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Abstract. The notions of illumination and visibility of convex bodies are well-
known in combinatorial and computational geometry. We study closure operators
which control illumination and visibility, respectively.
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1. Introduction

The notion of illumination of a convex body K in Rn can be considered as the starting point
for various interesting problems and as a useful tool in combinatorial geometry (cf. Chapter
VI and VII in [2] and the survey [7]). This notion was independently introduced by V.
Boltyanski [1] and H. Hadwiger [5], motivated by the famous (and still unsettled) question
how many light sources are needed to illuminate the whole boundary of K. The conjectured
upper bound 2n, attained when K is an n-dimensional parallelotope, is verified only for
special types of convex bodies, e.g. for all centrally symmetric convex bodies in R3 (as shown
by M. Lassak in [6]), or for convex bodies in Rn whose supporting cones at singular points
are not too acute (proved by B. Weißbach in [13]). Variations of the Boltyanski-Hadwiger
notion of illumination were considered in [8] and [14].

A modified type of illumination, called visibility, was introduced by F. A. Valentine
[12], see also [4], [3], and again the survey [7]. Visibility problems play an essential role
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in computational geometry, e.g. in connection with art gallery questions and the watchman
route problem, cf. [10] and [11]. Valentine’s notion of visibility can be seen as a weakening
of the above mentioned notion of illumination; so already n + 1 points are sufficient to see
the whole boundary of a convex body K in Rn.

In this paper we want to present a unified approach to both these notions in terms of
closure operators, which themselves are tailored to convex sets. In case of visibility, the
corresponding closure operator is even new.

In Section 2 (Theorem 2.4) we show already basic connections between the notions of illu-
mination and visibility in view of closure operators, and in Section 3 the new closure operator
of the visibility notion is introduced and discussed. Moreover, we prove that those convex
sets K, which are compact and for which E = Rn \K is connected, may be characterized by
the fact that either of the two operators controlling illumination and visibility, respectively,
is a closure operator, cf. Theorem 3.4. The final Section 4 presents analogous investigations
for parallel illumination of convex bodies, surprisingly showing that in this case we cannot
have an approach via closure operators (at least not in a canonical way).

One motivation for our investigations is our hope that an extended framework of tools
and methods might help to attack more successfully certain longstanding open problems
from the combinatorial geometry of convex bodies, such as the Boltyanski-Hadwiger illumi-
nation problem (also known as the Gohberg-Markus-Hadwiger covering problem asking for
the minimum number of smaller homothets of K sufficient to cover that convex body).

2. Illumination described in terms of a closure operator

For two points a, b ∈ Rn with a 6= b, n ≥ 1, let ab := {a + λ · (b− a) | 0 ≤ λ ≤ 1} denote the
closed line segment between a and b, while s(a, b) := {a + λ · (b − a) |λ ≥ 0} is written for
the ray with initial point a and passing through b.

Assume that K is a convex body, i.e., a compact, convex set with interior points in Rn.
Due to H. Hadwiger [5] we say that a boundary point x of K is illuminated by a point
z ∈ Rn \ K if (s(z, x) \ zx) ∩ int K 6= ∅. (We note that the analogous notion for parallel
illumination was introduced by V. Boltyanski [1], see also [2], Chapter VI, for a historical
survey, and [7].) A point set A ⊆ Rn \ K is said to illuminate a subset B of the boundary
∂K of K if every x ∈ B is illuminated by at least one element a ∈ A. If A illuminates the
whole boundary ∂K of K, we say also that A illuminates the body K.

To describe illumination more generally, namely in terms of closure operators, we define
for every subset M of Rn and its complement E = Rn \M the operator σM : P(E) → P(E)
by

σM(A) := A ∪ {b ∈ E \ A | ∃ a ∈ A : ab ∩M = ∅, s(a, b) ∩M 6= ∅} . (2.1)

Thus σM(A) \ A consists of those points of E \ A which lie in front of M relative to some
point a ∈ A.

We have the following proposition which was already proved in [9], see Theorem 2.5 there.

Proposition 2.1. Assume that M ⊆ Rn is convex. Then the operator σM : P(E) → P(E),
with E := Rn \M , is a closure operator, i.e.,

(H0) σ is increasing: A ⊆ E implies A ⊆ σ(A),
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(H1) σ is monotone: A1 ⊆ A2 ⊆ E implies σ(A1) ⊆ σ(A2),

(H2) σ is idempotent: A ⊆ E implies σ(σ(A)) = σ(A).

Note that the convexity of M is only used to verify (H2); the axioms (H0) and (H1) hold for
all subsets M of Rn.

In the remaining part of this paper, assume again that K is a convex body in Rn. Then
the interior K0 = int K of K is also convex; thus, for E := Rn \K and E0 := Rn \K0 we
get closure operators

σ := σK : P(E) → P(E) , σ0 := σK0 : P(E0) → P(E0) .

Our next proposition, which follows trivially from the convexity of K0, shows that σ0 is
precisely adapted to the illumination problem.

Proposition 2.2. For a subset A of Rn \K and a subset B of ∂K = K \K0 the following
statements are equivalent :

(i) A illuminates B.

(ii) B ⊆ σ0(A).

Still in this section we want to prove an extension of Proposition 2.2 in the case B = ∂K. To
this end, we consider already now the concept of visibility as introduced by F. A. Valentine in
[12], see also [4] and [3]. Namely, a point z ∈ Rn \K sees the point x ∈ ∂K if zx∩K = {x}.
A point set A ⊆ Rn \K sees a subset B of ∂K if every b ∈ B is seen from at least one point
a ∈ A. If A sees ∂K, we say also that A sees (the whole of) K or that K is visible from A.

Remark 2.3. A subset A of Rn \K, which illuminates a subset B of ∂K, also sees B. �

Theorem 2.4. For every subset S of E = Rn \K the following statements are equivalent :

(i) S illuminates ∂K.

(ii) ∂K ⊆ σ0(S).

(iii) For every x ∈ ∂K there exists some δ > 0 such that B(x, δ) ∩ ∂K is illuminated by
some z ∈ S.

(iv) For every x ∈ ∂K there exists some δ > 0 such that B(x, δ) ∩ ∂K is seen by some
z ∈ S.

(v) There exists some open subset U of Rn with K ⊆ U ⊆ K ∪ σ(S).

(vi) There exists some open subset U of Rn with K ⊆ U ⊆ K0 ∪ σ0(S).

Proof. The relations (i) ⇔ (ii), (iii) ⇒ (i), (iii) ⇒ (iv), (vi) ⇒ (v), and (vi) ⇒ (ii) are either
trivial or simple consequences of our considerations above.

(i) ⇒ (iii): Assume x ∈ ∂K, and choose z ∈ S and y ∈ K0 with x ∈ zy. Suppose that r > 0

satisfies B(y, r) ⊆ K0. Then for every x′ ∈ ∂K with ||x − x′|| < ||z−x||
||z−y|| · r there exists some

y′ ∈ B(y, r) with x′ ∈ s(z, y′). Thus x′ is illuminated by z.

(iv) ⇒ (ii): Assume x ∈ ∂K, and choose δ > 0 and z ∈ S such that B(x, δ) ∩ ∂K is seen
from z. It suffices to prove that s(z, x) ∩K0 6= ∅. Otherwise we would have s(z, x) ∩K =
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s(z, x)∩ ∂K = {x}, because x is the unique point in s(z, x)∩ ∂K which is seen from z. Now
assume that y ∈ K0 is arbitrary, and for η > 0 put wη := x + η · (x− z), see Figure 1. If η is
small enough, we get x′ ∈ B(x, δ)∩ ∂K for some x′ ∈ ywη \ {y}. On the other hand, we have
xy ∩ zx′ 6= ∅. This means that x′ is not seen from z, a contradiction to x′ ∈ B(x, δ) ∩ ∂K.

z

x

wη x′

y

K

Figure 1

(i) ⇒ (vi): For every x ∈ ∂K, choose some y = yx ∈ K0 and some z = zx ∈ S with x ∈ zy.
Furthermore, choose r = rx > 0 with B(y, r) ⊆ K0 as well as w = wx ∈ zx \ {z, x} such that
for

r′ = r′x :=
||z − w||
||z − y||

· r

we have B(w, r′) ⊆ E, see Figure 2. Then we have B(w, r′) ⊆ σ0({z}). Therefore, the set
Ux = conv (B(w, r′) ∪B(y, r)) is an open subset of the convex set K0∪σ0 ({z}) = conv (K0∪
{z}), see [9], Proposition 2.6 i). Now put

U := K
⋃ ⋃

x∈∂K

Ux = K0

⋃ ⋃
x∈∂K

Ux .

U is an open subset of Rn with K ⊆ U ⊆ K0 ∪ σ0(S).

z
w yx

K

Figure 2
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(v) ⇒ (vi): We prove that, if U ⊆ Rn is open and satisfies (v), then U satisfies (vi), too.
Namely, assume that x ∈ U \K0. We must prove that x ∈ σ0(S). By (v) we have x ∈ ∂K or
x ∈ σ(S). (In Figure 3 we have x1 ∈ ∂K and x2 ∈ σ(S).) Assume that y ∈ K0 is arbitrary.
Then there exists some w ∈ U \ (K ∪ {x}) with x ∈ wy, because U is open. (v) implies
w ∈ σ(S); thus there exists some x′ ∈ ∂K with w ∈ zx′ for some suitable z ∈ S. Clearly, we
have yx′ \ {x′} ⊆ K0, and hence x ∈ σ0({z}) ⊆ σ0(S). �

3. Visibility described in terms of a closure operator

In contrast to Proposition 2.2, the closure operator σ = σK : P(E) → P(E) is not precisely
adapted to the visibility problem, because the boundary points of the convex body K ⊆ Rn

do not belong to E = Rn \K. Thus they cannot lie in σK(A) for a subset A ⊆ E. However,
for any closed subset M of Rn we define an operator σ̂M : P(Rn \ int M) → P(Rn \ int M)
which in case M = K precisely controls visibility: For closed M ⊆ Rn, A ⊆ Rn \ M and
B ⊆ ∂M = M \ int M put

σ̂M(A ∪B) := σM(A) ∪B ∪ {x ∈ ∂M | zx ∩M = {x} for some z ∈ A} . (3.1)

By the definitions it is clear that for all A ⊆ F0 := Rn \ int M we have

σ̂M(A) = A ∪ {b ∈ F0 \ A | ∃ a ∈ A , ∃ x ∈ ∂M : b ∈ ax, ax ∩M = {x}} . (3.2)

By the definition of visibility (zx∩K = {x}, see the passage after Proposition 2.2 above) we
have the following trivial

Proposition 3.1. For a subset A of Rn \K and a subset B of ∂K = K \K0 the following
statements are equivalent:

(i) A sees B.

(ii) B ⊆ σ̂K(A).

To prove that σ̂M is a closure operator in case M equals the convex body K, we show first
the following

Lemma 3.2. For a boundary point x ∈ ∂K of the convex body K and a subset A of Rn \K
the following statements are equivalent :
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(i) There exists some z ∈ A with zx ∩K = {x}.
(ii) There exists some z′ ∈ σK(A) with z′x ∩K = {x}.

Proof. (i) ⇒ (ii): This implication is trivial in view of A ⊆ σK(A).

(ii) ⇒ (i): Choose some z ∈ A with z′ ∈ σK({z}) and assume, without loss of generality,
that z′ 6= z. Then there exists some x′ ∈ ∂K with z′ ∈ zx′ and zx′ ∩K = {x′}. We prove
that zx ∩K = {x}. Otherwise there would exist some y ∈ zx ∩K with y 6= x. Since K is
convex, we get even yx′ ⊆ K. On the other hand, we have yx′ ∩

(
z′x \ {x}

)
6= ∅ and thus

also K ∩
(
z′x \ {x}

)
6= ∅, which contradicts (ii). �

z

z′

y

x′

x

K

Figure 4

In Figure 4 one sees that Lemma 3.2 is not a trivial corollary of Proposition 2.1. Now we
can prove

Theorem 3.3. The operator σ̂M : P(Rn\ int M) → P(Rn\ int M), where M ⊆ Rn is closed,
satisfies

(H0) σ̂M is increasing : A ⊆ Rn \ int M implies A ⊆ σ̂M(A).

(H1) σ̂M is monotone: A1 ⊆ A2 ⊆ Rn \ int M implies σ̂M(A1) ⊆ σ̂M(A2).

If M equals a convex body K ⊂ Rn, then we have also

(H2) σ̂M is idempotent : A ⊆ Rn \ int M implies σ̂M(σ̂M(A)) = σ̂M(A).

Thus σ̂K is a closure operator for every convex body K in Rn.

Proof. By (3.2), (H0) and (H1) are trivial for arbitrary closed M ⊆ Rn. To prove (H2) for
M = K, assume that A ⊆ Rn \K and B ⊆ ∂K. Then we obtain by (3.1), Lemma 3.2, and
the fact that σK is a closure operator:

σ̂K (σ̂K(A ∪B)) = σ̂K (σK(A) ∪B ∪ {x ∈ ∂K | zx ∩K = {x} for some z ∈ A})
= σK (σK(A)) ∪B ∪ {x ∈ ∂K | zx ∩K = {x} for some z ∈ σK(A)}
= σK(A) ∪B ∪ {x ∈ ∂K | zx ∩K = {x} for some z ∈ A}
= σ̂K(A ∪B) . �

We close this section by proving the following result, which shows that, under certain condi-
tions, convex subsets M of Rn may be characterized by the fact that either of the operators
σM and σ̂M is a closure operator.

Theorem 3.4. Assume that M ⊆ Rn is compact and that E = Rn \M is connected. Then
the following three statements are equivalent :
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(i) M is convex.

(ii) The operator σM : P(E) → P(E) is a closure operator.

(iii) The operator σ̂M : P(Rn \ intM) → P(Rn \ intM) is a closure operator.

Proof. (i) ⇔ (ii) is Theorem 2.10 in [9].

(i) ⇒ (iii) is Theorem 3.3 above.

(iii) ⇒ (ii): Assume that A ⊆ Rn \M . Since σ̂M satisfies (H2), we get

σM(σM(A)) ⊆ σ̂M(σ̂M(A)) = σ̂M(A) ⊆ σM(A) ∪ ∂M .

However, σM(σM(A)) is contained in the open set Rn\M , which does not intersect ∂M . This
means that σM(σM(A)) = σM(A), as claimed. �

4. Illumination by directions

Throughout this section assume that we have 0 ∈ int K for a convex body K in Rn. Due to
[1], a point x ∈ ∂K is said to be illuminated by the direction u ∈ Sn−1 := {x ∈ Rn : ||x|| = 1}
if the ray s(x, x + u) with initial point x and direction u meets the interior of K. Therefore
it seems natural to consider the operator τ0 : P(Sn−1) → P(Sn−1) given by

τ0(A) :=

{
b ∈ Sn−1 | ∃ u ∈ A,∃ x ∈ ∂K :

1

||x||
· x = b, s(x, x + u) ∩ int K 6= ∅

}
, (5.1)

which is adapted to the problem of illumination by directions. Note that 0 ∈ int K implies
that for every b ∈ Sn−1 there exists a unique element x ∈ ∂K with 1

||x|| ·x = b. However, τ0 is

not increasing, since for u ∈ Sn−1 and x ∈ ∂K with 1
||x|| ·x = u we have s(x, x+u)∩K = {x}

and thus s(x, x + u) ∩ int K = ∅. This means u /∈ τ0({u}). Therefore let us look at the
modified operator τ1 : P(Sn−1) → P(Sn−1) given by

τ1(A) :=

{
b ∈ Sn−1 | ∃ u ∈ A,∃ x ∈ ∂K :

1

||x||
· x = b, s(x, x− u) ∩ int K 6= ∅

}
. (5.2)

Clearly, we have τ1(A) = τ0(−A) for A ⊆ Sn−1. Now 0 ∈ int K implies that τ1 is an
increasing operator which is also monotone and in some sense analogous to σ0 by relating
u ∈ Sn−1 to points x ∈ Rn for which ||x|| is large and 1

||x|| · x = u.
However, τ1 is in general not a closure operator, though σ0 is. If, for instance, K is

a ball with 0 as its center, then we have τ1({u}) = {v ∈ Sn−1| cos( <) (u, v)) > 0} for all
u ∈ Sn−1. Thus we get τ1(τ1({u})) = Sn−1 \ {−u} and τ1(τ1(τ1({u}))) = Sn−1, whence τ1 is
not idempotent.
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