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of straight lines forming point three-dimensional submanifolds X3 with degenerate
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1. Introduction

The theory of projective planes over algebras is the subject belonging to the geometry and
the algebra, and this subject attracts the attention of both algebraists and geometers. This
theory was considered in Pickert’s book [14], and in the single chapters of the books [6], [15],
and [16].
However, not so much is known about the differential geometry of such projective planes.

Some questions in this direction were considered in the paper [1]. In that paper the author
studied smooth lines in projective planes over the matrix algebra and over some of its subal-
gebras. In this study, he used the mapping of the projective plane MP 2 over the algebra M
of (n× n)-matrices onto the Grassmannian G(n− 1, 3n− 1) of subspaces of dimension n− 1
of a real projective space RP 3n−1.
In the current paper, we continue the investigations of Akivis [1]. However, we restrict

ourselves to the study of smooth lines on projective planes over the algebra C of complex
numbers, the algebra C1 of double numbers, and the algebra C0 of dual numbers (for de-
scription of these algebras, see, for example, [13] or [18] or [16]). In the space RP 5, to these
smooth lines there correspond families of straight lines forming point three-dimensional sub-
manifolds X3 with degenerate Gauss maps of rank r ≤ 2 (see [2], Ch. 4). We study focal
properties of these submanifolds and prove that they represent examples of different types of
submanifolds X3 with degenerate Gauss maps. Namely, the submanifold X3, corresponding
in RP 5 to a smooth line γ of the projective plane CP 2, does not have real singular points,
the submanifold X3, corresponding in RP 5 to a smooth line γ of the projective plane C1P 2,
bears two plane singular lines, and finally the submanifold X3, corresponding in RP 5 to a
smooth line γ of the projective plane C0P 2, bears one double singular line.
In the last case, the submanifold X3 is a generalization of submanifolds with degenerate

Gauss maps without singularities in the four-dimensional Euclidean space R4 constructed by
Sacksteder in [17] and recently considered by Bourgain. Note that Bourgain’s hypersurface
was described in the papers [19] and [9, 10, 11], and the authors of the current paper proved
(see [3]) that the hypersurfaces of Sacksteder and Bourgain are locally equivalent.
The authors introduce the notion of the curvature of a smooth line γ in the plane

AP 2,A = C, C1, C0, and prove that in all three cases, the rank of X3 is equal to the rank of
the curvature of the line γ.
Note also that it follows from the the results of the paper [1] that in the projective

plane MP 2 over the algebra M of (2× 2)-matrices, there are no smooth lines different from
straight lines. A family of straight lines in RP 5 corresponding to those straight lines is the
Grassmannian G(1, 3) of straight lines lying in a three-dimensional subspace RP 3 of the space
RP 5.
In [4], the authors found the basic types of submanifolds with degenerate Gauss maps

and proved the structure theorem for such submanifolds: an arbitrary submanifold with a
degenerate Gauss map is either irreducible or if it is reducible, it is foliated by submanifolds
of basic types. The finding of examples of submanifolds with degenerate Gauss maps of basic
and not basic types is important. Such examples can be found in [2, 3, 4], [5], [8], [9, 10, 11],
[12], [19]. In particular, in [10], Ishikawa found real algebraic cubic nonsingular hypersurfaces
with a degenerate Gauss map in RP n for n = 4, 7, 13, 25. These hypersurfaces have the
structure of homogeneous spaces of groups SO(3),SU(3),Sp(3), and F4, respectively, and
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their projective duals are linear projections of Veronese embeddings of projective planes KP2
for K = R,C,H,O, where O represents Cayley’s octonions.
The examples we have constructed in this paper are of the same nature as Ishikawa’s

examples but they are much simpler.

2. Two-dimensional algebras and their representation

There are known three two-dimensional algebras: the algebra of complex numbers z = x+ iy,
where i2 = −1, the algebra of double (or split complex) numbers z = x + ey, where e2 = 1,
and the algebra of dual numbers z = x + εy, where ε2 = 0. Here everywhere x, y ∈ R.
Usually these three algebras are denoted by C, C1, and C0 (see [16], §1.1). These algebras
are commutative and associative, and any two-dimensional algebra is isomorphic to one of
them.
Each of these three algebras admits a representation by means of the real (2×2)-matrices:

z = x+ iy →

(
x −y
y x

)
, (1)

z = x+ ey →

(
x y
y x

)
, (2)

and

z = x+ εy →

(
x 0
y x

)
. (3)

In what follows, we identify the algebras C,C1, and C0 with their matrix representations.
The algebras C,C1, and C0 are subalgebras of the complete matrix algebra M formed by

all real (2× 2)-matrices

(
x00 x

0
1

x10 x
1
1

)

, (4)

which is associative but not commutative.
The algebra C does not have zero divisors while the algebras C1,C0, and M have such

divisors. In the matrix representation, zero divisors of these algebras are determined by the
condition

det

(
x00 x

0
1

x10 x
1
1

)

= 0.

For the algebra C1 the last condition takes the form

x2 − y2 = 0,

for the algebra C0 the form x = 0, and for the algebra M the form

x00x
1
1 − x

1
0x
0
1 = 0. (5)
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The elements of the algebras C1 and C0, as well as the regular complex numbers (the elements
of the algebra C), can be represented by the points on the plane xOy. In this representation,
the zero divisors of the algebra C1 are represented by the points of the straight lines y = ±x,
and the zero divisors of the algebra C0 by the points of the y-axis.
The elements of the algebraM are represented by the points of a four-dimensional vector

space, and its zero divisors by the points of the cone (5) whose signature is (2, 2). Thus, to
the algebra M , there corresponds a four-dimensional pseudo-Euclidean space R42 of signature
2 with the isotropic cone (5). This cone bears two family of plane generators defined by the
equations

x00
x10
=
x01
x11
= λ,

x00
x01
=
x10
x11
= µ, (6)

where λ and µ are real numbers.

3. The projective planes over the algebras CC, CC1, CC0, and M

Denote by A one of the algebras C, C1, C0, or M and consider a projective plane AP 2 over
the algebra A (see [6]). A point X ∈ AP 2 has three matrix coordinates X0, X1, X2 that have
respectively the form (1), (2), (3), or (4). Since it is convenient to write point coordinates as
a column-matrix, we write

X = (X0, X1, X2)T . (7)

The matrix X in (7) has 6 rows and 2 columns. Of course, the columns of this matrix must
be linearly independent. The coordinates Xα, α = 0, 1, 2, are defined up to a multiplication
from the right by an element P of the algebra A which is not a zero divisor. So, we have
X ′ ∼ XP, P ∈ A.
In particular, for X ∈ CP 2, X ∈ C1P 2, and X ∈ C0P 2, we have

X =





x00 −x
1
0

x10 x00

x20 −x
3
0

x30 x20

x40 −x
5
0

x50 x40





, X =





x00 x
1
0

x10 x
0
0

x20 x
3
0

x30 x
2
0

x40 x
5
0

x50 x
4
0





, X =





x00 0

x10 x
0
0

x20 0

x30 x
2
0

x40 0

x50 x
4
0





,

respectively.
The columns of the matrix X can be considered as coordinates of the points x0 and x1

of a projective space RP 5, and the straight line x0 ∧ x1 in the space RP 5 corresponds to the
matrix X. So, we can set X = x0 ∧ x1. The set of all straight lines of the space RP 5 forms
the Grassmannian RG(1, 5), whose dimension is equal to 8, dim RG(1, 5) = 2 · 4 = 8.
Note that RG(1, 5) is a differentiable manifold. Thus, AP 2 is also a differentiable manifold

over R.
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4. Equation of a straight line

A straight line U in the plane AP 2 is defined by the equation

U0X
0 + U1X

1 + U2X
2 = 0,

where Uα ∈ A, α = 0, 1, 2. The coordinates Uα admit a multiplication from the left by an
element P ∈ A, which is not a zero divisor.
In general, two skewed straight lines in RP 5 correspond to points X,Y ∈ AP 2. These

straight lines define a subspace RP 3 corresponding to the unique straight line in AP 2 passing
through the points X and Y .
Two points X and Y are called adjacent if more than one straight line passes through

them in AP 2. To such points, there correspond intersecting straight lines x0∧x1 and y0∧y1 in
RP 5. Through adjacent points X, Y ∈ AP 2, there passes a two-parameter family of straight
lines in AP 2, since through a plane RP 5, there passes a 2-parameter family of subspaces
RP 3 ⊂ RP 5.
If

X = (X0, X1, X2)T , Y = (Y 0, Y 1, Y 2)T

are adjacent points, then the rank of the (6× 4)-matrix composed of the matrix coordinates
of X and Y is less than 4. If the rank of this matrix is 4, then through the points X and Y ,
there passes a unique straight line.
On a plane AP 2, there are three basis points E0, E1, E2 with coordinates

E0 = (E, 0, 0)
T , E1 = (0, E, 0)

T , E2 = (0, 0, E)
T ,

where E =

(
1 0
0 1

)
is the unit matrix, and 0 is the (2 × 2) 0-matrix. A point X ∈ AP 2

can be represented in the form

X = E0X
0 + E1X

1 + E2X
2. (8)

However, as we noted earlier, the coordinates Xα of this point admit a multiplication from
the right by an element P ∈ A which is not a zero divisor.
A point X is in general position with the straight line Eα ∧Eβ, α, β = 0, 1, 2, if and only

if its coordinate Xγ, γ 6= α, β, is not a zero divisor. Let, for instance, a point X be in general
position with the straight line E1 ∧E2. Then its coordinate X0 is not a zero divisor, and all
its coordinates can be multiplied from the right by (X0)−1. Then expression (8) of the point
X takes the form

X = E0 + E1X̃
1 + E2X̃

2, (9)

where X̃1 = X1(X0)−1, X̃2 = X2(X0)−1. Now the (4 × 2)-matrix (X̃1, X̃2)T is defined
uniquely and is called the matrix coordinate of the point X as well as of the straight line
x0 ∧ x1 defined in the space RP 5 by the point X (see [16], Sect. 2.4.1, and also [15], Ch. 3,
§3).
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For the plane MP 2, the matrix coordinate has 8 real components. Hence dim MP 2 = 8.
Since dim MP 2 = dim G(1, 5), the plane MP 2 can be bijectively mapped onto the Grass-
mannian RG(1, 5).
For the planes CP 2,C1P 2, and C0P 2, the matrix coordinates of points have 4 real com-

ponents. Hence the real dimension of these planes is 4,

dim CP 2 = dim C1P 2 = dim C0P 2 = 4.

Therefore, the family of straight lines x0 ∧ x1 in the space RP 5 for each of these planes
depends on 4 parameters, i.e., it forms a congruence in the space RP 5. We denote these
congruences by K, K1, and K0, respectively.

5. Moving frames in projective planes over algebras

A moving frame in a projective plane AP 2 over an algebra A is a triple of points Aα, α =
0, 1, 2, that are mutually not adjacent. Any point X ∈ AP 2 can be written as

X = A0X
0 + A1X

1 + A2X
2,

where Xα ∈ A are the coordinates of this point with respect to the frame {A0, A1, A2}. The
coordinates of a point X are defined up to a multiplication from the right by an element P of
the algebra A which is not a zero divisor. If a point X is in general position with the straight
line A1 ∧A2, then its coordinate X0 is not a zero divisor. Thus, the point X can be written
as

X = A0 + A1X̃
1 + A2X̃

2,

where X̃1 = X1(X0)−1, X̃2 = X2(X0)−1. The matrix (X̃1, X̃2)T is the matrix coordinate of
the point X with respect to the moving frame {Aα}, and this coordinate is defined uniquely.
The plane AP 2 admits a representation on the Grassmannian RG(1, 5) formed by the

straight lines of the space RP 5. Under this representation, to the vertices of the frame {Aα},
there correspond the straight lines

A0 = a0 ∧ a1, A1 = a2 ∧ a3, A2 = a4 ∧ a5 (10)

in RP 5; here ai, i = 0, . . . , 5, are points of the space RP 5.
The equations of infinitesimal displacement of the moving frame {A0, A1, A2} have the

form

dAα = AβΩ
β
α, α, β = 0, 1, 2, (11)

where Ωβα are 1-forms over the algebra A. In the representation of the algebra A by (2× 2)-
matrices, these forms are expressed as the transposed matrices (1), (2), (3), and (4). Their
entries are not the numbers. The entries are real 1-forms:

Ωβα =



 ω
2β
2α ω2β+12α

ω2β2α+1 ω
2β+1
2α+1



 . (12)
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Thus, for the plane CP 2, the entries of the matrix Ωβα satisfy the equations

ω2β2α = ω
2β+1
2α+1, ω

2β+1
2α = −ω2β2α+1, (13)

for the plane C1P 2 the equations

ω2β2α = ω
2β+1
2α+1, ω

2β+1
2α = ω2β2α+1, (14)

and for the plane C0P 2 the equations

ω2β2α = ω
2β+1
2α+1, ω

2β
2α+1 = 0. (15)

If now the frame {Aα} moves in the plane AP 2, then the points ai ∈ RP 5 also move. The
equations of infinitesimal displacement of the moving frame {ai} can be written in the form

dai = ajω
j
i , i, j = 0, 1, . . . , 5, (16)

where by (10), the forms ωji coincide with the corresponding forms (12). The forms ω
i
j satisfy

the structure equations of the projective space RP 5:

dωij = −ω
i
k ∧ ω

k
j , (17)

where d is the symbol of exterior differential, and ∧ denotes the exterior multiplication of
the linear differential forms (see for example, [2], Sec. 1.3).

6. Focal properties of the congruences K, K1, and K0

Now we consider the congruences K,K1, and K0 of the space RP 5, representing the planes
CP 2,C1P 2, and C0P 2 in this space, and investigate their focal properties.

Theorem 1. The projective planes CP 2,C1P 2, and C0P 2 admit a bijective mapping onto the
linear congruences K,K1, and K0 of the real space RP 5. These congruences are respectively
elliptic, hyperbolic, and parabolic.

Proof. To each of these congruences, we associate a family of projective frames in such a way
that the points a0 and a1 are located on a moving straight line of the congruence.
For the congruence K, equations of infinitesimal displacement of the points a0 and a1

can be written in the form




da0 = ω

0
0a0 + ω

1
0a1 + ω

2
0a2 + ω

3
0a3 + ω

4
0a4 + ω

5
0a5,

da1 = −ω10a0 + ω
0
0a1 − ω

3
0a2 + ω

2
0a3 − ω

5
0a4 + ω

4
0a5.

(18)

By (14), for the congruence K1, similar equations take the form





da0 = ω

0
0a0 + ω

1
0a1 + ω

2
0a2 + ω

3
0a3 + ω

4
0a4 + ω

5
0a5,

da1 = ω
1
0a0 + ω

0
0a1 + ω

3
0a2 + ω

2
0a3 + ω

5
0a4 + ω

4
0a5.

(19)
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Finally, by (15), for the congruence K0, similar equations take the form





da0 = ω

0
0a0+ω

1
0a1 + ω

2
0a2+ω

3
0a3 + ω

4
0a4+ω

5
0a5,

da1 = ω00a1 +ω20a3 +ω40a5.
(20)

Let x = a1 + λa0 be an arbitrary point of the straight line a0 ∧ a1. This point is a focus of
this straight line if for some displacement, its differential dx also belongs to this straight line.
Let us start from the congruence K1, since the focal images for this congruence are real

and look more visual. By (19), for this congruence we have

dx ≡ (ω30 + λω
2
0)a2 + (ω

2
0 + λω

3
0)a3 + (ω

5
0 + λω

4
0)a4 + (ω

4
0 + λω

5
0)a5 (mod a0 ∧ a1), (21)

and as a result, for its focus x, the following equations must be satisfied:





ω20 + λω

3
0 = 0, ω

4
0 + λω

5
0 = 0,

λω20 + ω
3
0 = 0, λω

4
0 + ω

5
0 = 0.

(22)

The necessary and sufficient condition of consistency of this system is

∣∣∣∣
1 λ
λ 1

∣∣∣∣
2

= 0.

It follows that the values λ = ±1 are double roots of this equation. Thus, each line a0 ∧ a1
of the congruence K1 has two double foci

f1 = a1 + a0, f2 = a1 − a0.

Equations (14) imply that the differentials of the focus f1 are expressed only in terms of the
points a0 + a1, a2 + a3, and a4 + a5. The differentials of these points are expressed in terms
of the same points. As a result, the plane

π1 = (a0 + a1) ∧ (a2 + a3) ∧ (a4 + a5)

remains fixed when the straight line a0 ∧ a1 describes the congruence K1 in the space RP 5.
In a similar way, one can prove that the focus f2 describes the plane

π2 = (a0 − a1) ∧ (a2 − a3) ∧ (a4 − a5).

Thus, the congruence K1 is a four-parameter family of straight lines of the space RP 5 inter-
secting its two planes π1 and π2 that are in general position. Hence K

1 is a hyperbolic line
congruence.
In a similar way, we can prove that each straight line a0 ∧ a1 of the congruence K bears

two double complex conjugate foci

f1 = a1 + ia0, f2 = a1 − ia0,
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and these foci describe two complex conjugate two-dimensional planes π1 and π2, π2 = π1.
Hence K is an elliptic line congruence in the space RP 5. The straight lines of K do not have
singular points in RP 5.
Finally, consider the congruence K0 in the space RP 5. We look for the foci of its straight

lines in the same form
x = a1 + λa0.

Differentiating this expression by means of (20), we find that

dx ≡ λω20a2 + (λω
3
0 + ω

2
0)a3 + λω

4
0a4 + (λω

5
0 + ω

4
0)a5 (mod a0 ∧ a1).

Thus, the focus x must satisfy the following equations:




λω20 = 0, λω40 = 0,

ω20 +λω
3
0 = 0, ω

4
0 +λω

5
0 = 0.

(23)

This system is consistent if and only if

∣∣∣∣
λ 0
1 λ

∣∣∣∣
2

= 0.

It follows that the value λ = 0 is a quadruple root of this equation. Thus, each line a0 ∧ a1
of the congruence K0 has a real quadruple singular point f = a1. Applying equations (15),
it is easy to prove that when the straight line a0 ∧ a1 describes the congruence K0, this focus
describes the plane π = a1 ∧ a3 ∧ a5. Hence K0 is a parabolic line congruence.

7. Smooth lines in projective planes

On a projective plane AP 2, where A is one of the algebras C, C1, and C0, consider a smooth
point submanifold γ of real dimension three. Such a submanifold is called an A-smooth line
if at any of its points X, it is tangent to a straight line U passing through X.
With an A-smooth line γ, we associate a family of projective frames {A0A1A2} in such

a way that A0 = X and A1 lies on the tangent U to γ at X. Then on the line γ, the first
equation of (11) takes the form

dA0 = A0Ω
0
0 + A1Ω

1
0. (24)

It follows that A-smooth lines on a plane AP 2 are defined by the equation

Ω20 = 0. (25)

The 1-form Ω10 in equation (24) defines a displacement of the point A0 along the curve γ. So,
this form is a basis form on γ.
By equations (12), we have

Ω10 =



 ω
2
0 ω

3
0

ω21 ω
3
1,



 , Ω20 =



 ω
4
0 ω

5
0

ω41 ω
5
1



 ,
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where ωji are real 1-forms. For the algebras C,C1, and C0, they are related respectively by
equations (13), (14), and (15). As a result, on the line γ ⊂ AP 2, the following differential
equations will be satisfied:

ω40 = 0, ω
5
0 = 0. (26)

These equations are equivalent to equations (25).
Since Ω10 is a basis form on the line γ ⊂ AP 2, the real forms ω20 and ω30 are linearly inde-

pendent. The families of straight lines in the space RP 5 corresponding to these lines depend
on 2 parameters and form a three-dimensional ruled submanifold. Denote this submanifold
by S. These submanifolds belong to the congruences K,K1, and K0 if γ ⊂ CP 2, γ ⊂ C1P 2,
and γ ⊂ C0P 2, respectively.

Theorem 2. The tangent subspace Tx(S) to the ruled submanifold S corresponding in the
space RP 5 to a smooth line in the planes CP 2,C1P 2, and C0P 2 is fixed at all points of its
rectilinear generator L, and the submanifold S is a submanifold with a degenerate Gauss map
of rank r ≤ 2.

Proof. Consider a rectilinear generator L = a0 ∧ a1 of the submanifold S. By (26), the
differentials of the points a0 and a1 are written in the form





da0 = ω

0
0a0 + ω

1
0a1 + ω

2
0a2 + ω

3
0a3,

da1 = ω
1
0a0 + ω

1
1a1 + ω

2
1a2 + ω

3
1a3.

(27)

It follows that at any point x ∈ a0 ∧ a1, the tangent subspace Tx(X) belongs to a three-
dimensional subspace RP 3 ⊂ RP 5 defined by the points a0, a1, a2, and a3. Thus, the subspace
Tx(X) remains fixed along the rectilinear generator L = a0 ∧ a1, and the submanifold S is a
submanifold with a degenerate Gauss map of rank r ≤ 2. �

8. Singular points of submanifolds corresponding to smooth lines in the projective
spaces over two-dimensional algebras

We will prove the following theorem.

Theorem 3. To smooth lines in the projective planes CP 2,C1P 2, and C0P 2 over the algebras
of complex, double, and dual numbers, there correspond three-dimensional submanifolds X3

with degenerate Gauss maps of rank r ≤ 2 in the space RP 5. For the algebra C, such a
submanifold does not have real singular points, for the algebra C1, such a submanifold is the
join formed by the straight lines connecting the points of two plane curves that are in general
position, and for the algebra C0, such a submanifold is a subfamily of the family of straight
lines intersecting a plane curve. In all these cases, a submanifold S depends on two functions
of one variable.

A rectilinear generator L = a0 ∧ a1 of a submanifold S of rank 2 bears two foci. Let us find
these foci for the submanifolds S corresponding to the lines γ in the planes CP 2,C1P 2, and
C0P 2. We assume that these foci have the form x = a1 + λa0.
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If a line γ ⊂ C1P 2, then equations (14) and (27) are satisfied. They imply that

dx ≡ (ω30 + λω
2
0)a2 + (ω

2
0 + λω

3
0)a3 (mod a0 ∧ a1),

and for the focus x, we have

ω30 + λω
2
0 = 0, ω

2
0 + λω

3
0 = 0.

This system is consistent if and only if
∣∣∣∣
1 λ
λ 1

∣∣∣∣ = 0,

i.e., if λ = ±1. Thus, the foci of the straight line a0 ∧ a1 are the points a1 + a0 and a1 − a0.
These points belong to the focal planes π1 and π2 of the congruence K

1 and describe lines γ1
and γ2. Such manifolds S are called joins. Since each of the lines γ1 and γ2 on the planes π1
and π2 is defined by means of one function of one variable, a submanifold S depends on two
functions of one variable. The same result could be obtained by applying the Cartan test
(see [7]) to the system of equations (14) and (26).
If a line γ ⊂ CP 2, then we can prove that a rectilinear generator L = a0 ∧ a1 of the ruled

submanifold S corresponding to γ bears two complex conjugate foci belonging to complex
conjugate focal planes π1 and π2 = π1 of the congruence K. Hence in the real space RP 5,
the submanifold S does not have singular points.
In the complex plane π1, the focus f1 can describe an arbitrary differentiable line. But

such a line is defined by means of two functions of one real variable. Therefore, in this case
the submanifold S also depends on two functions of one real variable.
Finally, consider a submanifold S ⊂ RP 5 corresponding to a line γ ⊂ C0P 2. Such a

submanifold is defined in RP 5 by differential equations (15) and (26). Using the same method
as above, we can prove that a rectilinear generator L = a0 ∧ a1 of the ruled submanifold S
corresponding to γ bears a double real focus f = a1 belonging to the focal plane π of the
congruence K0 and describing in this plane an arbitrary line.
We prove that in this case a submanifold S is also defined by two functions of one variable.

But now in order to prove this, we apply the Cartan test.
Taking exterior derivatives of equations (26) and applying equations (15), we obtain the

following exterior quadratic equations:

ω20 ∧ ω
4
2 = 0, ω

2
0 ∧ ω

5
2 + ω

3
0 ∧ ω

4
2 = 0. (28)

It follows from (28) that

ω42 = pω
2
0, ω

5
2 = qω

2
0 + pω

3
0. (29)

We apply the Cartan test to the system of equations (26), (28), and (29). In addition to the
basis forms ω20 and ω

3
0, equations (28) contain two more forms ω

4
2 and ω

5
2. Thus, we have

q = 2. The number of independent equations in (28) is also 2, i.e., s1 = 2. As a result,
s2 = q − s1 = 0, and the Cartan number

Q = s1 + 2s2 = 2.
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Equations (29) show that the number N of parameters on which the general two-dimensional
integral element depends is also 2, N = 2. Since Q = N , the system of equations (26) is
involution, and its solution depends on two functions of one variable. �

9. Curvature of smooth lines over algebras

Differentiating equation (25) defining a smooth line γ in the plane AP 2, where A = C, C1, C0,
and applying Cartan’s lemma, we obtain

Ω21 = RΩ
1
0, (30)

where R ∈ A. The quantity R is called the curvature of the line γ ⊂ AP 2.
For a line γ in the plane C1P 2, in formula (30) we have

Ω10 =



 ω
2
0 ω

3
0

ω30 ω
2
0



 , Ω21 =



 ω
4
2 ω

5
2

ω52 ω
4
2



 , R =



 p q

q p



 ,

and det R = p2− q2. If rankR = 2, then the quantity R is not a zero divisor, and the rank of
the ruled manifold X that corresponds in RP 5 to the line γ, is also equal to 2. If rankR = 1,
then R is a zero divisor, R 6= 0, and the rank of the manifold X is equal to 1. Finally, if
R = 0, then a line γ is a straight line in the plane C1P 2, and the manifold X corresponding
to γ in RP 5 is a subspace RP 3.
For a line γ in the plane CP 2, in formula (30) we have

Ω10 =

(
ω20 ω

3
0

−ω30 ω
2
0

)
, Ω21 =

(
ω42 ω

5
2

−ω52 ω
4
2

)
, R =

(
p q
−q p

)
.

Thus, det R = p2 + q2, and two cases are possible: rankR = 2 and rankR = 0. In the
first case, a submanifold X ⊂ RP 5 of rank 2 without singularities corresponds to the line
γ ⊂ CP 2, and in the second case, an RP 3 corresponds to the line γ ⊂ CP 2.
For a line γ in the plane C0P 2, in formula (30) we have

Ω10 =

(
ω20 ω

3
0

0 ω20

)
, Ω21 =

(
ω42 ω

5
2

0 ω42

)
, R =

(
p q
0 p

)
,

and det R = p2. If p 6= 0, then rankR = 2, and the curvature R is not a zero divisor.
If p = 0, q 6= 0, then rankR = 1, and the curvature R is a nonvanishing zero divisor. If
p = q = 0, then R = 0. The rank a submanifold X corresponding in RP 5 to a line γ ⊂ C0P 2
is equal to the rank of R. If R = 0, then the submanifold X is a flat subspace RP 3 ⊂ RP 5.
Thus, we have proved the following result.

Theorem 4. The rank of the ruled submanifold X corresponding in RP 5 to a smooth line
γ ⊂ AP 2, where A = C, C1, C0, is equal to the rank of the curvature of this line. For A = C,
this rank can be 2 or 0, and for A = C1, C0, the rank can be 2, or 1, or 0.
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