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Abstract. A construction procedure for planar near-rings is provided. Amongst
others, this method will show why many planar near-rings come in pairs with
“opposite” geometries and it will also lead to the construction of many new infinite
circular planar near-rings.
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Since its inception, planar near-rings have played an important role on two fronts: in the
algebra for their geometric interpretations and outside algebra for their practical applications.
Here we will look at the construction of planar near-rings and circular planar near-rings.
The construction method is new and will recover many old results. But, in particular, this
approach will emphasize the dependence of the planar near-ring multiplications on an existing
multiplication from a richer algebraic structure; it will provide many more examples of planar
near-rings and explain why planar near-rings often come in pairs with opposite associated
geometries; it will show that the two best known planar near-rings in the Euclidean plane have
the same source; it will give many more examples of infinite circular planar near-rings and it
will confirm the necessity of the language of near-rings in many geometrical considerations.

In a planar near-ring two types of substructures play an important role - either for their
practical applications (eg in coding theory or the design of statistical experiments) or for
their associated geometry. The first is the set of right identities and the second is a basic
block, one for each right identity. These basic blocks form a partition of that part of a
planar near-ring where all the action takes place. The class of all concrete planar near-rings
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which have some interesting geometric interpretations, can be divided in two disjoint classes:
there are those planar near-rings in which the set of right identities represents the points on
some interesting geometric figure (circle, ellipse, hyperbola, parabola, etc) and the blocks are
rather straightforward, being just the points on a straight line or a ray. On the other hand
there are those planar near-rings where the associated geometry is completely the opposite
– the right identities are the points on a straight line or ray and the basic blocks are the
ones with the geometrically interesting shapes. As is often said, “opposites attract” and with
surprising frequency two of these planar near-rings, one from each group, can be joined in a
happy union to form a so called double planar near-ring.
The genetic code of planar near-rings has been known for many years – it is just the

Ferrero pairs. Thus this phenomenon can be described genetically, but for the present
purposes, a different approach will be more instructive. For near-rings notions not defined
here, the reader may consult Pilz [7] or Clay [3].

Many near-ring multiplications on a group are of the form

a ∗ b = aδ(b)

where δ(b) is some “distortion” of b and the product on the right is some existing product
– typically a ring or scalar product. We also know that any near-ring product ∗ on a group
(V,+) can be described by a mapping φ : V −→ Hom(V, V ) where a ∗ b = φb(a); here
φ(b) = φb : V −→ V. For example, let V be a vector space over a field F and let δ : V −→ F
be any F -homogeneous function. This means δ(vf) = δ(v)f for all v ∈ V and f ∈ F. (As is
usual in the near-ring community, one has to state your alliance. Here we will side with the
right: scalars are written on the right and near-rings will be right near-rings.)
Let ψ : F −→ Hom(V, V ) denote the action of F on V, i.e., ψ(f) = ψf : V → V,

ψf (v) = vf. This gives a mapping φ := ψ ◦ δ : V −→ Hom(V, V ) and consequently a near-
ring multiplication a ∗ b = φb(a) = aδ(b). If |δ(V )| > 3, then (V,+, ∗) is always a planar
near-ring. It is this commutative diagram

V
φ
−→ Hom(V, V )
δ ↘ ↗ ψ

F

which is the starting point of our considerations. The basic ingredients of our construction
are: A group (V,+), a semigroup (S, ·), a subset T of V and a mapping δ : T −→ S. We
suppose S acts on V from the right i.e. we have a mapping V × S −→ V, (v, s) = vs, which
is compatible with respect to all the operations: (v1+v2)s = v1s+v2s and v(s1s2) = (vs1)s2.
By ψ : S −→ Hom(V, V ) we denote this action, i.e. ψ(s) = ψs : V −→ V with ψs(v) = vs.
Suppose TS ⊆ T and δ is an S-homogeneous function, i.e. δ(ts) = δ(t)s for all t ∈ T, s ∈ S.
We then have

T
δ
−→ S

ψ
−→ Hom(V, V )

and we extend ψ ◦ δ : T −→ Hom(V, V ) in the simplest possible way to a mapping on V by

φ(v) =

{
(ψ ◦ δ)(v) if v ∈ T
0 if v /∈ T.
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Then we define

w � v := φv(w) =

{
wδ(v) if v ∈ T
0 otherwise.

Quite often (V,+, ·) is a ring and (S, ·) is a group. We can then define a second operation ∗
on V by

w ∗ v :=

{
w(vδ(v)−1) if v ∈ T
0 otherwise.

This operation is well-defined since δ(v) ∈ S for v ∈ T and (S, ·) is a group; hence δ(v)−1 ∈ S
and w(vδ(v)−1) ∈ V (TS) ⊆ V T ⊆ V. In general, these operations need not give rise to a
planar near-ring, or even a near-ring. Thus the first four results can correctly be predicted:
the requirements on the quadruple (V, S, T, δ) such that V1 := (V,+,�) and V2 := (V,+, ∗)
are near-rings and planar near-rings.

Proposition 1. Let (V,+) be a group, (S, ·) a semigroup which acts on V from the right,
T ⊆ V with TS ⊆ T and δ : T −→ S an S-homogeneous function. We suppose for v ∈ V
and s ∈ S, that vs ∈ T implies v ∈ T. Then V1 = (V,+,�) is a near-ring.

Proof. To verify the right distributivity is straightforward. The associativity follows from
vs ∈ T if and only if v ∈ T for any v ∈ V, s ∈ S. �

This result is as general as it can be, in the sense that any near-ring (V,+, ·) can be realized
in this way: Take S = (V, ·), T = V and δ the identity map. Then a � b = ab for all
a, b ∈ V. But one is interested in more interesting choices for S and T. We shall see later
that all the field, ring and near-field generated planar near-rings are of this type. Now we
only give one other example. Let X be a non-empty set, G a group and α : G −→ X a fixed
mapping. Then V =M(X,G) is a group with respect to function addition and S =M(X) is
a semigroup with respect to composition. S acts on V from the right via composition. Let
T = V and define δ : T −→ S by δ(t) := α ◦ t. Then δ is an S-homogeneous mapping and
the corresponding near-ring (V,+,�) with v � w = vδ(w) = v ◦ α ◦ w is just the sandwich
near-ring M(X,G, α).

Let us recall the definition of a planar near-ring. In any near-ring N there is an equivalence
operation =m defined by : a =m b if and only if na = nb for all n ∈ N. In this case, a and b
are said to be equivalent multipliers.
A near-ring N is a planar near-ring if |N/ =m| ≥ 3 and for all a, b, c ∈ N with a 6=m b,

the equation xa = xb + c has a unique solution in N . In a planar near-ring, the following
subsets play an important role:

• the equivalence class of 0, denoted by [0]; in fact, its importance is really because of
what is outside of it, namely N# := N \ [0].

• R which denotes the set of all right identities. It can be shown that R = {1a|a ∈ N#}
where 1a is the unique element of N for which 1aa = a (a ∈ N#).
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• the basic blocks aN#, a 6= 0. When a ∈ N#, a basic block is often denoted by Ba =
aN#. The notion of a basic block is not standard, often it is used to denote other
subsets of N, eg {a,−a}N# (a any nonzero element of N) – if we want to do this, it
will be stated explicitly.
We will say the semigroup S acts faithfully on V if vs1 = vs2 for all v ∈ V implies s1 = s2

(si ∈ S) and vs = 0 (v ∈ V, s ∈ S) implies v = 0.

Proposition 2. Let (V,+) and (S, ·) be non-trivial groups such that S acts faithfully on V
from the right. Let T ⊆ V ∗ := V \{0} with TS ⊆ T and let δ : T −→ S be an S-homogeneous
function. We suppose:

(i) |δ(T )| ≥ 2 and

(ii) for all v ∈ V and t ∈ T with δ(t) 6= 1s, there is a unique x ∈ V with x = xδ(t) + v.

Then V1 = (V,+,�) is a planar near-ring.

Proof. Since S acts faithfully on V , it follows from (v1s−v)s = 0 that v1s = v. Furthermore,
vs ∈ T (v ∈ V, s ∈ S) implies v ∈ T (since S is a group). Proposition 1 is thus applicable
and we only have to verify the planarity. It can be verified that a =m b if and only if (1)
a, b ∈ T and δ(a) = δ(b) or (2) a /∈ T and b /∈ T. Since |δ (T )| ≥ 2, there are t1, t2 ∈ T with
δ(t1) 6= δ(t2) and since 0 /∈ T, |V/ =m| ≥ 3. Let a, b, c,∈ V with a 6=m b. We have to find a
unique solution for the equation x� a = x� b+ c. For this we consider the three cases:

If a ∈ T and b /∈ T, then x = cδ(a)−1.
If a /∈ T and b ∈ T, then x = (−c)δ(b)−1.
If a ∈ T and b ∈ T, then δ(a) 6= δ(b). Hence δ(bδ(a)−1) 6= 1s and by assumption the equation
x = xδ(bδ(a)−1) + cδ(a)−1 has a unique solution. �

For this planar near-ring V1 := (V,+,�), we have [0] = V \T and V #1 = T. Note that in
general V # and V ∗ need not coincide. For any t ∈ T, 1t = tδ(t)−1 and the set of right
identities R = {t ∈ T | δ(t) = 1s}. The basic block Bt determined by t ∈ T, is given by

Bt = {b ∈ T | bδ(b)
−1 = 1t = tδ(t)

−1}.

We now consider various applications of this result.

Example 3. Many of the examples below are known (cf [1], [2] or [3]) and can be accommo-
dated by a general procedure described by Clay (see example 3.3 below). They are reproduced
here to emphasize the point that the construction method of Proposition 2 usually produces
planar near-rings with interesting sets of right identities.

3.1. All the field, near-field and ring generated planar near-rings are given by the procedure
described in Proposition 2. For example, let (V,+, ·) be a ring with identity and with group of
units U(V ). Then S = U(V ) acts faithfully on V from the right (via the ring multiplication).
Let T ⊆ U(V ) with TS ⊆ T, |T | ≥ 2 and such that if t ∈ T\{1}, then 1− t ∈ U(V ). Define
δ : T −→ S by δ(t) = t. Then (V,+,�) is a planar near-ring.

3.2. A well-known and good source of planar near-rings is given by: Let V be a vectorspace
over a field F. Any function f : V → F which satisfies f(vf(w)) = f(v)f(w) for all v, w ∈ V
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and |f(V )| ≥ 3, gives rise to a planar near-ring with multiplication vw = vf(w). This
procedure can be described more generally in the context of Proposition 2 and this example
will exploit this idea. Let V = (R,R, . . . ,R) be the direct sum of n ≥ 1 copies of the additive
group of reals (R,+) . Then V is a vector space over R. In all the subexamples below, we
will take S a subgroup of (R∗, ·) , T ⊆ V ∗ and δ : T −→ S a function. S acts faithfully on V
from the right (via the scalar multiplication). In view of Proposition 2, we only have to verify
that TS ⊆ T, that δ is S-homogeneous and that |δ(T )| ≥ 2 in order to get a planar near-ring
(V,+,�) for the various choices of S, T and δ. In each of these planar near-rings, V # = T
and the right identities are given by R = {(x1, x2, . . . , xn) ∈ T | δ (x1, x2, . . . , xn) = 1}. For
a = (a1, a2, . . . , an) ∈ T, at least one ai 6= 0, say ai0 6= 0. Then Ba = {(x1, x2, . . . .xn) ∈ T |

xi =
ai

aio
xio for all i = 1, 2, . . . , n and aioxio ∈ S}. This means, for example, if S = (R+, ·)

that Ba , is the “ray” in the n-dimensional space Rn, starting at the origin but not including
the origin, and through the point (a1, a2, . . . , an). In any case, depending on the choice for
S, we see that the elements of Ba can at most be the points on a straight line with the origin
excluded and that Ba is independent of δ. We thus only describe the right identities and,
for the obvious geometric advantages, mostly for the cases n = 2 or n = 3.

3.2.1. Let p be a positive odd integer and choose α1, α2, . . . , αn ∈ R fixed such that T :=
{a = (a1, a2, . . . , an) ∈ V |

n∑
i=1

αia
p
i 6= 0} has at least two distinct elements a and b for which

n∑
i=1

αia
p
i 6=

n∑
i=1

αib
p
i . Let S = (R∗, ·) and define δ : T −→ S by δ(a1, a2, . . . , an) =

(
n∑
i=1

αia
p
i

) 1
p

.

Then (V,+,�) is a planar near-ring with right identities R = {(x1, x2, . . . , xn) ∈ T |
n∑
i=1

αix
p
i = 1}. There are, of course, many interesting geometric figures associated with this

set for various p, n and αi. For example, if n = 2, p = 3, α1 = α2 = 1 we get x
3+ y3 = 1; for

n = 2, p = 1 and α2 = α1 = 1 we have y = 1− x, etc.

3.2.2. Let p be a positive even integer, S = (R+, ·) and choose α1, α2, . . . , an ∈ R fixed
such that T := {a = (a1, a2, . . . , an) |

n∑
i=1

αia
p
i > 0} has at least two elements for which

n∑
i=1

αia
p
i 6=

n∑
i=1

αib
p
i . Define δ : T −→ S by

δ(a1, a2, . . . , an) =

(
n∑

i=1

αia
p
i

) 1
p

.

Then (V,+,�) is a planar near-ring. For n = p = 2, the set of right identities R consists
of all the points on a circle if α1 = α2 > 0; all the points on an ellipse if α1 > 0, α2 > 0 and
all the points on a hyperbola if α1α2 < 0. For n = 3 and p = 2, R gives all the points on a
sphere if α1 = α2 = α3 > 0 and all the points on a hyperboloid if α1 = α2 = 1, α3 = −1.

3.2.3. Let p be any positive real number, S = (R+, ·) and choose α1, . . . , αn ∈ R fixed such
that T := {(a1, a2, . . . , an) |

n∑
i=1

αia
p
i 6= 0} has at least two elements for which

n∑
i=1

αia
p
i 6=
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n∑
i=1

αib
p
i . Define δ : T −→ S by

δ(a1, a2, . . . , an) =

(∣∣∣∣∣

n∑

i=1

αia
p
i

∣∣∣∣∣

) 1
p

.

Then (V,+,�) is a planar near-ring. For n = p = 2 and α1 = 1, α2 = −1 the right identities
are the points on |x2 − y2| = 1 and for n = 2, p = 2

3
and α1 = α2 = 1, the right identities are

given by x2/3 + y2/3 = 1.

3.2.4. Let S = (R+, ·) and let T = {(a1, a2, . . . , an) | a1a2 · · · an 6= 0}. Define δ : T −→ S
by

δ(a1, a2, . . . , an) =
n
√
|a1a2 · · · an|.

We get a planar near-ring and for n = 2, the right identities are the points |xy| = 1.

3.2.5. Let S = (R+, ·) and choose α1, α2, . . . , αn ∈ R fixed such that T := {(a1, a2, . . . , an) |
n∑
i=1

αi |ai| 6= 0} has at least two elements such that δ : T −→ S defined by

δ(a1, a2, . . . , an) =
n∑

I=1

αi |ai|

has |δ(T )| ≥ 2.

3.2.6. Let T = V ∗, S = (R∗, ·) and define δ by

δ(a1, a2, . . . , an) =

{
ai if a1 = a2 = · · · = ai−1 = 0, i < n
an otherwise.

For n = 3, the right identities of (V,+,�) are R = {(x, y, z) | x = 1 or (x = 0, y = 1) or
(x = y = 0, z =1)}.

3.2.7. Let T = V ∗, S = (R+, ·) and define δ : T −→ S by

(i) δ(a1, a2, . . . , an) = max{|a1|, |a2| , . . . , |an|} or

(ii) δ(a1, a2, . . . , an) = min{|a1|, |a2|, . . . , |an|}.

3.2.8. Let β : Rn → R be a quadratic form, T := V ∗ and S := (R+, ·). Define δ : T → S by
δ(x) =

√
|β(x)|. Then |δ(T )| ≥ 2 ensures that a planar near-ring is obtained.

3.3. (Anshel and Clay [1], Clay [3]). Let V be a vector space over R. Let T = V ∗ and let
S = (R+, ·).
(i) If V is a normed space with norm || · ||, let δ(t) = ||t|| . Then (V,+,�) is a planar
near-ring.

(ii) Suppose there is a function φ : V −→ R with the property that there is a fixed α ∈ R∗

such that for all r ∈ R, r ≥ 0 and for all v ∈ V, we have φ(rv) = rαφ(v). Let δ(t) := |φ(t)|
1
α .

Once again a planar near-ring is obtained.
As mentioned earlier, many of the examples in 3.2 are covered by these two examples. But
3.4 below shows that one can consider more general cases:
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3.4. Let X be a non-empty set and let V = RX with pointwise addition. Let S = (R+, ·) and
T = {f ∈ V | f 6= 0 and f is bounded}. Define δ : T −→ S by δ(f) = sup{ |f(x)| | x ∈ X}.
Once again a planar near-ring (V,+,�) is obtained.
One should not be coerced into thinking that this procedure always leads to uninteresting

blocks:

3.5. Let F be a field with |F | ≥ 3 and let V be the direct sum of n copies of (F,+),
n ≥ 2. Then V is a vector space over F. For each i = 1, 2, . . . , n let αi : (F ∗, ·) −→ (F ∗, ·)
be a group automorphism with α1 = 1. Extend each αi to F by setting αi(0) = 0. Let
T = {(a1, a2, . . . , an)| ai ∈ F ∗ for all i} and let S = {(α1(b), α2(b), . . . , αn(b)| b ∈ F ∗}.
Then S is a group with respect to componentwise multiplication. Define V × S −→ V by
componentwise multiplication and let δ : T −→ S be given by

δ(a1, a2, . . . , an) = (α1(a1), . . . , αn(a1)).

For n = 2, we get the planar near-ring as described by Clay in [3] which is based on one
given by van der Walt with F = R and α2(x) = x3. In this case R = {(1, y)| y 6= 0} and for
(a1, a2) ∈ T a basic block is given by (a1, a2) � V # = {(x, y)| y =

a2
a31
x3, x 6= 0}. For n = 3,

one can get a variety of interesting space curves in R3 as basic blocks by choosing the α′is,
for example, from the following automorphisms

α(x) = x3, α(x) = 1
x
, α(x) =

{
x2 if x > 0
−x2 if x < 0

, α(x) =

{ √
x if x > 0√
−x if x < 0

and α(x) = x.

To complete this set of examples we may mention that the examples of planar near-rings given
by Clay [3] in Theorems 4.19 and 4.22 can also be described in terms of our Proposition 2.
We now look at the second operation.

Proposition 4. Let (V,+, ·) be a ring with identity and (S, ·) a commutative group which
acts faithfully on V from the right. We suppose (v1s1)(v2s2) = (v1v2)(s1s2) for all vi ∈ V
and si ∈ S. Let T be a subgroup of U(V ), the group of units of V, and suppose TS ⊆ T. Let
δ : T −→ S be an S-homogenous group homomorphism. Then V2 = (V,+, ∗) is a near-ring

where a ∗ b =

{
a(bδ(b)−1) if b ∈ T
0 if b /∈ T.

Proof. The right distributivity is obvious, so we only verify the associativity. Firstly note that
for any a, b ∈ V and s ∈ S, a(bs) = (a1s)(bs) = (ab)(1ss) = (ab)s and likewise (as)b = (ab)s.
This means there is no need for brackets in the definition of a ∗ b, i.e. we will only write
abδ(b)−1 when applicable. Let a, b, c,∈ V. Then

(a ∗ b) ∗ c =

{
(abδ(b)−1)(cδ(c)−1) if c ∈ T and b ∈ T
0 otherwise

and

a ∗ (b ∗ c) =

{
a(bcδ(c)−1)δ(bcδ(c)−1)−1 if c ∈ T and bcδ(c)−1 ∈ T
0 otherwise.
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Since T is a subgroup of U(V ) and S acts faithfully on V we have for any c ∈ T : b ∈ T if
and only if bcδ(c)−1 ∈ T. Furthermore

a(bcδ(c)−1 δ(bcδ(c)−1)−1 =
= (abcδ(c)−1) (δ(b) δ(c) δ(c)−1)−1

= abc(δ(c)−1δ(b)−1)
= abc (δ(b)−1δ(c)−1)
= a(bδ(b)−1) (cδ(c)−1)

which proves the associativity. �

Proposition 5. Let (V,+, ·) be a ring with identity and (S, ·) a commutative group which
acts faithfully on V from the right. We suppose (v1s1)(v2s2) = (v1v2)(s1s2) for all vi ∈ V
and si ∈ S. Let T be a subgroup of U(V ), the group of units of V, and suppose TS ⊆ T. Let
δ : T −→ S be an S-homogenous group homomorphism. In addition, suppose
(i) there are t1, t2 ∈ T with t1δ(t2) 6= t2δ(t1) and

(ii) for a, b ∈ T, aδ(b) 6= bδ(a) implies aδ(b)− bδ(a) ∈ U(V ).

Then V2 = (V,+, ∗) is a planar near-ring with V # = T, R = {a ∈ T | a = 1V δ(a)} and for
a ∈ T, a basic block Ba is given by Ba = {b ∈ T | δ(b) = δ(a)}.

Proof. We firstly note that for a, b ∈ V, a =m b if and only if both a and b are not in T or,
if both a and b are in T, then aδ(a)−1 = bδ(b)−1. Thus V # = T. By (i) we know |V/=m| ≥ 3.
Let a, b, v ∈ V with a 6=m b and consider the equation x ∗ a = x ∗ b+ v.
If a and b are in T, then aδ(a)−1 6= bδ(b)−1. Thus aδ(b) 6= bδ(a) and from (ii) the equation
has a unique solution x = v(aδ(a)−1 − bδ(b)−1)−1 (note that aδ(b) − bδ(a) ∈ U(V ) implies
aδ(a)−1−bδ(b)−1 ∈ U(V )). If only one of a or b is in T, say a ∈ T and b /∈ T, then x = va−1δ(a)
is the unique solution of the equation. Hence V2 is a planar near-ring. For a ∈ T, 1a = 1V δ(a)
and R = {a ∈ T | a = 1V δ(a)}. Lastly, Ba = {b ∈ T | δ(b) = δ(a)} since 1V s = s for all
s ∈ S. �

Combining Propositions 2 and 5 we get:

Proposition 6. Let (V,+, ·) be a ring with identity and (S, ·) a commutative group which
acts faithfully on V from the right and satisfies (v1s1)(v2s2) = (v1v2)(s1s2) for all vi ∈ V and
si ∈ S. Let T be a subgroup of U(V ) with TS ⊆ T. Let δ : T −→ S be an S-homogeneous
group homomorphism. We suppose:
(i) There is a t◦ ∈ T such that 1V δ(t◦) 6= t◦ and δ(t◦) 6= 1S.

(ii) For t ∈ T, δ(t) 6= 1S implies 1V − 1V δ(t) ∈ U(V ).

(iii) For t ∈ T, 1V δ(t) 6= t implies t− 1V δ(t) ∈ U(V ).

Then (V,+,�, ∗) is a double planar near-ring, i.e. both V1 = (V,+,�) and V2 = (V,+, ∗)
are planar near-rings and � and ∗ distribute from the right over each other.

Proof. We start by showing that the requirements of Propositions 2 and 5 are satisfied. Since
δ(1V ) = 1S and δ(t◦) 6= 1S, we know |δ(T )| ≥ 2. Let t ∈ T with δ(t) 6= 1S and let v ∈ V. By
(ii) above, the equation x = xδ(t) + v has a unique solution x = v (1V − 1V δ(t))−1. Hence
V1 is a planar near-ring.
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For t1 := t◦ and t2 := 1V condition (i) of Proposition 5 is satisfied. Let a, b ∈ T with
aδ(b) 6= bδ(a). Let t := b−1a. Then 1V δ(t) 6= t, for 1V δ(t) = t would imply 1V δ(b−1a) = b−1a,
i.e. 1V δ(b

−1)δ(a) = b−1a, i.e. 1V δ(a)δ(b)
−1 = b−1a, i.e. bδ(a) = aδ(b); a contradiction. By

assumption (iii) we have t− 1V δ(t) ∈ U(V ). Hence b−1a− 1V δ(b−1a) = u for some u ∈ U(V ).
Thus aδ(b)− bδ(a) = buδ(b) ∈ U(V ) and we conclude that V2 is a planar near-ring.
Finally we show that the two multiplications distribute over each other. Let a, b, c ∈ V. Then

(a� b) ∗ c =

{
aδ(b)cδ(c)−1 if c, b ∈ T
0 otherwise

and

(a ∗ c)� (b ∗ c) =

{
acδ(c)−1δ(bcδ(c)−1) if c ∈ T and bcδ(c)−1 ∈ T
0 otherwise

=

{
acδ(c)−1δ(b) if c, b ∈ T
0 otherwise.

Also

(a ∗ b)� c =

{
abδ(b)−1δ(c) if c, b ∈ T
0 otherwise

and

(a� c) ∗ (b� c) =

{
abδ(c)δ(b)−1 if c, b ∈ T
0 otherwise.

�

It should be noted that if (V,+, ·) is a field (or skew field), then conditions (ii) and (iii) above
are trivially satisfied. Clay [4] has used double planar near-rings with great effect to describe
geometry over fields.

Example 7. We will consider various applications of the above result.

7.1. Let (V,+, ·) be a subring with identity of the ring Mn(C) of n × n matrices over the
complex field C. Let T be a subgroup of U(V ) and let S = (R+, ·) such that TS ⊆ T where
V × S −→ V is given by

((aij)n×n, s) 7→ (aijs)n×n.

S acts faithfully on V and ((aij)s1)((bij)s2) = (aij)(bij)s1s2.
Define δ : T −→ S by δ((aij)) =

n
√
| det(aij)|. Then δ is an S-homogeneous group homomor-

phism. By varying S and T, we get two well-known examples for the case n = 2.

7.1.1. Let n = 2, V =

{(
a b
−b a

)
| a, b ∈ R

}
and T = U(V ). As is well-known, V is

isomorphic to the complex field via

(
a b
−b a

)
7−→ a+ ib.

Here δ

((
a b
−b a

))
=
√
a2 + b2. The requirements of Proposition 6 are satisfied and the

near-ring (V,+,�, ∗) is the well-known example of a double planar near-ring. Moreover,
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the near-ring V2 = (V,+, ∗) serves as motivation for much that is done for circular planar
near-rings. We will encounter this example again below, but then from a different source.

7.1.2. For n = 2, let

V =

{(
z w
−w z

)
| z, w ∈ C

}

(here z = a− ib denotes the conjugate of z = a+ ib). Then (V,+, ·) is isomorphic to the ring
of quaternions {a+ ib+ jc+ kd | a, b, c, d ∈ R} via

(
a+ ib c+ id
−c+ id a− ib

)
7→ a+ ib+ jc+ kd.

Let T = U(V ). Then δ

(
a+ ib c+ id
−c+ id a− ib

)
=
√
a2 + b2 + c2 + d2 also determines a double

planar near-ring (cf [4]).

7.2. Let R be the field of reals and let f(x) = x2 + qx+ r be a monic polynomial of degree

two over R. Then V = R[x]
<f(x)>

∼= {a+ bt | a, b ∈ R, t2+ qt+ r = 0} is a commutative ring with
identity which we identify with R× R = {(a, b) | a, b ∈ R}. The addition is componentwise
and the multiplication is given by (a, b)(c, d) = (ac− bdr, ad + bc− bdq). For (a, b) ∈ V, we
define the conjugate of (a, b), written as (a, b), by (a, b) = (a− bq,−b) . Let S = (R+, ·) which
we identify with the subset {(a, 0) | a > 0} of V. With respect to the multiplication in V, we
then have that S acts faithfully on V from the right. Let T := {(a, b) ∈ V | (a, b)(a, b) > 0}.
Then T = {(a, b) | a2 − abq + b2r > 0} is a subgroup of U(V ) = {(a, b) | (a, b)(a, b) 6= 0}.
In general T need not coincide with U(V ). However, T = U(V ) if and only if 4 < 0. In this
case, f(x) is irreducible over R and V is a field with U(V ) = T = V ∗. Note that if (a, b)
∈ U(V ), then

(a, b)−1 =
(a, b)

(a, b) (a, b)
.

Define δ : T −→ S by δ(a, b) :=

√
(a, b)(a, b) =

√
a2 − abq + b2r.

If ∆ := q2 − 4r 6= 0, the conditions of Proposition 6 are satisfied and we get a double planar
near-ring (V,+,�, ∗).

Our first specific case is the classical one (already encountered in 7.1.1 above):

7.2.1. Let q = 0, r = 1. Then f(x) = x2 + 1 and (V,+, ·) is just the complex field. Here
V1 = (V,+,�) has a � b = a |b| with R1 = {(x, y) | x2 + y2 = 1} and for a 6= 0, (B1)a is
the ray from 0 through a with 0 excluded. Also, V2 = (V,+, ∗) is a planar near-ring where

a ∗ b =

{
ab |b|−1 if b 6= 0
0 otherwise.

We have R2 = {(x, y) | y = 0, x > 0} and if a = (a1, a2) 6= 0, then (B2)a = {(x, y) |
x2 + y2 = u2} where u2 = a21 + a

2
2. A block (a1, a2) ∗V

# + (b1, b2) is then just a translation
of (a1, a2)∗ V #, i.e. the circle with center (b1, b2) and radius u where u2 = a21 + a

2
2. This
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near-ring is the well-known circular planar near-ring and serves as motivation for much that
is done in this area.
We recall the definition of a circular planar near-ring. For a planar near-ring (N,+, ·),

let B∗ := {aN# + b | a, b ∈ N, a 6= 0}. An element aN# + b of B∗ is called a block and when
b = 0 we have a basic block aN#. A planar near-ring (N,+, ·) is called circular if it satisfies:

(C1) Every three distinct points x, y and z in N belong to at most one B ∈ B∗.

(C2) Every two distinct points x and y belong to at least two distinct blocks B1 and B2 in
B∗.

In a circular planar near-ring, a block B = aN# + b is called a circle with centre b and
radius a.

7.2.2. Let q = 0, r = s2, s > 0. Once again (V,+, ·) is a field and (V,+,�, ∗) is a double
planar near-ring with V2 circular. In V1 we have R1 = {(x, y) | x2 + y2s2 = 1}, i.e. all the
points on an ellipse and for a 6= 0, (B1)a consists of all the points on a ray as in 7.2.1 above.
In V2 we have R2 as in 7.2.1 and for a 6= 0, the associated basic block (= circle) is given by
(B2)a = {(x, y) | x2 + y2s2 = u2} where u2 = a21 + a

2
2s
2, i.e. all the points on the ellipse

x2

u2
+

y2

(u/s)2
= 1.

The planar near-ring V2 is circular with circles (blocks) these ellipses. But the circularity
is not just by virtue of the blocks being ellipses. Rather, it is because nature takes care of
itself very well! One could not just have arbitrary ellipses and expect to get a circular planar
near-ring. The reason being that in general two ellipses may intersect in four distinct points.
However, in the example above, this cannot occur since the ellipses all have a fixed scaling
between the axes – meaning for example if s > 1, that all the ellipses have their horizontal
axes as their major axis.

7.2.3. Let q = r = 1, i.e. f(x) = x2 + x + 1. Once again 4 < 0 and (V,+, .) is a field.
In V1 of the double planar near-ring (V,+,�, ∗) we have the right identities R1 = {(x, y)
| x2 − xy + y2 = 1} and in V2, for a 6= 0, a basic block is given by (B2)a = {(x, y) |
x2 − xy + y2 = u2} where u2 = a21 − a1a2 + a

2
2. This is just a rotation of an ellipse with the

major axis on the line y = x. A block is then just a translation of such an ellipse and V2 is a
circular planar near-ring.

In all three of the above examples, we had 4 < 0. Below examples with 4 > 0 will be given,
but firstly we should mention the anticipated:

Proposition 8. If f(x) = x2 + qx+ r and g(x) = x2 + px+ s are two monic polynomials of
degree two over R, both with discriminants 4(f) < 0 and 4(g) < 0, then the two associated
double planar near-rings (Vf ,+,�f , ∗f ) and (Vg,+,�g, ∗g) are isomorphic.

Proof. Without loss of generality we will assume p = 0 and s = 1 and then define a bijection
φ : Vg −→ Vf which preserves all operations.

Firstly note that in Vg we have (a, b) ·g (c, d) = (ac− bd, ad+ bc) and δg(a, b) =
√
a2 + b2. In

Vf we have (a, b) ·f (c.d) = (ac− bdr, ad+ bc− bdq) and δf (a, b) =
√
a2 − abq + b2r.
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By assumption, 4(f) = q2 − 4r < 0. Let k :=
√
−4 (f). Define φ by φ(a, b) := (a +

q
k
b, 2

k
b). Then φ is clearly injective, it preserves the addition and φ(c− q

2
d, k
2
d) = (c, d) shows

that φ is surjective. Since k2 = − 4 (f) = 4r − q2, one can verify that δf (c +
q
k
d, 2

k
d) =√

(c+ q
k
d)2 − (c+ q

k
d) 2

k
dq + ( 2

k
d)2r =

√
c2 + d2.

Hence for (c, d) 6= 0,

φ((a, b)�g (c, d) = φ((a, b)δg(c, d))

=

(
(a+

q

k
b)
√
c2 + d2,

2

k
b
√
c2 + d2

)

and

φ(a, b)�f φ(c, d) = (a+
q

k
b,
2

k
b) δf (c+

q

k
d,
2

k
d)

=

(
(a+

q

k
b)
√
c2 + d2,

2

k
b
√
c2 + d2

)
.

Lastly

φ((a, b) ∗g (c, d)) = φ

(
ac− bd
√
c2 + d2

,
ad+ bc
√
c2 + d2

)

=

(
ac− bd
√
c2 + d2

+
q

k

(ad+ bc)
√
c2 + d2

,
2

k

(ad+ bc)
√
c2 + d2

)

and

φ(a, b) ∗f φ(c, d) =

(
a+

q

k
b,
2

k
b

)
∗f

(
c+

q

k
d,
2

k
d

)

=

(
a+

q

k
b,
2

k
b

)
.f

(
c+

q

k
d,
2

k
d

)
δf

(
c+

q

k
d,
2

k
d

)−1

= φ ((a, b) ∗g (c, d))

as straightforward calculations will show. �

This results shows that “circles” need not be round, reminding us of a limerick written by
one of Paul Erdös colleagues to humor his papers published in some unknown journals (as
quoted in [5]):

A conjecture both deep and profound
Is whether the circle is round

In a paper of Erdös
Written in Kurdish

A counterexample is found.
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We now consider polynomials with 4 > 0.

7.2.4. (continuation of Example 7.2) Suppose q = 0 and r = −1. Then f(x) = x2 − 1 and
4 > 0. Here (V,+, ·) is not a field, T = {(x, y) | x2 − y2 > 0} and δ(x, y) =

√
x2 − y2. The

associated double planar near-ring has R1 = {(x, y) | x2−y2 = 1}. If (a, b) ∈ T, then (B2)(a,b)

=
{
(x, y) |x

2

u2
− y2

u2
= 1
}
where u2 = a2 − b2 which is just a hyperbola. This planar near-ring

V2 = (V,+, ∗) was originally constructed by Karzel in an unsuccessful attempt to define an
infinite circular planar near-ring different from the one in Example 7.2.1. His approach, as
described by Clay [3], was completely different to the procedure given above. It is not known
if it was realized at that time that V2 is partner in a double planar near-ring. We will return
to a variant of this example below, and for this reason we need to say something more about
its structure. For any nonzero (a, b) in V2, the associated basic block is

(a, b) ∗ V # =






{(x, y) | x2 − y2 = u2} if u2 = a2 − b2 > 0 (ie if (a, b) ∈ T )
{(x, y) | y2 − x2 = v2} if v2 = b2 − a2 > 0

{(x, y) | y = x, x 6= 0} if a = b
{(x, y) | y = −x, x 6= 0} if a = −b

.

The blocks then are just translations of these hyperbolas and straight lines. Since the asymp-
totic lines of these hyperbolas have fixed gradients, it can be verified that any two blocks
have at most two points in common, which means that the first requirement for circularity is
satisfied. To consider the validity of the second condition, take any two distinct points (a, b)
and (c, d) in V. If the gradient of the straight line through these two points is not ±1, then
there are at least two hyperbolas (=blocks) which contain both these points. If this gradient
is ±1, then there is just one block, namely a straight line with gradient either +1 or −1,
which contains these two points. Hence (C2) is not satisfied and V2 is not circular.

7.2.5. Let q = 1, r = 0. Then f(x) = x2 + x, 4 > 0 and T = {(x, y) | x2 − xy > 0} with
δ(x, y) =

√
x2 − xy. A basic block determined by (a, b) ∈ T in V2 is given by (B2)(a,b) ={

(x, y) | x 6= 0, y = x− u2

x

}
where u =

√
a2 − ab. This is just a rotation of a hyperbola.

As was the case with 4 < 0, the next result can be expected:

Proposition 9. If f(x) = x2 + qx+ r and g(x) = x2 + px+ s are two monic polynomials of
degree two over R, both with discriminates 4(f) > 0 and 4(g) > 0, then the two associated
double planar near-rings are isomorphic.

Proof. Without loss of generality, take p = 0 and s = −1. Let k :=
√
4(f) and define

φ : Vg −→ Vf by φ(a, b) =
(
a+ q

k
b, 2

k
b
)
. As in the proof of Proposition 8, it can be shown

that φ is a bijection which preserves all operations. �

7.2.6. (continuation of Example 7.2) With V = R[x]
<f(x)>

as above, one may define different

δ′s and still get double planar near-rings. For example: Let q = −1, r = 0. Then f(x) =
x2 − x,4 > 0 and V = R[x]

<f(x)>
is a commutative ring with identity where (a, b)(c, d) =

(ac, ad + bc + bd). Let S = (R∗, ·) which we identify with {(a, 0) ∈ V | a 6= 0} and let
T = {(a, b) ∈ V | a2 + ab > 0}. Then T is a subgroup of U(V ) = {(a, b) | a2 + ab 6= 0}.
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Define δ : T −→ S by

δ(x, y) =
x2

x+ y
.

All the requirements of Proposition 6 are satisfied and consequently (V,+,�, ∗) is a double
planar near-ring. The associated geometry is given by: T = {(x, y) | (x > 0 and y > −x)
or (x < 0 and y < −x)}, R1 = {(x, y) | y = x2 − x, x > 0} and if (a, b) ∈ T, then
(B1)(a,b) = {(x, y) |y =

b
a
x, x 6= 0}. In V2 one has R2 = {(x, y) | y = 0, x 6= 0} and for

(a, b) ∈ T, (B2)(a,b) = {(x, y) |y =
1
u
x2 − x, ux > 0} where u = δ(a, b) = a2

a+b
.

Another such example is:

7.2.7. Let V be the direct sum of two copies of the field of real numbers R. Then U(V ) =
{(a, b) | ab 6= 0}. Let T = {(a, b) | ab > 0} and S = (R∗, ·). Define δ : T → S by δ(a, b) = a2

b
.

The requirements of Proposition 6 are satisfied and we obtain a double planar near-ring
(V,+,�, ∗). The associated geometry is: R1 = {(x, y) | y = x2, x > 0},R2 = {(x, x) | x 6= 0}
and for (a, b) 6= 0, the corresponding basic blocks in V1 and V2 respectively are:

(a, b)� V # =

{
{(x, b

a
x) | x 6= 0} if a 6= 0

{(0, y) | y 6= 0} if a = 0
and

(a, b) ∗ V # =






{(x, b
a2
x2) | bx > 0} if ab > 0

{(0, y) | yb > 0} if a = 0
{(x, 0) | ax > 0} if b = 0
{(x, b

a2
x2) | bx < 0} if ab < 0

.

We will now generalize the procedure described in Example 7.2. Let F be a field and let
f(x) = f◦+ f1x+ · · ·+ fn−1xn−1+xn be a monic polynomial of degree n (n ≥ 2) over F. Let
V be the commutative ring with identity V = F [x]

<f(x)>
. Then V is isomorphic to {a◦ + at +

· · · + an−1tn−1| ai ∈ F, f(t) = 0} which we identify with the n-tuple V = (F, F, . . . , F ) =
{(a0, a1, . . . ., an) | ai ∈ F}. We will not distinguish between a◦ + a1t + · · · + an−1tn−1 and
(a◦, a1, . . . , an−1) and use whichever is more convenient in the particular case. We identify
the field F with (F, 0, 0, . . . , 0). The addition in V is componentwise and the multiplication
the usual for polynomials subject to tn = −(f◦ + f1t + · · · + fn−1t

n−1). Let U(V ) be the
group of units of V. To facilitate the calculations involving the multiplication, we will find it
convenient to associate with every a = (a◦, a1, . . . , an−1) ∈ V a uniquely determined n × n
matrix M(a) ∈ Mn(F ). With respect to this matrix, the product ab in V can be written as
ab = (a◦, a1, . . . , an−1) (b◦, b1, . . . , bn−1)

=




M(a)





b◦
b1
...

bn−1









∗

where (...)∗ denotes the transposed matrix. We will not distinguish between the n-tuple
(b◦, b1, . . . , bn−1) and the 1 × n matrix [b◦ b1 · · · bn−1]. To describe the matrix M(a), we
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identify the powers of t in V with n× 1 column matrices:

t◦ =





1
0
...
0





and for j = 0, 1, 2, . . . , 2n− 3, if

tj =





c0
c1
...

cn−1




then

tj+1 =





0
c0
...

cn−2




− cn−1





f0
f1
...

fn−1




=





−f0cn−1
c0 − f1cn−1

...
cn−2 − fn−1cn−1




.

With this identification and tj =





c0
c1
...

cn−1




, the (j + 1)-th column of M(a), 0 ≤ j ≤ n − 1,

is given by

atj = (a0 + a1t+ · · ·+ an−1t
n−1)tj

= a0t
j + a1t

j+1 + · · ·+ an−1t
j+n−1

= a0





c0
c1
...

cn−1




+ a1





−f0cn−1
c0 − f1cn−1
...
cn−2 − fn−1cn−1




+ · · ·+ an−1





.

.

...

.




.

For example, the first column of M(a) (i.e. when j = 0) is

at◦ = a◦t
◦ + a1t+ · · ·+ an−1t

n−1 =





a0
a1
...

an−1





and the second column is

at = a0t+ a1t
2 + · · ·+ an−1t

n =





−an−1f◦
a◦ − f1an−1

...
an−2 − fn−1an−1




.
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Now

ab = a
(
b0 + b1t+ · · ·+ bn−1t

n−1
)

= ab0t
0 + ab1t+ · · ·+ abn−1t

n−1

which can be identified with



[
at0 at at2 . . . atn−1

]





b0
b1
...

bn−1









∗

=




M(a)





b0
b1
...

bn−1









∗

.

We will now record some of the properties of M(a):

(i) a ∈ U(V ) if and only if det(M(a)) 6= 0. Indeed:
a ∈ U(V )
⇐⇒there is a unique b = (b0, b1, . . . , bn−1) ∈ V with ab = 1 = (1, 0, . . . , 0)
⇐⇒ there is a unique b = (b0, b1, . . . , bn−1) ∈ V with [b0 b1 · · · bn−1] M(a)∗ = [1 0 . . . 0]
⇐⇒ det M(a)∗ 6= 0
⇐⇒ det M(a) 6= 0.

(ii) M(1) =M(1, 0, . . . , 0) = In, the n× n identity matrix.

(iii) For a ∈ V and s ∈ F, M(as) =M(a)s (the product on the right is just the usual scalar
product): The (j + 1)-th column of M(as) is given by

(as)tj = a◦st
j + a1st

j+1 + · · ·+ an−1st
j+n+1

= (a◦t
j + a1t

j+1 + · · ·+ an−1t
j+n−1)s

which is just the (j + 1)-th column of M(a) with each entry multiplied by s.

(iv) It is worthwhile to draw attention to the two representations of atj, a ∈ V : On the one
hand, thinking of a as a = a0 + a1t+ · · ·+ an−1tn−1 and each ti as a column matrix, we get
atj = a0t

j+a1t
j+1+ · · ·+an−1tj+n−1 which gives the (j+1)-th column ofM(a). On the other

hand, thinking of a as a = (a0, a1, . . . , an−1) and t
j as tj = 0+0t+0t2+ · · ·+1tj+ · · ·+0tn−1

which we identify with (0, . . . , 0, 1, 0, . . . , 0) where 1 is in the (j + 1)-th position, we get
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atj = (a0, a1, . . . , an−1)(0, . . . , 0, 1, 0, . . . , 0)

=





M(a)





0
0
...
0
1
0
...
0









∗

= [0 . . . 0 1 0 . . . 0]M(a)∗

which is also just the (j + 1)-th column of M(a).

(v) For all a, b ∈ V, M(ab) = M(a)M(b) : The (j + 1)-th column of M(ab) is (ab)tj. The
(j + 1)-th column of M(a)M(b)

= [0 . . . 0 1 0 . . . 0] (M(a)M(b))∗

= ([0 . . . 0 1 0 . . . 0]M(b)∗)M(a)∗

=





M(b)





0
...
0
1
0
...
0









∗

M(a)∗

= (M(a).btj)∗

= a(btj)
= (ab)tj

(iv) For any a ∈ U(V ),M(a−1) =M(a)−1.

Next we want to define the conjugate of an element in V. For any a ∈ V, the adjoint matrix
of M(a), denoted by Adj(M(a)), is given by

Adj(M(a)) =





M(a)11 M(a)21 · · · M(a)n1
M(a)12 M(a)22 · · · M(a)n2
...

M(a)1n M(a)2n · · · M(a)nn





where M(a)ij is the (i, j)-th cofactor of M(a).

For a ∈ U(V ), M(a)−1 =
1

det(M(a))
· Adj(M(a)). Suppose a−1 = (b0, b1, . . . , bn−1). From
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aa−1 = 1 we get




M(a)





b0
b1
...

bn−1









∗

= [1 0 . . . 0]

i.e.

[b0 b1 . . . bn−1] = [1 0 . . . 0](M(a)
∗)−1

=
1

det(M(a))
[M(a)11 M(a)12 . . . M(a)1n] ,

i.e. a−1 =
1

det(M(a))
(M(a)11,M(a)12, . . . ,M(a)1n).

We define the conjugate of any a ∈ V, denoted by a, by a := (M(a)11,M(a)12, . . . ,M(a)1n).
If a ∈ U(V ), then a = det(M(a)) a−1, hence for such an a, aa = det(M(a)) (remember, we
identify F with (F, 0, 0, . . . , 0) in V ).

(vii) For any a ∈ V and s ∈ F, as = asn−1.

(viii) For a, b ∈ U(V ), ab = ab.

(ix) If a ∈ U(V ), then a ∈ U(V ) and for such a, a = (det(M(a)))n−2a.

We suppose that (F ∗, ·) has a subgroup S such that if s1, s2 ∈ S and sn1 = sn2 , then s1 = s2.
Let T = {a ∈ U(V ) | aa = det(M(a)) = sn for some s ∈ S} and define δ : T −→ S by

δ(a) =
n
√
aa = n

√
det(M(a))

where n
√
det(M(a)) denotes the unique s ∈ S with det(M(a)) = sn for a ∈ T. Using the

properties above, one can show that T is a subgroup of U(V ), TS ⊆ T and δ is an S-
homogeneous group homomorphism (the action of S on V is given by the multiplication in
V where as usual we identify S with the subset (S, 0, 0, . . . , 0) of V ).

If conditions (i),(ii) and (iii) of Proposition 6 are satisfied, then we obtain a double planar
near-ring (or if (V,+, ·) is a field, we only have to check (i)).

Example 10. We conclude with four applications of this generalization.

10.1. Let F be the field of constructible real numbers. Then Q ⊆ F ⊆ R and f(x) =

x2 + 1 ∈ F [x] is irreducible over F. Hence V =
F [x]

〈f(x)〉
is a countable field (see, for example,

Proposition 1.19 in Chapter 2 of Karpilovsky [6]). Let S = (F+, ·). HereM(a) =

[
a0 −a1
a1 a0

]

if a = (a0, a1) ∈ V. Hence det(M(a)) 6= 0 ⇐⇒ (a0, a1) 6= 0. Since the square root of any
constructible number is constructible, T = {a ∈ U(V ) | det(M(a)) = s2 for some s ∈ S} =
U(V ). Now δ(a) =

√
det(M(a)) =

√
a20 + a

2
1. The conditions of Proposition 6 are satisfied

and we obtain a double planar near-ring (V,+,�, ∗). Next we show that V2 = (V,+, ∗) is
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circular (and certainly not isomorphic to the circular planar near-ring in Example 7.2.1). For
(a, b) 6= 0, the associated basic block (B2)(a,b) in V2 is given by {(x, y) ∈ V | x2 + y2 = u2}
where u2 = a2 + b2.
Any two circles in the Euclidean plane can intersect in at most two points; hence any two
blocks in V2 can intersect in at most two points. Let (a, b) and (c, d) be two distinct points
in V . Then a, b, c and d are constructible and thus (1

2
(a+ c), 1

2
(b+ d)) ∈ V and r, with r > 0

and r2 = (1
2
(a+ c)− a)2 + (1

2
(b+ d)− b)2, is constructible. Both the points (a, b) and (c, d)

are on the block (x− 1
2
(a+ c))2+(y− 1

2
(b+d))2 = r2 in V2. A different block in V2 containing

both these points is given by (x− p)2 + (y− q)2 = s2 where s =
√
2r and (p, q) is any one of

the two points where the circle described above intersects the perpendicular bisector of the
straight line joining (a, b) and (c, d) (obviously (p, q) is in V ). We note that a block in V2
contains infinitely many points, for example, for any n ∈ N we have

(
r
n
, r
n

√
n2 − 1

)
∈ V and

it is on the block {(x, y) ∈ V | x2 + y2 = r2} where r ∈ F+. But on the other hand, this
block in V2 is missing infinitely many points from the corresponding circle in the Euclidean
plane. Indeed, since π is not constructible, neither is π

m
where m ∈ N with π

m
< r. Hence(

π
m
, 1
m

√
r2m2 − π2

)
/∈ V but

(
π
m
, 1
m

√
r2m2 − π2

)
is on the circle x2+y2 = r2 in the Euclidean

plane. Such a block in V2 can thus be called a “near-ring” in the true sense of the word!

In the example above, we had a field (V,+, ·) and T consisted of all the nonzero elements of
V. But one may have T a proper subset of V ∗ (ie the planar near-rings V1 and V2 need not
be integral) and still have V2 an infinite circular planar near-ring. This is the reason for our
next example.

10.2. The polynomial f(x) = x2 + 1 is irreducible over Q and (V = Q[x]
〈f(x)〉 ,+, ·) is a field.

We identify V with Q × Q where addition is componentwise and multiplication is given by
(a, b)(c, d) = (ac − bd, ad + bc). Let S = (Q+, ·) which we identify with the subset {(s, 0) |
s > 0} and let T = {(x, y) | x2 + y2 = s2 for some s ∈ S}. Define δ : T → S by δ(a, b) = s
where s is the unique element of S with a2 + b2 = s2. All the requirements of Proposition
6 are satisfied and we get a double planar near-ring (V,+,�, ∗). We will show that V2 is
circular. For any (a, b) 6= 0 in V, the basic block (a, b)∗V # = {(x, y) ∈ V | x2+y2 = a2+b2}.

Indeed, if (c, d) ∈ V #, then (a, b) ∗ (c, d) =
(
ac−bd
δ(c,d)

, ad+bc
δ(c,d)

)
∈ V and

(
ac−bd
δ(c,d)

)2
+
(
ad+bc
δ(c,d)

)2
=

a2 + b2. Conversely, let (x, y) ∈ V with x2 + y2 = a2 + b2. Then (c, d) :=
(
xa+yb
a2+b2

, ya−xb
a2+b2

)
∈ T,

δ(c, d) = 1 and (x, y) = (a, b) ∗ (c, d) ∈ (a, b) ∗ V #. For any (p, q) ∈ V, the block (a, b) ∗ V #+
(p, q) = {(x, y) ∈ V | (x− p)2+(y− q)2 = a2+ b2}, ie all the points with rational coordinates
on the circle with center (p, q) and radius

√
a2 + b2 in the Euclidean plane. This block

contains infinitely many points from V : the point (a + p, b + q) is on the block and for any
m ∈ Q, the straight line with gradient m and through the point (a + p, b + q) will intersect
the circle in a rational point (ie both the coordinates of the point are rational numbers).
Since two circles in the Euclidean plane can intersect in at most two points, the same is
certainly true for two blocks in V2. Let (a, b) and (c, d) be two distinct points in V2. Then
0 6= (1

2
(c − a), 1

2
(d − b)) ∈ V , 0 6= (1

2
(a + b + c − d), 1

2
(−a + b + c + d)) ∈ V and both the

points (a, b) and (c, d) are on the two distinct blocks

(1
2
(c− a), 1

2
(d− b)) ∗ V # + (1

2
(a+ c), 1

2
(b+ d)) and

(1
2
(a− b− c+ d), 1

2
(a+ b− c− d)) ∗ V # + (1

2
(a+ b+ c− d), 1

2
(−a+ b+ c+ d))
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in V2. Thus V2 is another example of an infinite circular planar near-ring.

We have seen earlier (Example 7.2.4) that V2 in the double planar near-ring V as determined
according to the above procedure by the polynomial f(x) = x2 − 1 over R, has blocks the
hyperbolas and the straight lines with gradient ±1. This planar near-ring is not circular,
because any two distinct points on a straight line with gradient ±1 can only be on one block.
Is it possible to remove these points on the asymptotic lines to get a circular planar near-ring?
The next example will address this question.

10.3. The polynomial f(x) = x2 − 2 is irreducible over Q and (V = Q[x]
〈f(x)〉 ,+, ·) is a field.

We identify V with Q × Q where addition is componentwise and multiplication is given
by (a, b)(c, d) = (ac + 2bd, ad + bc). Let S = (Q+, ·) which we identify with the subset
{(s, 0) | s ∈ S} and let T = {(x, y) | x2 − 2y2 = s2 for some s ∈ S}. Define δ : T → S by
δ(a, b) = s where s is the unique element of S with a2 − 2b2 = s2. All the requirements of
Proposition 6 are satisfied and we get a double planar near-ring (V,+,�, ∗) (condition (i) is
satisfied, for example, with t0 = (

3
5
, 2
5
)). For any (a, b) 6= 0 in V, we have a2 − 2b2 6= 0 and

the basic block (a, b) ∗ V # is given by {(x, y) ∈ V | x2 − 2y2 = a2 − 2b2}. Indeed, let (c, d)

∈ V # = T. Then (a, b) ∗ (c, d) =
(
ac+2bd
δ(c,d)

, ad+bc
δ(c,d)

)
∈ V and

(
ac+2bd
δ(c,d)

)2
− 2

(
ad+bc
δ(c,d)

)2
= a2 − 2b2.

Conversely, let (x, y) ∈ V with x2 − 2y2 = a2 − 2b2. Then (c, d) :=
(
xa−2yb
a2−2b2 ,

ya−xb
a2−2b2

)
∈ T,

δ(c, d) = 1 and (x, y) = (a, b) ∗ (c, d) ∈ (a, b) ∗ V #. The blocks of V2 are thus given by:

(a, b) ∗ V #+ (p, q) = {(x, y) ∈ V | (x− p)2 − 2(y − q)2 = a2 − 2b2}

=






{(x, y) ∈ V | (x−p)
2

u2
− (y−q)2

(u/
√
2)
2 = 1} if u2 = a2 − 2b2 > 0

{(x, y) ∈ V | (y−q)
2

(v/
√
2)
2 −

(x−p)2

v2
= 1} if v2 = 2b2 − a2 > 0

ie all the rational points on the corresponding hyperbolas in the Euclidean plane. The
asymptotic lines of these hyperbolas all have gradient ± 1√

2
. We note that if (a, b) and (c, d)

are two distinct points in V2, then the gradient of the straight line through these two points
cannot be ± 1√

2
(since d−b

c−a ∈ Q for a 6= c ). Two distinct hyperbolas of the type above can
intersect in at most two points in the Euclidean plane, hence the same is true for two blocks
in V2. We now show that the second requirement for circularity is also satisfied. Let (a, b)
and (c, d) be two distinct points in V2. We distinguish three cases:

(i) Suppose a = c. Then b 6= d, say b < d. Choose p ∈ Q+ such that p2 > 2( b−d
2
)2. Then

(p, 1
2
(b− d)) ∗ V # + (a− p, 1

2
(b+ d))

is a block in V2 which contains both the points (a, b) and (c, d). By varying p, we get many
different blocks containing these two points.

(ii) Suppose b = d. Then a 6= c, say a < c. This case is similar to (i) above, just use the
north-south hyperbolas (in contrast to the east-west hyperbolas used in (i)).

(iii) Suppose a 6= c and b 6= d, say a < c and b < d. Then

(
(a−c)2−2(d−b)2

2(a−c) , 0
)
∗ V # +

(
a2−c2+2(d−b)2

2(a−c) , b
)

and
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(
0, (a−c)

2−2(d−b)2

4(d−b)

)
∗ V # +

(
c, (a−c)

2−2b2+2d2

2(d−b)

)

are two distinct blocks in V2, both containing the points (a, b) and (c, d).
Of course one should ask about the number of points on these blocks. But this should
not be of any concern, as each of the basic blocks (a, b) ∗ V # in V2, (a, b) 6= 0, contains
infinitely many points from V. Indeed, this block contains the points (a, b), (a,−b), (−a, b)
and (−a,−b) which gives at least two distinct points on the block (a or b could be 0). It
is known from elementary number theory that Pell’s Equation x2 − 2y2 = 1 has infinitely
many integer solutions (p2k−1, q2k−1), k = 1, 2, 3, . . . where

pj
qj
is the j-th convergent of the

continued fraction of
√
2 (see for example [6], Theorem 11.10). Recall,

√
2 = 1 + 1

2+ 1

2+ 1
2+
...

= [1; 2, 2, 2, . . . ] in the notation of [8]. Then the j-th convergent
pj
qj
is [1; 2, 2, . . . , 2] where 2

appears j times. For example, p1
q1
= 3
2
and p3

q3
= 17
12
. Then, if (p, q) is an integer solution of

Pell’s Equation and (X, Y ) is a rational solution of x2 − 2y2 = a2 − 2b2, it can be verified
that both (pX+2qY, qX+pY ) and (pX−2qY, qX−pY ) are solutions of x2−2y2 = a2−2b2

in V. Alternatively, if (X, Y ) is a rational point on a hyperbola as above, it can be verified
that any straight line through this point and with rational slope will intersect the hyperbola
in a rational point.

One has the obvious geometric interpretation of the basic blocks in the Euclidean plane as
the rational points on the corresponding hyperbola. A nicer geometric interpretation to bring
the circularity of the near-ring to the fore is as follows: Consider the stereographic projection
of the Euclidean plane onto the Riemann number sphere. Under this mapping, a basic block
becomes the rational points on a figure eight on the sphere with the double point of the figure
eight at the north pole (which is not a point on the block).

Our last example is over a finite field.

10.4. Let F be the field Z7 = {0, 1, 2, 3, 4, 5, 6}. Then f(x) = x2 + 1 is irreducible over

F and V =
F [x]

〈f(x)〉
is a field where (a, b)(c, d) = (ac + 6bd, ad + bc). For a = (a0, a1) ∈ V,

M(a) =

[
a0 −a1
a1 a0

]
and det(M(a)) = a20 + a

2
1. Let S = {1, 2, 4}. Then S is a subgroup of

(F ∗, ·) which satisfies s21 = s
2
2 =⇒ s1 = s2 (si ∈ S). Let T = {a ∈ V | det(M(a)) = s2 for some

s ∈ S}. Then T = {(0, 1), (0, 2), (0, 3), (0, 4) (0, 5), (0, 6), (1, 0), (1, 1), (1, 6), (2, 0), (2, 2),
(2, 5), (3, 0), (3, 3), (3, 4), (4, 0), (4, 3), (4, 4), (5, 0), (5, 2), (5, 5), (6, 0), (6, 1), (6, 6)}. Define
δ : T −→ S by δ(a) = s where det(M(a)) = s2, s ∈ S. The requirements of Proposition 6 are
satisfied and we get a double planar near-ring (V,+,�, ∗). We will show that V2 = (V,+, ∗)
is circular: In view of Theorem 5.5 in Clay [3], one only has to show that |B1 ∩B2| ≤ 2 for
two distinct blocks B1 = (a, b) ∗V #+(c, d) and B2 = (r, s) ∗V ∗+(u, v) with (a, b) and (r, s)
both nonzero. We note that (a, b) ∗ V # = {(a, b), (b, 6a), (6a, 6b), (6b, a), (2a + 2b, 5a + 2b),
(5a+2b, 5a+5b), (5a+5b, 2a+5b), (2a+5b, 2a+2b)} and that there are only three distinct
basic blocks namely (0, 1)∗V #, (0, 2)∗V # and (0, 3)∗V #. To check that all the intersections
of two distinct blocks B1 and B2 in V2 has at most two points in common is a tedious and
time-consuming task. But with the necessary motivation and perseverance, it can be done
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to conclude that V2 is indeed a circular planar near-ring.

We have seen earlier (Example 3.2) that a vectorspace over a field is a rich source of planar
near-rings. Our examples of double planar near-rings, and also Proposition 6, suggest that
for double planar near-rings one should look at algebras over fields.
As most of the known planar near-rings are field (or ring) generated, we rephrase Propo-

sitions 2 and 6 in terms of this construction and Ferrero pairs. Let (V,+, ·) be a field with S a
subgroup of (V ∗, ·) such that |S| ≥ 2. For every s ∈ S, we have an automorphism θs of (V,+)
defined by θs(v) = vs for all v ∈ V. We identify S with the subgroup Φ := {θs | s ∈ S} of
(Aut(V,+), ◦). Clearly S acts faithfully on V from the right. Let O = {Φ(a) | 0 6= a ∈ V } be
the class of all nonzero orbits and choose C a non-empty subset ofO. Fix a set E = {ei | i ∈ I}
of representatives for the orbits in C , ie C = {Φ(ei) | i ∈ I}. For each i, Φ(ei) = eiS and if
b ∈ ∪C, then there are unique ib ∈ I and sb ∈ S with b = θsb(eib) = eibsb. The multiplication

a � b =

{
θsb(a) if b ∈ ∪C
0 if b /∈ ∪C

=

{
abe−1ib if b ∈ ∪C
0 if b /∈ ∪C

gives the well-known field generated planar near-ring (V,+, �). If we let T := ∪C and define
δ : T → S by δ(b) = sb we have T ⊆ V ∗, TS ⊆ T and δ is S-homogeneous (cf Proposition 2).
Then a � b = a � b for all a, b ∈ V. In Proposition 6 we need T to be a subgroup of (V ∗, ·).
For this it is sufficient to require that E is a subgroup of (V ∗, ·), suppose ei0 = 1, and for
future use we also suppose |E| ≥ 2. It can be verified that δ is a group homomorphism. By
our requirements on the sizes of E and S, we can choose a t0 ∈ Φ(ei), i 6= i0 and t0 6= ei.
This means condition (i) of Proposition 6 is satisfied and we have a double planar near-ring
(V,+,�, ∗) where

a ∗ b =

{
abδ(b)−1 if b ∈ T
0 if b /∈ T

=

{
aeib if b ∈ eibS for some ib ∈ I
0 if b /∈ T

.

When (V,+, ·) is only a ring with identity, the obvious adaptions can be made to describe
the ring generated double planar near-ring.

In conclusion, the following may be worthy of more investigations: The planar near-ring
V2 obtained from the polynomial f(x) = x2 − 1 over R has some interesting geometrical
properties. In particular, it gives rise to affine configurations with two pencils [3]. Are
there similar or other interesting geometrical properties in the other examples considered
above? One could also consider other definitions for basic blocks (eg {a,−a}N) and this
may lead to interesting geometric interpretations. Most of the examples above were defined
in the Euclidean plane. Are these new algebraic operations compatible with the Euclidean
topology? Are there other natural topologies associated with these double near-rings?
And finally, the obvious should be mentioned: the theory of near-rings provides a very

convenient setting to describe a variety of geometric shapes solely in terms of algebraic
operations.
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