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0. Introduction

Let R be the ring of integers in a number field F'; A an R-order in a semi-simple F-algebra
Y, and I' a maximal R-order in ¥ containing A. Then there exists s € Z, s > 0, such that
sI' C A, and so sI is a 2-sided ideal in both A and I". Put q= sI'. Then we have a Cartesian
square

A — T
{ U
A/g — I‘/g

If the relative K-groups K, (A, q) and K, (I, q) coincide (see below), then one can get for all
n € Z the long exact Mayer-Vietoris sequence

co = K (T/q) = Kn(A) = Kn(A/q) © Kn(T) = Ku(T/q) — Kpa(A) — -+ -

This paper was inspired by a desire to understand the relative groups K, (sI') := K, (s, sT)
(see below) where sI' is the ring obtained from sI' by adjoining a unit to sI'. Since the
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additive group of sI' is free as a Z-module, we are led to compute explicitly Tor!#(Z,Z) and
hence the so-called bar homology groups HB,(sA) (see Theorem 1) in the general setting
of A being a ring with identity such that the additive group of the ideal sA of A is a free
Z-module. We now explain the mathematical context of our result.

If A is a ring with identity, let K, (A) be the Quillen K-groups m,(BGL(A)™) (cf. [1]).
If I is an 2-sided ideal of A, the relative K-group K, (A, I) are defined for all n > 1 as the
homotopy groups 7,(F (A, I)) of the homotopy fibre F'(A,I) of the morphism BGL(A)" —
BGL(A/I)" where GL(A/I) is the image of GL(A) under the canonical map GL(A) —
GL(A/I). The fibration F(A,I) — BGL(A)* — BGL(A/I)* then yields a long exact

sequence
o= KA ) — Kp(A) = Kp(A)I) — Ky (M) = Ky (A) = Ky (AJT) — -1

If B is any ring without unit, and B is the ring with unit obtained by formally adjoining a
unit to B, i.e., B = the set of all (b, s) € B x Z with multiplication defined by (b, s)(V', s') =
(b + sb' + s'b,ss'). Define K,(B) as K,(B,B). If A is an arbitrary ring with identity
containing B as 2-sided ideal, then B is said to satisfy excision for K, if the canonical map

K,o(B) := K,(B, B) = K,(\, B)

is an isomorphism for any ring A containing B.
In [3] A. A. Suslin proves that a ring B satisfies excision for K,-theory for n < r if and
only if ] ~
Tor?(Z,7) = ... = Tor?(Z,7) = 0.

It thus becomes important to compute Tor?(Z, Z).
Now, let B,(A) be the complex

2

By(A): oo AT Iy AR A9 T g

where the differentials d,, are defined by

n—1
dn(al ® e ® an) = Z(—l)i_l(al ® .. ® aia/i—i-l ® e ® an)'

=1

Let HB,(A) be the n-th homology group of B.(A) (cf. [2] P. 12). In [3] A. A. Suslin also
proves that for any ring A (maybe without identity) and for any n > 0, there is the canonical
homomorphism Tor}(Z,Z) — HB,(A), which is an isomorphism for all n if the additive
group of the ring A is torsion-free. This explains the motivation for our study in this paper.

1. Main Result

Let A be a ring with identity. Let s € Z, s > 0. Then sA is an ideal of A. From now
on, we assume that the additive group of sA is a free Z-module with basis sx;,7 € I, where
I is a totally ordered index set with the smallest element 1. We can assume that there
is a A € Z such that Asz; = s. This is because there exist aq,as,...,a,, € Z such that
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s = a18x1 + -+ + apsx, and for the vector (a1, as, ... ,a,) there is an invertible m x m
matrix ¢ € GL,,(Z) such that (ai,as,...,a,)g = (A,0,...,0) for some \ € Z. Thus
g1 (s21,0,...,0), ¢g71(0, sz,...,0), ..., g71(0,0,... 83, as well as sz;,1 € I,i > m,

constitute the required basis. We want to calculate the groups Tor$4(Z,Z) for such a ring A
and any n.

For any positive integer n, denote the cartesian product of n copies of I by I"™. We define
a partition of I"™ as I" = I7'|J I3 |J I§ by induction as follows:

=0, =1 II=0
IF={100) € Plaz e UL}, 13=0  L=I\(FUBL);

I{l = {(041,052,. .. ,Oén_g,l,Oén) - In|(041,0[2, Ce ,Oén_Q,Oén) - I;L_lUIg_l},
I ={(a1,09,...,0n_1,0) € I"|(a1,00,... ,0n_1) € I}'},
I3 =1\ (IF U 13).

One could easily check that I7, I3, I3 are pairwise disjoint.

;.
Lemma 1. For any o, and o!, in I both elements (aq, o, ... ,0n_1,0,) and (aq, o, ... ,
Qp_1,0l) in I™ are in the same partition of I1".

Proof. When n = 1, it is obviously true. Suppose it is true for n—1. If (a1, g, ... , a1, 0) €
I}, then oy, 1 = 1 and (041,042, Qg ap) € Iy7HJ I8 By the induction assumption,
one has (a1, ag, ... ,an_o,a)) € I} J I3 and therefore (a1, an, ..., 9,0, 1,0l) € I7.
If (041,042, s >an—1aan) € IQ? then (Ckl,Oég,. - aan—l) € In 17 thus (011,042,. - aan—lva%) €
I} by the definition of 1. If (o, 9,...,0n_1,,) € I}, then (al,ag,... Ap_1,0p) &
I\ JIy. By the results we have proved above one gets (aq, o, ... ,an_1,0l,) & IPJIY, so
(aq, Q... ,ap_1,0l) € IY. O
To simplify notations for a = (g, a9,... ,a,) € I" and i < n(n > 2) we denote (ay, ...,

Qi_1,0it1 ... ,apn) by afi] and (o, as, ... ,an_1,1) by a(1). By Lemma 1 both a and a(1)
are in the same partition of I". For any element o € I" pick a symbol e, and make a right
free sA-module with basis €q, @ € I™, which enable us to calculate TorSA (Z,7).

Lemma 2. There is a free chain complex of the sA-module Z,

dn p — g~
i @aelneasA L, Bacrn- 1easA —> -2 PacraSA 5 SA -7 — 0

where € is the augmentation map defined by e(x,m) = m and d; is defined by di(e,) = (54, 0)
for any o € I and when n > 2 d,, is defined by

€orig) (=55 9), if o € I7,
dn(€a) = €aji)($Tan,0), if a € 17,

ea[ﬁ](sman, 0) — ea[ﬁ](l)()\sxanflxan, 0), ifaecll.
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Proof. 1t is easy to see that ed; = 0. For n > 2 and a € I" set y, = dp_1d,(en). It is
sufficient to prove that y, = 0. -
If o = (g, 0,...,0,) € I, then by the definition of I7 we have a, 1 = 1 and a[n — 1] €
7YY Iyt Thus
Yo = dn_l(ea[n/_\l](—s, s)).

o o o
n—1

Note that (a[n — 1))[n — 1] = a[A][n — 1]. When ajn — 1] € I}, then

Yo = € ($Tan, 0)(—s,5) = 0.

When oz[n/—\l] € Iy7', then
Yo = [ea[ﬁ][ﬁ](sxana O) o ea[ﬁ][ﬁ](1)<AS$an—2xan7 0)](_Sa 8) =0.
If @ = (a1, 0,...,00) € I}, then afn] = (a1, q0,... ,an_1) € I}, so I77! # () and this

implies that n > 3 since I = (), thus
Yo = dn—1(€af)(5%a,,0)) = ea[ﬁ}[ﬁ}(—s, s)(sxq,,0) = 0.

Suppose now that a = (@, as,... 0, 1,0,) € I§, then afn] ¢ I', so a[p] € I} or
aln] € I3, Thus

Yo = dn—l(ea[ﬁ](smanv 0) - ea[ﬁ](l)(A3$an71$an, 0))
When afn] € I3, by Lemma 1 a[n](1) € I3, too. Thus
Yo = o) ($Tan_15 0)(8Ta,, 0) — €, (571, 0) (AT, Ta,, 0) = 0

since A\sx; = s.
When a[f] = (a1, s, ... ,a,_1) € I3, by Lemma 1 a[n](1) € I8!, too. In this case

Yo = [%{ﬁ][n/_\l](sxan—n 0) — ea[ﬁ“ﬁ](n()‘sxan—zxan—l7 0)](s7q,,0)

—[eam (571, 0) — €577 (1) (ASTa 271, 0)](ASZa,, -, Ta,, 0) = 0
since Asx; = s. Thus we have finished the proof of Lemma 2. O

Lemma 3. The chain complex in Lemma 2 is acyclic, and so, one gets a free resolution of
the sA-module 7.

Proof. Since di(e,) = (824,0) for any o € I and sA is generated by sz,, a € I, it follows
that ker(e) = Im(d;). Next we prove that ker(d,) = Im(d,,1).
By the definition of d,, one gets

ea(—s,s) € ker(d,), for any o € I UI;,

eo(sz;,0) € ker(d,), for any a € I and any j € I,

ea(52,0) — eq)(ASsZq,2;,0) € ker(d,), for any a € I3 UI}} and any j € I.
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Let B,, denote the submodule of ®,cjn ea;;l generated by

ea(—$,8), acly|JIz,
€a<swj70)7 OéEI?, jela
ea(Sﬂjj,O) - €a(1)()\5$an$]‘,0), OAS ISUI:?’ j el

Then B, C ker(d,,) since all of its generators are in ker(d,,).
We now prove that each generator of B, is in Im(d,,11). Suppose that

a=(ag,09,... ,0p_1,0p) € ISUI:?.
Then by the definition of I7*! we have
o = (ay,a, ... 0, 1,1,a,) € I
Thus e,(—s,s),a € IF'|J I, is the image of e, under d, 1. Suppose that
a=(a1,0g,... 0, 1,05) € 17,

then for any j € I,
ﬁ = (O{l,O[Q, s ,Oén_l,Oén,j) € I;H_l?

S0 e4(524,0), 0 € I7, is the image of eg under d,,4;. Suppose that

a=(ag,09,... 0, 1,0p) € IQUI:?.
When «,, # 1, then
B - (0417062,... 7an—17an7j) € I;;H_l

and
€a(s25,0) = €a)(AsTa, 5, 0),

is the image of eg under d,,+;. When «,, =1 then a = (1) and
ea(525,0) — eqy(Asz12;,0) = 0

since Asz; = s and it is the image of 0 under d,,;;. So B,, C Im(d,+1). Hence, to finish the
proof of Lemma 3 it is sufficient to prove that ker(d,) C B,.
Any element x € @,ecmensA can be expressed as a sum

T = Z 6a<ua7ka) + Z ea(uaa ka)
acll acIpUIn

where k, € Z and u, € sA. Since the additive group of sA is free with basis sz;, j € I it
follows that Zael? ea(Uq, 0) € By, by definition of B,,. For any o € I3 |J I} let ko = sho + o
where 0 <[, < s. Then

Z ea(Ua, ko) = Z ea(Uo — Shq,0) + Z ea(0,1y) + Z ea(—8ha, shy,)

acIyJIy acly Iy aclyJIy aclp Iy



380 Aderemi O. Kuku, Guoping Tang: An Explicit Computation ...

where Zaelgufg ea(—5Sha;sha) € B,. Since eq(szj,0) — eq1)(Asza,r;,0) € B, for any
a € I |J I}, the sum ZaeI;lUIg ea(Uo — Sha,0) can be expressed as

Z ea(Uq — Sha,0) = Z eal(u,,0)+b

actp Uy acig Uy
an=

where u), € sA and b € B,,. Thus z € @aejnea;zl it can be expressed as

r=Y e0k)+ Y eal0l)+ Y ealu,,0)+0

acly acly U Iy acly Ullgl
an=

where k, € Z for a € 17,0 < I, < s for a € I}|J I}, ul, € sA for a € I} |J I} with a,, =1
and V' € B,,. Thus, if x € ker(d,), then

do(x) = ) dn(ea)(0,ka) + D dulea)(0,l) + D dnlea)(u,0) = 0.

a€l} aclp JIp acly UIy
an=1
Let
Yy = Z dn(ea)(07 ka)7
aclf
=Y dulea)(0,10) + Y dulea)(u},,0),
aEIg‘ ozEIé1
anp=1
and
z3 — Z dn<ea)(07 loc) + Z dn<60¢)(u/oc’ 0)
acly aely
an=1
Since dp(eq) = €, (—s, ) if a € I7, it follows that
Yy = Z ea[ﬁ]<—8ka, Sk’a).
aclp

Since dy,(€q) € D pem-1 €al(sA,0) if a € I3 |J I3, it follows that

29+ 23 € Z €Q(SA,0>.

acln—1
From y + 25 + 23 = 0 it follows that k, = 0. Hence y = 0 and 20 + 23 = 0. If a €
I then afn] € I} and d,(€a) = €afn)(5Ta,,0) thus 2, € Zael?—l ea(sA,0). If a € I¥
then afn] ¢ I7', by Lemma 1 a[d|(1) ¢ I}"" also. By the definition we have d, (e,
€af]($Tan; 0) — €afn1)(ASTa, 1 Ta,,0) thus 25 € > o m-1€a(sA4,0). From 2z + 23 =
follows that 29 = 0 and z3 = 0. From z, = 0 it follows that

Z ea[ﬁ](lasxany 0) + Z ea[ﬁ](smlu;, 0) = 0

acly aclly
an=1

) =
it
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Since sziul, € s2A and sA is a free Z-module with basis sz;,i € I and 0 <[, < s it follows
that [, =0, € I3. Hence

Z eafn) (sT1Uy, 0) = 0.

n
aelz

an=1

However there is an injection from set {a € I}|a,, = 1} to {a]d]|la € I}, a,, = 1}. Thus
sriul, = 0 and sul, = 0 since Asx; = 1. Furthermore u/, = 0 since u), € sA and sA is a free
Z-module. Similarly one proves that I, = 0 for any o € I} and u), = 0 for any a € I} with
a, = 1. Thus, ker(d,) C B,. So ker(d,) = Im(dy11). O]

Theorem 1. Let s € Z and s > 0. Assume that A is a ring with identity and the additive

group of sA is a free Z-module with basis sx;,i € I, where I is a totally ordered set. Then
Tor'(Z,Z) = (Z/sZ) % V5!,

Hence, HB,(sA) = (Z/sZ)z UL,

Proof. By tensoring the exact sequence in Lemma 3 with Z we get a complex

dn+1®1 dn 1®1

— @aelneasAG@ Zd" N

@aeln 1€aSA® Z

28 BacreasARS LY sA 0~ 7

We have .
DacmCasSA R L = Dacrneq Xz L.

It is easy to see that if a € I} |J I¥, then (d, ® 1)(eq ® 1) = 0, thus
@QGIQU[gea X7z 7z g ker(dn X 1)
There is a bijection between I? and I3~ |JIy~" defined by a a[n/—\l], so we have

that if
(dn @)D ea®ka) = > eoin) © Ska = 0,

aelf afn—1lerr-tyn!

then £, = 0. So
ker(dn X 1) = @QGI;U[gea ®Z Z.

Since (dns1 ® 1)(Spepper ) rir€asA @ Z) = 0 it follows that

Im(dn+1 ® 1) = (dn+1 ® 1)(®a61{‘+160[ ®z Z)

= @ae[{“"lea[ﬁ] &® st = @QGISU[gea X YA

Hence N
Tor*A(Z, 7)) = ker(dy, ® 1)/Im(dp1 ® 1) = (Z/sZ)15 VI

It follows from the Lemma 1.1 in [3] that H B, (sA) = (Z/sZ)3 UL, O
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