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Department of Mathematics, University of Balikesir
10100 Balikesir, Turkey

e-mail: nihal@balikesir.edu.tr

Abstract. In this paper, the normal closure of the modular group PSL(2,Z) in
the Picard group PSL(2,Z[i ]) is given. Also, it is given some results about all
power subgroups P6n of the Picard group.
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1. Introduction

It is known that if X is a nonempty subset of a group G, the normal closure of X in G is
the intersection of all the normal subgroups of G which contain X. Clearly this is a normal
subgroup. So, the notion of “normal closure” is important to find normal subgroups of a given
group. Using this notion, in [2] and [4], it was determined some properties of the normal
subgroups of the Picard group P and given a complete classification of the normal subgroups
for indices less than 60. The Picard group P is PSL(2,Z[i]), the group of linear fractional
transformations with Gaussian integer coefficients. P is a free product with amalgamation
of the following form, [2]:

P ∼= G1 ∗M G2

with G1 ∼= S3 ∗Z3 A4, G2 ∼= S3 ∗Z2 D2 (S3 is the symmetric group on three symbols, A4 is the
alternating group on four symbols and D2 is the Klein 4-group) andM is the modular group
PSL(2,Z). Modular group play a very important role to determine subgroups of the Picard
group because of this decomposition. Modular group is a Fuchsian subgroup of P and is not
normal. In [9], the normaliser of M in P that is a maximal subgroup of P in which M is
normal was obtained. Here we determine the group structure of the normal closure of M in
P. Furthermore we obtain some results about the power subgroups P6n of the Picard group.
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2. The normal closure of the modular group

It is known that a presentation for P is given by

P =
〈
x, u, y, r; x3 = u2 = y3 = r2 = (xu)2 = (xy)2 = (ry)2 = (ru)2 = 1

〉
(2.1)

where

x(z) =
i

iz + 1
, u(z) = −

1

z
, y(z) =

z + 1

−z
, r(z) =

i

iz
,

[1]. Also a presentation ofM given byM ∼= 〈u, y; u2 = y3 = 1〉. Let N(g1, g2, . . . , gk) denote
the normal closure of the subgroup generated by {g1, g2, . . . , gk}. P/N(g1, g2, . . . ,gk) is the
group obtained by adding the relations g1 = 1, g2 = 1, . . . , gk = 1 to the relations of P,
[7]. Now we can determine the N(u, y), the normal closure of M in P. To do this we use
Reidemeister-Schreier method, (see [7] and [3] for more details).

Theorem 2.1. The normal closure of M in P is

N(u, y) =M1 ∗MM2

where M1 ∼= M2 ∼= S3 ∗Z3 A4. Further the index of N(u, y) in P is two.

Proof. The proof is straightforward computations. We adjoin the identical relations u =
1, y = 1 to the standard presentation (2.1) for P. This gives us a presentation for P/N(u, y)
of which order gives us the index. We have

P/N(u, y) =
〈
x, u, y, r; x3 =u2=y3 =r2 =(xu)2 =(xy)2 =(ry)2 =(ru)2 =1, u=y=1

〉
.

Since x3 = x2 = 1, this implies that x = 1. Therefore

P/N(u, y) =
〈
r; r2 = 1

〉
∼= Z2.

Thus |P :N(u, y)| = 2. Let {1, r} be a Schreier transversal for N(u, y). Applying the Reide-
meister-Schreier process we get all the possible products as follows:

S1x = x.1 = x, Srx = rxr

S1u = u.1 = u, Sru = rur = u

S1y = y.1 = y, Sry = ryr = y
−1

S1r = r.r = 1, Srr = r
2.1 = 1.

We get x1 = x, x2 = u, x3 = y and x4 = rxr as generators for N(u, y). Using the Reidemeis-
ter rewriting process we get the relations

τ(xxx) = S1x.S1x.S1x = x
3,

τ(uu) = S1u.S1u = u
2,

τ(yyy) = S1y.S1y.S1y = y
3,

τ(xuxu) = S1x.S1u.S1x.S1u = xuxu = (xu)
2,

τ(xyxy) = S1x.S1y.S1x.S1y = xyxy = (xy)
2,

τ(rxxxr) = S1r.Srx.Srx.Srx.Srr = 1.rxr.rxr.rxr.1 = (rxr)
3,

τ(rxuxur) = S1r.Srx.Sru.Srx.Sru.Srr = 1.rxr.u.rxr.u.1 = (rxru)
2,

τ(rxyxyr) = S1r.Srx.Sry.Srx.Sry.Srr = 1.rxr.y
−1.rxr.y−1.1 = (rxry−1)2.
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Hence we obtain

N(u, y) =
〈
x, u, y, rxr;x3 = u2 = y3 = (xu)2 = (xy)2 = (rxr)3

= (rxru)2 = (rxry−1)2 = 1
〉
.

Now let

M1 =
〈
x, u, y;x3 = u2 = y3 = (xu)2 = (xy)2 = 1

〉

and

M2 =
〈
rxr, u, y; (rxr)3 = u2 = y3 = (rxru)2 = (rxry−1)2 = 1

〉
.

Then N(u, y) is generated by M1 and M2 with the identifications u = u, y = y. In M1, the
subgroup generated by u, y is their free product Z2 ∗ Z3 which is the modular group, while
this is also true in M2. Therefore N(u, y) is a free product with the amalgamated subgroup
M. In M1, let

M11 =
〈
x, u;x3 = u2 = (xu)2 = 1

〉
,

M12 =
〈
x, y;x3 = y3 = (xy)2 = 1

〉
.

So M1 ∼= M11 ∗M12 with the identification x = x. This induces a subgroup isomorphism, so
M1 = S3 ∗Z3 A4. Again similarly we get

M2 =
〈
rxr, u; (rxr)3 = u2 = (rxru)2 = 1

〉
∗
〈
rxr, y; (rxr)3 = y3 = (rxry−1)2 = 1

〉

= S3 ∗Z3 A4.

Therefore the normal closure of the modular group in the Picard group is (S3 ∗Z3 A4) ∗M
(S3 ∗Z3 A4). �

In [4], it was proved that, there are exactly three normal subgroups of index 2 in P. SoN(u, y)
is one of these normal subgroups of index 2 in P. Furthermore N(u, y) is not Fuchsian since
xuyrxr is a loxodromic element.

3. Power subgroups

Now we obtain some results about the structure of the power subgroups P6n of the Picard
group. The power subgroups Pn are the normal subgroups of P generated by nth powers of
elements of P where n is a positive integer. From the definition one can easily deduce that

Pm ⊃ Pmk (3.1)

and that
(Pm)k ⊃ Pmk. (3.2)
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In the modular group case, it is known that Mn = M, M2 or M3 if 6 - n and the exact
structure ofM6k is unknown if k > 1.M6 is free of rank 37,M6 ⊃M6k and the groupsM6k

are free groups, [8]. Similar results hold for P. From [4], we have

1) P2 = P′, the commutator subgroup of P,
2) P3 = P and Pn = P if 2 - n,
3) Pn = P2 if 2 | n but 6 - n,
4) (P′)3 = P′′.

From (3.2), we get
P′′ ⊃ P6 (3.3)

since P′′ = (P′)3 = (P2)3. Also from (3.1), we get

P6 ⊃ P6n so P′′ ⊃ P6n. (3.4)

Therefore we get the following corollary:

Corollary 3.1. The power subgroups P6n of the Picard group are the subgroups of the second
commutator subgroup P′′.

In [4], it was proved that P′′ = K1∗KK2 where K1 ' K2 = D2∗D2 and K = Z∗Z, |P : P′′| =
12. Also P′′ is the only subgroup of index 12 and P′′ = N(ltu) where l, t and u are
the generators in the another presentation of P given in [4]. Since P′′ is a free product
with amalgamation, P6n is an HNN group. This follows from the Karrass-Solitar subgroup
theorems, [6]. We then have the following result.

Theorem 3.2. The groups P6n are HNN groups.

Now we are going to determine the structure of the quotient groups P/P6n. Let us consider
the following presentation of P given in [1]:

P =
〈
a, w, b; b=aw2a−1w−2aw2, (a2waw−1)2=(awaw−1)3=(wb)2=(ab)2=b2=1

〉

where a = xr and w = ury. If we write awaw−1 = v, we have

P =
〈
a, w, b, v; (av)2 = v3 = (wb)2 = (ab)2 = b2 = 1

〉
.

Firstly, to find the factor group P/P6, we adjoin the identical relation X6 = 1 to this
presentation. Then we have

P/P6 =
〈
a, w, b, v; (av)2 = v3 = (wb)2 = (ab)2 = b2 = 1, a6 = w6 = 1

〉
.

Hence we get

P/P6 =
〈
a, b, v; a6 = v3 = b2 = (av)2 = (ab)2 = 1

〉
∗
〈
b, w;w6 = b2 = (wb)2 = 1

〉

=
(〈
a, b; a6 = b2 = (ab)2 = 1

〉
∗
〈
a, v; a6 = v3 = (av)2 = 1

〉)
∗Z2 D6

= (D6 ∗Z6 D(6, 3, 2)) ∗Z2 D6.
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and similarly

P/P6n =
〈
a, w, b, v; (av)2 = v3 = (wb)2 = (ab)2 = b2 = 1, a6n = w6n = 1

〉

=
〈
a, b, v; a6n = v3 = b2 = (av)2 = (ab)2 = 1

〉
∗
〈
b, w;w6n = b2 = (wb)2 = 1

〉

= (D6n ∗Z6n D(6n, 3, 2)) ∗Z2 D6n

where D(6n, 3, 2) is the von Dyck group. It is known that the von Dyck group D(l,m, n) is
finite if and only if 1

l
+ 1
m
+ 1
n
> 1, [5]. In our case, we conclude that the von Dyck groups

D(6n, 3, 2) are of infinite order since 1
6n
+ 1
3
+ 1
2
= 5n+1

6n
≤ 1. Therefore the power subgroups

P6n are of infinite index in the Picard group.
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