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Abstract. We introduce a new computational technique for n× n matrices, over
a Z2-graded ring R = R0 ⊕ R1 with R0 ⊆ Z(R), leading us to a new concept of
determinant, which can be used to derive an invariant Cayley-Hamilton identity.
An explicit construction of the inverse matrix A−1 for any invertible n× n matrix
A over a Grassmann algebra E is also obtained.
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1. Introduction

The main aim of the present paper is to introduce a new computational technique for matrices
over certain Z2-graded rings. We shall consider n × n matrices over a Z2-graded ring R =
R0 ⊕ R1 with the property R0 ⊆ Z(R), where Z(R) denotes the centre of R. For these
matrices our method provides a possibility to use the classical determinant theory of matrices
over commutative rings. The most important example for Z2-graded rings with the above
mentioned property is the exterior (Grassmann) algebra

E = F 〈v1, v2, . . . , vi, . . . | vivj = −vjvi for all integers 1 ≤ i ≤ j〉
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and the polynomial algebra E[t], where F is a field, t is a commuting indeterminant. The Z2-
gradings are E = E0 ⊕ E1 and E[t] = E0[t]⊕ E1[t] with E0 being the subspace (subalgebra)
generated by the monomials of even length and E1 being the subspace generated by the
monomials of odd length. We note that the F -algebra Mn(E) of n × n matrices over the
(infinite dimensional) exterior algebra E with char(F ) = 0 is one of the most important
objects of study in the theory of PI-algebras (see Kemer’s structure theory of T-ideals in [2]
and [3]).
First of all, our technique leads to a new concept of invariant determinant, which can be

used to derive an invariant Cayley-Hamilton identity in Mn(R). An immediate application
of our results will provide a new explicit construction of the inverse matrix A−1 for any
invertible n× n matrix A ∈Mn(E).
Since the existence of a Z2-grading R = R0 ⊕ R1 with the property R0 ⊆ Z(R) implies

that R is Lie nilpotent of index 2, it would be desirable to find the precise relationship
between the concepts presented in the sequel and the Lie nilpotent determinant theory in
[4]. The constructions in [4] are based on the use of the so called preadjoint, which is
a natural but complicated generalization of the ordinary adjoint matrix. In defining our
determinant, here we use only classical determinants and adjoints. Our results on n × n
matrices over R = R0 ⊕ R1 with R0 ⊆ Z(R) are similar to the results of [4] specialized to
n × n matrices over Lie nilpotent rings of index 2. We believe that our present approach is
easier to understand and gives more chance to find an explicit form of the Cayley-Hamilton
equation (Newton formulae) for n ≥ 3. Using sophisticated calculations, starting from the
characteristic polynomial defined in [4], M. Domokos obtained Newton formulae for 2 × 2
matrices over the Grassmann algebra (see [1]).

2. Z2-gradings and skew polynomial rings

A Z2-grading of an (associative) ring R is a pair (R0, R1), where R0 and R1 are additive
subgroups of R such that R = R0⊕R1 and RiRj ⊆ Ri+j for all i, j ∈ {0, 1} and i+ j is taken
modulo 2. The relation R0R0 ⊆ R0 ensures that R0 is a subring of R. Now any element
r ∈ R can be uniquely written as r = r0 + r1, where r0 ∈ R0 and r1 ∈ R1. It is easy to
see that the existence of 1 ∈ R implies that 1 ∈ R0. The function σ : R −→ R defined
by σ(r0 + r1) = r0 − r1 is a ring homomorphism (actually, it is an automorphism of R). A
more general situation is, when R is considered as a C-algebra for some commutative ring
C ⊆ Z(R) and R = ⊕

u∈S
Ru is graded by a subsemigroup S ⊆ U(C) of the multiplicative group

of units in C (each Ru ⊆ R is a C-submodule) and σ(
∑
u∈S
ru) =

∑
u∈S
uru.

For a Z2-graded ring R = R0 ⊕ R1 let us consider the skew polynomial ring R[x, σ] in
the skew indeterminate x. The elements of R[x, σ] are left polynomials of the form f(x) =
a0 + a1x + · · · + akxk with a0, a1, . . . , ak ∈ R. Besides the obvious addition, we have the
following multiplication rule in R[x, σ]:

xr = σ(r)x for all r ∈ R, i.e. that x(r0 + r1) = (r0 − r1)x for all r0 ∈ R0, r1 ∈ R1

and

(a0 + a1x+ · · ·+ akx
k)(b0 + b1x+ · · ·+ blx

l) = c0 + c1x+ · · ·+ ck+lx
k+l,
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where

cm =
∑

i+j=m,i≥0,j≥0

aiσ
i(bj).

Since σ is an involution, x2 is a central element of R[x, σ]: we have σ(σ(r)) = r and x2r =
xσ(r)x = σ(σ(r))x2 = rx2 for all r ∈ R, moreover x2 commutes with the powers of x.
Thus the ideal (x2) C R[x, σ] generated by x2 can be written as (x2) = R[x, σ]x2 = x2R[x, σ].
Consider the factor ring R[x, σ]/(x2), then for any element f(x) ∈ R[x, σ] there exists exactly
one left polynomial of the form r + sx ∈ R[x, σ] in the residue class f(x) + (x2). Hence the
elements of R[x, σ]/(x2) can be represented by linear left polynomials with coefficients in R
and the multiplication in R[x, σ]/(x2) is the following:

(r + sx)(p+ qx) = rp+ (rq + sσ(p))x,

where r, s, p, q ∈ R. The above observation ensures that R[x, σ]/(x2) = R ⊕ Rx is a Z2-
grading with (Rx)(Rx) = {0}. It follows that the n × n matrices P,Q ∈ Mn(R[x, σ]/(x2))
can be uniquely written as P = P ′+P ′′x and Q = Q′+Q′′x for some P ′, P ′′, Q′, Q′′ ∈Mn(R)
and that

(∗) PQ = P ′Q′ + (P ′Q′′ + P ′′σ(Q′))x,

where σ(Q′) = [σ(q′ij)] is the natural action of σ on Q
′ = [q′ij] and the products P

′Q′, P ′Q′′,
P ′′σ(Q′) are taken in Mn(R). It can be easily seen, that

R = {r0 + s1x | r0 ∈ R0 and s1 ∈ R1} ⊆ {r + sx | r, s ∈ R} = R[x, σ]/(x
2)

is a subring of R[x, σ]/(x2). Indeed, (r0 + s1x)(p0 + q1x) = r0p0 + (r0q1 + s1σ(p0))x, where
r0p0 ∈ R0 and r0q1 + s1σ(p0) = r0q1 + s1p0 ∈ R1 for all r0, p0 ∈ R0 and s1, q1 ∈ R1. In
consequence, R = R0 ⊕ R1x is a Z2-grading. We note that R can be defined directly on the
product R0×R1 with componentwise addition and taking the multiplication (r0, s1)(p0, q1) =
(r0p0, r0q1 + s1p0). If R0 ⊆ Z(R) with Z(R) being the centre of R, then R is commutative:

(r0 + s1x)(p0 + q1x) = r0p0 + (r0q1 + s1p0)x =

= p0r0 + (p0s1 + q1r0)x = (p0 + q1x)(r0 + s1x).

The condition R0 ⊆ Z(R) also implies the Lie nilpotence (of index 2) of R. For the elements
r, s ∈ R we have r = r0+r1, s = s0+s1 for some r0, s0 ∈ R0 and r1, s1 ∈ R1. Now r0, s0 ∈ Z(R)
implies that [r0, s] = [r1, s0] = 0, whence we get [r, s] = [r0 + r1, s] = [r0, s] + [r1, s] =
[r1, s0 + s1] = [r1, s0] + [r1, s1] = [r1, s1] = r1s1 − s1r1 ∈ R0. Thus [r, s] ∈ Z(R), so we obtain
that [[r, s], w] = 0 for all r, s, w ∈ R.

3. Computing with n× n matrices over a centrally Z2-graded ring

A Z2-grading (R0, R1) of the ring R is called central, if R0 ⊆ Z(R). Let A = [aij] ∈ Mn(R)
be an n × n matrix over a ring with a central Z2-grading, then aij = a(0)ij + a

(1)
ij for some
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unique a
(0)
ij ∈ R0 and a

(1)
ij ∈ R1 for all integers 1 ≤ i ≤ n and 1 ≤ j ≤ n, i.e. A = A0 + A1

with A0 = [a
(0)
ij ] ∈Mn(R0) and A1 = [a

(1)
ij ] ∈Mn(R1). The companion matrix of A in Mn(R)

is defined as

A0 + A1x = [a
(0)
ij + a

(1)
ij x].

Since R is commutative, the determinant and the adjoint of A0 + A1x are defined and can
be written as

det(A0 + A1x) = d0 + d1x ∈ R

and

adj(A0 + A1x) = [b
(0)
ij + b

(1)
ij x] = B0 +B1x ∈Mn(R),

where d0 ∈ R0 and d1 ∈ R1 are elements, B0 = [b
(0)
ij ] ∈ Mn(R0) and B1 = [b

(1)
ij ] ∈ Mn(R1)

are n× n matrices, each of these objects is uniquely determined by A. Clearly, d0 =det(A0),

B0 =adj(A0) and the elements d1, b
(1)
ij ∈ R1 are also polynomial expressions of the a

(0)
ij ’s and

the a
(1)
ij ’s (it is not hard to give them explicitly).

3.1. Theorem. The elements of the product matrices

A(B0 +B1) = (A0 + A1)(B0 +B1) and (B0 +B1)A = (B0 +B1)(A0 + A1)

are contained in the subring R0[d1] of R generated by d1 and the elements of R0, namely :

A(B0 +B1), (B0 +B1)A ∈Mn(R0[d1]).

Proof. Since d0 + d1x is the determinant and B0 +B1x is the adjoint of A0 + A1x, we have

(A0 + A1x)(B0 +B1x) = (d0 + d1x)I,

in Mn(R), where I is the identity matrix. In view of

Mn(R) =Mn(R0 ⊕R1x) ⊆Mn(R⊕Rx) =Mn(R[x, σ]/(x
2))

and σ(B0) = B0, the application of (∗) gives that

A0B0 + (A0B1 + A1B0)x = d0I + (d1I)x,

where A0B0 and A0B1 + A1B0 are taken in Mn(R). Using the unique r0 + s1x form (with
r0 ∈ R0 and s1 ∈ R1) of the elements in R and matching the coefficients of x in the left and
the right side of the above equation, we obtain the following identity in Mn(R):

A0B1 + A1B0 = d1I.
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Thus

A(B0 +B1) = (A0 + A1)(B0 +B1) = (A0B0 + A1B1) + (A0B1 + A1B0) =

(A0B0 + A1B1) + d1

and A0B0 + A1B1 ∈ Mn(R0) imply that A(B0 + B1) ∈ Mn(R0[d1]). The similar statement
on the product (B0 +B1)A can be proved analogously. �

The condition R0 ⊆ Z(R) implies that the subring R0[d1] ⊆ R is commutative (the elements
of R0[d1] are polynomials of d1 with coefficients in R0). As a consequence of Theorem 3.1
the determinant and the adjoint of the matrices A(B0 + B1), (B0 + B1)A ∈ Mn(R0[d1]) are
defined: det(A(B0 + B1)) is called the right determinant (with respect to the given central
Z2-grading R = R0 ⊕ R1) and (B0 + B1)adj(A(B0 + B1)) is called the right adjoint (with
respect to the given central Z2-grading R = R0 ⊕R1) of the matrix A ∈Mn(R). We use the
following notations:

rdet(A) = det(A(B0 +B1)) and radj(A) = (B0 +B1)adj(A(B0 +B1)).

Since A(B0+B1)adj(A(B0+B1)) =det(A(B0+B1))I in Mn(R0[d1]), we immediately obtain
(in Mn(R)) that:

A radj(A) = rdet(A)I.

3.2. Proposition. (i) If T ∈GLn(R0) is an invertible matrix and A ∈ Mn(R), then
rdet(TAT−1) =rdet(A) and radj(TAT−1) = T (radj(A))T−1.
(ii) If A ∈Mn(R0), then rdet(A) = (det(A))n and radj(A) = (det(A))n−1adj(A).

Proof. (i) In view of TA0T
−1 ∈ Mn(R0) and TA1T−1 ∈ Mn(R1), the companion matrix of

TAT−1 = TA0T
−1 + TA1T

−1 is TA0T
−1 + TA1T

−1x. Using adj(A0 + A1x) = B0 +B1x, we
obtain that

adj(TA0T
−1 + TA1T

−1x) = adj(T (A0 + A1x)T
−1) = T (adj(A0 + A1x))T

−1 =

= T (B0 +B1x)T
−1 = (TB0T

−1) + (TB1T
−1)x.

It follows that

rdet(TAT−1) = det(TAT−1(TB0T
−1 + TB1T

−1)) =

= det(TA(B0 +B1)T
−1) = det(A(B0 +B1)) = rdet(A)

and

radj(TAT−1) = (TB0T
−1 + TB1T

−1)adj(TAT−1(TB0T
−1 + TB1T

−1)) =

= T (B0 +B1)T
−1adj(TA(B0 +B1)T

−1) =

= T (B0 +B1)T
−1T (adj(A(B0 +B1)))T

−1 = T (radj(A))T−1.
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(ii) Since A ∈Mn(R0) implies that A0 = A and A1 = 0, from adj(A0 +A1x) = B0 +B1x we
get that B0 =adj(A) and B1 = 0. Thus

rdet(A) = det(A(B0 +B1)) = det(A0B0) = det(det(A)I) = (det(A))
n

and

radj(A) = (B0 +B1)adj(A(B0 +B1)) = B0adj(A0B0) =

= adj(A)adj(det(A)I) = adj(A)(det(A))n−1I = (det(A))n−1adj(A). �

If (R0, R1) is a Z2-grading of the ring R, then (R0[t], R1[t]) is a natural Z2-grading of the
polynomial ring R[t] of the commuting indeterminant t. It is straightforward to see that
(R[t])[x, σt]/(x

2) ∼= (R[x, σ]/(x2))[t] and R[t] = (R0[t])⊕ (R1[t])x ∼= (R0 ⊕R1x)[t] = R[t] are
ring isomorphisms, where σt : R[t] −→ R[t] is the natural extension of σ. For a central Z2-
grading (R0, R1), the induced Z2-grading (R0[t], R1[t]) of R[t] is also central: R0[t] ⊆ Z(R[t]).
We define the right characteristic polynomial (with respect to the given central Z2-grading

R = R0 ⊕R1) of a matrix A ∈Mn(R) as the right determinant (with respect to the induced
central Z2-grading R[t] = R0[t] ⊕ R1[t]) of the matrix tI − A ∈ Mn(R[t]), where I is the
identity matrix in Mn(R):

χA(t) = rdet(tI − A) = λ0 + λ1t+ · · ·+ λkt
k ∈ R[t], λ0, λ1, . . . , λk ∈ R and λk 6= 0.

Since GLn(R0) ⊆GLn(R0[t]), an immediate consequence of Proposition 3.2 is that χTAT−1(t)=
χA(t) for any invertible matrix T ∈GLn(R0).

3.3. Proposition. If χA(t) = λ0 + λ1t+ · · ·+ λktk is the right characteristic polynomial of
the n× n matrix A ∈Mn(R), then k = n2 and λn2 = 1, λ0 =rdet(−A).

Proof. If A = A0+A1 with A0 ∈Mn(R0) and A1 ∈Mn(R1), then tI−A = (tI−A0)+(−A1)
with tI − A0 ∈ Mn(R0[t]) and −A1 ∈ Mn(R1[t]). The companion matrix of tI − A in
Mn(R[t]) ∼= Mn(R[t]) is (tI − A0) + (−A1)x = tI − (A0 + A1x) (here R[t] ∼= R[t] is a
commutative ring). It is well known that each of the elements in the diagonal of adj(tI −
(A0 + A1x)) is a polynomial in R[t] with leading term t

n−1. The non-diagonal entries in
adj(tI − (A0 + A1x)) are polynomials in R[t] of degree less than n− 1. In consequence, the
matrices B0(t) ∈Mn(R0[t]) and B1(t) ∈Mn(R1[t]) in

adj((tI − A0) + (−A1)x) = B0(t) +B1(t)x

have the following properties: each non-diagonal entry of B0(t) and each entry of B1(t) is of
degree (in t) less than n− 1, moreover the leading term of each diagonal element in B0(t) is
tn−1. Thus each element in the diagonal of the product matrix (tI − A)(B0(t) + B1(t)) is a
polynomial with leading term tn. Since the non-diagonal entries in (tI−A)(B0(t)+B1(t)) are
of degree less or equal than n− 1, we obtain that the leading term of the right characteristic
polynomial det((tI−A)(B0(t)+B1(t))) =rdet(tI−A) = χA(t) is (tn)n = tn

2
, i.e. that k = n2

and λn2 = 1.
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To prove λ0 =rdet(−A), let adj(−A0 − A1x) = C0 + C1x with C0 ∈ Mn(R0) and C1 ∈
Mn(R1). Now

adj(tI − (A0 + A1x)) = (C0 + C1x) + C(t)t

for some C(t) ∈ Mn(R[t]), whence we get that B0(t) + B1(t) = (C0 + C1) +H(t)t for some
H(t) ∈Mn(R[t]). It follows, that

χA(t) = rdet(tI − A) = det((tI − A)(B0(t) +B1(t))) =

= det(H(t)t2 − AH(t)t+ C0t+ C1t− A(C0 + C1)).

Since A(C0+C1) does not contain t, we deduce that the constant term in χA(t) is rdet(−A) =
det(−A(C0 + C1)). �

3.4. Theorem. If χA(t) ∈ R[t] is the right characteristic polynomial of an n × n matrix
A ∈ Mn(R) over a centrally Z2-graded ring R = R0 ⊕ R1 and h(t) ∈ R[t] is arbitrary, then
the left substitution of A into the product polynomial χA(t)h(t) = µ0 + µ1t + · · · + µmtm is
zero: Iµ0 + Aµ1 + · · ·+ Amµm = 0.

Proof. Using

(tI − A)(U0 + U1t+ · · ·+ Um−1t
m−1) = (µ0 + µ1t+ · · ·+ µmt

m)I

inMn(R[t]) ∼= (Mn(R))[t] with (radj(tI−A))h(t) = U0+U1t+· · ·+Um−1tm−1 and Ui ∈Mn(R)
for the indices 0 ≤ i ≤ m− 1, we can proceed as in the proof of Theorem 4.2 in [4]. �

4. The inverse formula for n× n matrices over the Grassmann algebra

An element g of E = F 〈v1, v2, . . . , vi, . . . | vivj = −vjvi for all integers 1≤ i≤ j〉 can be
uniquely written in the form

g = cg +
∑

1≤i1<i2<...<ik

cg(i1, i2, . . . , ik)vi1vi2 . . . vik ,

where cg, cg(i1, i2, . . . , ik) ∈ F . Now γ(g) = cg defines an F -algebra homomorphism γ : E →
F and γ naturally extends to an F -algebra homomorphism γ : Mn(E) → Mn(F ) of the
matrix algebras. If N = A−γ(A), then it is easy to see that BN is a nilpotent matrix for all
B ∈Mn(E). The existence of the inverse matrix (γ(A))−1 in Mn(F ) implies the existence of
the inverse of A = γ(A)(I + (γ(A))−1N) in Mn(E):

A−1 = (I + (−(γ(A))−1N) + (−(γ(A))−1N)2 + · · ·+ (−(γ(A))−1N)m−1)(γ(A))−1,

where m is the index of the nilpotence of (γ(A))−1N . Thus det(γ(A)) 6= 0 implies the
existence of A−1 ∈ Mn(E). On the other hand, AB = I in Mn(E) implies that γ(A)γ(B) =
γ(AB) = γ(I) = I in Mn(F ), whence we get that det(γ(A)) 6= 0. In consequence, the
existence of A−1 in Mn(E) is equivalent to det(γ(A)) 6= 0.
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4.1. Theorem. For a matrix A ∈ Mn(E) we have A = A0 + A1 for some unique A0 ∈
Mn(E0) and A1 ∈Mn(E1). If A is invertible, then

A−1 = (adj(A0) + α1(A))adj (A(adj(A0) + α1(A))) {det (A(adj(A0) + α1(A)))}
−1,

where adj(A0 + A1x) = B0 + B1x in Mn(E) with B0 =adj(A0) ∈ Mn(E0), B1 = α1(A) ∈
Mn(E1) and det(A(adj(A0) + α1(A))) is an invertible element of E.

Proof. In view of γ(A1) = γ(B1) = 0, γ(A0) = γ(A) and det(γ(A)) 6= 0, we can write that

γ(rdet(A)) = γ(det((A0 + A1)(B0 +B1))) = det(γ((A0 + A1)(B0 +B1))) =

= det(γ(A0 + A1)γ(B0 +B1)) = det(γ(A0)γ(B0)) = det(γ(A0B0)) =

= γ(det(A0B0)) = γ(det(det(A0)I)) = γ((det(A0))
n) =

= (γ(det(A0)))
n = (det(γ(A0)))

n = (det(γ(A)))n 6= 0,

whence we get that rdet(A) is an invertible element of E. From A radj(A) =rdet(A)I, the
right multiplication by (rdet(A))−1 gives that A−1 =radj(A)(rdet(A))−1, where radj(A) =
(B0 +B1)adj(A(B0 +B1)) and rdet(A) =det(A(B0 +B1)). �

4.2. Remark. The idea of considering the companion matrix A0+A1x arose in the following
way. If A ∈Mn(E) with A = A0+A1 and vi is a generator of E not occurring in the elements
of A, then A can be completely read off the matrix A0+A1vi and A0+A1vi ∈Mn(E0) lies in
a commutative environment. Thus the use of A0 + A1vi instead of A is a natural challenge.
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