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Abstract. Relationship is clarified between the notions of linear extension of
algebraic theories, and central extension, in the sense of commutator calculus, of
their models. Varieties of algebras turn out to be nilpotent Maltsev precisely when
their theories may be obtained as results of iterated linear extensions by bifunctors
from the so called abelian theories. The latter theories are described; they are
slightly more general than theories of modules over a ring.

Introduction

The notion of linear extension of categories introduced in [3] is basic in the study of co-
homological properties of algebraic theories. Roughly, linear extensions play the same rôle
for theories as extensions with abelian kernel for groups. It seems that many remarkable
properties of theories are preserved under linear extensions. As an example, one can mention
the fact (proved in [17]) that if a theory has the property that all of its projective models are
free, then the same is true for any other theory obtained from it by linear extensions.

One of the goals of the present paper is to investigate behaviour of Maltsev theories (the
ones possessing a ternary operation p which is Maltsev, i.e. obeys the identity p(x, x, y) =
p(y, x, x) = y) under linear extensions. In particular, it turns out (Proposition 2.7) that any
linear extension of a Maltsev theory is itself Maltsev.

Another aspect of the rôle that linear extensions can play in the study of algebraic theories
is related to the notion of nilpotence for theories. One might ask whether there is an analog
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for theories of the fact that nilpotence of an algebra (say, Lie algebra, or a group, or an
associative algebra without unit) is equivalent to the existence of a finite tower of central
extensions starting with an abelian algebra and ending with the given algebra. So one might
call a theory nilpotent if there is a tower of linear extensions of theories starting with a
theory which is “abelian” and ending with the given one. Such definition is inherent in [10],
where it is proved that algebraic theories corresponding to the varieties of nilpotent groups
(resp. algebras) of nilpotence class n fit into towers of linear extensions of length n by certain
bifunctors, starting from abelian, or linear, theories, i.e. theories of modules over some ring.
See also [17].

On the other hand, there is a well understood generalization of the commutator calculus
from groups or Lie algebras to much more general varieties of universal algebras (the initial
idea is contained in [19]; a maximally exhaustive treatment is probably [5]). In particular
there is a notion of abelian (linear) and nilpotent varieties, generalizing the ones for groups
and algebras. This approach yields most satisfactory results for Maltsev varieties. One can
ask, what is the relationship between these two approaches.

It will be proved that these approaches are indeed equivalent for Maltsev theories. That
is, a Maltsev variety is nilpotent of class n in the sense of commutator calculus if and only if
the corresponding theory can be obtained by n-fold linear extensions of particular “untwisted”
type, starting from a Maltsev theory which is abelian in the sense of commutator calculus. In
the last section, a description of such abelian Maltsev theories and linear extensions between
them is given.

The first author gratefully acknowledges discussions with G. Janelidze which helped him
to realize the rôle of torsors under constant groups for characterizing centrality of an abelian
extension, as in 1.5 below.

Concerning notation: throughout the paper, it is of set-theoretic style, as is by now usual
in category theory. For example, for a morphism f : G → H between internal groups in a
category with products, an expression like f(x+ y) might mean composite of f with +(x, y),
for variable morphisms x, y : X → G, with + : G×G → G being the group operation. Or,
for a congruence on an object A, i.e. a parallel pair (a1, a2) : R ⇒ A such that the resulting
map 〈a1(−), a2(−)〉 : hom(X, R) → hom(X, A)× hom(X, A) is an equivalence relation for
any X, we might use notation xRy or x ∼R y, or just x ∼ y for morphisms x, y : X → A
such that (x, y) factors through R.

1. Linear extensions as torsors

Various kinds of extensions that appear in this paper are based on the notion of a principal
G-object or G-torsor, or torsor under G, for an internal group G in a category C with finite
products. It is a G-object T which satisfies two conditions; the first condition is that the
morphism (action, projection): G×T → T ×T is an isomorphism. The second condition
says that T has global support and may have different meanings, depending on exactness
properties of C. In this paper this condition usually means that T ×T ⇒ T → 1 is a
coequalizer.

The first condition is often expressed equationally, using a “subtraction” map − : T ×T → G,
namely the composite of the projection G×T → G with the inverse of the above isomor-
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phism. It is easy to see that the condition is equivalent to requiring two identities

(g + x)− x = g,

(x− y) + y = x

for g : X → G, x, y : X → T . In fact the whole torsor structure can be expressed by requiring
that the morphism m : T ×T ×T → T given by m(x, y, z) = (x − y) + z be an associative
Maltsev operation, in the following sense:

Definition 1.1. A morphism m : T ×T ×T → T is called a Maltsev operation on T if it
satisfies

m(x, y, y) = x = m(y, y, x).

It is called associative if one has

m(u, v, m(x, y, z)) = m(m(u, v, x), y, z)

and commutative if m(x, y, z) = m(z, y, x).

Note for future reference:

Lemma 1.2. Any associative Maltsev operation m satisfies

m(u, v, m(x, y, z)) = m(u, m(y, x, v), z).

Proof. For readability, denote m(x, y, z) = x− y + z. We thus have

x− y + y = x = y − y + x

and
u− v + (x− y + z) = (u− v + x)− y + z.

We can thus save parentheses and denote the latter expression by u − v + x − y + z. One
then has

u− v + x− y + z = (u− (y − x + v) + (y − x + v))− v + x− y + z

= u− (y − x + v) + (y − x + v − v + x− y + z)

= u− (y − x + v) + z.

�

One has the following (well known, in various guises) fact:

Proposition 1.3. Let C be a category with coequalizers of congruences and finite products,
which commute (that is, coequalizer of a product of diagrams is product of their coequalizers).
Then there is a torsor structure on an object T iff it has global support and there is an
associative Maltsev operation on T . In fact there is a one-to-one correspondence between
such structures. Moreover commutative Maltsev operations correspond to structures of torsors
under abelian groups.
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Proof. Given a torsor structure, the Maltsev conditions for m(x, y, z) = (x− y) + z are just
the two identities above. As for associativity, it means

(u− v) + ((x− y) + z) = (((u− v) + x)− y) + z,

which follows easily from

(g + x)− y = (g + ((x− y) + y))− y = ((g + (x− y)) + y)− y = g + (x− y).

If moreover the group is commutative, one has

(x− y) + z = (x− y) + (z − y) + y = (z − y) + (x− y) + y = (z − y) + x.

Conversely, for an associative Maltsev operation m on T , the relation

(x, y) ∼ (m(x, y, z), z)

is a congruence on T ×T . Indeed, it is reflexive since (m(x, y, y), y) = (x, y), symmetric since
(m(x, y, z), z) ∼ (m(m(x, y, z), z, y), y) = (m(x, y, m(z, z, y)), y) = (x, y), and transitive since
(m(m(x, y, z), z, t), t) = (m(x, y, m(z, z, t)), t) = (m(x, y, t), t). Let G be the coequalizer, and
let − : T ×T � G be the quotient map. Since (m(x, x, y), y) = (y, y), one has (x, x) ∼ (y, y),
i.e. x − x = y − y. In particular, taking for x, y the projections T ×T → T we get a map
from their coequalizer to G, i.e. a global element 0 : 1 → G, by the global support condition
on T . Addition on G is defined by (x − y) + (z − t) = m(x, y, z) − t which is legitimate
since cartesian product of two coequalizers is a coequalizer in our category. Then additive
inverse of x− y is y − x, and the action of G on T is given by (x− y) + z = m(x, y, z). It is
straightforward to verify all the remaining identities. �

So torsors in such categories determine (at least one of) their own groups. In view of this,
objects equipped with an associative Maltsev operation will be also referred to as torsors. In
the literature they are also known as herds.

Definition 1.4. A morphism p : E → B in a category C with products is called an abelian
extension, or simply abelian, if it admits a structure of a torsor in C/B, for some internal
abelian group in C/B. If furthermore the group has the form B∗(A) = (B×A → B), for
some internal abelian group A in C, then the morphism is called central extension.

So in view of 1.3, a morphism p : E → B in a sufficiently nice category is an abelian extension
iff it is coequalizer of its own kernel pair E×B E ⇒ E, and there is an associative Maltsev
operation E×B E×B E → E over B. As for central extensions, one has another omnipresent
fact:

Proposition 1.5. A morphism p : E → B in C/B is a torsor under a constant group
B∗(G), for some group G in C, if and only if the corresponding Maltsev operation m :
E×B E×B E → E extends to an associative Maltsev operation E×B E×E → E, with
pm(x, y, z) = pz for any (x, y, z) : X → E×B E×E.
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Proof. If the group is B∗(G), then the action can be written as + : G×E ∼= (B×G)×B E →
E, and the subtraction is given by (p,−) : E×B E → B×G for some map − : E×B E → G.
Thus (x − y) + z is defined for px = py and any z. Moreover using p(g + x) = px, all the
identities are proved in exactly the same way as in 1.3.

Conversely if m as above is given, we construct the group G as quotient of E×B E by
(x, y) ∼ (m(x, y, z), z) again, with (x, y) : X → E×B E and any z : X → E. That is,
we coequalize the maps (x, y, z) 7→ (x, y) and (x, y, z) 7→ (m(x, y, z), z) from E×B E×E to
E×B E. This then gives the maps + : G×E → E and − : E×B E → G just as in 1.3,
satisfying the required identities. �

Terminology in 1.4 above is motivated by one important case, when C is the slice V/B of
some variety V of universal algebras over one of its objects B. Then the object p : E → B
of V/B having global support simply means that p is surjective. It is well known that this
notion of torsor gives various kinds of extensions of universal algebras. For example, when
V is the variety of groups, then for any internal group G in V/B there is a B-module M
such that G is isomorphic to the projection B o M → B of the semidirect product of B
with M , the group structure given by homomorphisms (+ : (B o M)×B(B o M) → B o M ,
− : B o M → B o M , 0 : B → B o M) with ((b, x1), (b, x2)) 7→ (b, x1 + x2), (b, x) 7→ (b,−x),
b 7→ (b, 0) respectively. Furthermore a G-torsor is the same as a short exact sequence

M // i // E
p // // B

with i(p(e)x) = e+i(x)−e, the action (BoM)×B E → E being given by ((b, x), e) 7→ i(x)+e.
Similarly when V is the variety of Lie rings, an internal group in V/B amounts to a B-
module M , and a torsor under this group to an extension 0 → M → E → B → 0; when V
is the variety of associative algebras with unit, one gets bimodules and singular extensions,
etc. Note that in all these cases torsors under constant groups, i.e. internal groups in V/B
represented by projections B×G → B for an internal group G in V, correspond to central
extensions of B.

Another situation where torsors are important for us arises from a small category B, with
C the full subcategory Cat/=B of the slice Cat/B of categories over B, consisting of those
functors p : E → B which are identity on objects. In this case the global support condition
is that p is full, i.e. surjective on morphisms. The resulting notion turns then out to be
equivalent to the notion of linear extension of categories, which we now recall.

For a small category B, let B# denote the category called twisted arrow category of B
in [14], and the category of factorizations of B in [3]. Objects of B# are morphisms of B,
whereas homB#(b, b′) consists of pairs (b1, b2) with b1bb2 = b′. A natural system on B with
values in a category C is a functor D : B# → C. It is thus a collection of C-objects
(Db)b:X→Y of C, indexed by morphisms of B, together with C-morphisms b1( ) : Db → Db1b

and ( )b2 : Db → Dbb2 , for all composable morphisms b1, b, b2 in B, such that certain evident
diagrams commute. In other words, one must have

(b1b2)x3 = b1(b2x3),

(b1x2)b3 = b1(x2b3),

(x1b2)b3 = x1(b2b3)
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for any composable
b3−→ b2−→ b1−→ and any xi : X → Dbi

.
We will use the following notion from [3]: for a natural system D on a category B

with values in abelian groups, a linear extension of B by D is an object of Cat/=B, i.e. a
functor P : E → B that is identity on objects, together with transitive and effective actions
Db×P−1(b) → P−1(b), (x, e) 7→ x + e, for all b : X → Y in B, such that for any composable
morphisms e1, e2 in E and any xi ∈ DP (ei), i = 1, 2, one has

(x1 + e1)(x2 + e2) = (x1P (e2) + P (e1)x2) + e1e2.

An example of a linear extension by a natural system D is given by the trivial linear extension
B o D with homBoD(X, Y ) =

∐
b:X→Y Db, composition x1x2 = x1b2 + b1x2 for x1 ∈ Db1 ,

x2 ∈ Db2 , identities 0 ∈ D1X
, X ∈ B, and the actions Db×Db → Db given by the group law

in Db.
For natural systems D of abelian groups, there are cohomology groups H∗(B; D) of B with

coefficients in D, having the usual properties, such that H2(B; D) classifies linear extensions
of B by D. See [3].

Proposition 1.6. For any small category B, assigning to a natural system D on B the trivial
extension B o D → B determines an equivalence between the category of natural systems of
abelian groups on B and the category of internal abelian groups in Cat/=B. Moreover linear
extensions of B are the same as torsors in Cat/=B, i.e. those objects which, as morphisms in
Cat, are abelian in the sense of 1.4; more precisely, for any natural system D on B linear
extensions of B by D are in one-to-one correspondence with (BoD → B)-torsors in Cat/=B.

Proof. The group structure on B o D is given as follows: the zero is the functor B → B o D
which sends a morphism b : X → Y to 0 ∈ Db. The addition functor (B o D)×B(B o D) →
B o D is given by addition in the groups Db and similarly for inverses. Conversely, any
abelian group P : A → B in Cat/=B determines a natural system with Db = P−1(b). These
correspondences are evidently functorial and can be easily checked to define mutually inverse
equivalences.

Similarly, given any linear extension E → B, of B by a natural system D, its transitive
and effective actions combine into a functor (B o D)×B E → E which can be checked to
form a B o D-torsor. And conversely, any torsor furnishes the required action for a linear
extension. �

In particular, linear extensions can be defined in terms of the subtraction map. One sees
easily that the corresponding identities are

e1e2 − e1e
′
2 = P (e1)(e2 − e′2), e1e2 − e′1e2 = (e1 − e′1)P (e2), (•)

for P (ei) = P (e′i), i = 1, 2. In view of 1.3 and 1.6, linear extensions can be also defined
in terms of commutative associative Maltsev operations, without mentioning any natural
system. Namely, linear extension structures on an object E → B of Cat/=B with global
support are in one-to-one correspondence with functors E×B E×B E → E over B which are
commutative associative Maltsev operations.

There is another context in which natural systems arise as internal abelian groups.
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Proposition 1.7. For any B, there is an equivalence of categories

Ab(Cat/=B) ∼= Ab(SetB
op×B/ homB),

i.e. the category of natural systems of abelian groups on B is equivalent to the category of
internal abelian groups in the slice over homB of the category of set-valued bifunctors on B.
Under this equivalence, the inclusion

hom∗
B : Ab(SetB

op×B) → Ab(SetB
op×B/ homB)

of constant internal groups, carrying D to the projection homB×D → homB, becomes iden-
tified with the inclusion into natural systems, carrying a bifunctor D : Bop×B → Ab to the
natural system with Db:X→Y = D(X, Y ). �

This (as well as 1.6, in fact) is a consequence of general facts from [2] (see 1.5 and 4.11 there).

We will call the particular natural systems arising, as above, from bifunctors, and linear
extensions by them untwisted.

Thus natural systems on B can be identified with (trivial) abelian extensions of homB in
SetB

op×B, in the sense of 1.4, and moreover untwisted natural systems correspond to trivial
central extensions in that category. A natural question then arises – what should be analog of
1.5 in this context, that is, which torsors in Cat/=B correspond to untwisted linear extensions
under the equivalence of 1.6. The answer is given by the following

Proposition 1.8. Let P : E → B be a full functor bijective on objects, with a torsor structure
in Cat/=B given by the functor m : E×B E×B E → E over E. Then, the linear extension
corresponding to it by 1.6 is untwisted if and only if m can be extended to a collection of
commutative associative Maltsev operations

mX,Y : homE(X, Y ) ×
homB(X,Y )

homE(X,Y )× homE(X,Y ) → homE(X, Y ),

such that
P (mX,Y (f1, f2, f)) = P (f)

and

gmX,Y (f1, f2, f) = mX,Z(gf1, gf2, gf), mX,Y (f1, f2, f)h = mT,Y (f1h, f2h, fh)

for any f1, f2, f ∈homE(X, Y ) with P (f1)=P (f2) and any g∈homE(Y, Z), h∈homE(T,X).

Proof. The “only if” part follows since as soon as one has a linear extension by a bifunctor
D, all the groups Db, Db′ are naturally identified for any b, b′ ∈ homB(X, Y ). Hence one can
define mX,Y (f1, f2, f) = (f1 − f2) + f by identifying f1 − f2 ∈ DP (fi) with the corresponding
element of DP (f). The above identities then follow easily from the corresponding identities
for linear extensions.

For the “if” part, let D be the natural system of abelian groups corresponding to P
according to 1.3 and 1.6. Thus for b ∈ homB(X, Y ), elements of Db have the form f1 − f2,
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with P (f1) = P (f2) = b, and f1−f2 determines the same element as m(f1, f2, f)−f , for any
other f with P (f) = b. Then using the mX,Y above we can define a collection of isomorphisms
ϕb,P (f) : Db → DP (f) for f ∈ homE(X, Y ), b ∈ homB(X, Y ), via

ϕb,P (f)(f1 − f2) = mX,Y (f1, f2, f)− f.

This is correctly defined since mX,Y (m(f1, f2, f3), f3, f) = mX,Y (f1, f2, f) by associativity
and Maltsev identity. And it does not really depend on f . Indeed for any other f ′ with
P (f ′) = P (f) one has, by the same identities, m(mX,Y (f1, f2, f), f, f ′) = mX,Y (f1, f2, f

′).
But this is the same as mX,Y (f1, f2, f)−f = mX,Y (f1, f2, f

′)−f ′ – recall (from the proof of 1.3
that m(g, f, f ′) = g′ is equivalent to g−f = g′−f ′ as soon as P (f) = P (g) = P (f ′) = P (g′).

Furthermore,
ϕb,b = identityDb

,

as mX,Y (f1, f2, f)− f = m(f1, f2, f)− f = f1 − f2 for P (f1) = P (f2) = P (f), and

ϕb′,b′′ϕb,b′ = ϕb,b′′ ,

as mX,Y (mX,Y (f1, f2, f
′), f ′, f ′′)− f ′′ = mX,Y (f1, f2, f

′′)− f ′′ for P (f1) = P (f2) = b, P (f ′) =
b′, P (f ′′) = b′′.

Finally for any a : Y → Z, b, b′ : X → Y in B, and any f1, f2 with P (f1) = P (f2) = b
one has, using the equations (•) above:

aϕb,b′(f1 − f2) = a(mX,Y (f1, f2, f)− f) = gmX,Z(f1, f2, f)− gf

= mX,Z(gf1, gf2, gf)− gf = ϕab,ab′(gf1 − gf2) = ϕab,ab′(a(f1 − f2))

for any g with P (g) = a, and similarly, for any c : T → X in B,

(ϕb,b′(f1 − f2))c = ϕbc,b′c((f1 − f2)c).

We thus have constructed an isomorphism of the natural system D with the one obtained
from the bifunctor D̄, where

D̄(X, Y ) =

 ⊕
b∈homB(X,Y )

Db

 / ∼,

with ∼ being the equivalence relation identifying any x ∈ Db with ϕb,b′(x) ∈ Db′ , for all
b, b′ ∈ homB(X, Y ). �

2. Theories

Recollections on algebraic theories

Everywhere in the sequel, Set will denote the category of sets. The opposite of its full
subcategory with finite sets {1, . . . , n} (n > 0) as objects, will be denoted S. Its objects
will be redenoted by X0 = 1, X1 = X (the generator), X2, X3, . . . , and the morphisms from
S(Xn, X) by x1, . . . , xn.
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A finitary algebraic theory, or simply theory, is a small category T equipped with a functor
S → T which is identity on objects and preserves finite products. This functor will be usually
suppressed from the notations, and objects and morphisms of S will be identified with their
images under it – an usual abuse of notation with algebras.

A model of a theory T in a category C is a finite product preserving functor from T to C.
These functors and their natural transformations form the category of models T-mod(C).
For C = Set, this will be abbreviated to just T-mod. Since representable functors preserve
any available limits, there is a full embedding IT : Top → T-mod.

A model M of T is in fact nothing but an object M(X) with operations uM : M(X)n →
M(X) for each element of u ∈ homT(X

n, X), satisfying identities prescribed by category
structure of T. By this reason, elements of T(n) = homT(X

n, X) will be called n-ary opera-
tions of T. Thus for any theory T, the category T-mod is a variety of universal algebras. In
particular, T-mod is an exact category, regular epis are exactly surjective maps, etc. Con-
versely, for any variety V, the opposite of the category of the algebras freely generated by
the sets {1, ..., n}, n > 0, is an algebraic theory, whose category of models is equivalent to V.

A morphism of theories T′ → T is a model of T′ in T which respects the structure functors
from S. So by definition, S is the initial object of the category Theories of finitary algebraic
theories. For every morphism of theories F : T′ → T, the induced forgetful functor “compose
with F”, UF : T-mod → T′-mod, has a left adjoint, which we again denote by F , with the
adjunction unit η : Identity → (−)F := UF F and counit ε : FUF → Identity. In particular,
for T′ = S, the corresponding adjoint pair will be denoted T(−) : Set � T-mod : UT; models
in the image of T(−) are free. The notation is justified by the fact that these left adjoints
are compatible with the above embeddings in the sense that for any F : T′ → T, the square

T′op F //

IT′
��

Top

IT
��

T′-mod
F // T-mod

commutes, so taking T′ = S, the Yoneda embedding IT identifies Top with the full subcategory
of T-mod consisting of free models generated by objects of S, i.e. by finite cardinals. Moreover
note that the functor UT is representable by the free model on one generator, UT(M) ∼=
hom(T(1), M) for any T-model M . So in the sequel, we will interchangeably use notation
T(n) for homT(X

n, X), for IT(X
n) and for T({1, . . . , n}).

We note for future reference the following (doubtlessly well known) fact:

Proposition 2.1. A morphism of theories P : T′ → T is a full functor if and only if each
ηM : M → MP is surjective. In this case, UP is full and faithful, and the corresponding
full replete image of T-mod under UP is a subvariety of T′-mod, i.e. a full subcategory
closed under subobjects, products and homomorphic images. Moreover, for any surjection
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q : M � N in T′-mod, the square

M
q // //

ηM
����

N

ηN
����

MP
qP // // NP

is pushout.

Proof. Consider the maps homT′(X
n, X) → homT(X

n, X), n > 0, induced by P . These are
surjective iff P is full, and can be identified with T′-homomorphisms Pn : IT′(n) → IT(n),
namely with UT′ηT′(n) : UT′T′(n) → UT′(T′(n)P ) = UTT(n).

Thus P is full iff ηT′(n) is surjective for each n.

Next consider a free T′-model T′(S), for some set S. Then for any (s1, . . . , sn) : {1, . . . , n} →
S there is a commutative square

T′(n)
T′(s1,... ,sn)//

ηT′(n)

��

T′(S) ar[d]ηT′(S)

T(n)
T(s1,... ,sn) // T(S),

so the homomorphism ηT′(S) is given by colimit of a filtered diagram of homomorphisms of
the form ηT′(n). As each of these homomorphisms is surjective, ηT′(S) is surjective too iff P is
full. Finally for any model M one chooses a surjective homomorphism q : T′(S) � M . Both
P and UP preserve surjections: the former – since surjections are precisely coequalizers, and
since P , being a left adjoint, preserves them; and the latter – since it commutes with the
forgetful functors to sets. Thus ηMq = qP ηT′(S) is surjective, so all ηM ’s are surjective iff P is
full.

Now by adjunction, ηUP is a split mono, with left inverse UP ε. In our case ηUP is
also componentwise surjective, so these natural transformations are mutually inverse isomor-
phisms. As UP obviously reflects isomorphisms, it follows that ε is an isomorphism, i.e. UP

is full and faithful.
Next, consider a mono i : M � UP (N). Its composite with the isomorphism ηUP (N) is

mono again. On the other hand ηUP (N)i = UP P (i)ηM , so ηM is also mono. As it is surjective,
it is thus an isomorphism, i.e. M also belongs to the replete image of UP .

Now to show that the image of UP is also closed under quotients, suppose given a surjec-
tive homomorphism q : UP (N) � M in T′-mod. For M to belong to the image of UP , for
any u, u′ in T′(n) with Pn(u) = Pn(u′), the maps M(u), M(u′) : M(Xn) → M(X) must be
equal. In fact since the Pn are surjective, this condition is also sufficient. But M(u)q(Xn) =
q(X)N(u) = q(X)N(u′) = M(u′)q(Xn), and since q is surjective, M(u) = M(u′).

Finally, let us prove the pushout property of the square above. Indeed, given homomor-
phisms h : N → N ′, r : MP → N ′ with hq = rηM , one has Im(h) = Im(hq) = Im(rηM) =
Im(q). The image of UP is closed under quotients, as we just proved, so any quotient of
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MP = UP P (M) is (isomorphic to) UP of something. In particular so is Im(h), and by ad-
junction h factors through ηM , via some h′. Then h′qP = r since their composites with the
epi ηM are easily seen to be equal. �

Remark. In fact, conditions of the above proposition are interrelated: it follows, for example,
from 3.1 in [8], that the image of UP is closed under subobjects iff η is surjective, and under
quotients iff the indicated squares are pushouts.

Extensions of theories

Since for a theory T the category Theories/T is a subcategory of Cat/=T, closed under
finite products, internal groups and torsors in Theories/T are particular groups and torsors
in Cat/=T, hence by 1.6 they can be considered as particular natural systems and linear
extensions over T. It is easy to identify the property of natural systems which distinguishes
these particular ones (see [10]):

Definition 2.2. A natural system D on a category with finite products T is said to be carte-
sian if for any product diagram pi : X1× · · ·×Xn → Xi, i = 1, . . . , n and any f : X →
X1× · · ·×Xn, the maps pi( ) : Df → Dpif , i = 1, . . . , n also form a product diagram.

The equivalence of 1.7 restricted to cartesian natural systems yields

Proposition 2.3. The category of cartesian natural systems of sets on a theory T is equi-
valent to the category

T-mod(SetT
op

)/IT,

with untwisted cartesian natural systems corresponding to objects in the image of

I∗T : T-mod(SetT
op

) → T-mod(SetT
op

)/IT.

Proof. Indeed, looking at the equivalence in 1.7 one sees that the category of cartesian
natural systems of sets on a small category with finite products T is equivalent to the full
subcategory of SetT

op×T/ homT on those natural transformations p : B → homT for which
the natural system given by b 7→ p−1(b) is cartesian. But it is straightforward to check
that this happens iff B preserves finite products in the second variable. Thus when T is a
theory this means that for any fixed object Xn, the functor B(Xn,−) is a model of T. So
cartesian natural systems correspond to the full subcategory (T-mod)T

op ∼= T-mod(SetT
op

)
of (SetT)T

op ∼= SetT
op×T ∼= (SetT

op
)T. �

Corollary 2.4. Every linear extension P : T → TR of the theory TR of (left) modules over
a ring R is untwisted.

Proof. The category TR-mod = R-mod is abelian, hence so is TR-mod(SetT
op
R ) =

(TR-mod)T
op
R ; but as it is well known, for any additive category A, and any of its objects A,

the functors

A Ab(A)
forgetoo A∗

// Ab(A/A)
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are equivalences of categories. In our case this gives that every object of Ab((TR-mod)T
op
R /

ITR
) is isomorphic to a projection ITR

×T → ITR
for some T : Top

R → TR-mod. Translating
this fact along the equivalence of 1.7 one obtains that any cartesian abelian natural system
on TR is isomorphic to one of the form Du:Xm→Xn ≡ HomR(Rn, T (Xm)), for some functor
T : Top

R → R-mod. Evidently this is an untwisted natural system. �

One has (cf. [10], (6.1))

Proposition 2.5. A natural system of abelian groups D on a category with finite products
T is cartesian iff for any linear extension P : T′ → T of T by D, the category T′ also has
finite products, and P preserves them. �

In particular, linear extensions of an algebraic theory T by a cartesian natural system D
are morphisms of theories, and equivalence classes of such extensions form an abelian group
isomorphic to H2(T; D).

There are lots of examples of linear extensions of theories in [10]. Let us mention those
which we will encounter in this paper.

Examples 2.6. 1. Consider the functor from theories to monoids given by T 7→ homT(X,X).
This functor has a full and faithful right adjoint assigning to a monoid M , the theory TM of
M -sets. Thus the category of monoids can be identified with a full subcategory of Theories
closed under limits there. In particular, groups, torsors, herds, natural systems, linear ex-
tensions, etc. of monoids (considered as categories with one object) can be identified with
those of the corresponding theories. In other words, a morphism of theories P : TN → TM

induced by a homomorphism of monoids p : N → M is a linear extension iff p, considered
as a functor between categories with one object, is a linear extension – i.e. p is an abelian
extension in the category of monoids. The corresponding natural system on M consists of
abelian groups Dx, for x in M , and actions x(−) : Dy → Dxy, (−)y : Dx → Dxy. It can be
also considered as an “M -graded M -M -bimodule”. The corresponding extensions of theories
are untwisted iff all the Dx are equal.

2. Any homomorphism of rings p : S → R gives rise to a morphism P : TS → TR from the
theory of (left) S-modules to that of R-modules. This morphism is a linear extension iff p is
a singular extension, i.e. Ker(p) = B is a square zero ideal in S. In [10], an isomorphism is
obtained

H2(TR; DB) ∼= H2(R; B)

from the group of (untwisted) linear extensions of TR by the bifunctor given by

DB(Xn, Xk) = HomR-mod(TR(k), B⊗
R

TR(n)) ∼= (B⊕n)k,

to the second MacLane cohomology group of R with coefficients in B.

3. It is proved in [10] that for each n there is a linear extension from the theory of (n + 1)-
nilpotent groups to that of n-nilpotent ones; similarly for groups replaced by Lie rings,
associative rings without unit, or associative commutative rings without unit.
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4. For a left module M over a ring R, let M/(R-mod) be the coslice category of modules
under M , with objects of the form M → N and obvious commutative triangles as morphisms.
Let P : M/(R-mod) → R-mod be the functor sending f : M → N to Coker(f). It has a
right adjoint UP given by UP (N) = 0 : M → N . It is then easy to see that this adjoint pair
is induced by a morphism of theories P : TR;M → TR, where TR;M is the opposite of the
full subcategory of M/(R-mod) on objects of the form (1, 0) : M → M ⊕Rn for n > 0. In
particular, M/(R-mod) is equivalent to TR;M -mod.

Now this P in fact presents TR;M as a trivial linear extension of TR, by the bifunctor HM

given by composition

Top
R ×TR

projection−−−−−→ TR

Iop
TR−−→ (R-mod)op HomR(−,M)−−−−−−−→ Ab,

that is,
HM(Xn, Xk) = HomR(Rk, M) ∼= Mk.

Indeed, the trivial extension P : TR o HM → TR can be easily calculated; one has

homTRoHM
(Xn, Xk) = HomR(Rk, M ⊕Rn).

One can represent the latter group also as

homM/(R-mod)(M
(1,0)−−→ M ⊕Rk, M

(1,0)−−→ M ⊕Rn),

which is precisely homTR;M
(Xn, Xk).

The Maltsev case

A Maltsev theory is a theory T for which there is a Maltsev operation on the generating
object X. The corresponding variety, i.e. the category of models, will be also called Maltsev
in this case. It is a classical result of Maltsev that such varieties are precisely those in which
join of congruences coincides with their composition.

Proposition 2.7. Let a morphism of theories P : T′ → T be a linear extension of T by a
natural system D. If T is a Maltsev theory, then T′ is also Maltsev.

Proof. We will prove that for any m : X3 → X in T′ such that P (m) is Maltsev, there is a
Maltsev m′ : X3 → X with M(m′) = P (m).

Let x1, x2, . . . : Xn → X be the projections. Now P (m(x1, x2, x2)) = P (x1) and
P (m(x1, x1, x2)) = P (x2), so since P is a ToD-torsor, the elements x1−m(x1, x2, x2) ∈ Dx1

and x2 −m(x1, x1, x2) ∈ Dx2 are defined. Denoting by x : X → X the identity, let

m′ = (x2−m(x1, x1, x2))(x1, P (m))+(m(x, x, x)−x)P (m)+(x1−m(x1, x2, x2))(P (m), x3)+m.

One then has

m′(x1, x1, x2)

= (x2 −m(x1, x1, x2))(x1, x2) + (m(x, x, x)− x)x2 + (x1 −m(x1, x2, x2))(x2, x2)

+ m(x1, x1, x2) = (x2 −m(x1, x1, x2)) + (m(x2, x2, x2)− x2) + (x2 −m(x2, x2, x2))

+ m(x1, x1, x2) = x2
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and

m′(x1, x2, x2)

= (x2 −m(x1, x1, x2))(x1, x1) + (m(x, x, x)− x)x1 + (x1 −m(x1, x2, x2))(x1, x2)

+ m(x1, x2, x2) = (x1 −m(x1, x1, x1)) + (m(x1, x1, x1)− x1) + (x1 −m(x1, x2, x2))

+ m(x1, x2, x2) = x1. �

3. Commutators and nilpotence

Commutator calculus has been extended to general varieties of algebraic systems by several
people – first by J. D. H. Smith [19] for Maltsev varieties, then extended to more general cases
by Gumm, Hagemann and Herrmann, McKenzie and others (see [5] for precise information).

Taking the point of view of category theory enables one to make more apparent the
invariant properties of the commutator calculus, i.e. properties which do not depend on a
particular choice of basic operations for the algebras of the variety. A good example of
such approach is [16]. Also in [8] a notion of central extension is derived from abstract
categorical version of Galois theory, and it is shown in [9] that central extensions in the sense
of commutator calculus can be described in this way too.

For our paper, categorical reformulation of the commutator calculus given in [16] is most
suitable. Let us recall it briefly.

In a category with kernel pairs and coequalizers one may generate from any pair of
morphisms X ⇒ M a congruence on M , as the kernel pair of the coequalizer of this pair.
In particular, given two congruences p′, p′′ : R ⇒ M and q′, q′′ : S ⇒ M , one denotes by
r′, r′′ : ∆R,S → R the congruence on R defined to be the kernel pair of the coequalizer of
the morphisms (diagonal)q′, (diagonal)q′′ : S ⇒ R. Also let R′ ⇒ R be the kernel pair of p′.
Then in [16], the commutator [R,S] is defined to be the image under p′′ of the intersection
∆R,S ∩R′. It is then proved in [16] that this agrees with the definition of commutators from
[5] at least for Maltsev varieties, so in particular all the properties of the commutators from
[5] hold.

If [R,S] = ∆M (the smallest congruence diagonal: M � M2), then the congruences R
and S are said to centralize each other. In fact, [R,S] is the smallest among those congru-
ences T on M for which the congruences R/T and S/T (on M/T ) centralize each other. A
congruence R on M is called abelian if it centralizes itself, i.e. [R,R] = ∆M , and central if it
is centralized by the largest congruence ∇M (the identity: M2 � M2), i.e. [∇M , R] = ∆M .
The center ζ(M) of M is the largest central congruence; it always exists (in fact more gen-
erally for any R and S always exists the largest congruence T with [T, R] 6 S). One then
defines, generalizing the usual notions, a central series for a model M to be a chain of con-
gruences ∆M = R0 6 R1 6 · · · 6 Rn = ∇M such that for all i one has Ri+1/Ri 6 ζ(M/Ri)
(equivalently, [∇M , Ri+1] 6 Ri), i.e. Ri+1/Ri is a central congruence on M/Ri. A model
is called abelian if ζ(M) = ∇M (equivalently, [∇M ,∇M ] = ∆M) and n stage nilpotent, or
just n-nilpotent, if it has a central series of length n. This happens iff either the upper
central series ∆M = ζ0(M) 6 ζ1(M) 6 ζ2(M) 6 · · · ends with ζn(M) = ∇M or the
lower central series ∇M = Γ0(M) > Γ1(M) > Γ2(M) > · · · ends with Γn(M) = ∆M ;



M. Jibladze, T. Pirashvili: Linear Extensions and Nilpotence of . . . 85

here, ζn+1(M)/ζn(M) = ζ(M/ζn(M)) and Γn+1(M) = [∇M , Γn(M)]. Just as in the case
of groups, algebras, etc., the Γn are functorial (and the ζn are not). A theory is called
n-nilpotent (abelian for n = 1) if all of its models are.

Let us give another equivalent construction of the commutator in Maltsev varieties.

Proposition 3.1. For any congruences R, S on an object A in a Maltsev variety, there is
a pushout square

R tA S
pR,S //

qR,S

��

A

����

R uA S
mR,S// A/[R,S] ,

(†)

where pR,S : R tA S → A is induced by the pair ((x, y) 7→ x) : R → A, ((x, y) 7→ y) : S → A
and qR,S : R tA S → R uA S is induced by the pair ((x, y) 7→ ((x, y), (y, y))) : R → R uA S,
((x, y) 7→ ((x, x), (x, y))) : S → R uA S.

Proof. Observe that R uA S consists of elements of the form ((x, y), (y, z)) with (x, y) ∈ R
and (y, z) ∈ S. Let m be any Maltsev operation in our variety, then

((x, y), (y, z)) = (m((x, y), (y, y), (y, y)), m((y, y), (y, y), (y, z)))

= m(((x, y), (y, y)), ((y, y), (y, y)), ((y, y), (y, z)))

= m(qR,SiR(x, y), qR,Si(y, y), qR,SiS(y, z))

= qR,Sm(iR(x, y), i(y, y), iS(y, z)),

where iR, iS are the canonical coproduct inclusions and i stands for any of them.
This shows first of all that qR,S is surjective, so if one forms a pushout square as above,

one gets for the right vertical map the quotient A � A/T for some congruence T on A.
Moreover it follows that the induced homomorphism R uA S → A/T in this pushout maps
any element ((x, y), (y, z)) = qR,Sm(iR(x, y), i(y, y), iS(y, z)) to the T -equivalence class of the
element pR,Sm(iR(x, y), i(y, y), iS(y, z)), which equals m(pR,SiR(x, y), pR,Si(y, y), pR,SiS(y, z))
= m(x, y, z).

It follows that one has a commutative diagram

R tA S
pR,S //

������
��

��
��

��
��

��
��

��
��

�
qR,S

��

A

����
��
��
��
��
��
��
��
��
�

����

R uA S

m

55kkkkkkkkkkk
//

����
��

��
��

��
��

��
��

��
��

��

A/T

zz
zz

zz
zz

zz
zz

zz
zz

R/T tA/T S/T
pR/T,S/T //

qR/T,S/T
����

A/T

R/T uA/T S/T

m

44iiiiiiiiiii

,

(‡)
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where dashed lines denote maps which are not necessarily homomorphisms. Indeed, we just
showed that the triangle

A

����

R uA S

m

66nnnnnnnn
// A/T

commutes; whereas the parallelogram

A

��









R uA S

m

55kkkkkkkkkk

����
��

��
��

��
��

��
��

��
��

�

A/T

R/T uA/T S/T

m

44iiiiiiiiiii

commutes simply because A � A/T is a homomorphism.
Now (‡) shows that composing the map m : R/T uA/T S/T → A/T with a surjective

homomorphism R tA S � R/T uA/T S/T produces a homomorphism R tA S → A/T . It
then follows that m : R/T uA/T S/T → A/T is a homomorphism too. Thus by 3.3 R/T and
S/T centralize each other, i.e. [R,S] ⊆ T .

Conversely, since R/[R,S] and S/[R,S] centralize each other, there is a homomorphism
m : (R/[R,S]) uA/[R,S] (S/[R,S]) → A/[R,S] as in 3.3. Composing it with the product of
quotient maps R uA S → (R/[R,S]) uA/[R,S] (S/[R,S]) gives a homomorphism mR,S, and to
say that it fits in a commutative square as (†) above is precisely the same as to say that m
satisfies the Maltsev identities. This shows that there is a homomorphism A/T → A/[R, S]
under A, i.e. that T ⊆ [R,S]. �

Remark 3.2. Note that this proposition hints at another possibility of the construction
of commutators in varieties more general than Maltsev: given congruences R and S on an
algebra A, a new congruence [R,S] is uniquely determined by requiring existence of a pushout
square

R tA S
pR,S //

qR,S

����

A

����

R�AS // A/[R,S] .

(†)
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Here we used notation from 3.1 above and denoted by R�AS the image of qR,S : R tA S →
R uA S.

It is not difficult to determine syntactic content of the above definition of the commu-
tator: the above [R,S] is the smallest congruence with the property that for any two oper-
ations u(x1, . . . , xm, y1, . . . , yn), v(x1, . . . , xp, y1, . . . , yq) in our variety and any a1, . . . , am,
b1, . . . , bn, c1, . . . , cp and d1, . . . , dq in A one has u(a1, . . . , am, b1, . . . , bn) ∼[R,S] v(c1, . . . , cp,
d1, . . . , dq) whenever there exist a′i ∼R ai, i = 1, . . . , m, b′i ∼S bi, i = 1, . . . , n, c′i ∼R ci,
i = 1, . . . , p and d′i ∼S di, i = 1, . . . , q satisfying the equalities u(a′1, . . . , a′m, b1, . . . , bn) =
v(c′1, . . . , c′p, d1, . . . , dq), u(a1, . . . , am, b′1, . . . , b′n)=v(c1, . . . , cp, d

′
1, . . . , d′q), and u(a′1, . . . , a′m,

b′1, . . . , b′n) = v(c′1, . . . , c′p, d
′
1, . . . , d′q).

This kind of condition has been considered by universal algebraists as a “better” behaved
than the usual one for non-Maltsev varieties. In fact in [18] a whole infinite sequence of
conditions is considered, each stronger than previous, and ours is the second in the row.

Fortunately we are confined to the realm of Maltsev varieties. In fact all we have to know
about commutators is the following fact, which is crucial for what follows:

Proposition 3.3. Congruences R and S on a model M of a Maltsev theory centralize each
other if and only if there is a homomorphism m from the submodel

R uM S ∼=
{
(x, y, z) ∈ M3 |(x, y) ∈ R, (y, z) ∈ S

}
of M3 to M which satisfies xSm(x, y, z)Rz for any xRySz and is Maltsev, i.e. m(x, y, y) = x
for any xRy, and m(y, y, z) = z for any ySz. Then restriction of any Maltsev operation p of
the theory to that submodel coincides with this homomorphism, is associative and commuta-
tive. More precisely, p(u, v, p(x, y, z)) = p(p(u, v, x), y, z) holds if uRv, ySz, and either vSx
or xRy, while p(x, y, z) = p(z, y, x) holds for any xRySz.

Proof. The first statement can be found in [16], see Lemma 2.11 there; we only prove the
second (the proof is essentially the same as in [11]).

Take any Maltsev operation p. Then homomorphicity of m means

m(p(x1, x2, x3), p(y1, y2, y3), p(z1, z2, z3)) = p(m(x1, y1, z1), m(x2, y2, z2), m(x3, y3, z3)),

for any xiRyiSzi (i = 1, 2, 3). Taking here y1 = z1 = x2 = y2 = z2 = x3 = y3 then gives
m(x1, y2, z3) = p(x1, y2, z3) for any x1Ry2Sz3. Now for any uRv, xRySz one has

p(u, v, p(x, y, z)) = p(m(u, v, v), m(v, v, v), m(x, y, z))

= m(p(u, v, x), p(v, v, y), p(v, v, z)) = m(p(u, v, x), y, z) = p(p(u, v, x), y, z),

and similarly for uRvSx, ySz. Whereas taking any xRySz,

p(z, y, x) = p(m(y, y, z), m(y, y, y), m(x, y, y))

= m(p(y, y, x), p(y, y, y), p(z, y, y)) = m(x, y, z) = p(x, y, z).

�
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Corollary 3.4. A congruence R on a model M of a Maltsev theory T is abelian if and only
if the morphism M → M/R is an abelian extension in the sense of 1.4. Furthermore R is
central if and only if M → M/R is (the trivial case M = ∅ excluded).

Proof. The first statement is immediate by 1.3 and 3.3, and the second by 1.5. �

In fact, this is a special case of a statement which deals with arbitrary R, S centralizing each
other. This requires generalizing herd structures to s. c. herdoids ; see [16].

Corollary 3.5. A congruence R on a non-empty model M of a Maltsev theory T is central
if and only if there is an internal abelian group A in T-mod, an action of A on M , and an
isomorphism ϕ : R → A×M fitting in the commutative triangle

R %%

%%KKKKKKKKKKK

ϕ ∼=

��

M ×M

A×M.

(projection, action)

99sssssssss

Proof. This follows easily from 3.4, in view of 1.5. �

Since linear, respectively untwisted, extensions of a theory T by cartesian natural systems
(resp. bifunctors) are, by 1.6, none other than abelian, resp. central, objects of Theories/T,
one might expect that they are related to abelian, resp. central, extensions in T-mod. For
Maltsev theories, a link between these notions is provided by

Theorem 3.6. For a morphism P : T′ → T of Maltsev theories, the following conditions are
equivalent:

i) P is a linear (respectively, untwisted) extension;

ii) for all T′-models M the homomorphisms ηM : M → MP are abelian (respectively,
central) extensions in T′-mod and, moreover, the following condition is satisfied:

♦ for any Maltsev operation p in T′, any u, v : T′(n) → T′(k) in T′-mod with
P (u) = P (v), and any x, y ∈ T′(n) with ηT′(n)(x) = ηT′(n)(y), one has

p(u(x), v(x), v(y)) = u(y).

Proof. i) ⇒ ii): By 1.6, the morphism P is a linear extension if and only if it is full
and there is a functor m : T′×T T′×T T′ → T′ over T′ which is a commutative associative
Maltsev operation in Theories/T. Identifying T′ with the opposite of the category of finitely
generated free models via the Yoneda embedding, the action of m on hom(Xn, X) may be
viewed as a commutative associative Maltsev operation mn : T′(n)×T(n) T′(n)×T(n) T′(n) →
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T′(n) over T(n). Now functoriality of m means under the above identification that for any
u, v, w ∈ homT-mod(T′(n), T′(k)) ≈ T′(k)n with P (u) = P (v) = P (w), and any x, y, z ∈
homT-mod(T′(i), T′(n)) ≈ T′(n)i with P (x) = P (y) = P (z) one has

mi
k(ux, vy, wz) = mn

k(u, v, w)mi
n(x, y, z). (◦)

This then shows that each mn is a homomorphism: taking i = 1 and x = y = z in (◦) gives

mk(ux, vx, wx) = mn
k(u, v, w)mn(x, x, x) = mn

k(u, v, w)x

which, in terms of T′ again, means

mk(x(u1, . . . , uk), x(v1, . . . , vk), x(w1, . . . , wk)) = x(mk(u1, v1, w1), . . . , mk(un, vn, wn)).

So ηT′(n) is a linear extension, and mn coincides with the restriction of any Maltsev operation
on T′(n). If moreover P is untwisted, then, as in 1.5, this mn is defined on T′(n)×T(n) T′(n)
×T′(n), and ηT′(n) is central.

Now taking i = 1, v = w and x = y in (◦) gives

mk(u(x), v(x), v(z)) = mn
k(u, v, v)mn(x, x, z) = u(z),

which, since the m’s coincide with the restrictions of Maltsev operations, gives ♦.
Now for a general free model T′(S), the homomorphism ηT′(S) is a colimit of a filtered

diagram of those of the form ηT′(n), just as in the proof of 2.1. Since filtered colimits commute
with finite limits and are created by the forgetful functors, it follows that the collection of
the mn on the T′(n) over T(n) give rise to one mS on T′(S) over T(S), so ηT′(S) is abelian,
resp. central, whenever all the ηT′(n) are.

Finally, consider any T′-model M . Let us choose a surjective homomorphism q : T′(S) �
M , so that M = T′(S)/RM for some congruence RM on T′(S). By 2.1, both ηT′(S) and ηM

are surjective, so also T(S) = T′(S)/RT, MP = T′(S)/R, for certain congruences RT, R,
with RM ⊆ R. In fact, the pushout condition from 2.1 shows that R = RM ∨ RT in the
lattice of congruences on T′(S). And since T′ is Maltsev, in fact R = RM ◦ RT. Thus for
any u1, u2, . . . ∈ T′(S), one has u1Ru2R . . . iff u1RMv1RTu2RMv2RT . . . , for some v1, v2, . . . .
We then conclude that for any x1, x2, . . . ∈ M , one has ηM(x1) = ηM(x2) = · · · iff there are
ui ∈ T′(S) with xi = q(ui) (i = 1, 2, . . . ) and ηT′(S)(u1) = ηT′(S)(u2) = · · · .

We then define the Maltsev operation mM : M ×MP
M ×MP

M → M over MP (respec-
tively M ×MP

M ×M → M for untwisted P ) by mM(x1, x2, x3) = qmS(u1, u2, u3), for some
(u1, u2, u3) in T′(S)×T(S) T′(S)×T(S) T′(S) (respectively, in T′(S)×T(S) T′(S)×T′(S)) with
q(ui) = xi – which exist by the preceding argument. This is legitimate since for any other
choice vi one would have viRMui, hence mS(v1, v2, v3)RMmS(u1, u2, u3). This since RM is a
submodel of T′(S)2, while mS, by 3.3, coincides with the restriction of any Maltsev operation.
Homomorphicity, Maltsev identities, associativity and commutativity of mM now follow from
those of mS.

ii) ⇒ i): By 1.3, 1.6, and 1.8, to prove that P is a linear (resp., untwisted) extension,
it suffices to construct a family of commutative associative Maltsev operations, denoted
(u, v, w) 7→ u− v + w, from

homT′(X
n, Xk) ×

homT(Xn,Xk)
homT′(X

n, Xk) ×
homT(Xn,Xk)

homT′(X
n, Xk)
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– respectively, from

homT′(X
n, Xk) ×

homT(Xn,Xk)
homT′(X

n, Xk)× homT′(X
n, Xk)

– to homT′(X
n, Xk), which define a functor P ×P ×P → P over T in Theories/T, (resp.,

and also satisfy the conditions as in 1.8). For that, choose some Maltsev operation p ∈
homT′(X

3, X), and put

ū− v̄ + w̄ = (p(u1, v1, w1), . . . , p(uk, vk, wk)),

for any ū = (u1, . . . , uk), v̄ = (v1, . . . , vk), w̄ = (w1, . . . , wk) ∈ homT′(X
n, Xk). Functoriality

then amounts to

p(uū, vv̄, ww̄) = p(up(ū, v̄, w̄), vp(ū, v̄, w̄), wp(ū, v̄, w̄)),

for u, v, w ∈ homT′(X
k, X) and ū, v̄, w̄ as above, whenever P (ū) = P (v̄) = P (w̄) and P (u) =

P (v) = P (w). Whereas the conditions from 1.8 become

u(p(u1, v1, w1), . . . , p(uk, vk, wk)) = p(uū, uv̄, uw̄) and p(u, v, w)ū = p(uū, vū, wū),

if P (ū) = P (v̄) and P (u) = P (v).
Let us use the Yoneda embedding to identify homT′(X

i, Xj) with T′(i)j. Then, what we
have to prove is this: for any u, v, w ∈ T′(k) and any homomorphisms ū, v̄, w̄ : T′(k) → T′(n),
the equality

p(ū(u), v̄(v), w̄(w)) = p(ū(p(u, v, w)), v̄(p(u, v, w)), w̄(p(u, v, w)))

holds whenever P (ū) = P (v̄) = P (w̄) and ηT′(n)(u) = ηT′(n)(v) = ηT′(n)(w) (resp., also

p(ū, v̄, w̄)(u) = p(ū(u), v̄(u), w̄(u)),

ū(p(u, v, w)) = p(ū(u), ū(v), ū(w)),

when P (ū) = P (v̄) and ηT′(n)(u) = ηT′(n)(v)).
The functoriality condition, using that ū, v̄, w̄ are homomorphisms and hence commute

with the operation p, is equivalent to

p(ū(u), v̄(v), w̄(w)) = p(p(ū(u), ū(v), ū(w)), p(v̄(u), v̄(v), v̄(w)), p(w̄(u), w̄(v), w̄(w))).

Now recall that for the given elements p is a commutative associative Maltsev homomorphism,
so, switching to additive notation and using 1.2, the equality in question becomes

ū(u)− v̄(v) + w̄(w) = ū(u)− ū(v) + ū(w)− v̄(w) + v̄(v)− v̄(u) + w̄(u)− w̄(v) + w̄(w).

Let us replace ū(u)− v̄(v) + w̄(w) by ū(u)− v̄(v) + v̄(v)− v̄(v) + w̄(w) and then substitute,
using ♦,

−v̄(v) = −(v̄(w)− ū(w) + ū(v))
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in the first occurrence and

−v̄(v) = −(w̄(v)− w̄(u) + v̄(u))

in the second. We then obtain

ū(u)−(v̄(w)− ū(w) +ū(v)) + v̄(v)−(w̄(v) −w̄(u) + v̄(u)) + w̄(w)
= ū(u) −ū(v) + ū(w)−v̄(w) +v̄(v) −v̄(u) +w̄(u)− w̄(v) +w̄(w)
= ū(u) −ū(v) + ū(w)−(v̄(u) −v̄(v) +v̄(w)) + w̄(u)− w̄(v) +w̄(w),

as required.
As for the last two equalities, the first is trivial, and the second follows since ū is a

homomorphism. �

Outside the realm of Maltsev theories there exist linear extensions P : T′ → T such that not
all the η’s are abelian.

Example. Let M be the multiplicative monoid {1, 0}, i.e. 1 · 1 = 1, 1 · 0 = 0 · 1 =
0 · 0 = 0. Consider the natural system D on it, in the sense explained in 2.6.1, given by
D1 = 0, D0 = Z/2Z⊕Z/2Z, with 0(x, y) = (y, y) and (x, y)0 = (0, 0) for (x, y) ∈ D0.
Then the trivial linear extension of M by D is the monoid M o D = {(1, 0)} ∪ {(0, (0, 0)) ,
(0, (0, 1)), (0, (1, 0)), (0, (1, 1))}, with (1, 0) · (0, (x, y)) = (0, (x, y)) · (1, 0) = (0, (x, y)) and
(0, (x, y)) · (0, (x′, y′)) = (0, (x, y)0 + 0(x′, y′)) = (0, (y′, y′)). For brevity, let us redenote this
as M o D = {1, 00, 10, 01, 11}, so that 1 is the unit and

00 · 00 = 10 · 00 = 01 · 00 = 11 · 00 = 00 · 10 = 10 · 10 = 01 · 10 = 11 · 10 = 00,

00 · 01 = 10 · 01 = 01 · 01 = 11 · 01 = 00 · 11 = 10 · 11 = 01 · 11 = 11 · 11 = 11.

As in 2.6.1, D extends uniquely to a natural system on TM in such a way that the morphism
P : TMoD → TM , induced by the projection M o D → M , is the trivial linear extension by
that system. Now let S = {1, ∗0, 01, 11} = M o D/(00 ∼ 10) be the M o D-set obtained
by identifying 00 and 10 in M o D, acting on itself from the left via ·; then clearly SP =
(M o D)P = M , with ηS(1) = 1 and ηS(∗0) = ηS(01) = ηS(11) = 0. Suppose ηS is abelian.
Then there exists a Maltsev operation m : S×M S×M S → S over M . Since it must be
a morphism of M o D-sets, one must have in particular 10 · m(∗0, 01, 11) = m(10 · ∗0, 10 ·
01, 10 · 11) = m(∗0, 11, 11) = ∗0. This is only possible if m(∗0, 01, 11) = ∗0. Then m
cannot be associative, since this would imply 11 = m(11, ∗0, ∗0) = m(11, m(∗0, 01, 11), ∗0) =
m(11, 11, m(01, ∗0, ∗0)) = 01.

On the other hand, if all the η’s are abelian, the morphism of (non-Maltsev) theories can still
fail to be a linear extension – consider the morphism S. → 1l from the theory of pointed sets
to the terminal theory. Clearly for any non-empty set S the map S → 1 is abelian, as S can
be equipped with an abelian group structure. But S. itself clearly cannot have any functorial
Maltsev operation m : S.×1l S.×1l S. → S. since m(f, g, h)m(f ′, g′, h′) = m(ff ′, gg′, hh′)
implies that ee′ = m(e, 1, 1)m(1, 1, e′) = m(e, 1, e′) = m(1, 1, e′)m(e, 1, 1) = e′e for any
endomorphisms of any object, while S. has noncommutative endomorphism monoids.
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Corollary 3.7. Let P : T′ → T be a morphism of Maltsev theories such that for each M
in T′-mod the morphism ηM : M → MP is a central extension and moreover the subvari-
ety UP (T-mod) of T′-mod contains all abelian T′-models. Then P is an untwisted linear
extension.

Proof. In view of the previous theorem we just have to check the condition ♦. It is true
in more generality, in fact: let u, v : M ′ → M be any homomorphisms in T′-mod with
P (u) = P (v), and let x, y ∈ M ′ be any elements with ηM ′(x) = ηM ′(y). We thus have (u, v) :
M ′ → RM = M ×MP

M . Then by 3.5 we know that there is an action A(M)×M → M of
an internal abelian group A(M) on M and an isomorphism RM

∼= A(M)×M . Thus (u, v)
give rise to a homomorphism u− v : M ′ → A(M). Now obviously any internal abelian group
in T′-mod is an abelian model of T′, so by hypothesis A(M) belongs to the image of UP ;
hence u− v factors through ηM ′ and we obtain (u− v)(x) = (u− v)(y). Using now the action
of A(M), 3.5 gives u(x) − v(x) + z = u(y) − v(y) + z for any z in M , in particular taking
z = v(y) gives ♦. �

Remark. It is easy to identify the corresponding bifunctor on T: one can show that it is
given by

D(Xn, Xk) = homT-mod(T(k), A(T′(n))) ∼= A(T′(n))k.

Corollary 3.8. A theory T is n-nilpotent Maltsev if and only if there is a tower of untwisted
linear extensions of theories

T = Tn → Tn−1 → · · · → T1

where T1 is an abelian Maltsev theory.

Proof. Fix a theory T and some n, and let T(n) be the theory with

homT(n)
(Xk, X l) = homT-mod(T(l)/Γn(T(l)), T(k)/Γn(T(k))).

It is easy to see that there is a bijection

homT-mod(M, N/Γn(N)) ≈ homT-mod(M/Γn(M), N/Γn(N))

for any models M , N , hence it follows that T(n) is an n stage nilpotent theory and that
sending a model M to M/Γn(M) restricts to a morphism of theories P : T → T(n). Moreover
all models in the image of UP are n-nilpotent, and for any M the morphism ηM : M → MP

is the quotient qn(M) : M → M/Γn(M).
Now suppose T is itself (n+1)-nilpotent and Maltsev; then, the above construction gives

a morphism of theories T → Tn whose structure maps homT(X
k, X l) → homTn(Xk, X l)

coincide with qn(T(k))l : T(k)l � (T(k)/Γn(T(k)))l, with qn as above. The fact that T(k) is
(n + 1)-nilpotent means according to 3.4 that qn is a central extension in the sense of 1.4.
Thus, 3.7 shows that T → Tn is an untwisted linear extension. By induction, one thus gets
the “only if” part.

For the “if” part, suppose we are given an untwisted linear extension P : T → Tn of
theories, and Tn is n-nilpotent and Maltsev. Then by 2.7 T is also Maltsev. Furthermore
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by 3.6, for any T-model M the homomorphism ηM : M → MP is a central extension, hence
a quotient by a central congruence, by 3.4. Since P (M) is n-nilpotent, it follows that M is
(n + 1)-nilpotent. �

Remark. Let us also note in this connection that any nilpotent (in fact, also solvable) variety
with modular congruence lattices is Maltsev – see 10.1 in [6].

4. Abelian theories

We finish with some information on the structure of abelian Maltsev theories and linear
extensions between them. It follows from 3.3 that a model A of a Maltsev theory is abelian iff
there is a homomorphism m : A3 → A satisfying the Maltsev identities, and then any Maltsev
operation on A coincides with m, is commutative and associative. It will be convenient to
fix such an operation throughout and denote it by m(x, y, z) = x+y z. Thus all models of an
abelian theory are abelian herds, and all of their operations are homomorphisms of abelian
herds. We will first deal with abelian theories without constants, i.e. nullary operations.
To describe such theories, we need some definitions. Several similar considerations of these
“affine” theories and their relationship with torsors can be found in the literature. To mention
just few, see [15], [20], [12], [4]; also [1], kindly suggested by the referee. Abelian theories
with constants are much more common and will be treated in the end.

Definition 4.1. A left linear form consists of an associative ring R with unit, a left R-module
M , and a homomorphism ∂ : M → R of left R-modules.

In fact usually we will omit the word “left”, as it is customary with modules.

Definition 4.2. An affinity over a linear form ∂ : M → R is an abelian herd A together
with maps R×A×A → A and M ×A → A, denoted, respectively, (r, a, b) 7→ rab and
(x, a) 7→ ϕa(x), such that the following identities hold:

• For each a ∈ A, the operations (−)+a(−) and (−)a(−) turn A into a left R-module (with
zero a), and ϕa into a module homomorphism. In other words, for any a, b, c, d ∈ A,
r, s ∈ R, x, y ∈ M one has

b +a (c +a d) = (b +a c) +a d,

a +a b = b,

b +a c = c +a b,

b−a b = a,

ra(b +a c) = rab +a rac,

(r + s)ab = rab +a sab,

1ab = b,

ra(sab) = (rs)ab,

ϕa(x + y) = ϕa(x) +a ϕa(y),

ϕa(rx) = raϕa(x),

where we have denoted b−a c = b +a ((−1)ac).
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• (“coordinate change”) These structures are related by the identities

b +a′ c = ((b−a a′) +a (c−a a′)) +a a′,

ra′b = ra(b−a a′) +a a′,

ϕa′(x) = ϕa(x) +a (1− ∂x)aa
′. (∗)

A homomorphism between affinities A, A′ is a map f : A → A′ preserving all this, i.e. satis-
fying

f(a +b c) = f(a) +f(b) f(c),

f(rab) = rf(a)f(b),

f(ϕa(x)) = ϕf(a)(x).

Obviously the category ∂-aff of affinities over a linear form ∂ is the category of models of a
suitable abelian theory T∂. Here is an explicit description of this theory.

Proposition 4.3. The theory T∂ of affinities over ∂ : M → R can be described as follows:

homT∂
(Xn, X) =

{
∅, n = 0;

M ×Rn−1, n > 0.

The projections a0, a1, a2, . . . : Xn → X are given, respectively, by the elements 〈0, 0, 0, . . .〉 ,
〈0, 1, 0, . . .〉 , 〈0, 0, 1, . . .〉 , . . . ; and, composition is given by

〈x, r1, r2, . . .〉 (〈x0, s0, t0, . . .〉 , 〈x1, s1, t1, . . .〉 , 〈x2, s2, t2, . . .〉 , . . . ) = 〈x′, s′, t′, . . .〉 ,

where

x′ = x + (1− ∂(x))x0 + r1(x1 − x0) + r2(x2 − x0) + · · · ,

s′ = (1− ∂(x))s0 + r1(s1 − s0) + r2(s2 − s0) + · · · ,

t′ = (1− ∂(x))t0 + r1(t1 − t0) + r2(t2 − t0) + · · · ,

· · · .

Proof. Take as basic operations the ternary (−) +(−) (−), the family of binaries r(−)(−)
indexed by r ∈ R, and unaries ϕ(−)(x) indexed by x ∈ M . Using the above identities, one
can write any composite of these operations in the form

〈x, r, s, . . .〉 (a, b, c, . . . ) = ϕa(x) +a rab +a sac +a · · ·

in a unique way. The rest is straightforward verification. �

Define now a morphism of left linear forms from ∂ : M → R to ∂′ : M ′ → R′ to be
an equivariant homomorphism, i.e. a pair (f : R → R′, g : M → M ′) of additive maps
such that the obvious square commutes, that f is a unital ring homomorphism, and that
g(rx) = f(r)g(x) holds for any r ∈ R, x ∈ M . This clearly defines the category Lf of left
linear forms. We then have
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Theorem 4.4. The category of abelian Maltsev theories without nullary operations is equi-
valent to the category Lf of left linear forms.

Proof. Define the functor T(−) : Lf → Theories by sending an object ∂ of Lf to the
corresponding theory T∂ described above in 4.3. It is clear from that description that any
morphism in Lf determines a morphism of the corresponding theories.

Conversely, given an abelian Maltsev theory T, define the left linear form ∂T : MT → RT
as follows: let MT be the set of all unary operations of T, with the abelian group structure
given by x + y = m(x, id, y), where m is the Maltsev operation of T. Let RT be the set of
convex binary operations of T, i.e. those binary operations r satisfying the identity r(a, a) =
a. Define the ring structure on it by taking zero 0 to be the first projection, unit 1 the
second projection, addition to be r + s = m(r, 0, s), additive inverse −r = m(0, r, 0), and
multiplication (rs)(a, b) = r(a, s(a, b)). Let RT act on MT via (rx)(a) = r(a, x(a)), and let the
crossing MT → RT be (∂Tx)(a, b) = m(x(a), x(b), b). It is then straightforward to check that
this defines a left linear form, that any morphism of theories gives rise to a morphism in Lf
in a functorial way, and that if one starts from a theory of the form T∂, then one recovers the
original ∂ back. Finally for the second way round, observe that for any operation u : Xn → X
in an abelian theory, with n > 0, one has

u(a, b, c, . . . ) = u(a +a a +a a +a · · · , a +a b +a a +a · · · , a +a a +a c +a · · · )
= u(a, a, a, . . . ) +u(a,a,a,... ) u(a, b, a, . . . ) +u(a,a,a,... ) u(a, a, c, . . . ) +u(a,a,a,... ) · · ·
= u(a, a, a, . . . ) +a (a +u(a,a,a,... ) u(a, b, a, . . . )) +a

(a +u(a,a,a,... ) u(a, a, c, . . . )) +a · · ·
= x(a) +a r(a, b) +a s(a, c) +a · · · ,

with x in MT and r, s, . . . in RT. This implies easily that including MT and RT in T extends
to an isomorphism of theories from T∂T to T. �

Remark. Construction of the ring RT from an abelian Maltsev theory T is obviously well
known to universal algebraists, in a slightly different context – see e. g. [4]. It is in fact
closely related to the classical coordinatization construction for geometries. The reader might
consult, e. g. [6] or [5] for that.

Using our description, we can now find out what kind of linear extensions exist between
abelian theories. Indeed, since the Maltsev operation in abelian theories is unique, they are
clearly closed under arbitrary finite limits, hence 4.4 together with 1.6 implies that abelian
linear extensions of an abelian theory T can be identified with torsors under internal abelian
groups in Lf/∂T. Thus we just have to describe torsors under a linear form ∂ : M → R.
Consider one such, given by

K // j //

δ
��

N
q // //

∂′

��

M

∂
��

B // i // S
p // // R.

(E)
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Now by 1.3 we know that this torsor is equipped with a herd structure in Lf/∂. Thus we
have a Maltsev homomorphism m : ∂′×∂ ∂′×∂ ∂′ → ∂′ over ∂; then, by an argument just as
in 3.3, both in N and S one has

m(x, y, z) = m(x−y+y, y−y+y, y−y+z) = m(x, y, y)−m(y, y, y)+m(y, y, z) = x−y+z.

Thus it follows that (p, q) above is a torsor iff this map is a homomorphism. One sees easily
that this happens iff B2 = BK = 0. In such case, B becomes naturally an R-R-bimodule,
K a left R-module, and restriction δ of ∂′ to it – a module homomorphism, via rb = sb,
br = bs, rk = sk, for any b ∈ B, k ∈ K, r ∈ R and s ∈ S with p(s) = r. Moreover there is
an R-module homomorphism B⊗R M → K, denoted (b, m) 7→ b ·m, given by b ·m = bn for
any n ∈ N with q(n) = m. It clearly satisfies δ(b · m) = b∂(m). On the whole, one gets a
structure which can be described by

Definition 4.5. For a left linear form ∂ : M → R, a ∂-bimodule consists of an R-R-bimodule
B, a left R-module K, and R-linear maps δ : K → B and · : B⊗R M → K satisfying
δ(b ·m) = b∂m for any b ∈ B, m ∈ M . It will be denoted δ· = (B⊗R M → K → B).

Examples of such ∂-bimodules include R⊗R M ∼= M → R, i.e. ∂ itself, (B⊗R M →
B⊗R R ∼= B = B), for any R-R-bimodule B, which we denote C(B), and 0 → K → 0
for any left R-module K, which we denote K[1].

It is easy to show that also conversely, internal groups in Lf/∂ are determined by ∂-
bimodules δ· as above, and that as soon as the map (x, y, z) 7→ x− y + z is a homomorphism
from ∂′×∂ ∂′×d ∂′ to ∂′ over ∂, then there is a torsor structure on ∂′ under the corresponding
group. We summarize this as follows:

Proposition 4.6. For a left linear form ∂ : M → R, internal groups in Lf/∂ are in one-
to-one correspondence with ∂-bimodules. Moreover the underlying linear form of the cor-
responding group is δ⊕ ∂ : K ⊕M → B⊕R, with multiplicative structure (b, r)(b′, r′) =
(br′ + rb′, rr′), (b, r)(k,m) = (b · m + rk, rm). Torsors under this group are in one-to-one
correspondence with diagrams such as (E) above, where B � S � R is a singular extension,
i.e. the ideal i(B) has zero multiplication in S and the induced R-R-bimodule structure coin-
cides with the original one, and moreover i(B)j(K) = 0, the induced R-module structure on
K is the original one, i.e. j(p(s)k) = sj(k), and finally, the induced action B⊗R M → K
coincides with the original one, i.e. j(b · q(n)) = i(b)n. �

Translating now all of the above from Lf to abelian theories, we conclude

Proposition 4.7. For a left linear form ∂ : M → R, each internal group A = (δ⊕ ∂ → ∂)
in Lf/∂ corresponding to the ∂-bimodule δ· = (B⊗R M → K → B) as above, gives rise to a
natural system DA on the corresponding abelian theory T∂. Explicitly, one has

DA
〈x,r1,...,rn−1〉 = K ⊕Bn−1,

with actions given by restricting those in 4.3 for Tδ⊕ ∂ to K ⊕Bn−1 ⊆ (K ⊕M)×(B⊕R)n−1.
A natural system on T∂ is of this form iff all linear extensions by it are again abelian

theories. �
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In view of this, we will in what follows identify internal groups A in Lf/∂ with ∂-bimodules
and with the corresponding natural systems DA on T∂. In particular, equivalence classes of
extensions of T∂ by DA form, by [10], an abelian group isomorphic to H2(T∂; D

A), which we
can as well denote H2(M → R; B⊗R M → K → B), or just by H2(∂; δ·).

Now from [10] we know that any short exact sequence δ′ � δ· � δ′′ induces the exact
sequence

0 → H0(∂; δ′) → · · · → H1(∂; δ′′) → H2(∂; δ′) → H2(∂; δ·) → H2(∂; δ′′) → · · ·

which one can use to reduce investigation of cohomologies, in particular linear extensions by
a ∂-bimodule, to those by more “elementary” ones. In particular, observing the diagrams

Ker(δ) // //

��

K // //

δ

��

Im(δ)
��
ι

��

0 // B B,

and

Im(δ) // ι //

��

��

B // // Coker(δ)

��

B B // 0,

one sees that there are short exact sequences of ∂-bimodules of the form K ′[1] � δ· � ι· and
ι· � C(B) � K ′′[1], so that linear extensions by any δ can be described in terms of those by
bimodules of the form K[1] and C(B).

Before dealing with these, just let us make a note about lower cohomologies – they can
be expressed using derivations similarly to Hochschild cohomology.

Definition 4.8. The group Der(∂; δ·) of derivations of a linear form ∂ : M → R with values
in a ∂-bimodule δ· = (B⊗R M → K → B) consists of pairs of abelian group homomorphisms
(d : R → B,∇ : M → K) satisfying

d∂ = δ∇,

d(rs) = d(r)s + rd(s),

∇(rm) = d(r)m + r∇(m),

under pointwise addition. Its subgroup Ider(∂; δ·) consists of inner derivations ad(k) =
(dk,∇k) for k ∈ K, defined by

dk(r) = rδ(k)− δ(k)r, ∇k(m) = ∂(m)k − δ(k) ·m.

Then by analogy with well known classical facts, 4.7 and 4.10 of [10] readily give
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Proposition 4.9. For a linear form ∂ : M → R and a ∂-bimodule δ· = (B⊗R M → K →
B), one has an exact sequence

0 → H0(∂; δ·) → K
ad−→ Der(∂; δ·) → H1(∂; δ·) → 0.

In other words, there are isomorphisms

H0(T∂; δ
·) ∼= {c ∈ K |∀m ∈ M (∂m)c = (δc) ·m}

and
H1(T∂; δ

·) ∼= Der(∂; δ·)/ Ider(∂; δ·). �

Now for C(B), one has

Proposition 4.10. For a linear form ∂ : M → R and an R-R-bimodule B, there is an
isomorphism

H2(T∂; C(B)) ∼= H2(R; B),

the latter being the MacLane cohomology group.

Proof. Observe the diagram

B // // N // //

��

M

∂
��

B // // S // // R.

It shows that the right hand square is pullback, so that the upper row is completely deter-
mined by the lower one. Thus forgetting the upper row defines an isomorphism, with the
inverse which assigns to a singular extension of R by B the pullback as above. �

Thus one arrives at a well studied situation here. As for the K[1] case, we have

Proposition 4.11. For a linear form ∂ : M → R and a left R-module K, there is an
isomorphism

H2(T∂; K[1]) ∼= Ext1
R(M, K).

Proof. This is obvious from the diagram

K // //

��

∗ p // //

∂p
��

M

∂
��

0 // R R.

�
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But moreover the diagram

Ker(∂) // //

��

M // //

∂

��

Im(∂)
��

��

0 // R R

shows that T∂ is itself a linear extension of a theory corresponding to the linear form of type
a � R, where a is a left ideal in R, by a natural system corresponding to an (a � R)-
bimodule of the form K[1]. And this is clearly the end: one obviously has

Proposition 4.12. An abelian theory without constants cannot be represented nontrivially
as a linear extension of another theory if and only if it is of the type Ta�R, for the left linear
form determined by a left ideal a in a ring R which does not have any nontrivial square zero
two-sided ideals.

Proof. The only nontrivial remark to make here is that for any square zero two-sided ideal
b � R, one gets an extension

k // //
��

��

a // //
��

��

a/k

��

b // // R // // R/b

for any left ideal k with ba ⊆ k ⊆ b ∩ a. �

Finally, consider an abelian theory T with constants. It has a largest subtheory T0 without
constants, obtained from T by removing all morphisms 1 → Xn for n > 0. The constants of
T will then reappear in T0 as pseudoconstants, that is, those unary operations p : X → X
satisfying the identity p(a) = p(b). Conversely, if a theory without constants is obtained
nontrivially in such way, it must have some pseudoconstants.

We know by 4.4 that T0 = T∂ for some linear form ∂ : M → R. Now pseudoconstants
in T∂ correspond to elements p of M satisfying the identity ϕa(p) = ϕb(p) (with a, b as
variables). Using the identity (∗) from 4.2 this gives (1 − ∂p)ab = a, i.e. (∂p)ab = b for
any a, b in any affinity. Then taking a = 〈0, 0〉, b = 〈0, 1〉 in M ×R gives ∂p = 1. Now
clearly there is a p ∈ M with ∂p = 1 if and only if ∂ is surjective, in which case it is split by
σ(r) = rp. Thus in this case our linear form is isomorphic to (projection): Ker(∂)⊕R → R.
Let us fix one such p. We then may declare {p + t0 | t0 ∈ K} to be the set of pseudoconstants
corresponding to nullary operations, where K is either empty or any R-submodule of Ker(∂).
All choices will give equivalent categories of models, the only difference being that for K = ∅
the empty set is also allowed as a model. Each other model A shall then have at least one
element a, and value of the unary operation p on A at a will then be ϕa(p), which does
not depend on a as we just saw. Denoting this element by 0A fixes a canonical R-module
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structure on each non-empty model. Moreover each element of M becomes uniquely written
as m = k + rp with r ∈ R and k ∈ Ker(∂), so ϕa(m) = ϕa(k) + r, i.e. ϕa is completely
determined by its restriction to Ker(∂). Moreover by (∗) of 4.2 it is determined by ϕ0A

alone.
We see that, ignoring the possible empty model, the category T∂-mod is equivalent to the
coslice (Ker ∂)/R-mod. We thus have proved

Proposition 4.13. An abelian theory has at least one pseudoconstant if and only if the
category of its models is equivalent to the category K/(R-mod) of left R-modules under K,
for some ring R and an R-module K, with the possible difference that the empty set is another
model. �

Now observing 2.6.4. we conclude

Corollary 4.14. Any abelian theory with constants is isomorphic to TR;K (defined in 2.6.4.)
for some ring R and left R-module K. �

Concerning linear extensions one observes that by 2.6.4., any theory with constants TR;K is
a trivial untwisted linear extension of TR by the bifunctor constructed there. Also observe
that in any linear extension T′ → T of abelian theories one has constants if and only if the
other does.

On the other hand, a description similar to 4.13 is in fact possible for categories of models
of abelian theories without constants too. For any left linear form ∂ : M → R, denote
(temporarily) by ∂-aff ′ the following category: objects are R-module homomorphisms f :
M → N ; a morphism from f ′ : M → N ′ to f : M → N is a pair (g, n), where g : N ′ → N
is an R-module homomorphism and n ∈ N is an element such that f(x) − gf ′(x) = ∂(x)n
holds for all x ∈ M . Composition is given by (g, n)(g′, n′) = (gg′, n + g(n′)), and identities
have form (id, 0). Equivalently, one might define objects as commutative triangles

M

##FF
FF

FF
FF

F

∂

��

R⊕N

projection
{{xxxxxxxxx

R

and morphisms as commutative diagrams

M

{{ww
ww

ww
ww

w

##FF
FF

FF
FF

F

R⊕N ′

##GGGGGGGGG

// R⊕N

||xxxxxxxxx

R



M. Jibladze, T. Pirashvili: Linear Extensions and Nilpotence of . . . 101

in R-mod. One then has

Proposition 4.15. The category T∂-mod is equivalent to ∂-aff ′ with an extra initial object
added.

Proof. Define a functor ∂-aff ′ → ∂-aff as follows: for f : M → N , define an affinity structure
on N by a +b c = a − b + c, rab = (1 − r)a + rb, and ϕa(x) = f(x) + (1 − ∂x)a. And to a
morphism (g, n) assign the homomorphism of affinities N ′ → N given by n′ 7→ n+g(n′). It is
straightforward to check that this defines a full and faithful functor. Moreover any nonempty
affinity is isomorphic to one in the image of this functor – just choose an element and use it
as zero to define a module structure and a homomorphism from M according to the affinity
identities. �

This allows to give an example, which looks pleasantly familiar
Example. Fix a field k, and let the category of cycles be defined as follows. Objects are

pairs ((V, d), c), where (V, d) is a differential k-vector space and c ∈ V is a cycle, i.e. dc = 0.
A morphism from ((V, d), c) to ((V ′, d′), c′) is a pair (ϕ, x), where ϕ : V → V ′ is a k-linear
differential map and x ∈ V ′ an element with c′ − ϕ(c) = dx. With the evident identities and
composition this forms a category which is clearly of the form T∂-mod, for the linear form
∂ : εk[ε] � k[ε], where ε is an indeterminate element with ε2 = 0.

Now obviously this example admits a linear extension structure over Tk, since εk[ε] is a
square zero ideal. But of course 4.12 provides lots of similar (less cute) examples without
this property.
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