Beiträge zur Algebra und Geometrie Contributions to Algebra and Geometry Volume 44 (2003), No. 2, 375-382.

An Explicit Computation of "bar" Homology Groups of a Non-unital Ring

Aderemi O. Kuku Guoping Tang

Mathematics Section, ICTP
Trieste, Italy
e-mail: kuku@ictp.trieste.it

Department of Applied Mathematics, Northwestern Polytechnical University Xi'an, Shaanxi, 710072, P.R. China e-mail: tanggp@nwpu.edu.cn

MSC 2000: 18G15, 18G60

Keywords: "bar" homology groups, Tor-groups

0. Introduction

Let R be the ring of integers in a number field F, Λ an R-order in a semi-simple F-algebra Σ , and Γ a maximal R-order in Σ containing Λ . Then there exists $s \in \mathbb{Z}, \ s > 0$, such that $s\Gamma \subseteq \Lambda$, and so $s\Gamma$ is a 2-sided ideal in both Λ and Γ . Put $\underline{q} = s\Gamma$. Then we have a Cartesian square

$$\begin{array}{ccc} \Lambda & \longrightarrow & \Gamma \\ \downarrow & & \downarrow \\ \Lambda/\underline{q} & \longrightarrow & \Gamma/\underline{q} \end{array}.$$

If the relative K-groups $K_n(\Lambda, \underline{q})$ and $K_n(\Gamma, \underline{q})$ coincide (see below), then one can get for all $n \in \mathbb{Z}$ the long exact Mayer-Vietoris sequence

$$\cdots \to K_{n+1}(\Gamma/\underline{q}) \to K_n(\Lambda) \to K_n(\Lambda/\underline{q}) \oplus K_n(\Gamma) \to K_n(\Gamma/\underline{q}) \to K_{n-1}(\Lambda) \to \cdots$$

This paper was inspired by a desire to understand the relative groups $K_n(s\Gamma) := K_n(\widetilde{s\Gamma}, s\Gamma)$ (see below) where $\widetilde{s\Gamma}$ is the ring obtained from $s\Gamma$ by adjoining a unit to $s\Gamma$. Since the

0138-4821/93 \$ 2.50 © 2003 Heldermann Verlag

additive group of $s\Gamma$ is free as a \mathbb{Z} -module, we are led to compute explicitly $\operatorname{Tor}_n^{\widetilde{sA}}(\mathbb{Z},\mathbb{Z})$ and hence the so-called bar homology groups $HB_n(sA)$ (see Theorem 1) in the general setting of A being a ring with identity such that the additive group of the ideal sA of A is a free \mathbb{Z} -module. We now explain the mathematical context of our result.

If Λ is a ring with identity, let $K_n(\Lambda)$ be the Quillen K-groups $\pi_n(BGL(\Lambda)^+)$ (cf. [1]). If I is an 2-sided ideal of Λ , the relative K-group $K_n(\Lambda, I)$ are defined for all $n \geq 1$ as the homotopy groups $\pi_n(F(\Lambda, I))$ of the homotopy fibre $F(\Lambda, I)$ of the morphism $BGL(\Lambda)^+ \to B\overline{GL}(\Lambda/I)^+$ where $\overline{GL}(\Lambda/I)$ is the image of $GL(\Lambda)$ under the canonical map $GL(\Lambda) \to GL(\Lambda/I)$. The fibration $F(\Lambda, I) \to BGL(\Lambda)^+ \to B\overline{GL}(\Lambda/I)^+$ then yields a long exact sequence

$$\cdots \to K_n(\Lambda, I) \to K_n(\Lambda) \to K_n(\Lambda/I) \to K_{n-1}(\Lambda, I) \to K_{n-1}(\Lambda) \to K_{n-1}(\Lambda/I) \to \cdots$$

If B is any ring without unit, and \tilde{B} is the ring with unit obtained by formally adjoining a unit to B, i.e., $\tilde{B} =$ the set of all $(b,s) \in B \times \mathbb{Z}$ with multiplication defined by (b,s)(b',s') = (bb' + sb' + s'b, ss'). Define $K_n(B)$ as $K_n(\tilde{B}, B)$. If Λ is an arbitrary ring with identity containing B as 2-sided ideal, then B is said to satisfy excision for K_n if the canonical map

$$K_n(B) := K_n(\widetilde{B}, B) \to K_n(\Lambda, B)$$

is an isomorphism for any ring Λ containing B.

In [3] A. A. Suslin proves that a ring B satisfies excision for K_n -theory for $n \leq r$ if and only if

$$\operatorname{Tor}_{1}^{\tilde{B}}(\mathbb{Z},\mathbb{Z}) = \ldots = \operatorname{Tor}_{r}^{\tilde{B}}(\mathbb{Z},\mathbb{Z}) = 0.$$

It thus becomes important to compute $\operatorname{Tor}_n^{\tilde{B}}(\mathbb{Z},\mathbb{Z})$.

Now, let $B_*(\Lambda)$ be the complex

$$B_*(\Lambda): \quad \cdots \to \Lambda^{\otimes^n} \xrightarrow{d_n} \Lambda^{\otimes^{n-1}} \cdots \to \Lambda^{\otimes^2} \xrightarrow{d_1} \Lambda$$

where the differentials d_n are defined by

$$d_n(a_1 \otimes \cdots \otimes a_n) = \sum_{i=1}^{n-1} (-1)^{i-1} (a_1 \otimes \cdots \otimes a_i a_{i+1} \otimes \cdots \otimes a_n).$$

Let $HB_n(\Lambda)$ be the *n*-th homology group of $B_*(\Lambda)$ (cf. [2] P. 12). In [3] A. A. Suslin also proves that for any ring Λ (maybe without identity) and for any n > 0, there is the canonical homomorphism $\operatorname{Tor}_n^{\tilde{\Lambda}}(\mathbb{Z},\mathbb{Z}) \to HB_n(\Lambda)$, which is an isomorphism for all n if the additive group of the ring Λ is torsion-free. This explains the motivation for our study in this paper.

1. Main Result

Let A be a ring with identity. Let $s \in \mathbb{Z}$, s > 0. Then sA is an ideal of A. From now on, we assume that the additive group of sA is a free \mathbb{Z} -module with basis $sx_i, i \in I$, where I is a totally ordered index set with the smallest element 1. We can assume that there is a $\lambda \in \mathbb{Z}$ such that $\lambda sx_1 = s$. This is because there exist $a_1, a_2, \ldots, a_m \in \mathbb{Z}$ such that

 $s = a_1 s x_1 + \dots + a_m s x_m$ and for the vector (a_1, a_2, \dots, a_m) there is an invertible $m \times m$ matrix $g \in GL_m(\mathbb{Z})$ such that $(a_1, a_2, \dots, a_m)g = (\lambda, 0, \dots, 0)$ for some $\lambda \in \mathbb{Z}$. Thus $g^{-1}(s x_1, 0, \dots, 0)^t$, $g^{-1}(0, s x_2, \dots, 0)^t$, \dots , $g^{-1}(0, 0, \dots, s x_m)^t$ as well as $s x_i, i \in I, i > m$, constitute the required basis. We want to calculate the groups $\operatorname{Tor}_n^{\widetilde{sA}}(\mathbb{Z}, \mathbb{Z})$ for such a ring A and any n.

For any positive integer n, denote the cartesian product of n copies of I by I^n . We define a partition of I^n as $I^n = I_1^n \bigcup I_2^n \bigcup I_3^n$ by induction as follows:

$$\begin{split} I_1^1 &= \emptyset, \quad I_2^1 = I, \quad I_3^1 = \emptyset; \\ I_1^2 &= \{(1,\alpha_2) \in I^2 | \alpha_2 \in I_2^1 \bigcup I_3^1\}, \quad I_2^2 = \emptyset, \quad I_3^2 = I^2 \setminus (I_1^2 \bigcup I_2^2); \\ & \vdots \\ I_1^n &= \{(\alpha_1,\alpha_2,\ldots,\alpha_{n-2},1,\alpha_n) \in I^n | (\alpha_1,\alpha_2,\ldots,\alpha_{n-2},\alpha_n) \in I_2^{n-1} \bigcup I_3^{n-1}\}, \\ I_2^n &= \{(\alpha_1,\alpha_2,\ldots,\alpha_{n-1},\alpha_n) \in I^n | (\alpha_1,\alpha_2,\ldots,\alpha_{n-1}) \in I_1^{n-1}\}, \\ I_3^n &= I^n \setminus (I_1^n \bigcup I_2^n). \end{split}$$

One could easily check that I_1^n, I_2^n, I_3^n are pairwise disjoint.

Lemma 1. For any α_n and α'_n in I both elements $(\alpha_1, \alpha_2, \dots, \alpha_{n-1}, \alpha_n)$ and $(\alpha_1, \alpha_2, \dots, \alpha_{n-1}, \alpha'_n)$ in I^n are in the same partition of I^n .

Proof. When n=1, it is obviously true. Suppose it is true for n-1. If $(\alpha_1,\alpha_2,\ldots,\alpha_{n-1},\alpha_n)\in I_1^n$, then $\alpha_{n-1}=1$ and $(\alpha_1,\alpha_2,\ldots,\alpha_{n-2},\alpha_n)\in I_2^{n-1}\bigcup I_3^{n-1}$. By the induction assumption, one has $(\alpha_1,\alpha_2,\ldots,\alpha_{n-2},\alpha_n')\in I_2^{n-1}\bigcup I_3^{n-1}$ and therefore $(\alpha_1,\alpha_2,\ldots,\alpha_{n-2},\alpha_{n-1},\alpha_n')\in I_1^n$. If $(\alpha_1,\alpha_2,\ldots,\alpha_{n-1},\alpha_n)\in I_2^n$, then $(\alpha_1,\alpha_2,\ldots,\alpha_{n-1})\in I_1^{n-1}$, thus $(\alpha_1,\alpha_2,\ldots,\alpha_{n-1},\alpha_n')\in I_2^n$ by the definition of I_2^n . If $(\alpha_1,\alpha_2,\ldots,\alpha_{n-1},\alpha_n)\in I_3^n$, then $(\alpha_1,\alpha_2,\ldots,\alpha_{n-1},\alpha_n)\notin I_1^n\bigcup I_2^n$. By the results we have proved above one gets $(\alpha_1,\alpha_2,\ldots,\alpha_{n-1},\alpha_n')\notin I_1^n\bigcup I_2^n$, so $(\alpha_1,\alpha_2,\ldots,\alpha_{n-1},\alpha_n')\in I_3^n$.

To simplify notations for $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n) \in I^n$ and $i \leq n (n \geq 2)$ we denote $(\alpha_1, \dots, \alpha_{i-1}, \alpha_{i+1}, \dots, \alpha_n)$ by $\alpha[\hat{i}]$ and $(\alpha_1, \alpha_2, \dots, \alpha_{n-1}, 1)$ by $\alpha(1)$. By Lemma 1 both α and $\alpha(1)$ are in the same partition of I^n . For any element $\alpha \in I^n$ pick a symbol e_α and make a right free \widehat{sA} -module with basis e_α , $\alpha \in I^n$, which enable us to calculate $\operatorname{Tor}_n^{\widehat{sA}}(\mathbb{Z}, \mathbb{Z})$.

Lemma 2. There is a free chain complex of the \widetilde{sA} -module \mathbb{Z} ,

$$\cdots \xrightarrow{d_{n+1}} \oplus_{\alpha \in I^n} e_{\alpha} \widetilde{SA} \xrightarrow{d_n} \oplus_{\alpha \in I^{n-1}} e_{\alpha} \widetilde{SA} \xrightarrow{d_{n-1}} \cdots \xrightarrow{d_2} \oplus_{\alpha \in I} e_{\alpha} \widetilde{SA} \xrightarrow{d_1} \widetilde{SA} \xrightarrow{\epsilon} \mathbb{Z} \longrightarrow 0$$

where ϵ is the augmentation map defined by $\epsilon(x,m) = m$ and d_1 is defined by $d_1(e_\alpha) = (sx_\alpha, 0)$ for any $\alpha \in I$ and when $n \geq 2$ d_n is defined by

$$d_n(e_{\alpha}) = \begin{cases} e_{\alpha[\widehat{n-1}]}(-s,s), & \text{if } \alpha \in I_1^n, \\ e_{\alpha[\widehat{n}]}(sx_{\alpha_n},0), & \text{if } \alpha \in I_2^n, \\ e_{\alpha[\widehat{n}]}(sx_{\alpha_n},0) - e_{\alpha[\widehat{n}](1)}(\lambda sx_{\alpha_{n-1}}x_{\alpha_n},0), & \text{if } \alpha \in I_3^n. \end{cases}$$

Proof. It is easy to see that $\epsilon d_1 = 0$. For $n \geq 2$ and $\alpha \in I^n$ set $y_\alpha = d_{n-1}d_n(e_\alpha)$. It is sufficient to prove that $y_\alpha = 0$.

If $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n) \in I_1^n$, then by the definition of I_1^n we have $\alpha_{n-1} = 1$ and $\alpha[\widehat{n-1}] \in I_2^{n-1} \cup I_3^{n-1}$. Thus

$$y_{\alpha} = d_{n-1}(e_{\alpha(n-1)}(-s,s)).$$

Note that $(\alpha[\widehat{n-1}])[\widehat{n-1}] = \alpha[\widehat{n}][\widehat{n-1}]$. When $\alpha[\widehat{n-1}] \in I_2^{n-1}$, then

$$y_{\alpha} = e_{\alpha[\hat{n}]\widehat{[n-1]}}(sx_{\alpha_n}, 0)(-s, s) = 0.$$

When $\alpha[\widehat{n-1}] \in I_3^{n-1}$, then

$$y_{\alpha} = [e_{\alpha[\hat{n}] \widehat{[n-1]}}(sx_{\alpha_n}, 0) - e_{\alpha[\hat{n}] \widehat{[n-1]}(1)}(\lambda sx_{\alpha_{n-2}}x_{\alpha_n}, 0)](-s, s) = 0.$$

If $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n) \in I_2^n$, then $\alpha[\hat{n}] = (\alpha_1, \alpha_2, \dots, \alpha_{n-1}) \in I_1^{n-1}$, so $I_1^{n-1} \neq \emptyset$ and this implies that $n \geq 3$ since $I_1^1 = \emptyset$, thus

$$y_{\alpha} = d_{n-1}(e_{\alpha[\hat{n}]}(sx_{\alpha_n}, 0)) = e_{\alpha[\hat{n}]\widehat{n-2}}(-s, s)(sx_{\alpha_n}, 0) = 0.$$

Suppose now that $\alpha=(\alpha_1,\alpha_2,\ldots,\alpha_{n-1},\alpha_n)\in I_3^n$, then $\alpha[\hat{n}]\notin I_1^{n-1}$, so $\alpha[\hat{n}]\in I_2^{n-1}$ or $\alpha[\hat{n}]\in I_3^{n-1}$. Thus

$$y_{\alpha} = d_{n-1}(e_{\alpha[\hat{n}]}(sx_{\alpha_n}, 0) - e_{\alpha[\hat{n}](1)}(\lambda sx_{\alpha_{n-1}}x_{\alpha_n}, 0)).$$

When $\alpha[\hat{n}] \in I_2^{n-1}$, by Lemma 1 $\alpha[\hat{n}](1) \in I_2^{n-1}$, too. Thus

$$y_{\alpha} = e_{\alpha[\hat{n}][\widehat{n-1}]}(sx_{\alpha_{n-1}}, 0)(sx_{\alpha_n}, 0) - e_{\alpha[\hat{n}][\widehat{n-1}]}(sx_1, 0)(\lambda sx_{\alpha_{n-1}}x_{\alpha_n}, 0) = 0$$

since $\lambda s x_1 = s$.

When $\alpha[\hat{n}] = (\alpha_1, \alpha_2, \dots, \alpha_{n-1}) \in I_3^{n-1}$, by Lemma 1 $\alpha[\hat{n}](1) \in I_3^{n-1}$, too. In this case

$$y_{\alpha} = [e_{\alpha[\hat{n}]\widehat{[n-1]}}(sx_{\alpha_{n-1}}, 0) - e_{\alpha[\hat{n}]\widehat{[n-1]}(1)}(\lambda sx_{\alpha_{n-2}}x_{\alpha_{n-1}}, 0)](sx_{\alpha_n}, 0) - [e_{\alpha[\hat{n}]\widehat{[n-1]}}(sx_1, 0) - e_{\alpha[\hat{n}]\widehat{[n-1]}(1)}(\lambda sx_{\alpha_{n-2}}x_1, 0)](\lambda sx_{\alpha_{n-1}}x_{\alpha_n}, 0) = 0$$

since $\lambda sx_1 = s$. Thus we have finished the proof of Lemma 2.

Lemma 3. The chain complex in Lemma 2 is acyclic, and so, one gets a free resolution of the \widehat{sA} -module \mathbb{Z} .

Proof. Since $d_1(e_\alpha) = (sx_\alpha, 0)$ for any $\alpha \in I$ and sA is generated by sx_α , $\alpha \in I$, it follows that $\ker(\epsilon) = \operatorname{Im}(d_1)$. Next we prove that $\ker(d_n) = \operatorname{Im}(d_{n+1})$.

By the definition of d_n one gets

$$e_{\alpha}(-s,s) \in \ker(d_n), \quad \text{for any } \alpha \in I_2^n \bigcup I_3^n,$$

 $e_{\alpha}(sx_j, 0) \in \ker(d_n)$, for any $\alpha \in I_1^n$ and any $j \in I$,

 $e_{\alpha}(sx_{j},0)-e_{\alpha(1)}(\lambda sx_{\alpha_{n}}x_{j},0)\in\ker(d_{n}),\quad \text{ for any }\alpha\in I_{2}^{n}\bigcup I_{3}^{n} \text{ and any } j\in I.$

Let B_n denote the submodule of $\bigoplus_{\alpha \in I^n} e_\alpha \widetilde{sA}$ generated by

$$\begin{array}{ccc} e_{\alpha}(-s,s), & \alpha \in I_2^n \bigcup I_3^n, \\ e_{\alpha}(sx_j,0), & \alpha \in I_1^n, \ j \in I, \\ e_{\alpha}(sx_j,0) - e_{\alpha(1)}(\lambda sx_{\alpha_n}x_j,0), & \alpha \in I_2^n \bigcup I_3^n, \ j \in I. \end{array}$$

Then $B_n \subseteq \ker(d_n)$ since all of its generators are in $\ker(d_n)$.

We now prove that each generator of B_n is in $\text{Im}(d_{n+1})$. Suppose that

$$\alpha = (\alpha_1, \alpha_2, \dots, \alpha_{n-1}, \alpha_n) \in I_2^n \bigcup I_3^n.$$

Then by the definition of I_1^{n+1} we have

$$\alpha' = (\alpha_1, \alpha_2, \dots, \alpha_{n-1}, 1, \alpha_n) \in I_1^{n+1}.$$

Thus $e_{\alpha}(-s,s)$, $\alpha \in I_2^n \bigcup I_3^n$, is the image of $e_{\alpha'}$ under d_{n+1} . Suppose that

$$\alpha = (\alpha_1, \alpha_2, \dots, \alpha_{n-1}, \alpha_n) \in I_1^n,$$

then for any $j \in I$,

$$\beta = (\alpha_1, \alpha_2, \dots, \alpha_{n-1}, \alpha_n, j) \in I_2^{n+1},$$

so $e_{\alpha}(sx_{i},0), \alpha \in I_{1}^{n}$, is the image of e_{β} under d_{n+1} . Suppose that

$$\alpha = (\alpha_1, \alpha_2, \dots, \alpha_{n-1}, \alpha_n) \in I_2^n \bigcup I_3^n.$$

When $\alpha_n \neq 1$, then

$$\beta = (\alpha_1, \alpha_2, \dots, \alpha_{n-1}, \alpha_n, j) \in I_3^{n+1}$$

and

$$e_{\alpha}(sx_j,0) - e_{\alpha(1)}(\lambda sx_{\alpha_n}x_j,0),$$

is the image of e_{β} under d_{n+1} . When $\alpha_n = 1$ then $\alpha = \alpha(1)$ and

$$e_{\alpha}(sx_j, 0) - e_{\alpha(1)}(\lambda sx_1x_j, 0) = 0$$

since $\lambda sx_1 = s$ and it is the image of 0 under d_{n+1} . So $B_n \subseteq \text{Im}(d_{n+1})$. Hence, to finish the proof of Lemma 3 it is sufficient to prove that $\ker(d_n) \subseteq B_n$.

Any element $x \in \bigoplus_{\alpha \in I^n} e_{\alpha} s A$ can be expressed as a sum

$$x = \sum_{\alpha \in I_1^n} e_{\alpha}(u_{\alpha}, k_{\alpha}) + \sum_{\alpha \in I_2^n \bigcup I_3^n} e_{\alpha}(u_{\alpha}, k_{\alpha})$$

where $k_{\alpha} \in \mathbb{Z}$ and $u_{\alpha} \in sA$. Since the additive group of sA is free with basis $sx_{j}, j \in I$ it follows that $\sum_{\alpha \in I_{1}^{n}} e_{\alpha}(u_{\alpha}, 0) \in B_{n}$ by definition of B_{n} . For any $\alpha \in I_{2}^{n} \bigcup I_{3}^{n}$ let $k_{\alpha} = sh_{\alpha} + l_{\alpha}$ where $0 \leq l_{\alpha} < s$. Then

$$\sum_{\alpha \in I_2^n \bigcup I_3^n} e_\alpha(u_\alpha, k_\alpha) = \sum_{\alpha \in I_2^n \bigcup I_3^n} e_\alpha(u_\alpha - sh_\alpha, 0) + \sum_{\alpha \in I_2^n \bigcup I_3^n} e_\alpha(0, l_\alpha) + \sum_{\alpha \in I_2^n \bigcup I_3^n} e_\alpha(-sh_\alpha, sh_\alpha)$$

where $\sum_{\alpha \in I_2^n \bigcup I_3^n} e_{\alpha}(-sh_{\alpha}, sh_{\alpha}) \in B_n$. Since $e_{\alpha}(sx_j, 0) - e_{\alpha(1)}(\lambda sx_{\alpha_n}x_j, 0) \in B_n$ for any $\alpha \in I_2^n \bigcup I_3^n$, the sum $\sum_{\alpha \in I_2^n \bigcup I_3^n} e_{\alpha}(u_{\alpha} - sh_{\alpha}, 0)$ can be expressed as

$$\sum_{\alpha \in I_2^n \bigcup I_3^n} e_{\alpha}(u_{\alpha} - sh_{\alpha}, 0) = \sum_{\substack{\alpha \in I_2^n \bigcup I_3^n \\ \alpha_{\alpha} = 1}} e_{\alpha}(u_{\alpha}', 0) + b$$

where $u'_{\alpha} \in sA$ and $b \in B_n$. Thus $x \in \bigoplus_{\alpha \in I^n} e_{\alpha}\widetilde{sA}$ it can be expressed as

$$x = \sum_{\alpha \in I_1^n} e_{\alpha}(0, k_{\alpha}) + \sum_{\alpha \in I_2^n \bigcup I_3^n} e_{\alpha}(0, l_{\alpha}) + \sum_{\substack{\alpha \in I_2^n \bigcup I_3^n \\ \alpha_n = 1}} e_{\alpha}(u_{\alpha}', 0) + b'$$

where $k_{\alpha} \in \mathbb{Z}$ for $\alpha \in I_1^n$, $0 \le l_{\alpha} < s$ for $\alpha \in I_2^n \bigcup I_3^n$, $u'_{\alpha} \in sA$ for $\alpha \in I_2^n \bigcup I_3^n$ with $\alpha_n = 1$ and $b' \in B_n$. Thus, if $x \in \ker(d_n)$, then

$$d_n(x) = \sum_{\alpha \in I_1^n} d_n(e_\alpha)(0, k_\alpha) + \sum_{\alpha \in I_2^n \bigcup I_3^n} d_n(e_\alpha)(0, l_\alpha) + \sum_{\substack{\alpha \in I_2^n \bigcup I_3^n \\ \alpha_n = 1}} d_n(e_\alpha)(u'_\alpha, 0) = 0.$$

Let

$$y = \sum_{\alpha \in I_1^n} d_n(e_\alpha)(0, k_\alpha),$$

$$z_2 = \sum_{\alpha \in I_2^n} d_n(e_\alpha)(0, l_\alpha) + \sum_{\substack{\alpha \in I_2^n \\ \alpha_n = 1}} d_n(e_\alpha)(u'_\alpha, 0),$$

and

$$z_3 = \sum_{\alpha \in I_3^n} d_n(e_\alpha)(0, l_\alpha) + \sum_{\substack{\alpha \in I_3^n \\ \alpha_n = 1}} d_n(e_\alpha)(u'_\alpha, 0).$$

Since $d_n(e_\alpha) = e_{\alpha[\widehat{n-1}]}(-s,s)$ if $\alpha \in I_1^n$, it follows that

$$y = \sum_{\alpha \in I_1^n} e_{\alpha \widehat{[n-1]}}(-sk_\alpha, sk_\alpha).$$

Since $d_n(e_\alpha) \in \sum_{\alpha \in I^{n-1}} e_\alpha(sA, 0)$ if $\alpha \in I_2^n \bigcup I_3^n$, it follows that

$$z_2 + z_3 \in \sum_{\alpha \in I^{n-1}} e_{\alpha}(sA, 0).$$

From $y + z_2 + z_3 = 0$ it follows that $k_{\alpha} = 0$. Hence y = 0 and $z_2 + z_3 = 0$. If $\alpha \in I_2^n$ then $\alpha[\hat{n}] \in I_1^{n-1}$ and $d_n(e_{\alpha}) = e_{\alpha[\hat{n}]}(sx_{\alpha_n}, 0)$ thus $z_2 \in \sum_{\alpha \in I_1^{n-1}} e_{\alpha}(sA, 0)$. If $\alpha \in I_3^n$ then $\alpha[\hat{n}] \notin I_1^{n-1}$, by Lemma 1 $\alpha[\hat{n}](1) \notin I_1^{n-1}$ also. By the definition we have $d_n(e_{\alpha}) = e_{\alpha[\hat{n}]}(sx_{\alpha_n}, 0) - e_{\alpha[\hat{n}](1)}(\lambda sx_{\alpha_{n-1}}x_{\alpha_n}, 0)$ thus $z_3 \in \sum_{\alpha \notin I_1^{n-1}} e_{\alpha}(sA, 0)$. From $z_2 + z_3 = 0$ it follows that $z_2 = 0$ and $z_3 = 0$. From $z_2 = 0$ it follows that

$$\sum_{\alpha \in I_2^n} e_{\alpha[\hat{n}]}(l_\alpha s x_{\alpha_n}, 0) + \sum_{\substack{\alpha \in I_2^n \\ \alpha_n = 1}} e_{\alpha[\hat{n}]}(s x_1 u'_\alpha, 0) = 0.$$

Since $sx_1u'_{\alpha} \in s^2A$ and sA is a free \mathbb{Z} -module with basis $sx_i, i \in I$ and $0 \leq l_{\alpha} < s$ it follows that $l_{\alpha} = 0, \alpha \in I_2^n$. Hence

$$\sum_{\substack{\alpha \in I_2^n \\ \alpha_n = 1}} e_{\alpha[\hat{n}]}(sx_1 u'_{\alpha}, 0) = 0.$$

However there is an injection from set $\{\alpha \in I_2^n | \alpha_n = 1\}$ to $\{\alpha[\hat{n}] | \alpha \in I_2^n, \alpha_n = 1\}$. Thus $sx_1u'_{\alpha} = 0$ and $su'_{\alpha} = 0$ since $\lambda sx_1 = 1$. Furthermore $u'_{\alpha} = 0$ since $u'_{\alpha} \in sA$ and sA is a free \mathbb{Z} -module. Similarly one proves that $l_{\alpha} = 0$ for any $\alpha \in I_3^n$ and $u'_{\alpha} = 0$ for any $\alpha \in I_3^n$ with $\alpha_n = 1$. Thus, $\ker(d_n) \subseteq B_n$. So $\ker(d_n) = \operatorname{Im}(d_{n+1})$.

Theorem 1. Let $s \in \mathbb{Z}$ and s > 0. Assume that A is a ring with identity and the additive group of sA is a free \mathbb{Z} -module with basis sx_i , $i \in I$, where I is a totally ordered set. Then

$$\operatorname{Tor}_n^{\widetilde{sA}}(\mathbb{Z},\mathbb{Z}) = (\mathbb{Z}/s\mathbb{Z})^{|I_2^n \bigcup I_3^n|}.$$

Hence, $HB_n(sA) = (\mathbb{Z}/s\mathbb{Z})^{|I_2^n \bigcup I_3^n|}$.

Proof. By tensoring the exact sequence in Lemma 3 with \mathbb{Z} we get a complex

$$\cdots \xrightarrow{d_{n+1} \otimes 1} \oplus_{\alpha \in I^n} e_{\alpha} \widetilde{SA} \otimes_{\widetilde{SA}} \mathbb{Z} \xrightarrow{d_n \otimes 1} \oplus_{\alpha \in I^{n-1}} e_{\alpha} \widetilde{SA} \otimes_{\widetilde{SA}} \mathbb{Z} \xrightarrow{d_{n-1} \otimes 1} \cdots \xrightarrow{d_2 \otimes 1} \oplus_{\alpha \in I} e_{\alpha} \widetilde{SA} \otimes_{\widetilde{SA}} \mathbb{Z} \xrightarrow{d_1 \otimes 1} \widetilde{SA} \otimes_{\widetilde{SA}} \mathbb{Z}$$

We have

$$\bigoplus_{\alpha \in I^n} e_{\alpha} \widetilde{sA} \otimes_{\widetilde{sA}} \mathbb{Z} = \bigoplus_{\alpha \in I^n} e_{\alpha} \otimes_{\mathbb{Z}} \mathbb{Z}.$$

It is easy to see that if $\alpha \in I_2^n \bigcup I_3^n$, then $(d_n \otimes 1)(e_\alpha \otimes 1) = 0$, thus

$$\bigoplus_{\alpha \in I_2^n \bigcup I_3^n} e_\alpha \otimes_{\mathbb{Z}} \mathbb{Z} \subseteq \ker(d_n \otimes 1).$$

There is a bijection between I_1^n and $I_2^{n-1} \bigcup I_3^{n-1}$ defined by $\alpha \mapsto \alpha[\widehat{n-1}]$, so we have that if

$$(d_n \otimes 1)(\sum_{\alpha \in I_1^n} e_\alpha \otimes k_\alpha) = \sum_{\alpha \widehat{[n-1]} \in I_2^{n-1} \bigcup I_2^{n-1}} e_{\alpha \widehat{[n-1]}} \otimes sk_\alpha = 0,$$

then $k_{\alpha} = 0$. So

$$\ker(d_n \otimes 1) = \bigoplus_{\alpha \in I_2^n \bigcup I_3^n} e_\alpha \otimes_{\mathbb{Z}} \mathbb{Z}.$$

Since $(d_{n+1} \otimes 1)(\bigoplus_{\alpha \in I_2^{n+1} \bigcup I_3^{n+1}} e_{\alpha} \widetilde{SA} \otimes_{\widetilde{SA}} \mathbb{Z}) = 0$ it follows that

$$\operatorname{Im}(d_{n+1} \otimes 1) = (d_{n+1} \otimes 1)(\bigoplus_{\alpha \in I_1^{n+1}} e_{\alpha} \otimes_{\mathbb{Z}} \mathbb{Z})$$

$$= \oplus_{\alpha \in I_1^{n+1}} e_{\alpha[\hat{n}]} \otimes s\mathbb{Z} = \oplus_{\alpha \in I_2^n \bigcup I_3^n} e_\alpha \otimes s\mathbb{Z}.$$

Hence

$$\operatorname{Tor}_{n}^{\widetilde{SA}}(\mathbb{Z},\mathbb{Z}) = \ker(d_{n} \otimes 1) / \operatorname{Im}(d_{n+1} \otimes 1) = (\mathbb{Z}/s\mathbb{Z})^{|I_{2}^{n} \bigcup I_{3}^{n}|}.$$

It follows from the Lemma 1.1 in [3] that $HB_n(sA) = (\mathbb{Z}/s\mathbb{Z})^{|I_2^n \cup I_3^n|}$.

References

- [1] Charney, R.: A note on excision in K-theory. Algebraic K-theory, number theory, geometry and analysis (Bielefeld 1982), Lecture Notes in Math. **1046**, 47–54, Springer, Berlin 1984.
- [2] Loday, J. L.: Cyclic homology. Grundlehren der Mathematischen Wissenschaften **301**, Springer-Verlag, Berlin 1998.

 Zbl 0885.18007
- [3] Suslin, A. A.: Excision in integral algebraic K-theory. Proc. Steklov Inst. Math. **208** (1995), 255–279. Zbl 0871.19002

Received September 2, 2001