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Abstract. The equisingularity class of a plane irreducible curve is determined by
the semigroup of the curve or, equivalently, by its multiplicity sequence. For a curve
with two branches, the semigroup (now a subsemigroup of N2) still determines the
equisingularity class. We introduce the “multiplicity tree” for the curve, which also
determines the equisingularity class, and construct an algorithm to go back and
forth between the semigroup and the multiplicity tree. Moreover we characterize
the multiplicity trees of plane curve singularities with two branches.

MSC 2000: 13H15, 13A18, 14H50

1. Introduction

If O = k[[X,Y ]]/(F ), where k is an algebraically closed field of characteristic 0, is an irre-
ducible plane algebroid curve (a branch), then the integral closure Ō is a DVR, Ō ∼= k[[t]].
Hence every nonzero element in O has a value. The set of values of elements in O consti-
tutes a numerical semigroup v(O) = S, i.e., a submonoid of N with finite complement to
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N. The smallest nonzero value e ∈ S is the multiplicity e(O) of O. The semigroup is an
important invariant of O and has been studied e.g. in [2], [3], [6], [5], [8], [9], [10], and [11].
Another important invariant is the sequence of multiplicities of the successive blowups of O,
(e(O), e(O′), e(O(2)), . . . ). It is well-known that two plane branches have the same semigroup
if and only if they have the same multiplicity sequence, cf. [12]. If we instead consider plane
analytic branches, these invariants determine the topological class of the branch, cf. [12].

If we have a plane algebroid curve with d branches, O = k[[X, Y ]]/(F1 · · ·Fd), Fi irre-
ducible, the integral closure is a product of DVR’s, Ō ∼= k[[t1]]× · · · × k[[td]], and the set of
values S = v(O) is a submonoid of Nd. The projections Si of S on the coordinate axes are
the semigroups of each branch. Two plane algebroid curves O = k[[X, Y ]]/(F1 · · ·Fd) and
C = k[[X, Y ]]/(G1 · · ·Gd) are said to be formally equivalent if (after a renumbering of the
branches) v(k[[X, Y ]]/(Fi)) = v(k[[X, Y ]]/(Gi)) for i = 1, . . . , d and if the intersection multi-
plicities lO(k[[X, Y ]]/(Fi, Fj)) and lC(k[[X, Y ]]/(Gi, Gj)) are the same for all pairs (i, j), i 6= j.
Waldi has shown in [11] that two plane curves are formally equivalent if and only if they have
the same semigroup.

In [3], we introduced and studied the multiplicity tree of an algebroid curve. This tree
contains exactly the same information as the Si’s together with the pairwise intersection
multiplicities in case of plane curves. In fact the i-th branch of the multiplicity tree of O gives
the multiplicity sequence of k[[X, Y ]]/(Fi), hence the semigroup of that branch. Furthermore,
if the tangents of two branches Fi and Fh are equal in O,O′, . . . ,O(j−1) but not in O(j), then,
by a theorem of Max Noether, the intersection multiplicity equals e
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sequence for the branch Fh. Thus the multiplicity tree gives the same information as the two
semigroups together with the intersection multiplicity between every pair of branches. Thus
two plane algebroid curves are formally equivalent if and only if they (after a renumbering
of the branches) have the same multiplicity tree.

In [1] Apery showed that, if O is a plane branch and O′ is its blowup, then the semigroups
v(O) and v(O′) are strictly related: there is a formula to get a particular generating set, called
the Apery set, for v(O′) from that of v(O) and vice versa (cf. Theorem 2.1). This does not
happen in general for non plane branches and it is the reason why for plane branches the
semigroup characterizes as well as the multiplicity sequence a class of equivalence. In [4]
we used that result of Apery to show how one can get the semigroup from the multiplicity
sequence and vice versa. Our aim is now to generalize these results to the case of a plane
curve with two branches. We point out that most results in Sections 3 and 4 (included
Theorem 4.1) are valid also for more than two branches. However in order to apply a result
of [10] in Proposition 4.2 and for the sake of simplicity in notation in the other results, we
restrict ourselves to the two branches case.

Since we deal with subsemigroups of N2, that are not finitely generated, we need first to
define a suitable set of generators for S. This “Apery set” is no longer finite, but a finite
union of subsets (its components). Each component is the generalization of an element of
the Apery set of a numerical semigroup.

The main result of the paper is Theorem 4.1, that shows how also in the two branches
case the semigroups v(O) and v(O′) are strictly related. All Section 3 prepares this result.
We apply Theorem 4.1 to get the multiplicity tree from the semigroup and vice versa. In the
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last section a purely numerical characterization of a multiplicity tree of a plane curve with
two branches is given (cf. Proposition 5.2). Via the method described in Section 4, this gives
also a constructive characterization of the two branches plane curve semigroups.

2. Preliminaries

We start by recalling some results from the one branch case. If O is a plane branch, we
denote the semigroup v(O) by S. The semigroup S is symmetric, i.e., s ∈ S if and only if
gS − s /∈ S, where gS is the largest integer which does not belong to S. For an element s ∈ S,
let Ωs = {ω0, . . . , ωs−1} consist of the elements x ∈ S such that x− s /∈ S, i.e., the smallest
elements in S in each congruence class (mod s). We suppose that the elements are ordered
so that 0 = ω0 < ω1 < · · · < ωs−1 = gS + s. The set Ωs is called the Apery set of S with
respect to s. In [1] it is shown that there is a duality in Ωs, namely ωi + ωs−1−i = ωs−1 for
i = 0, . . . , s − 1. If x is an element of smallest positive value in O, then O′ = k[[x, y/x]] is
the blowup of O. The mentioned connection between v(O) and v(O′) is the following, cf. [1]:

Theorem 2.1. (Apery) If e is the multiplicity of O and Ωe = {ω0, . . . , ωe−1} is the Apery
set of v(O) with respect to e, then the Apery set of v(O′) with respect to e is {ω0, ω1− e, ω2−
2e, . . . , ωe−1 − (e− 1)e}.

Let O,O′,O(2), . . . be the sequence of consecutive blowups of O and let e0, e1, e2, . . . be
their respective multiplicities. The sequence e0, e1, e2, . . . is called the multiplicity sequence
of O and, since O(i) is regular if i >> 0, we have ei = 1 if i >> 0, that is v(O(i)) = N,
for i >> 0. With the above result of Apery it is possible to determine from v(O) the
multiplicity sequence of O and vice versa. Since the possible multiplicity sequences for plane
curves are characterized (cf. e.g. [4, Theorem 3.2]), this gives also a method to characterize
the semigroups of plane branches. We now give an example to show how to determine the
multiplicity sequence from the semigroup and vice versa.

Example. If the semigroup is v(O) = S = 〈4, 6, 13〉 (it is in fact the semigroup of O =
k[[t4, t6 + t7]]), then the multiplicity e(O) of O is 4 and the Apery set of S with respect to 4 is
{0, 6, 13, 19}. Hence the Apery set of S ′ = v(O′) with respect to 4 is {0, 2, 5, 7}, which gives
S ′ = 〈2, 5〉 and e(O′) = 2. The Apery set of S ′ = v(O′) with respect to 2 is {0, 5}, so the
Apery set of S ′′ = v(O(2)) with respect to 2 is {0, 3}, which gives S ′′ = 〈2, 3〉 and e(O(2)) = 2.
The Apery set of S ′′′ = v(O(3)) with respect to 2 is {0, 1}, so S ′′′ = N and e(O(3)) = 1. Hence
the multiplicity sequence of O is 4, 2, 2, 1, . . .
;. If we start with the multiplicity sequence 4, 2, 2, 1, . . . we can go backwards in the sequence
of blowups. We have e(O(3)) = 1, so S ′′′ = v(O(3)) = N. Since e(O(2)) = 2, we determine
the Apery set of N with respect to 2. This is {0, 1}, so the Apery set of S ′′ with respect
to 2 is {0, 3}, so S ′′ = 〈2, 3〉. Since v(O′) = 2 we get that the Apery set of S ′ with respect
to 2 is {0, 5}, so S ′ = 〈2, 5〉. Finally v(O) = 4 and the Apery set of S ′ with respect
to 4 is {0, 2, 5, 7}, so the Apery set of S with respect to 4 is {0, 6, 13, 19}, and we get
S = 〈4, 6, 13, 19〉 = 〈4, 6, 13〉.

Now let O = k[[X, Y ]]/(F1 · F2), where F1, F2 are irreducible, be an algebroid curve with
two branches. The blowing up of the maximal ideal in O = k[[x, y]] is O′ = ∪n>0(m

n : mn),
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where m = (x, y). This is a semilocal ring with at most two maximal ideals. If we continue
to blow up the Jacobson radical, we have a sequence of overrings O = O(0),O(1),O(2), . . . and
eventually get the integral closure k[[t]]× k[[u]] of O. The integral closure has two maximal
ideals, n1 = tk[[t]]× k[[u]] and n2 = k[[t]]× uk[[u]]. The blowing up tree is a tree, where the
nodes on level i are the localizations at the maximal ideals nj ∩O(i) of O(i). If we replace the
rings with their fine multiplicities, we get the multiplicity tree of O. As long as the ring O(i)

is local, the fine multiplicity is (e(O(i)/q1), e(O(i)/q2)), where q1, q2 are the minimal primes
of O(i). If O(i) has two maximal ideals, then O(i) = (O(i))n1∩O(i) × (O(i))n2∩O(i) : the tree has
split in two branches, in the first there is a local ring R1 = (O(i))n1∩O(i) with integral closure
k[[t]], in the second a local ring R2 = (O(i))n2∩O(i) with integral closure k[[u]]. Their fine
multiplicities are (e(R1), 0) and (0, e(R2)), respectively.

In this case the set of values v(O) of nonzero divisors in O is a subsemigroup of N2.
If α = (α1, α2) ∈ Z2, set ∆(α) = {(n, α2) | n > α1} ∪ {(α1,m) | m > α2} and, if S is a

subsemigroup of N2, ∆S(α) = ∆(α) ∩ S. We call a semigroup local if ∆S((0, 0)) = ∅. It is
immediate that O(i) is local if and only if v(O(i)) is local. As a matter of fact, O(i) has two
maximal ideals if and only if n1 ∩ O(i) 6= n2 ∩ O(i). This happens if and only if there are in
O(i) elements of value (a, 0) and (0, b), for some a, b 6= 0, i.e. if and only if ∆v(O(i))((0, 0)) 6= ∅.

We refer to [3] for more details on the multiplicity tree and the semigroup of a curve with
d ≥ 2 branches.

We introduce two order relations on Z2. The first, ≤, is defined by α ≤ β if αi ≤ βi for
i = 1, 2. We let α < β if α ≤ β and α 6= β. The second, ≤≤, is defined by α ≤≤ β if
αi < βi for i = 1, 2 or α = β. We write α << β if α ≤≤ β and α 6= β.

Proposition 2.2. Let S be the value semigroup of an algebroid plane curve O with two
branches. Then:

a) There exists a γS ∈ Z2 such that ∆S(γS) = ∅ and α ∈ S if α >> γS.

b) We have α ∈ S if and only if ∆S(γS −α) = ∅.
c) Let e be the minimal nonzero element in S, then the blowup O′ of O is local if and only

if ∆S(e) = ∅, and if and only if the tangents of the two branches are equal.

Proof. a) is a well-known property of the semigroup of any algebroid curve (cf. e.g. [3,
Proposition 2.1]).

Property b) holds, i.e. S is a symmetric semigroup, because O is a plane curve and thus
is a Gorenstein ring (cf. [10] or [9]). If the two branches have the same tangent, they can
be parametrized as (tk, atl + · · · ), l > k, and (um, bun + · · · ), n > m, respectively, hence
O = k[[(tk, um), (atl + · · · , bun + · · · )]] = k[[x, y]], e = (k,m) and ∆S(e) = ∅. Obviously the
blowup O′ = k[[x, y/x]] is local, so v(O′) is local.

If the two branches have distinct tangents, they can be parametrized as (tk, atl + · · · ), l>
k and (bun + · · · , um), n ≥ m, respectively; it follows that O = k[[(tk, bun + · · · ), (atl +
· · · , um)]] = k[[x1, x2]]. Let x = x1 + cx2 = (tk + actl + · · · , cum + bun + · · · ). For a suitable
c 6= 0 we have v(x) = (k,m), which is the minimal positive value in v(O). Hence e = (k,m),
but ∆S(e) 6= ∅; moreover we get v(x1/x) = (0, n −m) and v(x2/x) = (l − k, 0), so v(O′) is
not local. Hence c) is proved.



V. Barucci et al.: The Apery Algorithm for a Plane Singularity . . . 5

3. The Apery set

Let O be a (non necessarily plane) curve with two branches, let S = v(O) and let α ∈ S. We
define the Apery set of S with respect to α to be Ωα = {β ∈ S | β−α /∈ S}. The semigroup
S, by its good properties (cf. [3, Proposition 2.1]) is entirely described by the elements of S
in the rectangle {(m,n); 0 ≤ m ≤ γ1 + 1, 0 ≤ n ≤ γ2 + 1}, where γS = (γ1, γ2). It follows
that, although the Apery set Ωα of S is not finite, the finite subset Ωα ∩ {(m,n); 0 ≤ m ≤
γ1 + 1 + α1, 0 ≤ n ≤ γ2 + 1 + α2} determines all Ωα.

We are now interested in a finer description of the Apery set in case of a plane curve with
two branches. Let O be a plane curve with two branches, let S = v(O) and let α ∈ S. We
set:

Definition. Let Ω0
α={β ∈ Ωα | β maximal with respect to <<}. Assume that Ω0

α, . . . ,Ω
i−1
α

are defined. Let Ωi
α = {β ∈ Ωα \ ∪i−1

j=0Ω
j
α | β maximal with respect to <<}.

Lemma 3.1. a) We have Ω0
α = ∆(γS + α).

b) For each β ∈ Ωi
α there exists a δ ∈ Ωi−1

α such that β << δ.

c) There is a finite number m of non-empty Ωi
α.

d) Ωα = Ω0
α ∪ · · · ∪ Ωm−1

α .

e) Ωm−1
α = {(0, 0)}.

f) If β, δ ∈ Ωi
α, then we cannot have β << δ.

Proof. a) By Proposition 2.2 a) we have β ∈ S if β >> γS, ∆S(γS) = ∅, and γS ∈ S (since
∆S(γ − γ) = ∆S(0) = ∅). This gives a).

The statement in b) follows from the definitions.

Choose βi ∈ Ωi
α with β0 >> β1 >> · · · . Since all βi have positive coordinates, each chain

of this type must have length bounded by max{γ1 + α1, γ2 + α2}; so c) is proved.

The statements in d), e) and f) are trivial.

We have also in this situation a duality. This duality will be made more precise later on.

Proposition 3.2. Let β ∈ S. We have β ∈ Ωα if and only if ∆S(γS + α − β) 6= ∅.
Furthermore, if β ∈ Ωα then ∆S(γS + α− β) ⊆ Ωα.

Proof. Suppose ∆S(γS + α − β) 6= ∅. Then β − α /∈ S, since β − α ∈ S implies ∆S(γS +
α − β) = ∅ according to Proposition 2.2 b). Now suppose β ∈ Ωα. Then β ∈ S and
β −α /∈ S so ∆S(γS − β) = ∅ and ∆S(γS + α− β) 6= ∅ according to Proposition 2.2 b). If
δ ∈ ∆S(γS + α− β), then δ −α ∈ ∆(γS − β), but since ∆S(γS − β) is empty, δ −α /∈ S,
so δ ∈ Ωα.

Discussion. Now suppose that O = k[[X, Y ]]/I = k[[x, y]], where I = (F1 · F2) and F1 and
F2 are irreducible.

If the two branches defined by F1 and F2 have the same tangent, we can assume it
is Y = 0 and, according to Weierstrass’ Preparation Theorem, we can assume that F1 =
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Y e1 +
∑e1−1

i=0 ai(X)Y i, F2 = Y e2 +
∑e2−1

i=0 bi(X)Y i, where e1 and e2 are the minimal powers
such that F1 (F2 respectively) contains a term Y e1 (a term Y e2 respectively). Thus F1F2 =
Y E +

∑E−1
i=0 ci(X)Y i, where E = e1 + e2 is the multiplicity of the curve.

If the tangents of the two branches are distinct, we can assume that one is Y = 0, so
F1 = Y e1 +

∑e1−1
i=0 ai(X)Y i; as for F2, if we write it as F2(X+Y, Y ) we get a term Y e2 , where

e2 is the minimal degree of the nonzero terms of F2. Hence after the substitution X = X+Y
and applying Weierstrass’ Preparation Theorem we get again F1F2 = Y E +

∑E−1
i=0 ci(X)Y i,

where E = e1 + e2 is the multiplicity of the curve.
It is clear that, in both cases, we can express O as a k[[x]]-module minimally generated

by 1, y, y2, . . . , yE−1, with v(x) = (e1, e2) and e1 + e2 = E.

Let now u, z ∈ O be two elements such that O is a k[[u]]-module minimally generated by
1, z, z2, . . . , zN−1, where N = n1 + n2 and v(u) = (n1, n2) = n. Hence O ∼= k[[U,Z]]/(F ),
where F (U,Z) = ZN +

∑N−1
i=0 bi(U)Zi. Indeed there is the natural surjective homomorphism

φ : k[[U,Z]] −→ O, whose kernel contains (F ); now kerφ has to be an intersection of two prime
ideals P1 and P2 of height 1 (hence P1 = (G), P2 = (H) and kerφ = (GH), since k[[U,Z]]
is a 2-dimensional UFD); moreover if GH divides F it has to be of the form Zj + Ψ(U,Z)
with j ≤ N and, since O is minimally generated by 1, z, z2, . . . , zN−1 as k[[u]]-module, then
j = N and (GH) = (F ).

Notice that, by the first part of this discussion, the classes x = X + I, y = Y + I ∈ O
always satisfy the condition requested for u and z. Hence we can always assume that O =
k[[x]] + k[[x]]y + k[[x]]y2 + . . .+ k[[x]]yE−1, where v(x) = (e1, e2) = min(v(O) \ {(0, 0)}) and
v(y) = (r, s), with r > e1 and s ≥ e2.

Definitions. Assume that up to the end of the section u, z ∈ O are fixed and let Oi be the
k[[u]]-submodule of O generated by 1, z, . . . , zi, i.e., Oi = k[[u]] + k[[u]]z + · · ·+ k[[u]]zi.

Moreover we set Y0 = {1}, Yi = {zi + φi−1(u, z) | φi−1(u, z) ∈ Oi−1, v(z
i + φi−1(u, z)) /∈

v(Oi−1)}.

Lemma 3.3. For each i < N − 1 and each α ∈ v(Yi) there is a β ∈ v(Yi+1) such that
α << β.

Proof. Let α = v(zi + φi−1(u, z)), where zi + φi−1(u, z) ∈ Yi. Consider zi+1 + zφi−1 ∈ Oi+1.
If v(zi+1 + zφi−1) ∈ v(Oi+1) \ v(Oi), we are finished. Otherwise there is an f1 ∈ Oi such
that v(f1) = v(zi+1 + zφi−1). Hence there is a c1 ∈ k such that v(zi+1 + zφi−1 − c1f1) >
v(zi+1 + zφi−1). If v(zi+1 + zφi−1 − c1f1) ∈ v(Oi+1) \ v(Oi) we are finished, otherwise we go
on. If at some point v(zi+1 + zφi−1 − c1f1 − · · · − cnfn) /∈ v(Oi) we are finished. Otherwise
we get two power series, zi+1 + zφi−1 and c1f1 + · · · such that their difference belongs to any
power of the maximal ideal (u, z) in k[[u, z]], hence they coincide, since k[[u, z]] is complete.
But this is a contradiction since zi+1 + zφi−1 ∈ Oi+1 \ Oi and c1f1 + · · · ∈ Oi.

Lemma 3.4. a) If α,β ∈ v(Yi) we cannot have α << β.

b) For every α ∈ v(Yi−1) and for every β ∈ v(Yi), we cannot have β ≤≤ α.

Proof. a) Let α = v(zi) and β = v(z′i), where zi = zi + φi−1(u, z) and z′i = zi + φ′i−1(u, z). If
α << β, then v(zi−z′i) = α. But zi−z′i = φi−1−φ′i−1 ∈ Oi−1. This contradicts α /∈ v(Oi−1).
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b) If β ≤≤ α, since, by Lemma 3.3, there exists β′ ∈ v(Yi) such that α << β′, we get a
contradiction with a).

Proposition 3.5. Let n = (n1, n2) and N = n1 + n2. For every i = 1, . . . , N − 1, the
set v(Oi) is a free Nn-submodule of N2 generated by 0, v(Y1), . . . , v(Yi), i.e., v(Oi) = Nn ∪
(v(Y1) + Nn) ∪ · · · ∪ (v(Yi) + Nn), where the unions are pairwise disjoint.

Proof. Let g(u, z) = g0(u) + g1(u)z + · · ·+ gi(u)z
i ∈ Oi and let g(U,Z) = g0(U) + g1(U)Z +

· · ·+ gi(U)Zi. If all gi(U) contain a factor Uk, we get v(g(u, z)) = kn + v(g′(u, z)), hence we
may assume that there exists a minimal j ≤ i such that gj(U) is a unit in k[[U ]]. Multiplying
with its inverse, we can assume that g(U,Z) = g0(U)+ · · ·+Zj +gj+1(U)Zj+1 + · · ·+gi(U)Zi.
Weierstrass’ Preparation Theorem implies that there is a unit u(U,Z) ∈ k[[U,Z]] such that
g(U,Z) = u(U,Z)(Zj + hj−1(U)Zj−1 + · · · + h0(U)) = u(U,Z)h(U,Z). Thus v(g(u, z)) =
v(h(u, z)). If j < i, then v(h(u, z)) ∈ v(Oj), and the result follows by induction. If j = i
either h(u, z) /∈ Yi, and the result follows by induction, or h(u, z) ∈ Yi so v(h(u, z)) ∈ v(Yi).

By Lemma 3.4 b), it follows that, for every β ∈ v(Yi) and for every α ∈ v(Oi−1), β 6≡ α
(mod n); hence β = v(zi + φi−1(u, z)) /∈ v(Oi−1) if and only if β 6≡ α (mod n). It follows
that the unions are pairwise disjoint.

Lemma 3.6. If g(u, z) ∈ Yi, then v(g(u, z)) ∈ Ωn.

Proof. Let g(u, z) = zi + φi−1(u, z) ∈ Yi, where φi−1 ∈ Oi−1. If v(g) /∈ Ωn, then v(g) − n ∈
v(O) = S. Hence v(g) ∈ v(O)+n, so v(g) = v(h)+n for some h ∈ O. If v(h) ∈ v(Oi−1), then
v(g) = v(h) +n ∈ v(Oi−1) which is a contradiction. Thus we can suppose that h ∈ Ol \Ol−1

for some l ≥ i. By Proposition 3.5 v(h) = mn + v(zl + ψl−1(u, z)) for some zl + ψl−1 ∈ Yl.
Now v(zl + ψl−1 − zl−ig) = v(zl + ψl−1 − zl − zl−iφi−1) = v(ψl−1 − zl−iφi−1) ∈ v(Ol−1).
But v(zl + ψl−1) = v(h) − mn ≤≤ v(h) << v(g) ≤≤ v(zl−ig) so v(zl + ψl−1 − zl−ig) =
v(zl + ψl−1) /∈ v(Ol−1), which is a contradiction.

Lemma 3.7. We have Ωn = ∪N−1
i=0 v(Yi).

Proof. By Lemma 3.6 we have v(Yi) ⊆ Ωn, in particular we see that all elements in ∪v(Yi)
are in different congruence classes (mod n). Since, by Proposition 3.5, S = v(O) = Nn ∪
· · · ∪ (v(YN−1) + Nn), we get the other inclusion.

Proposition 3.8. We have v(YN−1−i) = Ωi
n.

Proof. We show first that Ω0
n = v(YN−1). Let α ∈ Ω0

n. If α ∈ v(Yi) for some i < N − 1,
then α is not maximal according to Lemma 3.3, hence α /∈ Ω0

n, a contradiction. Suppose
now α ∈ v(YE−1) and not in Ω0

n. Then α is not maximal in Ωn = ∪N−1
i=0 v(Yi). Thus there

exists a β ∈ v(Yj) for some j such that α << β. Hence, if j = N − 1, we contradict
Lemma 3.4. If j < N − 1 we get, by Lemma 3.3, that there exists a δ ∈ v(YN−1) such
that α << β << δ, which again contradicts Lemma 3.4. Assume now that the statement
is proved for j = 0, 1, . . . , i − 1. Then Ωn \ ∪i−1

j=0Ω
j
n = Ωn \ ∪i−1

j=0v(YN−1−j). The statement
Ωi

n = v(YN−1−i) has now the same proof as above.
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Corollary 3.9. There are the same number of Ωi
n’s as Yi’s, namely N .

Notation. We will from now on denote v(Yi) by Ωn
i . Thus Ωn

i = ΩN−1−i
n . We call it the i-th

component of the Apery set of S with respect to n.

Example. Consider the semigroup v(O), where O = k[[X, Y ]]/(Y 4−2X3Y 2−4X5Y +X6−
X7)(Y 2 − X3) and choose n = e = (4, 2) (cf. Fig. 1, where the elements of Ωe are marked

with circles). We have Ωe = ∪5
i=0Ω

e
i , where Ω

(4,2)
0 = {(0, 0)}, Ω

(4,2)
1 = {(6, 3)}, Ω

(4,2)
2 =

{(13, n) | n ≥ 7}, Ω
(4,2)
3 = {(19, n) | n ≥ 10}, Ω

(4,2)
4 = {(n, 13) | n ≥ 27} ∪ {(26, n) | n ≥ 14},

and Ω
(4,2)
5 = {(n, 16) | n ≥ 33} ∪ {(32, n) | n ≥ 17}.

b r b r r r bbb
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bbb
bb

r r rrr
rrr
rrr
rrr

r bbb
bbb
bbb
bb

r rrr
rrr
rrr
r

r rrr
rrr
rrr

r rrr
rrr
rr

r b b b b b b b b bbbb
bbb
b

rrr
rrr
r

r r r r r r r rrrr
rr

rrr
rr

rrr
rr

r b b bbbb
b

r r rr r rr r rr r r

4 8 12 16 20 24 28 32

2

4

6

8

10

12

14

16

Fig. 1. The semigroup of O =k[[X, Y ]]/(Y 4 − 2X3Y 2 − 4X5Y +X6 −X7)(Y 2 −X3)

Proposition 3.10. We have α ∈ Ωn
i if and only if ∆S(γS + n−α) ⊆ Ωn

N−1−i.

Proof. Let α = v(zi+φi−1(u, z)) ∈ Ωn
i , with φi−1 ∈ Oi−1. We know that ∆S(γS+n−α) ⊆ Ωn

by Proposition 3.2. Pick a β ∈ ∆S(γS + n−α). Suppose β ∈ Ωn
j , so β = v(yj + ψj−1(x, y))

for some ψj−1 ∈ Oj−1. Now α + β ∈ ∆S(γS + n) = v(YN−1). But α + β = v((zi +
φi−1)(z

j + ψj−1)) = v(zi+j + Φ(u, z)). We want to show that j = N − i − 1, i.e., that
i+j = N−1. If i+j < N−1, then yi+j+Φ ∈ Oi+j, so v(yi+j+Φ) ∈ v(Oi+j) which contradicts
α + β ∈ v(YN−1), since, for every f(u, z) ∈ YN−1, f(u, z) /∈ Oi+j. If i + j > N − 1, then
zi+j = zi+j−Nf(u, z), where ZN +fN−1(U)Y N−1 + · · ·+f0(U) = Y N −f(U,Z) is the equation
of our curve in k[[U,Z]]. Since none of the fi’s is a unit, we can factor out an u from f(u, z).
Now neither φi−1 nor ψj−1 contains a pure power of z, since if there were a pure power of z in
e.g. φi−1, then zi+φi−1 would lie in some Ok with k < i by Weierstrass’ Preparation Theorem.
The same applies for ψj−1. Thus we can factor out an u from Φ = zjφi−1 +ziψj−1 +φi−1ψj−1,
and thus from zi+j + Φ. Thus v(zi+j + Φ)− n ∈ S, so v(yi+j + Φ) /∈ Ωn, a contradiction.
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4. Blowing up

Let O = k[[x, y]] be a plane curve with two branches, where v(x) = e = (e1, e2) is the smallest
value in S \ {0}. The blowup of O is O′ = k[[x, y/x]]. We will now derive the connection
between the Apery sets of v(O) and v(O′) with respect to e, in case also O′ is local.

Theorem 4.1. Assume that O and O′ are both local rings. Let Ωe
i and (Ω′

i)
e denote the

i-th component of the Apery set with respect to e of v(O) and v(O′), respectively. Then
Ωe

i = (Ω′
i)

e + ie.

Proof. For 0 ≤ i ≤ E − 1, denote by Yi the subsets of O defined as in Section 3.
Consider the elements in O′ as power series in x and z = y/x. Then O′ is a k[[x]]-module

minimally generated by 1, z, . . . , zE−1, where E = e1 + e2. Denote by O′
i the k[[x]]-module

generated by 1, z, . . . , zi and let Y ′
i = {zi + φi−1(x, z) | φi−1(x, z) ∈ O′

i−1, v(z
i + φi−1(x, z)) /∈

v(O′
i−1)}, (Ω′

i)
e = v(Y ′

i ). We know, by the results of previous section, that v(Yi) = Ωe
i

(respectively v(Y ′
i ) = (Ω′

i)
e) is the i-th component of the Apery set of v(O) (respectively

v(O′)) with respect to e.
Notice that v(O′

i) and v(Oi) contain exactly the same congruence classes (mod e), that
is, if α ∈ N2, then there exists β ∈ v(Oi) such that β ≡ α (mod e) if and only if there
exists β′ ∈ v(O′

i) such that β′ ≡ α (mod e). In fact if α ≡ β = v(f0(x) + f1(x)y + . . . +
fi(x)y

i) ∈ v(Oi), then β = v(f0(x) + f1(x)xz + . . . + fi(x)x
izi) ∈ v(O′

i) and, conversely, if
α ≡ β′ = v(g0(x)+ g1(x)z+ . . .+ gi(x)z

i) ∈ v(O′
i), then β = β′ + ie = v((g0(x)+ g1(x)y/x+

. . .+ gi(x)y
i/xi)xi) ∈ v(Oi).

We claim that Y ′
i x

i ⊆ Yi. If f(x, z) ∈ Y ′
i , then f(x, y/x)xi is an element of the form

requested in Yi and, if α = v(f(x, z)), then v(f(x, x/y)xi)) = α + ie /∈ v(Oi−1), since
α /∈ v(O′

i−1).
By the inclusion Y ′

i x
i ⊆ Y ′

i we get, passing to the values, that (Ω′
i)

e + ie ⊆ Ωe
i . To

prove the equality, assume that i is the smallest index such that (Ω′
i)

e + ie ( Ωe
i . Then in

v(Oi) = Ne ∪ (Ωe
0 + Ne) ∪ · · · ∪ (Ωe

i + Ne) (cf. Proposition 3.5) there is a congruence class
not appearing in v(O′

i) = Ne ∪ ((Ω′
0)

e + Ne) ∪ · · · ∪ ((Ω′
i)

e + Ne), which is in contradiction
with what we have showed above.

Assume now that O is local and O′ is not local; this happens when the two branches of O have
distinct tangents (cf. Proposition 2.2c)). In this case O′ is the direct product of localizations
at its maximal ideals (cf. [3, Proposition 3.1]), hence S ′ = v(O′) = S ′1 × S ′2, where S ′1 and S ′2
are the two projections of S ′.

If S = v(O), the projections S1 and S2 of S are the (numerical) value semigroups of the
two branches ofO, so the connection between S1 and S ′1 (and between S2 and S ′2, respectively)
is described in 2.1. Thus, if we know S and consequently its projections S1 and S2, we get
easily S ′ = S ′1 × S ′2.

On the other hand, if we know S ′ and consequently its projections S ′1 and S ′2, we get
the projections S1 and S2 of S, but they are not enough to determine S, that is not a
direct product. To get a precise description of S we can use some results from [10]. Let
0 = a0 < · · · < ae1−1 and 0 = b0 < · · · < be2−1 be the Apery sets of S1 and S2, respectively,
with respect to their smallest positive elements e1 and e2, then we have the following result.
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Proposition 4.2. [10, Theorems 6 and 18] Suppose O has distinct tangents at the origin.
Let P = {(aj+ie1, bi+je2) | 0 ≤ i ≤ e1−1, 0 ≤ j ≤ e2−1}. Then v(O) = S1×S2\∪p∈P ∆S(p).

Finally, if O is not local (and thus also O′ is not local), both S = v(O) and S ′ = v(O′) are
direct products of their projections: S = S1 × S2, S

′ = S ′1 × S ′2; it follows that the result for
the one branch case (2.1) is enough to describe the connection between S and S ′.

4.1. From the semigroup to the multiplicity tree

We will use our results to determine the multiplicity tree of a plane curve with two branches
O from its semigroup and vice versa. The fine multiplicty of O is the smallest nonzero value
in v(O). By Theorem 4.1, we get the semigroup of the blowup O′ from the semigroup of O.
If O′ is local, we get the fine multiplicity as the smallest nonzero value in v(O′). We continue
like this as long as the blowup is local. At some point a blowup will have two maximal ideals.
Then the semigroup is the product of the two projections, S = S1 × S2, and the multiplicity
tree splits in two branches with fine multiplicity (e1, 0) and (0, e2), where ei is the smallest
positive value in Si, i = 1, 2. After that point, the blowup is the product of the blowups of
the two branches, so we can use the corresponding results for one branch to continue. In this
way the multiplicity tree is determined.

We illustrate our result with an example.

Example. Let us start with a semigroup for a plane curve as in Fig. 1. This semigroup
is local, and by Theorem 4.1 we get for the blowup Ω

(4,2)
0 = {(0, 0)}, Ω

(4,2)
1 = {(2, 1)},

Ω
(4,2)
2 = {(5, n) | n ≥ 3}, Ω

(4,2)
3 = {(7, n) | n ≥ 4}, Ω

(4,2)
4 = {(n, 5) | n ≥ 11}∪{(10, n) | n ≥ 6},

and Ω
(4,2)
5 = {(n, 6) | n ≥ 13} ∪ {(12, n) | n ≥ 7}. This gives the whole semigroup of the

blowup, since the semigroup is the free (4, 2)-module on this set, cf. Proposition 3.5. The
semigroup is shown in Fig. 2. This semigroup is still local with fine multiplicity (2, 1). We

show Ω(2,1) in Fig. 3. In fact Ω
(2,1)
0 = {(0, 0)}, Ω

(2,1)
1 = {(5, n) | n ≥ 3}, Ω

(2,1)
2 = {(n, 5) | n ≥

11} ∪ {(10, n) | n ≥ 6}. Applying again Theorem 4.1 and Proposition 3.5, we get the
semigroup shown in Fig. 4. This semigroup is still local with fine multiplicity (2, 1) and Apery

sets Ω
(2,1)
0 = {(0, 0)}, Ω

(2,1)
1 = {(3, n) | n ≥ 2}, Ω

(2,1)
2 = {(n, 3) | n ≥ 7} ∪ {(6, n) | n ≥ 4}.

In the next blowup we get the semigroup in Fig. 5 which is still local with fine multiplicity
(1, 1). The branches now have different tangents, since ∆S((1, 1)) 6= ∅, cf. Proposition 2.2 c).
Both projections of the semigroup are N, hence the next blowup has semigroup N×N. Thus
we get the multiplicity tree in Fig. 6.
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Fig. 2. The semigroup of the blowup of O
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Fig. 3. The semigroup of the blowup of O
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Fig. 4. The semigroup of the second blowup of O
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4.2. From the multiplicity tree to the semigroup

Now suppose that we have a multiplicity tree for a plane curve with two branches. At some
level we have the fine multiplicities (1, 0) and (0, 1) on the two branches. If on the previous
level we still have two maximal ideals, we can blow down each branch and the semigroup will
be the product of the two semigroups. We continue like this to a level j, where on level j− 1
we have a local ring. We can, in the same way as above, get the projections S1 and S2 of
S = v(O(j−1)) on the coordinate axes and apply Proposition 4.2. After that we can continue
with our Theorem 4.1. Finally we get the semigroup of O.

Also here we give an example.

Example Now we start with the multiplicity tree in Fig. 7. The semigroup on level 3
is N × N, since the fine multiplicities are (1, 0) and (0, 1), respectively. On the previous
level the ring still has two maximal ideals, both with multiplicity 2. The Apery set of
N with respect to 2 is {0, 1}, so on the previous level the Apery set with respect to 2 is
{0, 3}, which gives the semigroup 〈2, 3〉 on level 2. Thus the semigroup of the curve is
〈2, 3〉 × 〈2, 3〉. Proposition 4.2 gives the local semigroup in Fig. 8 on level 1, with fine

multiplicity (2, 2), and Apery sets with respect to (2, 2) equal to: Ω
(2,2)
0 = {(0, 0)}, Ω

(2,2)
1 =

{(4, 2), (5, 2), (2, 4), (2, 5)}, Ω
(2,2)
2 = {(n, 4) | n ≥ 8} ∪ {(4, n) | n ≥ 8} ∪ {(6, 7), (7, 7), (7, 6)},

and Ω
(2,2)
3 = {(n, 9) | n ≥ 10} ∪ {(9, n) | n ≥ 10}. Then we use Theorem 4.1 to get the

semigroup at level 0. We have the fine multiplicity (2, 2), and for the Apery sets we get

Ω
(2,2)
0 = {(0, 0)}, Ω

(2,2)
1 = {(6, 4), (7, 4), (4, 6), (4, 7)}, Ω

(2,2)
2 = {(n, 8) | n ≥ 12} ∪ {(8, n) | n ≥

12} ∪ {(10, 11), (11, 11), (11, 10}, and Ω
(2,2)
3 = {(n, 15) | n ≥ 16} ∪ {(15, n) | n ≥ 16}. This

gives the semigroup in Fig. 9.
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5. The multiplicity tree of a plane curve with two branches

The possible multiplicity sequences of a plane branch, and thus also the semigroups are
characterized (cf. e.g. [4, Theorem 3.2]). In order to extend also these results to curves with
two branches, we will now give an explicit characterization of the multiplicity tree of a plane
curve with two branches. With the results of previous sections this is also a characterization
of the semigroup of a plane curve with two branches.

Suppose we have a plane branch with multiplicity sequence e0, e1, . . . . It is well-known
that, for each i ≥ 0, ei =

∑k
h=1 ei+k, for some k ≥ 1 (cf. [3, Theorem 5.11]). In particular the

sequence is not increasing. The restriction number r(ej) of ej is defined to be the number of

sums ei =
∑k

h=1 ei+k where ej appears as a summand. It is also well-known that, if R is a
plane branch, r(ej) = 1 or 2, for j ≥ 1 (cf. [7, Corollary 3.5.7]). The ring R(j) obtained by
blowing up j times R is classically called a free point if r(ej) = 1, where ej = e(R(j)) and
a satellite point if r(ej) = 2. When, in a multiplicity sequence of a plane branch, we have
ei > ei+1, then, if the Euclidean division gives

ei = ei+1qi + ri (0 ≤ ri < ei+1)

we will have in the sequence qi times ei+1 and then, if ri 6= 0, ri:

ei > ei+1 = ei+2 = · · · = ei+qi
> ri = ei+qi+1.

It is clear that the elements ei+2, . . . , ei+qi
, ei+qi+1 have restriction number 2, because any

of them is a summand of the previous one and of ei. Since ei+qi
> ei+qi+1, our multiplicity

sequence is uniquely determined with elements of restriction number 2 (corresponding to
satellite points), up to the gcd(ei, ei+1) = eN . After eN , we will have any number q (0 ≤ q)
of elements equal to eN , before an element eN+q+1 < eN+q, that starts another Euclidean
algorithm. The elements eN+1, . . . , eN+q+1 have restriction number 1, because any of them
is a summand only for the previous one and corresponds to free points.

What is recalled above (and it is well-known) is got from the fact that, if R(i) has a
parametrization

(tei , ctni + · · · )
with ei < ni , so that e(R(i)) = ei, and c 6= 0 (always possible by Puiseux Theorem), then
the blowup R(i+1) has a parametrization

(tei , ctni−ei + · · · )

so that e(R(i+1)) = ei+1 = min(ei, ni − ei).
If ei > ei+1, i.e. ei+1 = ni − ei, the exponent ni is uniquely determined. In this case

the couple ei, ei+1 (or ei, ni) is enough to determine the multiplicity sequence as long as
the restriction number is 2. If we include the coefficient c of the parametrization of R(i) as
information, then also the tangents of R(i), R(i+1), . . . are determined as long as we have
satellite points.

Example. Consider the multiplicity sequence e0 = 7, e1 = 2, e2 = 2, e3 = 2, e4 = 1, e5 =
1, e6 = 1, . . . , that is the multiplicity sequence of a plane branch (cf. [4, Theorem 3.2]). For
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the restriction numbers we get: r(e0) = 0, r(e1) = 1, r(e2) = 2, r(e3) = 2, r(e4) = 2, r(e5) =
2, r(e6) = 1, . . . . Notice that, after 7,2 (since 7 > 2) all the numbers in the multiplicity
sequence are determined as long as the restriction number is 2. We can suppose that a plane
branchR = R(0) with multiplicity sequence 7, 2, 2, 2, 1, 1, . . . has parametrization (t7, ct9+· · · )
with c 6= 0. Hence the successive blowups are R(1) = (t7, ct2 + · · · ), R(2) = (c−1t5 + · · · , ct2 +
· · · ), R(3) = (c−2t3+· · · , ct2+· · · ), R(4) = (c−3t+· · · , ct2+· · · ), R(5) = (c−3t+· · · , c4t+· · · ),
where R(2), . . . , R(5) are satellite points.

Another example. Consider the multiplicity sequence 2,2,2,1,1, . . . . The restriction num-
bers are 0,1,1,1,2,1,1, . . . . In this case the first two elements of the multiplicity sequence
do not determine the following ones. We can suppose that a plane branch R = R(0) with
multiplicity sequence 2, 2, 2, 1, 1, . . . has parametrization (t2, ctn + · · · ) with 2 < n and c 6= 0,
but the exponent n is not uniquely determined in this case. The value semigroup is 〈2, 7〉, so
the characteristic exponents are 2 and 7, so R has a parametrization (t2, at4 + bt6 +ct7 + · · · ),
with a and b arbitrary but with c 6= 0.

We denote the tangent vector of R at the origin by tgR.

Lemma 5.1. Let R be a plane branch with multiplicity sequence e0, e1, . . . . Suppose that R(i)

has a parametrization
(tei , ctni + · · · )

with ei < ni , and c 6= 0, so that e(R(i)) = ei and tgR(i) = (1, 0), then:

if ni < 2ei (equivalently ei > ei+1), we have tgR(i+1) = (0, 1);

if ni ≥ 2ei (equivalently ei = ei+1), we have to distinguish two cases:

1) In case r(ei+1) = 2:

if r(ei+2) = 2, then tg R(i+1) = (1, 0);

if r(ei+2) = 1, then tgR(i+1) = (1, c), with c 6= 0.

Moreover if we have a plane branch multiplicity sequence e0, e1, . . . , with r(ei+1) =
2 and r(ei+2) = 1, then, for each c 6= 0, there exists a plane branch R such that
tgR(i) = (1, 0) and tg R(i+1) = (1, c).

2) In case r(ei+1) = 1, tg R(i+1) = (1, c).

Moreover if we have a plane branch multiplicity sequence e0, e1, . . . , with r(ei+1) =
1, then, for each c, there exists a plane branch R such that tg R(i) = (1, 0) and
tgR(i+1) = (1, c).

Proof. If ni < 2ei, the claim follows immediately from the parametrization of the blowup.
Suppose ni ≥ 2ei. In case 1), in the parametrization (tei , ctni+· · · ) of R(i), the exponent ni

is uniquely determined by the multiplicity sequence, thus, if r(ei+2) = 2, we have necessarily
ni > 2ei and (tei , ctni−ei +· · · ), with ei = ei+1 < ni−ei = ni+1, is a parametrization for R(i+1).
Hence tg R(i+1) = (1, 0). If, on the other hand, r(ei+2) = 1, we have necessarily ni = 2ei and
R(i+1) = (tei , ctni−ei + · · · ), with ei = ei+1 = ni − ei = ni+1, has tg (1, c), with c 6= 0.

In case 2), in the parametrization (tei , ctni + · · · ) of R(i), the exponent ni is not uniquely
determined by the multiplicity sequence (although the value semigroup of R(i) and the char-
acteristic exponents are). Also in this case of course, if ni > 2ei, tg R(i+1) = (1, 0) and, if
ni = 2ei, tg R(i+1) = (1, c), but the two possibilities are not forced by any other condition.
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Recall that if O is a plane curve with two branches R and T , then O is local, so the tree
has not split, as long as the branches have the same tangents, cf. Proposition 2.2 c). If i
is the first index such that R(i) and T (i) have different tangents, then i is the splitting level
of (the multiplicity tree of) the curve. With this in mind, we can now give the following
characterization for a multiplicity tree of a plane curve with two branches.

Proposition 5.2. Let e0, e1, . . . and f0, f1, . . . be two plane branch multiplicity sequences.
They give a multiplicity tree of a plane curve with two branches with splitting node at level k
if and only if the following conditions are satisfied:

1) ei−1 = ei if and only if fi−1 = fi, for i = 1, . . . , k − 1.

2) r(ei) = r(fi) , for i = 0, . . . , k.

3) If ek−1 > ek, then fk−1 = fk.

4) If r(ek) = r(fk) = r(ek+1) = r(fk+1) = 2 and if ek−1 = ek, then fk−1 > fk.

Proof. Conditions 1) and 2) are necessary and sufficient in order that the two multiplicity
sequences are “very similar” up to level k. Conditions 3) and 4) are necessary and sufficient
in order that the two multiplicity sequences are not “too similar” around level k.

Denote by R and T the two branches and by R = R(0) ⊂ R(1) ⊂ · · · and T = T (0) ⊂
T (1) ⊂ · · · the respective blowing ups.

Proof of necessity:
1) If for example ei−1 > ei and fi−1 = fi, supposing that tgR(i−1) = tg T (i−1) = (1, 0),

we have by Lemma 5.1 tgR(i) = (0, 1) and tg T (i) = (1, c), for some constant c, so level i
(i ≤ k − 1) is necessarily a splitting level, a contradiction.

2) Suppose r(ei) = 1 and r(fi) = 2, for some i ≤ k. It means that ei is a summand only
for ei−1 and fi is a summand for fi−1 and for fi−j, for some j > 1. This is in contradiction
with the fact that the node (ei−j, fi−j) is the sum of the nodes of a subtree rooted in it (and
we are supposing that the tree has splitting level k ≥ i) (cf. [3, Theorem 5.11, c)]).

3) If ek−1 > ek and fk−1 > fk, supposing that tgR(k−1) = tg T (k−1) = (1, 0), we get
tgR(k) = tg T (k) = (0, 1) and level k is not a splitting level, a contradiction.

4) If r(ek) = r(fk) = r(ek+1) = r(fk+1) = 2, ek−1 = ek and fk−1 = fk, then supposing
that tgR(k−1) = tg T (k−1) = (1, 0), we get by Lemma 5.1 tgR(k) = tg T (k) = (1, 0), impossible
for a splitting level.

We have to prove now that the conditions are sufficient. Suppose we have two plane branch
multiplicity sequences e0, e1, . . . and f0, f1, . . . fulfilling conditions 1), 2), 3) and 4). We want
to show that there exists a curve O with the following multiplicity tree
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Suppose we have a plane curve O with two branches R and T such that R(j) has the same
tangent as T (j), for j = 0, . . . , i and suppose tgR(i) = tg T (i) = (1, 0), where i ≤ k − 2. We
want to show that there exists a plane curve such that tgR(i+1) = tg T (i+1).

If ei > ei+1, then by 1) also fi > fi+1 and soR(i+1) and T (i+1) have same tangent (= (0, 1)).
If ei = ei+1, then by 1) also fi = fi+1. Now, if r(ei+1) = r(fi+1) = 2 and r(ei+2) = r(fi+2) = 2
(cf. condition 2)), then tgR(i+1) = tg T (i+1) = (1, 0), if r(ei+1) = r(fi+1) = 2 and r(ei+2) =
r(fi+2) = 1 (cf. condition 2)), by Lemma 5.1 we can choose the two branches with the same
coefficient c in the parametrizations of R(i) and T (i), so that tgR(i+1) = tg T (i+1) = (1, c).
Finally, if r(ei+1) = r(fi+1) = 1, then, again by Lemma 5.1, we can choose a curve such that
tgR(i+1) = tg T (i+1) = (1, c).

Now, if we have ek−1 > ek and fk−1 = fk (cf. condition 3)), then, supposing tgR(k−1) =
tg T (k−1) = (1, 0), we get tgR(k) = (0, 1) and tg T (k) = (1, c), so the curve must split at level
k. On the other hand, if we have ek−1 = ek and fk−1 = fk, then by condition 2) r(ek) = r(fk).
If r(ek) = r(fk) = 1, then, supposing tgR(k−1) = tg T (k−1) = (1, 0), by Lemma 5.1, case 2),
we get tgR(k) = (1, c) and tg T (k) = (1, d) and we can choose the branches such that c 6= d. If
r(ek) = r(fk) = 2, then by condition 4), r(ek+1) 6= 2 or r(fk+1) 6= 2, so that again by Lemma
5.1 we can always realize different tangents for R(k) and T (k).

Example. Consider the two plane branch multiplicity sequences 62, 62, 18, 18, 18, 8, 8, 2, 2, 2,
2, 1, . . . and 30, 30, 10, 10, 10, 4, 4, 2, 2, 2, 2, 1, . . . . According to Proposition 5.2, the possible
splitting levels for a multiplicity tree (of a plane curve with two branches with those mul-
tiplicity sequences for the branches) are only k = 0, 1, 4. In fact k = 2 is not possible for
condition 3), k = 3 is not possible for condition 4) and k ≥ 5 is not possible for condition 2).
Examples of curves that realize these three different multiplicity trees are k[[(t62, u70 + u74 +
u79), (t142 + t143, u30)]], that splits at level 0, k[[(t62, u30), (t124 + t142 + t143, u70 + u74 + u79)]]
that splits at level 1 and k[[(t62, u30), (t142 + t143, u70 + u74 + u79)]] that splits at level 4.



18 V. Barucci et al.: The Apery Algorithm for a Plane Singularity . . .

References
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[2] Barucci, V.; D’Anna, M.; Fröberg, R.: The semigroup of values of a one-dimensional
local ring with two minimal primes. Commun. Algebra 28 (2000), 3607–3633.

Zbl 0964.13013−−−−−−−−−−−−
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[4] Barucci, V.; D’Anna, M.; Fröberg, R.: On plane algebroid curves. In: Commutative ring
theory and applications, 37–50, Lect. Notes Pure Appl. Math. 231, Marcel Dekker 2002.
Zbl pre02084919−−−−−−−−−−−−−

[5] Bayer, V.: Semigroup of two irreducible algebroid curves. Manuscr. Math. 39 (1985),
207–241. Zbl 0581.14021−−−−−−−−−−−−

[6] Campillo, A.; Delgado, F.; Kiyek, K.: Gorenstein property and symmetry for one-
dimensional local Cohen-Macaulay rings. Manuscr. Math. 83 (1994), 405–423.

Zbl 0822.13001−−−−−−−−−−−−
[7] Casas-Alvero, E.: Singularities of plane curves. Cambridge University Press, 2000.

Zbl 0967.14018−−−−−−−−−−−−
[8] D’Anna, M.: The canonical module of a one-dimensional reduced local ring. Commun.

Algebra 25 (1997), 2939–2965. Zbl 0870.13010−−−−−−−−−−−−
[9] Delgado, F.: Gorenstein curves and symmetry of the semigroup of values. Manuscr.

Math. 61 (1988), 285–296. Zbl 0692.13017−−−−−−−−−−−−
[10] Garcia, A.: Semigroups associated to singular points of plane curves. J. Reine

Angew. Math. 336 (1982), 165–184. Zbl 0484.14008−−−−−−−−−−−−
[11] Waldi, R.: On the equivalence of plane curve singularities. Commun. Algebra 28 (2000),

4389–4401. Zbl 0969.14019−−−−−−−−−−−−
[12] Zariski, O.: Le problème des modules pour les branches planes. Hermann, Paris, 1986.

Zbl 0592.14010−−−−−−−−−−−−

Received November 10, 2003; revised version August 26, 2004

http://www.emis.de/MATH-item?0061.35404
http://www.emis.de/MATH-item?0964.13013
http://www.emis.de/MATH-item?0963.13021
http://www.emis.de/MATH-item?02084919
http://www.emis.de/MATH-item?0581.14021
http://www.emis.de/MATH-item?0822.13001
http://www.emis.de/MATH-item?0967.14018
http://www.emis.de/MATH-item?0870.13010
http://www.emis.de/MATH-item?0692.13017
http://www.emis.de/MATH-item?0484.14008
http://www.emis.de/MATH-item?0969.14019
http://www.emis.de/MATH-item?0592.14010

