations in CQ,h.

Theorem 1.5. Let 2 ≤ h < n ≤ k. Let Q be a finite poset on n elements. An l-ary
order-preserving operation f on k is in Pol µQ,h if and only if either (i) f is unary or (ii)
|f(e(Q))| ≤ h for any isotone map e : Q → (k)l.

Notice that if Q in an antichain, then our result is Rosenberg’s Theorem 1.3 restricted to
order-preserving operations on k.

We may state this result in a more combinatorial way.

Theorem 1.6. Let 2 ≤ h < n ≤ k, and let Q be a finite poset on n elements. Let f be a
colouring of the grid kl by k colours which is non-decreasing on every path from (1, . . . , 1)
to (k, . . . , k). Suppose that the colouring assigns more than h colours to some homomorphic
image of Q in kl; then either it assigns more than h colours to a homomorphic image of
Q which lies in a subgrid G1 × . . . × Gl where each Gi has size at most h, or the colouring
depends only on one variable.

Our proof will follow the pattern of that of Theorem 1.3, and for this we shall require an
order-theoretic analog of Mal’tsev’s lemma:

Lemma 1.7. Let k1, . . . , kl be positive integers. Let f be an order-preserving map from
k1×k2× . . .×kl onto the 3-element chain that depends on at least two variables. Then there
exist l-tuples x = (x1, . . . , xl), y = (y1, . . . , yl) and z = (z1, . . . , zl) in k1 × k2 × . . . × kl and
an index 1 ≤ i ≤ l such that
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1. xj = yj for all j 6= i and yi = zi,

2. {x, y, z} is a chain, and

3. f(x), f(y) and f(z) are distinct.

2. Proofs

To prove Theorem 1.5 we shall proceed as follows: first we prove the analog of Mal’tsev’s
lemma, Lemma 1.7. From this we will deduce a special case of the main result, namely for
Q a chain. This will provide us with our induction base, as we’ll prove our main result by
induction on the number of incomparabilities in the poset Q. Notice that by the remarks
following the statement of Theorem 1.5 we may assume throughout that Q contains at least
one comparability.

Before we begin, we make one slight simplification: we claim that it will suffice to prove
our result for n = h + 1. Let Q be a poset. We say that Q′ is an induced subposet of Q if
the base set of Q′ is a subset of the base set of Q and its ordering is the restriction of the
ordering of Q to this subset.

Lemma 2.1. [4] Pol µQ,h = ∩Q′∈APol µQ′,h where A is the set of all (h+1)-element induced
subposets Q′ of Q.

If n = h + 1 then we shall drop the subscript h and simply write µQ and CQ respectively.

Lemma 2.2. If the statement of Theorem 1.5 holds when h = n + 1 then it holds for all
values of h.

Proof. Fix a non-trivial poset Q on n elements. By Lemma 1.4 it suffices to show that
Pol µQ,h ⊆ CQ,h. By the last lemma, we have that

Pol µQ,h ⊆ Pol µQ′ ⊆ CQ′

for every (h + 1)-element induced subposet Q′ of Q. Suppose there exists an isotone map
e : Q → kl such that |f(e(Q))| > h. Then there certainly exists an (h + 1)-element induced
subposet Q′ of Q such that the restriction e′ of e to Q′ satisfies |f(e′(Q′))| > h. It follows
that f must be essentially unary, and we’re done. 2

Proof of Lemma 1.7. We use induction on S =
∑

ki. Certainly S ≥ 4, and if S = 4 we
have without loss of generality that k1 = k2 = 2 and l = 2. The claim is now obvious. So
fix k1, . . . , kl such that the result holds for all S ′ < S. Let f be an order-preserving map of
k1×k2× . . .×kl onto {1, 2, 3}. Certainly we have that f(1, . . . , 1) = 1 and f(k1, . . . , kl) = 3.
By induction hypothesis, may suppose that f depends on all its variables.

Choose some variable xi, 1≤ i≤ l. For ease of presentation we’ll assume that i=1. Clearly
if f(1, k2, . . . , kl) = 2 or f(k1, 1, . . . , 1) = 2 we are done. Now suppose that f(1, k2, . . . , kl) =
f(k1, 1, . . . , 1) = 1. There exists some tuple (t1, . . . , tl) that f maps to 2; it follows that
f(k1, t2, . . . , tl) ∈ {2, 3}, f(1, t2, . . . , tl) = 1 and f(t1, 1, . . . , 1) = 1. Hence either we have
f(1, t2, . . . , tl) = 1, f(k1, t2, . . . , tl) = 2 and f(k1, . . . , kl) = 3 and we’re done, or else
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f(t1, 1, . . . , 1) = 1, f(t1, . . . , tl) = 2 and f(k1, t2, . . . , tl) = 3 which proves our claim. The case
where f(1, k2, . . . , kl) = f(k1, 1, . . . , 1) = 3 is dual. So we are left with the following cases:

Case A. Suppose that f(1, k2, . . . , kl) = 1 and f(k1, 1, . . . , 1) = 3.
Since f is isotone we have that f(1, x2, . . . , xl) = 1 and f(k1, x2, . . . , xl) = 3 for all xi.

Since f depends on all its variables, for each j > 1 there are tuples such that

f(a1, . . . , aj−1, aj, aj+1, . . . , al) 6= f(a1, . . . , aj−1, bj, aj+1, . . . , al).

Let X = {2, . . . , k1} and let Y = {1, 2, . . . , k1 − 1}. Obviously a1 ∈ X ∩ Y = {2, . . . , k1 − 1}.
Let fX and fY denote the restrictions of f to X × k2 × . . . × kl and to Y × k2 × . . . × kl

respectively.

Claim 1. fX and fY depend on at least two variables.
Proof of Claim 1. Since f is onto there exists a tuple such that f(t1, . . . , tl) = 2. Since
f(k1, t2, . . . , tl) = 3, and obviously t1 6= 1, we have that the restriction of f to X ×
k2 × . . . × kl depends on its first variable. The tuples (a1, . . . , aj−1, aj, aj+1, . . . , al) and
(a1, . . . , aj−1, bj, aj+1, . . . , al) defined above show that fX depends also on its j-th variable.
The proof for Y is similar.

As we remarked in the proof of Claim 1, the images of fX and fY contain 2; and certainly
the image of fX contains 3 and the image of fY contains 1. Since we have

f(a1, . . . , aj−1, aj, aj+1, . . . , al) 6= f(a1, . . . , aj−1, bj, aj+1, . . . , al),

one of these values is not equal to 2. It follows that either fX or fY is onto. By Claim 1 and
by induction hypothesis we are done.

Case B. f(k1, 1, . . . , 1) = 1 and f(1, k2, . . . , kl) = 3.
Since f is isotone we have that f(x, k2, . . . , kl) = 3 and f(x, 1, . . . , 1) = 1 for all x.

Suppose for a contradiction that there is no triple (x, y, z) for f . We claim that in this
case, if f(t1, . . . , tl) = 2 then f(x, t2, . . . , tl) = 2 for all x ∈ k1. Indeed, we have that
f(t1, 1, . . . , 1) = 1 and f(t1, . . . , tl) = 2 so if f has no triple then f(k1, t2, . . . , tl) = 2.
Similarly, since f(t1, t2, . . . , tl) = 2 and f(t1, k2, . . . , kl) = 3 we conclude that f(1, t2, . . . , tl) =
2. Hence 2 ≤ f(x, t2, . . . , tl) ≤ 2 for all x ∈ k1.

Since we had chosen the variable xi of f arbitrarily, we have obtained the following: if
there is no triple for f , then for any 1 ≤ i ≤ l, if

f(t1, . . . , ti−1, ti, ti+1, . . . , tl) = 2

then f(t1, . . . , ti−1, x, ti+1, . . . , tl) = 2 for all x ∈ ki, from which it follows that f is constant,
a contradiction. 2

The next auxiliary result will be used in the proofs of Lemma 2.4 and Theorem 1.5.

Lemma 2.3. Let h ≥ 2. Let f be an l-ary order-preserving operation on k, and let α1 <
. . . < αh+1 be an (h + 1)-element chain in the image of f , where α1 = 1 and αh+1 = k. Then
there exists an order-preserving map g : k → k with the following properties:

1. the image of g is equal to {1, 2, . . . , h + 1};
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2. g(αi) = i for all 1 ≤ i ≤ h + 1;

3. if g ◦ f is essentially unary then so is f .

Proof. Assume that f depends on at least two variables, without loss of generality suppose
they are the first and last. Hence there exist tuples u and v which share all the coordinates
but the first such that f(u) = a 6= b = f(v), and similarly there are tuples u′ and v′ which
have the same coordinates but the last such that f(u′) = a′ 6= b′ = f(v′). Hence it will suffice
to find an order-preserving map g : k → k that satisfies the following:

(1) the image of g is equal to {1, 2, . . . , h + 1};
(2) g(αi) = i for all 1 ≤ i ≤ h + 1;

(3) g(a) 6= g(b) and g(a′) 6= g(b′).

Maps that satisfy conditions (1) and (2) are easily described: it suffices to map the ele-
ments between each αi and αi+1 to {i, i + 1} in an order-preserving way. Let {a, b, a′, b′} =
{u1, u2, u3, u4} where u1 ≤ u2 ≤ u3 ≤ u4. There are 3 cases: (i) if {u2, u3} = {a, b} or
{u2, u3} = {a′, b′}, choose g as follows: send uj to the largest i such that αi ≤ uj if j = 1, 2
and to the smallest i such that αi ≥ uj if j = 3, 4. Otherwise, we have two possibilities: (ii)
if u2 6= u3, send uj to the largest i such that αi ≤ uj if j = 1, 3 and to the smallest i such
that αi ≥ uj if j = 2, 4. It is easy to see that condition (3) is satisfied in both cases. It
remains to consider the case where u2 = u3; in fact, one sees easily that we may suppose that
there exists an i such that αi ≤ u1 < u2 = u3 < u4 ≤ αi+1. We may suppose without loss of
generality that i < h, that {u1, u2} = {a, b} and that {u3, u4} = {a′, b′}. Since the image of f
contains elements above αi+1, there exist tuples u′′ and v′′ which differ in one coordinate only
such that f(u′′) = αi+1 < f(v′′). If these tuples differ in any coordinate but the first, then
we’re back in case (ii) by choosing u1, u2, αi+1, f(w′) instead of {u1, u2, u3, u4}. Otherwise,
u′′ and v′′ differ in the first coordinate. We may then choose g as follows: send u1, u2 to i,
send u4 to i + 1 and send f(v′′) to i + 2. Then g(a′) 6= g(b′) implies that g ◦ f depends on its
last variable; and g(f(u′′)) = i + 1 6= i + 2 = g(f(v′′)) implies that g ◦ f depends on its first
variable. 2

Lemma 2.4. Let Q be a chain. Then Pol µQ = CQ.

Proof. By Lemma 1.4 it suffices to prove that Pol µQ ⊆ CQ. We proceed as follows: Let f be
an l-ary order-preserving operation on k that maps some chain onto h + 1 distinct elements.
Let this chain be denoted by {e1, e2, . . . , eh+1} where e1 < e2 < . . . < eh+1, and let f(ei) = αi

for all i. We may certainly assume without loss of generality that α1 = 1 and αh+1 = k, and
consequently we may also assume that e1 = (1, 1, . . . , 1) and eh+1 = (k, k, . . . , k).

We show that if f ∈ Pol µQ then f is essentially unary. Let g be the map whose existence
is guaranteed by Lemma 2.3. Since f ∈ Pol µQ then so is gf ; and if we can show that gf
is essentially unary it will follow that f is also essentially unary. Thus it will suffice to
prove our claim for the map gf , whose image is precisely {1, 2, . . . , h + 1} and such that
gf(1, 1, . . . , 1) = 1 and gf(k, k, . . . , k) = h + 1. For convenience, we simply assume that f
(instead of gf) has these properties.

If a < b in kl let [a, b] denote the set of all x ∈ kl such that a ≤ x ≤ b.
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Claim 1. Let X = {x1, x2, . . . , xh+1} where x1 < x2 < . . . < xh+1 be any chain such that
|f(X)| = h + 1. Then for every 1 ≤ s ≤ h − 1, the restriction of f to the interval [xs, xs+2]
is essentially unary.

Proof of Claim 1. Fix 1 ≤ s ≤ h − 1, and let f ′ denote the restriction of f to [xs, xs+2]. It
is clear that f ′ is onto {s, s + 1, s + 2}. By Lemma 1.7, if f ′ were not essentially unary, we
could find l-tuples x = (x1, . . . , xl), y = (y1, . . . , yl) and z = (z1, . . . , zl) in [xs, xs+2] and an
index 1 ≤ i ≤ l such that

1. xj = yj for all j 6= i and yi = zi,

2. {x, y, z} is a chain, and

3. f ′(x), f ′(y) and f ′(z) are distinct.

We may assume without loss of generality that x < y < z (the case z < y < x is similar).
Consider the n× l matrix M whose rows are

x1, . . . , xi−1, x, y, z, xi+3, . . . , xh+1.

Clearly the columns are in µQ, but the column f ′(M) is not, since f maps x, y, z onto
{i, i + 1, i + 2}. Since f preserves µQ we conclude that f ′ is essentially unary.

Recall that a subset X of a poset Q is convex if it satisfies the following condition: if
a ≤ b ≤ c and a, c ∈ X then b ∈ X.

Claim 2. Let X and Y be sets such that the restrictions of f to X and to Y are essentially
unary. If X ∩ Y is convex and there exist u < v in X ∩ Y such that f(u) 6= f(v) then the
restrictions of f to X and to Y depend on the same variable.

Proof of Claim 2. It is clear that there exist u′ and v′ between u and v such that f(u′) 6= f(v′)
and v′ covers u′. In particular, u′ and v′ differ in exactly one coordinate. Since X ∩ Y is
convex it contains both u′ and v′. Since the restrictions of f to X and to Y are essentially
unary, the coordinate in which u′ and v′ differ must be the variable on which the restrictions
depend.

By Claim 1 we may assume without loss of generality that f depends only on the first
variable on the interval [e1, e3]. We prove by induction that f depends only on the first
variable on the interval [e1, eh+1] = kl. Suppose this is true for [e1, er], and we now wish
to prove it for [e1, er+1]. Let e′i denote the smallest element of [e1, er] that is mapped to i,
say e′i = (a(i), 1, 1, . . . , 1) for all 1 ≤ i ≤ r. By Claims 1 and 2 f depends only on its first
variable on the interval [e′r−1, er+1]. Let er = (y1, . . . , yl). Let x ∈ [e1, er+1] which is not in
the subintervals [e1, er] nor [e′r−1, er+1], i.e. x = (t1, t2, . . . , tl) where t1 < a(r−1) and ti > yi for
some 2 ≤ i ≤ l. We must show that f(x) = f(t1, 1, . . . , 1). We proceed by induction: choose
x maximal with the property that f(x) 6= f(t1, 1, . . . , 1). Suppose that f(t1, 1, . . . , 1) = p.
This means that a(i) > t1 for all i > p, and in particular f(x ∨ e′i) = i for all i > p, by
maximality of x (here ∨ denotes as usual the join operation on kl). Consider then the n× l
matrix M whose rows are

e′1, . . . , e
′
p−1, (t1, 1, . . . , 1), x, x ∨ e′p+2, . . . , x ∨ e′r, er+1, . . . , eh+1.

Clearly its columns are in µQ. f maps the first p rows to {1, 2, . . . , p}. Since f(x) > p and
f(x) ≤ f(x ∨ e′p+1) = p + 1 we must have that f(x) = p + 1. Thus f maps the rows of M
onto h + 1 distinct elements, which contradicts our hypothesis that f ∈ Pol µQ. 2
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Proof of Theorem 1.5. It suffices by Lemma 2.2 to prove the result for n = h + 1, i.e. to
prove that Pol µQ = CQ; and by Lemma 1.4 it will suffice to prove that Pol µQ ⊆ CQ. We
use induction on the number of incomparabilities in Q: suppose the result does not hold,
and choose Q with the largest number of comparabilities such that CQ is a proper subset of
Pol µQ. Notice that Q has at least one comparability by Theorem 1.3. Let f ∈ Pol µQ such
that f 6∈ CQ; then f is essentially at least binary of arity l and there exists an isotone map
e : Q → kl such that |f(e(Q))| = n. Let P = {x1, . . . , xn} be the image of Q under e, where
f(xi) < f(xj) if i < j. In fact, by using Lemma 2.3 we may assume without loss of generality
that f(xi) = i for all 1 ≤ i ≤ n. Since f is isotone and x1 is minimal in P , we may assume
that x1 ≤ xi for all i = 1, . . . , n; indeed, simply replace x1 by the meet of all the xi and
modify e accordingly. By Lemma 2.4 there exists at least one pair of incomparable elements
in Q. It follows that we may assume that there exists an integer 1 ≤ m ≤ n − 2 such that
(a) x1 < x2 < . . . < xm−1 < xm , (b) xi ≥ xm for all i ≥ m and (c) there exist at least two
upper covers of xm in P . Define an element y of kl as follows:

y = xm+1 ∧ xm+2 ∧ · · · ∧ xn.

Let M denote the n× l matrix whose rows are x1, . . . , xn, and let M ′ be the matrix obtained
from M by replacing the m-th row by y.

Claim 1. The columns of M ′ are in µQ.

Proof of Claim 1. Let z denote the j-th column of M , and z′ the corresponding column of
M ′. Clearly z respects the ordering Q. Since we have that xm ≤ y < xi for all i > m, it
follows that z′ also respects the ordering Q. By definition the j-th coordinate of y is the j-th
coordinate of some xi with i > m which implies that z′ must contain this coordinate twice.

Claim 2. f(y) = m + 1.

Proof of Claim 2. Since f ∈ Pol µQ, we must have f(M ′) ∈ µQ; in particular, the set
{f(x1), . . . , f(xm−1), f(y), f(xm+1), . . . , f(xn)} contains at most n − 1 elements. But since
f(xi) = i for all 1 ≤ i ≤ n, this means that f(y) 6= m. But xm < y < xm+1 means that
m ≤ f(y) ≤ m + 1 so the claim follows.

Consider the map γ : P → kl defined by

γ(xi) =

{
y if i = m + 1,
xi otherwise.

Since xm+1 covers xm in P it is easy to see that γ is order-preserving. Let P ′ denote the image
of γ; it certainly contains more comparabilities than P does. This means that there exists a
proper extension Q′ of Q and an order-preserving map e′ : Q′ → P ′. Indeed, if e(a) = xm+1

and e(b) = xm+2 add the comparability a < b to v and take the transitive closure; the map
e′ = γ ◦ e is then an order-preserving map of Q′ onto P ′.

Claim 3. If Q contains at least one comparability and if Q′ is an extension of Q then
Pol µQ ⊆ Pol µQ′ .

Proof of Claim 3. Consider the relation θ which consists of all tuples in µQ that respect
the ordering Q′. Since Q has at least one comparability all the operations in Pol µQ are
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order-preserving, and it follows easily that Pol µQ ⊆ Pol θ. It is also easy to see that if Q′ is
an extension of Q then θ = µQ′ .

It follows from Claim 3 that f ∈ Pol µQ′ which is equal to CQ′ by induction hypothesis. Since
f is essentially at least binary, it follows that |f(e′(Q′))| should be at most n− 1. However,
by Claim 2 we have that f(e′(Q′)) = f(P ′) = {1, 2, . . . , n}, a contradiction. 2
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