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Abstract. Recently J. Fukuta and Z. Čerin showed how regular hexagons can be
associated to any triangle, thus extending Napoleon’s theorem. The aim of this
paper is to prove that these results are closely related to linear maps. This reflects
better the affine character of some constructions and gives also rise to a few new
theorems.
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1. Introduction

J. Fukuta showed in [4, 5] that to each triangle in the Euclidean plane E regular hexagons can
be associated. In a slightly generalized form due to Z. Čerin [1] one of Fukuta’s constructions
applied to a given triangle a1a2a3 reads as follows (Fig. 1):

• Operation 1: Divide all sides of a1a2a3 in two given ratios, i.e., for given λ, λ ∈ R define
two point triples b1b2b3 and b1b2b3 as affine combinations bi := λai + (1 − λ)ai+1,
bi := (1− λ)ai + λai+1, i = 1, 2, 3 , indices modulo 3.1

• Operation 2: Define six points c1, c1, c2, c2, c3, c3 by building equally oriented equilat-
eral triangles on the sides b1b1,b1b2, . . . ,b3b1 of the hexagon Hb := b1b1b2b2b3b3.

• Operation 3: Let d1,d1,d2, . . . ,d3 be the centroids of the consecutive triples c3c1c1,
c1c1c2, . . . , c3c3c1 in the hexagon Hc := c1c1c2c2c3c3.

Then the hexagon Hd := d1d1d2d2d3d3 is regular.

1In [4, 5] only the cases λ = λ have been treated.
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Figure 1. Fukuta’s theorem

For (λ, λ) = (1, 1) (see Fig. 2) this statement is the “hexagonal” extension ([6], Theorem 4,
or [9], Theorem IV) of Napoleon’s theorem (cf. [3, p. 23] or [8]). Various generalizations of
Fukuta’s construction as presented in [1, 2] will be addressed in the sequel. The proofs given
in [4, 5, 1, 2] are verifications using complex numbers. We show that these results are closely
related to statements on linear maps (Lemma 2). This approach is not only more appropriate
to the affine character of some constructions but it also leads to simplified proofs and a few
new results (Corollaries 3, 5 and Theorem 6).

2. Linear maps and isocentroidal triangles

We introduce a second plane E ′ with an equilateral “standard triangle” s′1s
′
2s
′
3. Then there is

an affine transformation α : E ′ → E, s′i 7→ ai . Under α the centroid o
′ of s′1s

′
2s
′
3 is mapped

onto the centroid o of a1a2a3. From now on we see the planes E and E
′ as two-dimensional

vector spaces over R with zero vectors o and o′, respectively. Then the affine transformation
α can be represented by a linear map a (Fig. 3) with

ai = a(s
′
i) for i = 1, 2, 3. (1)

Before we prove that the three Fukuta-operations listed above produce again linear maps,
a brief view on notations and basic results from Linear Algebra: For any two vector spaces
U, V let L(U, V ) denote the set of linear maps U → V . This is again a vector space due to
the definition

(λg + µh)(u) = λg(u) + µh(u) for g, h ∈ L(U, V ), u ∈ U, λ, µ ∈ R.
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Figure 2. Napoleon’s theorem

Let W be an additional vector space. Then for k, l ∈ L(V,W ) we can form the composites
k◦g etc. obeying

k◦(g + h) = k◦g + k◦h, (k + l)◦g = k◦g + l◦g.

A map B : U×V → W, (u,v) 7→ B(u,v) is called bilinear if it is linear in each factor.

Lemma 1. Let T0 denote the set of ordered point triples in E with the centroid o. Then
there is a bijection

τ : L(E ′, E)→ T0 , g 7→ g1g2g3 := g(s
′
1)g(s

′
2)g(s

′
3).

Proof. s′1 + s
′
2 + s

′
3 = o

′ implies g(s′1) + g(s
′
2) + g(s

′
3) = g(o

′) = o. Conversely, g is uniquely
defined by the images of s′1 and s

′
2. �

In this sense we can replace statements about point triples from T0 by statements on linear
maps of L(E ′, E). The triple a1a2a3 corresponds to a ∈ L(E ′, E) according to (1). The
cyclic permutation a2a3a1 corresponds to a◦r′3 when r

′
3 ∈ L(E

′, E ′) denotes the rotation of
E ′ about o′ through 120◦ (see Fig. 3). a◦r′3

2 corresponds to a3a1a2. Since for all x
′ ∈ E ′

point o′ is the centroid of the triple x′ r′3(x
′) r′3

2(x′), we get

r′3
2
+ r′3 + 1

′ = 0 ′, (2)
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Figure 4. Building equilateral
triangles

where 1 ′ denotes the identity and 0 ′ the zero-map of L(E ′, E ′).2 On the other hand we have
r′3
3 = 1 ′.

Ad Operation 1: We define a class of bilinear maps by affine combinations with fixed coeffi-
cients

Aξ : L(E
′, E)×L(E ′, E)→ L(E ′, E), (g, h) 7→ Aξ(g, h) := ξg + (1− ξ)h. (3)

Instead of applying Operation 1 to the given triangle a1a2a3 we determine the linear maps

b := Aλ(a, a◦r
′
3) and b := Aλ(a◦r

′
3, a). (4)

Due to Lemma 1 the images b1b2b3 and b1b2b3 of s
′
1s
′
2s
′
3 under b and b, resp., are isocen-

troidal, i.e., they share the centroid o (compare [1], Theorems 2,3,4).

Ad Operation 2: Let w complete the given side uv to a positively oriented equilateral triangle
(see Fig. 4). When r4 ∈ L(E,E) denotes the rotation of E about o through 90◦, then we can
set

w = 1
2
(u+ v) +

√
3
2
r4(v− u).

For u = g(x′) and v = h(x′) there is again a linear map k ∈ L(E ′, E) with w = k(x′) for all
x′ ∈ E ′. We now generalize Operation 2 and replace the equilateral triangles by mutually
similar ones:

• Operation 2’: Define six points c1, c1, c2, c2, c3, c3 by building equally oriented triangles
of a given shape on the sides b1b1,b1b2, . . . ,b3b1 of the hexagon Hb .

We meet this operation by the definition

Tξξ : L(E
′, E)×L(E ′, E)→ L(E ′, E), (g, h) 7→ Tξξ(g, h) := Aξ(g, h) + ξr4◦(h−g) (5)

2Equation (2) expresses exactly the statement of the Cayley-Hamilton theorem for r′3 ∈ L(E
′, E′).
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with constant ξ, ξ ∈ R. Changing the sign of ξ means reflecting all affixed triangles in their
baselines. The original Operation 2 is based on the specification ξ = 1/2 and ξ = ±

√
3/2.

The triangles c1c2c3 and c1c2c3 resulting from Operation 2’ correspond to

c := Tξξ(b, b) and c := Tξξ(b, b◦r
′
3). (6)

Ad Operation 3: Instead of determining the centroids for the triples of consecutive points we
define the “mean maps” as the affine combinations

d := 1
3
(c◦r′3

2
+ c+ c) and d := 1

3
(c+ c+ c◦r′3). (7)

From (7) and (2) we obtain

d+ d◦r′3 =
1
3
(c+ c)◦(1 ′ + r′3 + r

′
3
2
) = 0,

where 0 denotes the zero-map in L(E ′, E). Substituting r′3
2 = −1 ′ − r′3 in (7) yields

Theorem 1. For any c, c ∈ L(E ′, E) the mean maps d, d defined in (7) obey

d = 1
3
(c− c◦r′3) and d = −d◦r

′
3
2
= d+ d◦r′3.

Corollary 1. For any two isocentroidal point triples c1c2c3 and c1c2c3 the centroids of
consecutive triples c3c1c1, . . ., c3c3c1 in the hexagon Hc = c1c1c2c2c3c3 constitute a hexagon
Hd symmetric with respect to o.

Hd is an affine transform of a regular hexagon. The main diagonals didi+1 of Hd and cici+1
of Hc are parallel. Their lengths make the ratio 2 : 3.

Proof. The points ci = c(s
′
i) and ci+1 = c(s

′
i+1) = c◦r

′
3(s
′
i) are opposite in Hc. In Hd point

di = d(s
′
i) = d◦r

′
3
2(s′i+1) is opposite to di+1 = d(s

′
i+1) = d◦r

′
3(s
′
i) = −d(s

′
i). Theorem 1 yields

ci − ci+1 = (c− c◦r
′
3)(s

′
i) = 3d(s

′
i) = 3di =

3
2
(d− d◦r′3)(s

′
i) =

3
2
(di − di+1).

d = d+d◦r′3 implies di = di+di+1, i.e., the quadrangle odi di di+1 is a parallelogram. Hence
Hd is the affine transform of a regular hexagon (see Fig. 5).
The first statement in Corollary 1 can also be concluded from the fact that due to Lemma

1 point o is the centroid of the point set {c1, c1, . . . , c3}. Therefore o is the midpoint between
the centroids of any complementary triples selected from this set. �

Remark 1. The Operations 1, 2’ or 3 can also be applied to maps g ∈ L(Rn, E) without
destroying their linearity. Even affine maps remain affine. In Descriptive Geometry this has
already been used in [7] for generating new parallel views (axonometries) from two given
views of any 3D object (see also [10]).
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3. Similarities

In the sense of Lemma 1 equilateral triangles g1g2g3 in E correspond to similarities g ∈
L(E ′, E) since the preimage s′1s

′
2s
′
3 is supposed equilateral.

A linear map g ∈ L(E ′, E) is a similarity if and only if it preserves orthogonality. This
means that any vector x′ ∈ E ′ and its image under the rotation r′4 of E

′ about o′ through
90◦ are mapped on two vectors corresponding under ±r4, i.e.,3

g◦r′4 = ε r4◦g for ε ∈ {1,−1}. (8)

Similarities with the same ε constitute a subspace Sε(E ′, E) ⊂ L(E ′, E) since (8) and h◦r′4 =
ε r4◦h imply for all λ, µ ∈ R

(λg + µh)◦r′4 = ε r4◦(λg + µh).

Fig. 3 reveals the orthogonality between x′ and r′3(x
′)−r′3

2(x′) = (r′3−r
′
3
2)(x′). More precisely

and due to (2) we obtain

r′4 =
1√
3
(r′3 − r

′
3
2
) = 1√

3
(1 ′ + 2r′3). (9)

The following lemma will be useful in the sequel:

Lemma 2. For given g ∈ L(E ′, E) the linear map

h := α g + β g◦r′3 + r4◦(γ g + δ g◦r
′
3)

is a similarity if the coefficients α, . . . , δ ∈ R obey

γ =
ε
√
3
(2β − α) and δ =

ε
√
3
(β − 2α).

For linearly independent {g, g◦r′3, r4◦g, r4◦g◦r
′
3} this sufficient condition is also necessary.

Proof. By straightforward computation we obtain with (2)

h◦r′4 =
1√
3
h◦(1 ′ + 2r′3) =

= 1√
3
[(α− 2β)g + (2α− β)g◦r′3] +

1√
3
r4◦[(γ − 2δ)g + (2γ − δ)g◦r′3] .

On the other hand due to r4
2 = −1 we get

r4◦h := −γ g − δ g◦r
′
3 + r4◦(α g + β g◦r

′
3).

We conclude by comparing coefficients that condition (8) is fulfilled when α, . . . , δ ∈ R obey
the equations given in Lemma 2. �

3Also in [9] the operators r′3 and r
′
4 are used for proving Napoleon’s theorem, however in a different way.
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Theorem 2. If we set ξ = 1/2 and ξ = −ε
√
3/2 in (6), then for any b, b ∈ L(E ′, E) the

linear map d defined in (7) as well as d and (c− c◦r′3) are similarities.

Proof. It is sufficient to prove that 3d = c− c◦r′3 is a similarity since d = −d◦r
′
3
2 differs from

d by a rotation in E ′ and the reflection of E in o. From (7) and (6) we obtain

c = ξb+ (1− ξ)b+ ξr4◦(b− b) and c = ξb+ (1− ξ)b◦r
′
3 + ξr4◦(b◦r

′
3 − b),

hence due to Theorem 1 and (2)

3d =
[
b+ (1− ξ)b◦r′3 + ξr4◦b◦r

′
3

]
+
[
(1− ξ)b− ξb◦r′3 + ξr4◦(b+ b◦r

′
3)
]
. (10)

Lemma 2 applied to both terms gives the sufficient conditions

0 = 1− 2ξ, ξ = −
ε
√
3
(1 + ξ), ξ =

ε
√
3
(ξ − 2),

which are only true for Fukuta’s choice.4 �

Corollary 2. (Čerin [1]) Let two isocentroidal point triples b1b2b3 and b1b2b3 be given.
When the Operations 2 and 3 are applied to the hexagon Hb, then the resulting hexagon Hd
is regular with center o.

Proof. According to the Theorems 1 and 2 the hexagonHd consists of two centrally symmetric
equilateral triangles. �

The similarities d and d addressed in Theorem 2 are

d := 1
6

[
2b+ b◦r′3 − ε

√
3 r4◦b◦r′3

]
+ 1
6

[
b− b◦r′3 − ε

√
3 r4◦(b+ b◦r′3)

]

d := 1
6

[
b+ 2b◦r′3 + ε

√
3 r4◦b

]
+ 1
6

[
2b+ b◦r′3 − ε

√
3 r4◦b◦r′3

]
.

(11)

Remark 2. Lemma 2 shows that in the generic case, i.e., for two indeterminate isocentroidal
triples b1b2b3,b1b2b3, the Operations 2’ and 3 will not produce a regular hexagon unless
equilateral triangles b1b1c1,b1b2c1, . . . are erected on the sides of Hb. So, only equilateral
triangles have this general “regularizing” effect. In [2], Theorem 9, an algebraic condition Θ
is given for special cases where already isosceles affixed triangles lead to a regular hexagon
Hd.

4. Further results and special cases

The following modification of Operation 2’ has been introduced in [4] and discussed in [1, 2]5:

• Operation 4: Define six points e1, e1, e2, e2, e3, e3 by building equally oriented triangles
of a given shape on the small diagonals b1b2,b1b2, . . . ,b3b1 of the hexagon Hb.

4For ε = +1, i.e., ξ < 0, the affixed regular triangles are in the right halfplane of the oriented sides of the
hexagon Hb = b1b1b2b2b3b3 (see Fig. 1).
5However only isosceles affixed triangles were used in [1, 2].
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We now apply the Operations 4 and 3 to Hb and obtain from

e := Tηη(b, b◦r3), e := Tηη(b, b◦r3) (12)

3f := e◦r′3
2 + e+ e = e− e◦r′3 = [ηb+ (1−η)b◦r

′
3 + ηr4◦(−b+ b◦r

′
3)] +

+
[
(1−η)b+ (1−2η)b◦r′3 + ηr4◦(b+ 2b◦r

′
3)
]
.

(13)

The relative position of the hexagons Hd and Hf (see Fig. 5) is subject of

Theorem 3. For all b, b ∈ L(E ′, E) the maps d based on constants ξ, ξ and f with constants
η = 1

3
(1 + ξ) and η = 1

3
ξ obey

f = A2/3(d, d◦r
′
3) = A1/3(d◦r

′
3
2
, d ), f = f + f ◦r′3 = A1/3(d, d◦r

′
3).
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Figure 5. The hexagons Hd and Hf
under the conditions of Theorem 3
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Proof. Equation (10) implies

3(2d+ d◦r′3) =
= (1+ξ)b+ (2−ξ)b◦r′3 + ξ◦r4◦(−b+ b◦r

′
3) + (2−ξ)b+ (1−2ξ)b◦r

′
3 + ξ(b+ 2b◦r

′
3).

The comparison of coefficients between this linear map and 3f in (13) reveals that

1 + ξ = 3η and ξ = 3η (14)

are sufficient for 3f = 2d+ d◦r′3. Theorem 1 implies the other equations since
1
3
d◦r′3

2 + 2
3
d = 1

3
(d◦r′3

2 + d) + 2
3
(d+ d◦r′3) =

2
3
d+ 1

3
d◦r′3 = f,

f + f ◦r′3 =
(
2
3
d+ 1

3
d◦r′3
)
◦(−r′3

2) = 2
3
d+ 2

3
d◦r′3 −

1
3
d = 1

3
d+ 2

3
d◦r′3. �
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Corollary 3. For any two isocentroidal triples b1b2b3 and b1b2b3 the vertices of Hf are
the trisection points of the small diagonals of Hd (see Fig. 5) provided the parameters ξ, ξ
and η, η of the affixed triangles obey (14).

The geometric meaning of (14) is expressed in Fig. 6: The triangles built in Operation 4
have to be directly similar to one third of the triangles erected in Operation 2’, i.e., to the
subtriangle with vertices b1, b1 and the centroid of b1b1c1.

Theorem 4. If we set η = 1/2 and η = −ε/2
√
3 in (12), then for all b, b ∈ L(E ′, E) the

linear map f defined in (13) as well as f and (e− e◦r′3) are similarities.

Proof. Theorem 2 gives sufficient conditions for the regularity of Hd. Due to Theorem 3 this
implies the regularity of Hf, provided the parameters η, η in Operation 4 obey (14), i.e.,

η =
1

2
, η = −

ε

2
√
3
.4

In this case the triangles bibi+1ei, . . . are isosceles with base angles 30
◦ (see [1], Fig. 3). �

Corollary 4. (Čerin [1]) Let two isocentroidal point triples b1b2b3 and b1b2b3 be given.
When the Operations 4 and 3 are applied to the hexagon Hb using isosceles affixed triangles
with 30◦ base angles, then the resulting hexagon Hf is regular with center o.

The similarity addressed in Theorem 4 reads

f := 1
6

[
b+ b◦r′3 +

ε√
3
r4◦(b− b◦r′3)

]
+ 1
6

[
b− ε√

3
r4◦(b+ 2b◦r′3)

]

f := 1
6

[
b◦r′3 +

ε√
3
r4◦(2b+ b◦r′3)

]
+ 1
6

[
b+ b◦r′3 +

ε√
3
r4◦(b− b◦r′3)

]
.

(15)

In [1], Fig. 4, both regular hexagons Hd and Hf are displayed (note Corollary 3).

The Corollaries 2 and 4 reveal that Operation 1 does not influence the regularity of Hd
and Hf. This has already been pointed out in [1]. Nevertheless, we want to figure out the
dependence of these hexagons from the triangle a1a2a3:
Upon substitution of (4) in (11) we obtain

d = 1
2

[
λa+ λa◦r′3

]
− ε
2
√
3
r4◦
[
(λ− 2λ)a+ (2λ− λ)a◦r′3

]

d = 1
2

[
(λ− λ)a+ λa◦r′3

]
+ ε
2
√
3
r4◦
[
(λ+ λ)a− (λ− 2λ)a◦r′3

]
.

(16)

On the other hand the substitution b = Aµ(a, a◦r′3) and b = Aµ(a◦r
′
3, a) in (15) gives

f = 1
6
[(2µ− µ)a+ (µ+ µ)a◦r′3] +

ε
2
√
3
r4◦[µa− (µ− µ)a◦r′3]

f = 1
6
[(µ− 2µ)a+ (2µ− µ)a◦r′3] +

ε
2
√
3
r4◦[µa+ µa◦r′3] .

(17)

The following lemma clarifies the condition mentioned in Lemma 2:
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Lemma 3. For any g ∈ L(E ′, E) the set {g, g◦r′3, r4◦g, r4◦g◦r
′
3} is linear dependent if

and only if g is a similarity.

Proof. There are orthonormal bases in E ′ and E such that the associated matrix M(d) of d
has diagonal form. Since g+2g◦r′3 =

√
3 g◦r′4 due to (9), we can replace r

′
3 by r

′
4 in the given

set before proving the linear dependence. We get

M(g) =
(
α 0
0 β

)
, M(g◦r′4) =

(
0 −α
β 0

)
, M(r4◦g) =

(
0 −β
α 0

)
, M(r4◦g◦r

′
4) =

(
−β 0
0 −α

)
.

These matrices are linearly dependent if and only if α = ±β, hence g◦r′4 = ±r4◦g. �

Theorem 5. For each non-equilateral triangle a1a2a3 there is a linear bijection

σ : R2 → Sε(E ′, E), (λ, λ) 7→ d

of the parameters used in Operation 1 onto the – either direct or indirect – similarities re-
sulting from Operations 1, 2 and 3.

Proof. With Lemma 3 the set {a, a◦r′3, r4◦a, r4◦a◦r
′
3} is a basis of the four-dimensional vector

space L(E ′, E). Due to Lemma 2 any similarity is uniquely defined by the coefficients of a
and a◦r′3 when represented as a linear combination of this basis. Hence Theorem 5 results
immediately from (16). �

Corollary 5. For each regular hexagon H centered at o there is pair of constants λ, λ ∈ R
such that H = Hd results from a given non-equilateral triangle a1a2a3 by applying the Oper-
ations 1, 2 and 3. In the same way there is a pair µ, µ ∈ R of constants in Operation 1 such
that H = Hf results from a1a2a3 by the Operations 1, 4 and 3 (η, η according to Theorem 3).

Suppose, the affixed triangles have the same orientation in Operations 2 and 4. Then for any
(ν, ν) ∈ R2 the following parameters and only these give the same hexagon H – up to cyclic
permutations:

as Hd : (λ, λ) = (ν, ν), (ν − ν, ν), (−ν, ν − ν),
(−ν,−ν), (−ν + ν,−ν), (ν,−ν + ν),

as Hf : (µ, µ) = (ν + ν,−ν + 2ν), (−ν + 2ν,−2ν + ν), (−2ν + ν,−ν − ν),
(−ν − ν, ν − 2ν), (ν − 2ν, 2ν − ν), (2ν − ν, ν + ν).

Proof. The linear maps d, d, d◦r′3, d◦r
′
3 = −d, d◦r

′
3
2 = −d and d◦r′3

2 = −d◦r′3 define the
same regular hexagon. �

Remark 3. Due to Corollary 5 there is no “distinguished” hexagon among all regular
hexagons centered at o.
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Theorem 6. For any non-equilateral triangle a1a2a3 the cases presented in Theorems 2
and 4 are the only one where the Operations 1, 2’ and 3 or 1, 4 and 3, resp., give regular
hexagons in the real plane.

Proof. Following the proof of Theorem 2 we express b and b in (10) in terms of a and get

3d =
[
(2λ−λ) + ξ(2λ−λ

]
a+
[
(λ+λ) + ξ(λ−2λ)

]
a◦r′3 + ξr4◦

[
(λ−2λ)a+ (2λ−λ)a◦r′3

]
.

Due to Lemma 3 the set {a, a◦r′3, r4◦a, r4◦a◦r
′
3} ⊂ L(E

′, E) is linearly independent. Hence
Lemma 2 implies the following necessary and sufficient conditions:

λξ + (λ− 2λ) ε√
3
ξ = λ

λξ + (2λ− λ) ε√
3
ξ = λ− λ.

Under q(λ, λ) := λ2 − λλ + λ
2
6= 0 this system of linear equations has the unique solution

ξ = 1/2, ξ = −ε
√
3/2.

The quadratic form q is positive definite. However, if λ, λ ∈ C are admitted, then the two
linear equations can also be linearly dependent. In this exceptional case there is a free choice
for the third vertex of any affixed triangle on a line passing through the solution given in
Theorem 2.

According to Theorem 3 the hexagon Hf (parameters η, η) is regular if and only if Hd is
regular for ξ, ξ obeying (14). �

Example 1. In order to get the hexagonal extension of Napoleon’s theorem (see Fig. 2), we
set in (16) b = a, b = a◦r′3, i.e. λ = λ = 1. This gives

d = 1
2

[
a+ a◦r′3 +

ε√
3
r4◦(a− a◦r

′
3)
]
, d = d+ d◦r′3.

Corollary 5 reveals that the same hexagon shows up asHd for (λ, λ) = (0, 1), (1, 0), (−1,−1),
(0,−1), (−1, 0) and as Hf for (µ, µ) = (2, 1), (1,−1), (1, 2), (−2,−1), (−1, 1), (−1,−2).

According to [6] the same hexagon arises as Hc when we build equilateral triangles on the
middle third of the sides of a1a2a3 (see Fig. 2), i.e.,

b := A2/3(a, a◦r
′
3) =

1
3
(2a+ a◦r′3), b := A2/3(a◦r

′
3, a) =

1
3
(a+ 2a◦r′3),

c = T1/2 −ε
√
3/2(b, b) =

1
2

[
b+ b− ε

√
3 r4◦(b− b)

]
= 1
2

[
a+ a◦r′3 +

ε√
3
r4◦(a− a◦r

′
3)
]
.

Because of b◦r′3 = −b the hexagon Hb is symmetric with respect to o. Hence Hc is centrally
symmetric, too, and this implies c = −c◦r′3

2 = c+ c◦r′3.

It is easy to prove with Lemmas 2 and 3 that for a non-equilateral triangle a1a2a3 the
Operations 1 and 2 produce a regular hexagon Hc if and only if λ = λ = 2/3.
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[2] Čerin, Z.: Regular Hexagons Associated to Triangles with Equal Centroids. Elem. Math.
53 (1998), 112–118. Zbl 0926.51023−−−−−−−−−−−−

[3] Coxeter, H.S.M.: Introduction to Geometry. John Wiley & Sons, New York 1961.
Zbl 0095.34502−−−−−−−−−−−−

[4] Fukuta, J.: Problem 10514. Amer. Math. Monthly 103 (1996), p. 267, Solution: 104
(1997), p. 775.

[5] Fukuta, J.: Problem 1493. Math. Mag. 69 (1996), p. 67, Solution: 70 (1997), 70–73.

[6] Garfunkel, J.; Stahl, S.: The triangle reinvestigated. Amer. Math. Monthly 72 (1965),
12–20. Zbl 0123.13603−−−−−−−−−−−−

[7] Hohenberg, H.: Axonometrische Bilder ohne Konstruktionslinien. Praxis der Mathe-
matik 16 (1974), 155–157. Zbl 0291.50018−−−−−−−−−−−−

[8] Martini, H.: On the theorem of Napoleon and related topics. Math. Semesterber. 43
(1996), 47–64. Zbl 0864.51009−−−−−−−−−−−−

[9] Reyes, W.: Examples on the Use of Rotation Operators in Plane Geometry. Nieuw Arch.
Wiskd. (4) 12 (1994), 115–118. Zbl 0833.51009−−−−−−−−−−−−

[10] Weiss, G.; Kunnert, C.: Herstellung linearer Risse nach Hohenberg. J. Geom. 47 (1993),
186–198. Zbl 0781.51013−−−−−−−−−−−−

Received February 1, 2001

http://www.emis.de/MATH-item?01525377
http://www.emis.de/MATH-item?0926.51023
http://www.emis.de/MATH-item?0095.34502
http://www.emis.de/MATH-item?0123.13603
http://www.emis.de/MATH-item?0291.50018
http://www.emis.de/MATH-item?0864.51009
http://www.emis.de/MATH-item?0833.51009
http://www.emis.de/MATH-item?0781.51013

