Primeness in Near-rings of Continuous Functions 2

G. L. Booth

University of Port Elizabeth Port Elizabeth 6000, South Africa

Abstract. This paper is a continuation of work done by the present author together with P. R. Hall [1]. We characterise the prime and equiprime radicals of $N_0(G)$ for certain topological groups G. Various results are obtained concerning primeness and strongly primeness for the sandwich near-ring $N_0(G, X, \theta)$. MSC 2000: 16Y30, 22A05

1. Preliminaries

In this paper, all near-rings will be right distributive. All of the near-rings N considered in this paper will also be *zero-symmetric*, that is x0 = 0 for all $x \in N$. (The identity 0x = 0 follows of course from the right distributivity.) The notation " $A \triangleleft N$ " means "A is an ideal of N". We refer to Pilz [12] for all undefined concepts concerning near-rings.

It is well-known (cf. McCoy [11]) that there are a number of equivalent definitions for primeness in associative rings. These definitions do not coincide for zero-symmetric nearrings. Consequently, a number of generalisations of primeness have appeared in the literature of near-rings. The classical notion is given in [12]: A near-ring N is called *prime* (resp. semiprime) if $A, B \triangleleft N$ (resp. $A \triangleleft N$), AB = 0 implies A = 0 or B = 0 (resp. $A^2 = 0$ implies A = 0). N is called 3-prime (resp. 3-semiprime) if $x, y \in N$ (resp. $x \in N$) xNx = 0 implies x = 0 or y = 0 (resp. xNy = 0 implies x = 0). An ideal I of N is called prime (resp. 3-prime) if the factor near-ring N/I is prime (resp. 3-prime).

A radical map is a mapping ρ which assigns to every near-ring N an ideal $\rho(N)$ of N such that (i) if $f: N \to R$ is a surjective near-ring homomorphism, then $f(\rho(R)) \subseteq \rho(S)$ and (ii) $\rho(N/\rho(N)) = 0$ for every near-ring N. If in addition (iii) $\rho(\rho(N)) = \rho(N)$ and (iv) $I \triangleleft N$,

0138-4821/93 $2.50 \odot 2005$ Heldermann Verlag

 $\rho(I) = I$ implies that $I \subseteq \rho(N)$ for all near-rings N, then ρ is called a Kurosh-Amitsur radical (KA-radical). The prime radical $\mathcal{P}(N)$ (resp 3-prime radical $\mathcal{P}_3(N)$) is the intersection of the prime (resp. 3-prime) ideals of N. It is clear that \mathcal{P} and \mathcal{P}_3 are radical maps. Kaarli and Kriis [8] have shown that \mathcal{P} is not a KA-radical. It is not known whether \mathcal{P}_3 is a KA-radical, but this is widely considered to be unlikely.

N is called *equiprime* (cf. Booth, Groenewald and Veldsman [2]) if $a, x, y \in N$, anx = any for all $n \in N$ implies a = 0 or x = y. An ideal I of N is called equiprime if the factor near-ring N/I is equiprime. The *equiprime radical* of N, $P_e(N)$, is the intersection of the equiprime ideals of N. It is shown in [2] that \mathcal{P}_e is a KA-radical, and is moreover *ideal-hereditary*, that is $\mathcal{P}_e(I) = I \cap \mathcal{P}_e(N)$ for all ideals I of N.

Prior to the study of equiprime near-rings, the only well-known ideal-hereditary KAradicals in this class were the Jacobson-type radical \mathcal{J}_2 and the Brown-McCoy radical \mathcal{B} . Their scarcity lead Kaarli [7] to conjecture that all such radicals were based on either \mathcal{J}_2 or \mathcal{B} . The study of equiprime near-rings leads to the discovery of a considerable number of new ideal-herditary radicals (cf. [3]) which are independent of both \mathcal{J}_2 and \mathcal{B} . It is wellknown that equiprime \Longrightarrow 3-prime \Longrightarrow prime \Longrightarrow semiprime for near-rings, and that these implications are strict. For further details on these generalisations of primeness to near-rings and their associated radicals, the reader may consult Groenewald's survey paper [5] and its references.

Strongly prime rings were defined by Handelman and Lawrence [6]. There are two generalisations of the concept to near-rings. A near-ring N is strongly prime [4] if $0 \neq a \in N$ implies that there exists a finite subset F of N such that aFx = 0 implies x = 0, for all $x \in N$. N is strongly equiprime [3] if $0 \neq a \in N$ implies that there exists a finite subset F of N such that $x, y \in N, afx = afy$ for all $f \in F$ implies x = y. Clearly strongly equiprime \implies strongly prime \implies prime and strongly equiprime \implies equiprime. These implications are all strict and strongly prime \implies prime is strict even for associative rings. The radicals associated with the classes of strongly prime and strongly equiprime near-rings are denoted S and S_e , respectively. We consider it unlikely that S is a KA-radical. However S_e is an ideal-hereditary KA-radical [3].

In the sequel G will denote a T_1 (and hence completely regular) additive topological group. The set of zero-preserving continuous self-maps of G forms a zero-symmetric near-ring with respect to addition and composition of functions, and is denoted $N_0(G)$. If the topology on G is discrete, $N_0(G)$ is the set of all zero-preserving self-maps of G, and is denoted $M_0(G)$ in this case. It is easily shown that $M_0(G)$ is equiprime. In order to avoid trivial cases, all topological groups will be assumed to contain more than one element. Composition of functions will be denoted by juxtaposition, e.g. ab rather than $a \circ b$ (with the function b acting first). For surveys of work done on near-rings of continuous functions, [9] and [10] can be consulted.

2. Primeness in $N_0(G)$

In [1] it was shown that $N_0(G)$ is equiprime if the topology on G is either 0-dimensional or arcwise connected. In contrast, an example was given of a topological group such that $N_0(G)$ is not semiprime. The main result of this section sharpens [1, Proposition 1.1]. **Lemma 2.1.** Let H be the connected component of G which contains 0. If H is open, then the quotient topology on G/H is discrete.

Proof. Let φ be the canonical mapping of G onto G/H and let \mathcal{T} and \mathcal{T}^* denote the topology on G and the quotient topology on G/H, respectively. Let $g \in G$. Then $\varphi^{-1}(\{g + H\}) =$ $g + H \in \mathcal{T}$ since $H \in \mathcal{T}$. Hence $\{g + H\} \in \mathcal{T}^*$. Hence \mathcal{T}^* contains all one-point subsets of G/H, and so is discrete.

Proposition 2.2. Let G be a disconnected topological group, with open components which are arcwise connected and which contain more than one element. Let H be the component of G which contains 0, $I := \{a \in N_0(G) \mid a(G) \subseteq H\}$ and $J := \{a \in N_0(G) \mid a(H) = 0\}$. Then $\mathcal{P}(N_0(G)) = \mathcal{P}_e(N_0(G)) = I \cap J$.

Proof. In the proof of [1, Proposition 1.1], it was shown that $I \triangleleft N_0(G)$. It is clear that $J \triangleleft N_0(G)$. Let $a \in J$, $b \in I$, $g \in G$. Then (ba)(g) = b(a(g)) = 0 since $a(g) \in H$. Hence JI = 0, so $(I \cap J)^2 = 0 \subseteq \mathcal{P}(N_0(G))$. Since $\mathcal{P}(N_0(G))$ is the intersection of the prime ideals of $N_0(G)$, it is a semiprime ideal of $N_0(G)$. Hence

$$I \cap J \subseteq \mathcal{P}(N_0(G)). \tag{1}$$

We claim that $N_0(G)/I \cong N_0(G/H)$. We define $\theta : N_0(G) \to N_0(G/H)$ as follows. Let $\theta(a) :$ $G/H \to G/H$ be the mapping defined by $(\theta(a))(g+H) := a(g) + H$ for all $a \in N_0(G), g \in G$. Then $\theta(a)$ is well-defined, for let $g_1, g_2 \in G$ be such that $g_1 + H = g_2 + H$. Then g_1 and g_2 are contained in the same coset of H in G, i.e. in the same connected component of G. By continuity of a, $a(g_1)$ and $a(g_2)$ are in the same component, whence $a(g_1) + H = a(g_2) + H$, and so θ is well-defined. It is clear that $(\theta(a))\varphi(g) = (\varphi a)(g)$ for all $g \in G$, where $\varphi: G \to G/H$ is the canonical homomorphism. Hence $(\theta(a))\varphi = \varphi a$. Let U be open in G/H. Then $\varphi^{-1}((\theta(a))^{-1})(U) = (\theta(a)\varphi)^{-1}(U) = (\varphi a)^{-1}(U) = a^{-1}\varphi^{-1}(U)$. By definition of the quotient topology, $\varphi^{-1}(U)$ is open in G, and by the continuity of $a, a^{-1}\varphi^{-1}(U)$ is open in G. Again by the definition of the quotient topology, this implies that $((\theta(a))^{-1})(U)$ is open in G/H. Hence $\theta(a)$ is continuous. Moreover, $(\theta(a))(H) = (\theta(a))(0+H) = \theta(0) + H = H$ since $a(H) \subseteq H$. Hence $\theta(a) \in N_0(G/H)$. Clearly θ is a near-ring homomorphism. Let $b \in N_0(G/H)$. Let $G/H = \{C_i \mid i \in I\}$ and choose a coset representative g_i of C_i for each $i \in I$. In the case $C_j = H$, choose $g_j = 0$. Let $b(C_i) = C_{k_i}$ for each $i \in I$. We define $a : G \to G$ as follows: If $g \in C_i$ and, let $b(g) := g_{k_i}$. It follows from the fact that constant functions are continuous and that the components of G are open that a is continuous. Moreover a(0) = 0, since b(H) = H and by our choice of coset representative for H. Hence $a \in N_0(G)$. Thus $\theta : N_0(G) \to N_0(G/H)$ is onto, so $N_0(G/H) \cong N_0(G)/\ker \theta$. Clearly, $\ker \theta = I$, so $N_0(G/H) \cong N_0(G)/I$. Moreover, the topology on G/H is discrete by Lemma 2.1, so $N_0(G/H) = M_0(G/H)$ and hence is equiprime. Hence I is an equiprime ideal of $N_0(G)$ and \mathbf{SO}

$$\mathcal{P}_e(N_0(G)) \subseteq I. \tag{2}$$

Now let $a \in N_0(G)$ and let $\lambda(a)$ be the restriction of a to H. Since a maps H into itself, $\lambda(a) \in N_0(H)$. It is also clear that $\lambda : N_0(G) \to N_0(H)$ is a near-ring homomorphism. Moreover, if $b \in N_0(H)$, let a be defined by

$$a(g) := \begin{cases} b(g) & \text{if } g \in H \\ 0 & \text{if } g \in G \backslash H \end{cases}$$

Since G has open components, a is continuous and so is in $N_0(G)$. Moreover, $b = \lambda(a)$, so $\lambda : N_0(G) \to N_0(H)$ is onto. It is clear that ker $\lambda = J$ and hence $N_0(H) \cong N_0(G)/J$. Since H is arcwise connected, it follows from [1, Proposition 3.2] that $N_0(H)$ is equiprime and so J is an equiprime ideal of $N_0(G)$. Consequently

$$\mathcal{P}_e(N_0(G)) \subseteq J. \tag{3}$$

Combining (1), (2), (3) and the fact that $\mathcal{P}(N_0(G)) \subseteq \mathcal{P}_e(N_0(G))$ we obtain

$$I \cap J \subseteq \mathcal{P}(N_0(G)) \subseteq \mathcal{P}_e(N_0(G)) \subseteq I \cap J$$

and the proof is complete.

3. Sandwich near-rings

Let X and G be a topological space and a topological group respectively, and let $\theta: G \longrightarrow X$ be a continuous map. The sandwich near-ring $N_0(G, X, \theta)$ is the set $\{a: X \longrightarrow G \mid a \text{ is} \text{ continuous and } a\theta(0) = 0\}$. Addition is pointwise and multiplication is defined by $a \cdot b := a\theta b$. It is clear that $N_0(G, X, \theta)$ is a zerosymmetric near-ring with respect to these operations. If the topologies on X and G are discrete $N_0(G, X, \theta)$ consists of all mappings $a: X \to G$ satisfying $a\theta(0) = 0$. In this case we denote the near-ring by $M_0(G, X, \theta)$. In this section we will assume that both G and X have more than one element. The closure of a subset A of X will be denoted cl(A).

Lemma 3.1. Let X and G be a completely regular topological space and an arcwise connected topological group, respectively. If $N_0(G, X, \theta)$ is 3-semiprime, then $cl(\theta(G)) = X$.

Proof. Suppose that $cl(\theta(G)) \neq X$. Let $x \in X \setminus cl(\theta(G))$. Since X is completely regular, there exists a continuous map $\alpha : X \to [0,1]$ such that $\alpha(cl(\theta(G))) = 0$ and $\alpha(x) = 1$. Let $0 \neq g \in G$. Since G is arcwise connected, there exists a continuous map $\beta : [0,1] \to G$ such that $\beta(0) = 0$ and $\beta(1) = g$. Let $a := \beta \alpha$. Then a is continuous, and a(y) = 0 for all $y \in cl(\theta(G))$. Moreover a(x) = g, so $a \neq 0$. Clearly $a \in N_0(G, X, \theta)$. Let $n \in N_0(G, X, \theta)$. If $y \in X$, then $a\theta n(y) = 0$, since $\theta n(y) \in \theta(G) \subseteq cl(\theta(G))$. Hence $a \cdot n = 0$, whence $a \cdot n \cdot a = 0$ for all $n \in N_0(G, X, \theta)$. Since $a \neq 0$, $N_0(G, X, \theta)$ is not 3-semiprime, and the proof is complete. \Box

Proposition 3.2. Let X and G be a completely regular topological space and an arcwise connected topological group, respectively, and let $\theta : G \to X$ be a continuous map such that $\theta^{-1}\theta(0) = \{0\}$. Then the following are equivalent:

- (a) $\operatorname{cl}(\theta(G)) = X.$
- (b) $N_0(G, X, \theta)$ is 3-prime.
- (c) $N_0(G, X, \theta)$ is 3-semiprime.

Proof. (a) \Longrightarrow (b): Let $c := \theta(0)$ and let $0 \neq a, b \in N_0(G, X, \theta)$. Then there exist $x, y \in X$ such that $a(x) \neq 0$, $b(y) \neq 0$. We may assume without loss of generality that $x \in \theta(G)$. For by continuity of a, there exists an open set U of X containing x, such that $a(z) \neq 0$ for all $z \in U$. Since $cl(\theta(G)) = X, U \cap \theta(G) \neq \emptyset$. Hence we may choose $x \in U \cap \theta(G)$ such that $a(x) \neq 0$. Let $g \in G$ be such that $x = \theta(g)$. Note that $g \neq 0$, since by the definition of $N_0(G, X, \theta)$ this would imply that $a(\theta(0)) = 0$, i.e. a(x) = 0, which contradicts our assumption that $a(x) \neq 0$.

Since $b(y) \neq 0$ and $\theta^{-1}\theta(0) = \{0\}, \ \theta b(y) \neq c$. Let $d := \theta b(y)$. Since X is completely regular, it is T_1 . Hence the set $F := \{c\}$ is closed and $d \notin F$. Again since X is completely regular, there exists a continuous map $\alpha : X \to [0,1]$ such that $\alpha(F) = 0$ and $\alpha(d) = 1$. Since G is arcwise connected, there exists a continuous map $\beta : [0,1] \to G$ such that $\beta(0) = 0$ and $\beta(1) = g$. Let $n := \beta \alpha$. Clearly, n is continuous. Moreover, $n(\theta(0)) = n(c) = \beta \alpha(c) = \beta(0) = 0$. Hence $n \in N_0(G, X, \theta)$. Also n(d) = g. Furthermore, $a\theta n\theta b(y) = a\theta n(d) = a\theta(g) = a(x) \neq 0$. It follows that $a \cdot n \cdot b \neq 0$. Hence $N_0(G, X, \theta)$ is 3-prime. (b) \Longrightarrow (c): Obvious.

 $(b) \rightarrow (c)$. Obvious:

(c) \Longrightarrow (a): Follows from Lemma 3.1.

The condition $\theta^{-1}\theta(0) = \{0\}$ cannot be omitted from the hypothesis of Proposition 3.2, as the following example shows.

Example 3.3. Let $X := G := \mathbb{R}$, both with the usual topology. Define $\theta : X \to G$ by

$$\theta(x) = \begin{cases} x - 1 & x \ge 1\\ 0 & -1 < x < 1\\ x + 1 & x \le 1. \end{cases}$$

Then θ is continuous and surjective whence it holds trivially that $cl(\theta(G)) = X$. Let a(x) := sin x for all $x \in X$. Then $0 \neq a \in N_0(G, X, \theta)$ and $a\theta n\theta a(x) = 0$ and hence $a \cdot n \cdot a = 0$ for all $n \in N_0(G, X, \theta)$. Thus $N_0(G, X, \theta)$ is not 3-semiprime.

Proposition 3.4. Let X and G be a completely regular topological space and an arcwise connected topological group, respectively, and let $\theta : G \to X$ be a continuous, injective map. Then the following are equivalent:

- (a) $\operatorname{cl}(\theta(G)) = X.$
- (b) $N_0(G, X, \theta)$ is equiprime.
- (c) $N_0(G, X, \theta)$ is 3-semiprime.

Proof. (a) \Longrightarrow (b): Let $a, b, c \in N_0(G, X, \theta)$ be such that $a \neq 0$ and $b \neq c$. Then there exist $x, y \in X$ such that $a(x) \neq 0$ and $b(y) \neq c(y)$. As in the proof of Proposition 3.2 it may be shown that there exists $0 \neq g \in G$ such that $x = \theta(g)$. Since $b(y) \neq c(y)$ and θ is injective, $\theta b(y) \neq \theta c(y)$. Let $x_0 := \theta(0), x_1 := \theta b(y)$ and $x_2 := \theta c(y)$. Either $x_1 \neq 0$ or $x_2 \neq 0$. Assume the latter. Since X is T_1 the set $F := \{x_0, x_1\}$ is closed, where $x_0 := \theta(0)$ and $x_2 \notin F$. Since X is completely regular, there exists a continuous map $\alpha : X \to [0, 1]$ such that $\alpha(F) = 0$ and $\alpha(x_2) = 1$. Since G is arcwise connected, there exists a continuous map $\beta : [0, 1] \to G$ such that $\beta(0) = 0$ and $\beta(1) = g$. Let $n := \beta \alpha$. Clearly, n is continuous. Moreover, $n(\theta(0)) = n(x_0) = \beta \alpha(x_0) = \beta(0) = 0$. Hence $n \in N_0(G, X, \theta)$. Also $n(x_1) = 0$

and $n(x_2) = g$. Furthermore, $a\theta n\theta b(y) = a\theta n(x_1) = a\theta(0) = 0$ and $a\theta n\theta c(y) = a\theta n(x_2) = a\theta(g) = a(x) \neq 0$. It follows that $a \cdot n \cdot b \neq a \cdot n \cdot c$. Hence $N_0(G, X, \theta)$ is equiprime. (b) \Longrightarrow (c): Obvious.

(c) \Longrightarrow (a): Follows from Lemma 3.1.

If θ is not injective, conditions (a), (b) and (c) of Proposition 3.4 need not to be equivalent.

Example 3.5. Let $G := \mathbb{R}$ and $X := [0, \infty)$, both with the usual topology and let $\theta(g) := g^2$ for all $g \in G$. Then $\theta : G \to X$ is a surjection, so $cl(\theta(G)) = X$ holds trivially. Clearly θ is not injective. Clearly this example satisfies the conditions of Proposition 3.2, so $N_0(G, X, \theta)$ is 3-semiprime. Now let b(x) = x and c(x) = -x for all $x \in X$. Then $b, c \in N_0(G, X, \theta)$ and $\theta b(x) = \theta c(x) = x$ for all $x \in X$. Let $0 \neq a \in N_0(G, X, \theta)$. If $n \in N_0(G, X, \theta)$, then $a\theta n\theta b(x) = a\theta n\theta c(x)$ for all $x \in X$. Hence $a \cdot n \cdot b = a \cdot n \cdot c$ for all $n \in N_0(G, X, \theta)$, but $a \neq 0$ and $b \neq c$. Thus $N_0(G, X, \theta)$ is not equiprime, so (a) and (c) of Proposition 3.4 hold, while (b) does not hold in this case.

Proposition 3.6. Suppose that X is a 0-dimensional, T_0 space and that $\theta : G \to X$ is injective and that $cl(\theta(G)) = G$. Then $N_0(G, X, \theta)$ is strongly prime if and only if the topology on X is discrete.

Proof. Suppose that the topology on X is discrete. Then all mappings of X into G are continuous. Hence $N_0(G, X, \theta) = M_0(G, X, \theta)$. Moreover, $\theta(G) = \operatorname{cl}(\theta(G)) = X$, i.e. θ is surjective. It follows from [13, Proposition 9.1] that $N_0(G, X, \theta) \cong N_0(G)$, where G has the discrete topology. Hence by [1, Proposition 2.2(b)], $N_0(G, X, \theta)$ is strongly prime.

Conversely, suppose that the topology on X is not discrete. Let $c := \theta(0)$. Then f(c) = 0for all $f \in N_0(G, X, \theta)$. Let U be a nonempty clopen set in X which does not contain c. Let $0 \neq g \in G$ and let $a : X \to G$ be defined by

$$a(x) := \begin{cases} g & x \in U \\ 0 & x \in X \setminus U \end{cases}.$$

Then $a \in N_0(G, X, \theta)$ and $a \neq 0$. Let $F := \{f_1, \ldots, f_n\}$ be a finite subset of $N_0(G, X, \theta)$. Since $X \setminus U$ is clopen and f_i is continuous $(\theta f_i)^{-1}(X \setminus U)$ is clopen. Let $V_i := f_i^{-1}(X \setminus U) \setminus U$. Then V_i is clopen and $c \in V_i$. Let $V := \bigcap_{i=1}^n V_i$. Then V is clopen and $c \in V$. Since X is T_0 and 0-dimensional, it is T_2 . Since X is not discrete, V is infinite. Let W be a clopen set in X such that $c \notin W$ and $W \cap V \neq \emptyset$. Then $W \cap V$ is a clopen set in X. Since $\mathbf{c}(\theta(G)) = X$, $\theta(G) \cap W \cap V \neq \emptyset$. Let $d \in \theta(G) \cap W \cap V$ and let $h \in G$ be such that $d = \theta(h) \in V$. Then $\theta f_i(d) \in X \setminus U$ for $1 \leq i \leq n$. Define $0 \neq b \in N_0(G, X, \theta)$ by

$$b(x) := \begin{cases} h & x \in U \\ 0 & x \in X \setminus U \end{cases}.$$

If $x \in U$, then $a\theta f_i\theta b(x) = a\theta f_i\theta(h) = a\theta f_i(d) = 0$, since $\theta f_i(d) \in X \setminus U$. If $x \in X \setminus U$, then $a\theta f_i\theta b(x) = a\theta f_i\theta(0) = a\theta f_i(c) = a\theta 0 = a(c) = 0$. Thus $a\theta f_i\theta b = 0$, i.e. $a \cdot f_i \cdot b = 0$, $1 \le i \le n$, whence $a \cdot F \cdot b = 0$. Hence $N_0(G, X, \theta)$ is not strongly prime. \Box

Corollary 3.7. Suppose that X is a 0-dimensional, T_0 space and that $\theta : G \to X$ is injective and that $cl(\theta(G)) = G$. Then $N_0(G, X, \theta)$ is strongly equiprime if and only if X is finite.

Proof. Suppose that X is finite. Since X is T_0 and 0-dimensional, it is T_2 and hence discrete. As in the proof of Proposition 3.6, $N_0(G, X, \theta) = M_0(G, X, \theta)$ and hence from [13, Proposition 9.1] $N_0(G, X, \theta) \cong M_0(G)$. Now card $G = \operatorname{card}(\theta(G)) \leq \operatorname{card} X$. Hence G is finite. It follows from [1, Proposition 2.2(c)] that $N_0(G, X, \theta)$ is strongly equiprime.

Conversely, suppose that $N_0(G, X, \theta)$ is strongly equiprime. Then $N_0(G, X, \theta)$ is strongly prime, and hence by Proposition 3.6, the topology on X is discrete. As in the proof of Proposition 3.6 we have that $N_0(G, X, \theta) \cong N_0(G)$, where G has the discrete (and hence 0-dimensional) topology. It follows from [1, Proposition 2.2(c)] that G is finite. Hence $\theta(G)$ is finite, and since X is discrete, $\theta(G) = cl(\theta(G)) = X$ and hence X is finite. \Box

Proposition 3.8. Suppose that X is a completely regular space, that G is arcwise connected and, that the topology on G has a base \mathcal{B} consisting of arcwise connected open sets. Then $N_0(G, X, \theta)$ is not strongly prime (and hence not strongly equiprime).

Proof. We consider the cases $cl(\theta(G)) = G$ and $cl(\theta(G)) \neq G$ separately. If $cl(\theta(G)) \neq G$, it follows from Lemma 3.1 that $N_0(G, X, \theta)$ is not 3-semiprime and hence not strongly prime.

Suppose that $cl(\theta(G)) = G$. Let $c := \theta(0)$. Let U be an open set in X containing c whose closure cl(U) is not X. The $X \setminus cl(U)$ is nonempty and open. Since $cl(\theta(G)) = X$, $(G \setminus cl(U)) \cap \theta(G)$ contains an element, d, say. Let $g \in G$ be such that $d = \theta(g)$. Since X is completely regular, there exists a continuous function $\alpha : X \longrightarrow [0,1]$ such that $\alpha(cl(U)) = 0$ and $\alpha(d) = 1$. Since G is arcwise connected, there exists a continuous function $\beta : [0,1] \to G$ such that $\beta(0) = 0$ and $\beta(1) = g$. Let $a := \beta \alpha$. Then $0 \neq a \in N_0(G, X, \theta)$ and a(U) = 0.

Now let $F := \{f_1, \ldots, f_n\}$ be a finite subset of $N_0(G)$. Let $V_i := (\theta f_i)^{-1}(U)$ for $1 \le i \le n$ and $V := \bigcap_{i=1}^n V_i$. Note that $c \in V$. If V = X, $a\theta f_i = 0$ for $1 \le i \le n$ so $a \cdot F \cdot b = 0$ for any $0 \ne b \in N_0(G, X, \theta)$ and we are done. Suppose that $V \ne G$. Let W be an element of \mathcal{B} such that $0 \in W \subseteq \theta^{-1}(V)$. We have that $W \ne \{0\}$, since then G would be discrete. Since G is arcwise connected, this would imply that G consists of one element, which contradicts the assumption of this paper. Hence $W \setminus \{0\}$ is nonempty. Let $h \in W \setminus \{0\}$ and let $e := \theta(h)$. Since X is completely regular, there exists a continuous function $\lambda : X \longrightarrow [0, 1]$ such that $\lambda(c) = 0$ and $\lambda(e) = 1$. Since W is arcwise connected, there exists a continuous function $\mu : [0, 1] \longrightarrow W$ with $\mu(0) = 0$ and $\mu(1) = h$. Let $b := \mu\lambda$. Then $0 \ne b \in N_0(G, X, \theta)$, b(e) = h and $b(X) \subseteq W \subseteq \theta^{-1}(V)$. It follows that $a\theta f_i \theta b = 0$ for $1 \le i \le n$ so $a \cdot F \cdot b = 0$, but $b \ne 0$. Hence $N_0(G, X, \theta)$ is not strongly prime. \Box

References

- Booth, G. L.; Hall, P. R.: Primeness in near-rings of continuous functions. Beitr. Algebra Geom. 45(1) (2004), 21–27.
 Zbl pre02096227
- Booth, G. L.; Groenewald, N. J.; Veldsman, S.: A Kurosh-Amitsur prime radical for near-rings. Commun. Algebra 18(9) (1990), 3111–3122.
 Zbl 0706.16025
- [3] Booth, G. L.; Groenewald, N. J.; Veldsman, S.: Strongly equiprime near-rings. Quaest. Math. 14(4) (1991), 483–489.
 Zbl 0756.16012
- [4] Groenewald, N. J.: Strongly prime near-rings. Proc. Edinburgh Math. Soc. 31(3) (1988), 337–343.
 Zbl 0682.16028

- [5] Groenewald, N. J.: Prime near rings and special radicals. East-West J. Math. 3(2) (2001), 147–162.
 Zbl 1006.16060
- [6] Handelman, D.; Lawrence, J.: Strongly prime rings. Trans. Amer. Math. Soc. 211 (1975), 209–223.
 Zbl 0345.16004
- [7] Kaarli, K.: Survey on the radical theory of near-rings. Contrib. General Algebra 4, 45–62. Teubner, Stuttgart 1987.
 Zbl 0647.16029
- [8] Kaarli, K.; Kriis, T.: On the prime radical of near-rings. Tartu Riikl. Ul Toimetised 764 (1987), 23–29.
- [9] Magill, K. D.: Near-rings of continuous self-maps: a brief survey and some open problems. Proc. Conf. San Bernadetto del Tronto 1981, 25–47, (1982).
 Zbl 0516.16027
- [10] Magill, K. D.: A survey of topological nearrings and nearrings of continuous functions. Proc. Tenn. Top. Conf., World Scientific Pub. Co., Singapore 1997, 121–140.

Zbl 0915.54033

[11] McCoy, N. H.: Prime ideals in general rings. Amer. J. Math. (1949), 823–833.

- [12] Pilz, G.: Near-rings. 2nd ed., North-Holland, Amsterdam 1983. Zbl 0521.16028
- [13] Veldsman, S: On equiprime near-rings. Commun. Algebra **20**(9) (1992), 2569–2587.

Zbl 0795.16034

Received October 10, 2003

<u>Zbl 0035.01804</u>