Matrices over Centrally \mathbb{Z}_2 -graded Rings

Sudarshan Sehgal¹ Jenő Szigeti²

Department of Mathematics, University of Alberta Edmonton, T6G 2G1, Canada e-mail: s.sehgal@ualberta.ca

Institute of Mathematics, University of Miskolc Miskolc, Hungary 3515 e-mail: matszj@gold.uni-miskolc.hu

Abstract. We introduce a new computational technique for $n \times n$ matrices, over a \mathbb{Z}_2 -graded ring $R = R_0 \oplus R_1$ with $R_0 \subseteq Z(R)$, leading us to a new concept of determinant, which can be used to derive an invariant Cayley-Hamilton identity. An explicit construction of the inverse matrix A^{-1} for any invertible $n \times n$ matrix A over a Grassmann algebra E is also obtained.

MSC 2000: 16A38, 15A15 (primary); 15A33 (secondary) Keywords: \mathbb{Z}_2 -graded ring, skew polynomial ring, determinant and adjoint

1. Introduction

The main aim of the present paper is to introduce a new computational technique for matrices over certain \mathbb{Z}_2 -graded rings. We shall consider $n \times n$ matrices over a \mathbb{Z}_2 -graded ring $R = R_0 \oplus R_1$ with the property $R_0 \subseteq Z(R)$, where Z(R) denotes the centre of R. For these matrices our method provides a possibility to use the classical determinant theory of matrices over commutative rings. The most important example for \mathbb{Z}_2 -graded rings with the above mentioned property is the exterior (Grassmann) algebra

 $E = F \langle v_1, v_2, \dots, v_i, \dots | v_i v_j = -v_j v_i \text{ for all integers } 1 \leq i \leq j \rangle$

0138-4821/93 \$ 2.50 © 2002 Heldermann Verlag

¹Research supported by NSERC grant A-5300

 $^{^2\}mathrm{The}$ second author was supported by OTKA of Hungary, grant no. T029525

and the polynomial algebra E[t], where F is a field, t is a commuting indeterminant. The \mathbb{Z}_2 gradings are $E = E_0 \oplus E_1$ and $E[t] = E_0[t] \oplus E_1[t]$ with E_0 being the subspace (subalgebra) generated by the monomials of even length and E_1 being the subspace generated by the monomials of odd length. We note that the F-algebra $M_n(E)$ of $n \times n$ matrices over the (infinite dimensional) exterior algebra E with $\operatorname{char}(F) = 0$ is one of the most important objects of study in the theory of PI-algebras (see Kemer's structure theory of T-ideals in [2] and [3]).

First of all, our technique leads to a new concept of invariant determinant, which can be used to derive an invariant Cayley-Hamilton identity in $M_n(R)$. An immediate application of our results will provide a new explicit construction of the inverse matrix A^{-1} for any invertible $n \times n$ matrix $A \in M_n(E)$.

Since the existence of a \mathbb{Z}_2 -grading $R = R_0 \oplus R_1$ with the property $R_0 \subseteq Z(R)$ implies that R is Lie nilpotent of index 2, it would be desirable to find the precise relationship between the concepts presented in the sequel and the Lie nilpotent determinant theory in [4]. The constructions in [4] are based on the use of the so called preadjoint, which is a natural but complicated generalization of the ordinary adjoint matrix. In defining our determinant, here we use only classical determinants and adjoints. Our results on $n \times n$ matrices over $R = R_0 \oplus R_1$ with $R_0 \subseteq Z(R)$ are similar to the results of [4] specialized to $n \times n$ matrices over Lie nilpotent rings of index 2. We believe that our present approach is easier to understand and gives more chance to find an explicit form of the Cayley-Hamilton equation (Newton formulae) for $n \geq 3$. Using sophisticated calculations, starting from the characteristic polynomial defined in [4], M. Domokos obtained Newton formulae for 2×2 matrices over the Grassmann algebra (see [1]).

2. \mathbb{Z}_2 -gradings and skew polynomial rings

A \mathbb{Z}_2 -grading of an (associative) ring R is a pair (R_0, R_1) , where R_0 and R_1 are additive subgroups of R such that $R = R_0 \oplus R_1$ and $R_i R_j \subseteq R_{i+j}$ for all $i, j \in \{0, 1\}$ and i+j is taken modulo 2. The relation $R_0 R_0 \subseteq R_0$ ensures that R_0 is a subring of R. Now any element $r \in R$ can be uniquely written as $r = r_0 + r_1$, where $r_0 \in R_0$ and $r_1 \in R_1$. It is easy to see that the existence of $1 \in R$ implies that $1 \in R_0$. The function $\sigma : R \longrightarrow R$ defined by $\sigma(r_0 + r_1) = r_0 - r_1$ is a ring homomorphism (actually, it is an automorphism of R). A more general situation is, when R is considered as a C-algebra for some commutative ring $C \subseteq Z(R)$ and $R = \bigoplus_{u \in S} R_u$ is graded by a subsemigroup $S \subseteq U(C)$ of the multiplicative group of units in C (each $R_u \subseteq R$ is a C-submodule) and $\sigma(\sum_{u \in S} r_u) = \sum_{u \in S} ur_u$.

For a \mathbb{Z}_2 -graded ring $R = R_0 \oplus R_1$ let us consider the skew polynomial ring $R[x, \sigma]$ in the skew indeterminate x. The elements of $R[x, \sigma]$ are left polynomials of the form $f(x) = a_0 + a_1x + \cdots + a_kx^k$ with $a_0, a_1, \ldots, a_k \in R$. Besides the obvious addition, we have the following multiplication rule in $R[x, \sigma]$:

$$xr = \sigma(r)x$$
 for all $r \in R$, i.e. that $x(r_0 + r_1) = (r_0 - r_1)x$ for all $r_0 \in R_0, r_1 \in R_1$

and

$$(a_0 + a_1x + \dots + a_kx^k)(b_0 + b_1x + \dots + b_lx^l) = c_0 + c_1x + \dots + c_{k+l}x^{k+l},$$

where

$$c_m = \sum_{i+j=m, i \ge 0, j \ge 0} a_i \sigma^i(b_j)$$

Since σ is an involution, x^2 is a central element of $R[x,\sigma]$: we have $\sigma(\sigma(r)) = r$ and $x^2r = x\sigma(r)x = \sigma(\sigma(r))x^2 = rx^2$ for all $r \in R$, moreover x^2 commutes with the powers of x. Thus the ideal $(x^2) \triangleleft R[x,\sigma]$ generated by x^2 can be written as $(x^2) = R[x,\sigma]x^2 = x^2R[x,\sigma]$. Consider the factor ring $R[x,\sigma]/(x^2)$, then for any element $f(x) \in R[x,\sigma]$ there exists exactly one left polynomial of the form $r + sx \in R[x,\sigma]$ in the residue class $f(x) + (x^2)$. Hence the elements of $R[x,\sigma]/(x^2)$ can be represented by linear left polynomials with coefficients in Rand the multiplication in $R[x,\sigma]/(x^2)$ is the following:

$$(r+sx)(p+qx) = rp + (rq + s\sigma(p))x,$$

where $r, s, p, q \in R$. The above observation ensures that $R[x, \sigma]/(x^2) = R \oplus Rx$ is a \mathbb{Z}_2 grading with $(Rx)(Rx) = \{0\}$. It follows that the $n \times n$ matrices $P, Q \in M_n(R[x, \sigma]/(x^2))$ can be uniquely written as P = P' + P''x and Q = Q' + Q''x for some $P', P'', Q', Q'' \in M_n(R)$ and that

(*)
$$PQ = P'Q' + (P'Q'' + P''\sigma(Q'))x,$$

where $\sigma(Q') = [\sigma(q'_{ij})]$ is the natural action of σ on $Q' = [q'_{ij}]$ and the products $P'Q', P'Q'', P''\sigma(Q')$ are taken in $M_n(R)$. It can be easily seen, that

$$\overline{R} = \{r_0 + s_1 x \mid r_0 \in R_0 \text{ and } s_1 \in R_1\} \subseteq \{r + sx \mid r, s \in R\} = R[x, \sigma]/(x^2)$$

is a subring of $R[x,\sigma]/(x^2)$. Indeed, $(r_0 + s_1x)(p_0 + q_1x) = r_0p_0 + (r_0q_1 + s_1\sigma(p_0))x$, where $r_0p_0 \in R_0$ and $r_0q_1 + s_1\sigma(p_0) = r_0q_1 + s_1p_0 \in R_1$ for all $r_0, p_0 \in R_0$ and $s_1, q_1 \in R_1$. In consequence, $\overline{R} = R_0 \oplus R_1x$ is a \mathbb{Z}_2 -grading. We note that \overline{R} can be defined directly on the product $R_0 \times R_1$ with componentwise addition and taking the multiplication $(r_0, s_1)(p_0, q_1) = (r_0p_0, r_0q_1 + s_1p_0)$. If $R_0 \subseteq Z(R)$ with Z(R) being the centre of R, then \overline{R} is commutative:

$$(r_0 + s_1 x)(p_0 + q_1 x) = r_0 p_0 + (r_0 q_1 + s_1 p_0) x =$$

= $p_0 r_0 + (p_0 s_1 + q_1 r_0) x = (p_0 + q_1 x)(r_0 + s_1 x).$

The condition $R_0 \subseteq Z(R)$ also implies the Lie nilpotence (of index 2) of R. For the elements $r, s \in R$ we have $r = r_0 + r_1$, $s = s_0 + s_1$ for some $r_0, s_0 \in R_0$ and $r_1, s_1 \in R_1$. Now $r_0, s_0 \in Z(R)$ implies that $[r_0, s] = [r_1, s_0] = 0$, whence we get $[r, s] = [r_0 + r_1, s] = [r_0, s] + [r_1, s] = [r_1, s_0 + s_1] = [r_1, s_0] + [r_1, s_1] = r_1 s_1 - s_1 r_1 \in R_0$. Thus $[r, s] \in Z(R)$, so we obtain that [[r, s], w] = 0 for all $r, s, w \in R$.

3. Computing with $n \times n$ matrices over a centrally \mathbb{Z}_2 -graded ring

A \mathbb{Z}_2 -grading (R_0, R_1) of the ring R is called central, if $R_0 \subseteq Z(R)$. Let $A = [a_{ij}] \in M_n(R)$ be an $n \times n$ matrix over a ring with a central \mathbb{Z}_2 -grading, then $a_{ij} = a_{ij}^{(0)} + a_{ij}^{(1)}$ for some unique $a_{ij}^{(0)} \in R_0$ and $a_{ij}^{(1)} \in R_1$ for all integers $1 \le i \le n$ and $1 \le j \le n$, i.e. $A = A_0 + A_1$ with $A_0 = [a_{ij}^{(0)}] \in M_n(R_0)$ and $A_1 = [a_{ij}^{(1)}] \in M_n(R_1)$. The companion matrix of A in $M_n(\overline{R})$ is defined as

$$A_0 + A_1 x = [a_{ij}^{(0)} + a_{ij}^{(1)} x].$$

Since \overline{R} is commutative, the determinant and the adjoint of $A_0 + A_1 x$ are defined and can be written as

$$\det(A_0 + A_1 x) = d_0 + d_1 x \in \overline{R}$$

and

$$\operatorname{adj}(A_0 + A_1 x) = [b_{ij}^{(0)} + b_{ij}^{(1)} x] = B_0 + B_1 x \in M_n(\overline{R}),$$

where $d_0 \in R_0$ and $d_1 \in R_1$ are elements, $B_0 = [b_{ij}^{(0)}] \in M_n(R_0)$ and $B_1 = [b_{ij}^{(1)}] \in M_n(R_1)$ are $n \times n$ matrices, each of these objects is uniquely determined by A. Clearly, $d_0 = \det(A_0)$, $B_0 = \operatorname{adj}(A_0)$ and the elements $d_1, b_{ij}^{(1)} \in R_1$ are also polynomial expressions of the $a_{ij}^{(0)}$'s and the $a_{ij}^{(1)}$'s (it is not hard to give them explicitly).

3.1. Theorem. The elements of the product matrices

$$A(B_0 + B_1) = (A_0 + A_1)(B_0 + B_1)$$
 and $(B_0 + B_1)A = (B_0 + B_1)(A_0 + A_1)$

are contained in the subring $R_0[d_1]$ of R generated by d_1 and the elements of R_0 , namely:

$$A(B_0 + B_1), (B_0 + B_1)A \in M_n(R_0[d_1]).$$

Proof. Since $d_0 + d_1x$ is the determinant and $B_0 + B_1x$ is the adjoint of $A_0 + A_1x$, we have

$$(A_0 + A_1 x)(B_0 + B_1 x) = (d_0 + d_1 x)I,$$

in $M_n(\overline{R})$, where I is the identity matrix. In view of

$$M_n(\overline{R}) = M_n(R_0 \oplus R_1 x) \subseteq M_n(R \oplus R x) = M_n(R[x,\sigma]/(x^2))$$

and $\sigma(B_0) = B_0$, the application of (*) gives that

$$A_0B_0 + (A_0B_1 + A_1B_0)x = d_0I + (d_1I)x,$$

where A_0B_0 and $A_0B_1 + A_1B_0$ are taken in $M_n(R)$. Using the unique $r_0 + s_1x$ form (with $r_0 \in R_0$ and $s_1 \in R_1$) of the elements in \overline{R} and matching the coefficients of x in the left and the right side of the above equation, we obtain the following identity in $M_n(R)$:

$$A_0 B_1 + A_1 B_0 = d_1 I.$$

Thus

$$A(B_0 + B_1) = (A_0 + A_1)(B_0 + B_1) = (A_0B_0 + A_1B_1) + (A_0B_1 + A_1B_0) = (A_0B_0 + A_1B_1) + d_1$$

and $A_0B_0 + A_1B_1 \in M_n(R_0)$ imply that $A(B_0 + B_1) \in M_n(R_0[d_1])$. The similar statement on the product $(B_0 + B_1)A$ can be proved analogously.

The condition $R_0 \subseteq Z(R)$ implies that the subring $R_0[d_1] \subseteq R$ is commutative (the elements of $R_0[d_1]$ are polynomials of d_1 with coefficients in R_0). As a consequence of Theorem 3.1 the determinant and the adjoint of the matrices $A(B_0 + B_1), (B_0 + B_1)A \in M_n(R_0[d_1])$ are defined: det $(A(B_0 + B_1))$ is called the right determinant (with respect to the given central \mathbb{Z}_2 -grading $R = R_0 \oplus R_1$) and $(B_0 + B_1)$ adj $(A(B_0 + B_1))$ is called the right adjoint (with respect to the given central \mathbb{Z}_2 -grading $R = R_0 \oplus R_1$) of the matrix $A \in M_n(R)$. We use the following notations:

$$rdet(A) = det(A(B_0 + B_1))$$
 and $radj(A) = (B_0 + B_1)adj(A(B_0 + B_1))$.

Since $A(B_0 + B_1)$ adj $(A(B_0 + B_1)) = \det(A(B_0 + B_1))I$ in $M_n(R_0[d_1])$, we immediately obtain (in $M_n(R)$) that:

$$A \operatorname{radj}(A) = \operatorname{rdet}(A)I.$$

3.2. Proposition. (i) If $T \in \operatorname{GL}_n(R_0)$ is an invertible matrix and $A \in M_n(R)$, then $\operatorname{rdet}(TAT^{-1}) = \operatorname{rdet}(A)$ and $\operatorname{radj}(TAT^{-1}) = T(\operatorname{radj}(A))T^{-1}$. (ii) If $A \in M_n(R_0)$, then $\operatorname{rdet}(A) = (\operatorname{det}(A))^n$ and $\operatorname{radj}(A) = (\operatorname{det}(A))^{n-1}\operatorname{adj}(A)$.

Proof. (i) In view of $TA_0T^{-1} \in M_n(R_0)$ and $TA_1T^{-1} \in M_n(R_1)$, the companion matrix of $TAT^{-1} = TA_0T^{-1} + TA_1T^{-1}$ is $TA_0T^{-1} + TA_1T^{-1}x$. Using $adj(A_0 + A_1x) = B_0 + B_1x$, we obtain that

$$adj(TA_0T^{-1} + TA_1T^{-1}x) = adj(T(A_0 + A_1x)T^{-1}) = T(adj(A_0 + A_1x))T^{-1} = T(B_0 + B_1x)T^{-1} = (TB_0T^{-1}) + (TB_1T^{-1})x.$$

It follows that

$$rdet(TAT^{-1}) = det(TAT^{-1}(TB_0T^{-1} + TB_1T^{-1})) = = det(TA(B_0 + B_1)T^{-1}) = det(A(B_0 + B_1)) = rdet(A)$$

and

$$\operatorname{radj}(TAT^{-1}) = (TB_0T^{-1} + TB_1T^{-1})\operatorname{adj}(TAT^{-1}(TB_0T^{-1} + TB_1T^{-1})) = T(B_0 + B_1)T^{-1}\operatorname{adj}(TA(B_0 + B_1)T^{-1}) = T(B_0 + B_1)T^{-1}T \quad (\operatorname{adj}(A(B_0 + B_1)))T^{-1} = T(\operatorname{radj}(A))T^{-1}.$$

(ii) Since $A \in M_n(R_0)$ implies that $A_0 = A$ and $A_1 = 0$, from $\operatorname{adj}(A_0 + A_1 x) = B_0 + B_1 x$ we get that $B_0 = \operatorname{adj}(A)$ and $B_1 = 0$. Thus

$$rdet(A) = det(A(B_0 + B_1)) = det(A_0B_0) = det(det(A)I) = (det(A))^n$$

and

$$\operatorname{radj}(A) = (B_0 + B_1) \operatorname{adj}(A(B_0 + B_1)) = B_0 \operatorname{adj}(A_0 B_0) = = \operatorname{adj}(A) \operatorname{adj}(\det(A)I) = \operatorname{adj}(A) (\det(A))^{n-1}I = (\det(A))^{n-1} \operatorname{adj}(A).$$

If (R_0, R_1) is a \mathbb{Z}_2 -grading of the ring R, then $(R_0[t], R_1[t])$ is a natural \mathbb{Z}_2 -grading of the polynomial ring R[t] of the commuting indeterminant t. It is straightforward to see that $(R[t])[x, \sigma_t]/(x^2) \cong (R[x, \sigma]/(x^2))[t]$ and $\overline{R[t]} = (R_0[t]) \oplus (R_1[t])x \cong (R_0 \oplus R_1x)[t] = \overline{R}[t]$ are ring isomorphisms, where $\sigma_t : R[t] \longrightarrow R[t]$ is the natural extension of σ . For a central \mathbb{Z}_2 -grading (R_0, R_1) , the induced \mathbb{Z}_2 -grading $(R_0[t], R_1[t])$ of R[t] is also central: $R_0[t] \subseteq Z(R[t])$.

We define the right characteristic polynomial (with respect to the given central \mathbb{Z}_2 -grading $R = R_0 \oplus R_1$) of a matrix $A \in M_n(R)$ as the right determinant (with respect to the induced central \mathbb{Z}_2 -grading $R[t] = R_0[t] \oplus R_1[t]$) of the matrix $tI - A \in M_n(R[t])$, where I is the identity matrix in $M_n(R)$:

$$\chi_A(t) = \operatorname{rdet}(tI - A) = \lambda_0 + \lambda_1 t + \dots + \lambda_k t^k \in R[t], \ \lambda_0, \lambda_1, \dots, \lambda_k \in R \text{ and } \lambda_k \neq 0.$$

Since $\operatorname{GL}_n(R_0) \subseteq \operatorname{GL}_n(R_0[t])$, an immediate consequence of Proposition 3.2 is that $\chi_{TAT^{-1}}(t) = \chi_A(t)$ for any invertible matrix $T \in \operatorname{GL}_n(R_0)$.

3.3. Proposition. If $\chi_A(t) = \lambda_0 + \lambda_1 t + \cdots + \lambda_k t^k$ is the right characteristic polynomial of the $n \times n$ matrix $A \in M_n(R)$, then $k = n^2$ and $\lambda_{n^2} = 1$, $\lambda_0 = \operatorname{rdet}(-A)$.

Proof. If $A = A_0 + A_1$ with $A_0 \in M_n(R_0)$ and $A_1 \in M_n(R_1)$, then $tI - A = (tI - A_0) + (-A_1)$ with $tI - A_0 \in M_n(R_0[t])$ and $-A_1 \in M_n(R_1[t])$. The companion matrix of tI - A in $M_n(\overline{R[t]}) \cong M_n(\overline{R[t]})$ is $(tI - A_0) + (-A_1)x = tI - (A_0 + A_1x)$ (here $\overline{R[t]} \cong \overline{R[t]}$ is a commutative ring). It is well known that each of the elements in the diagonal of $adj(tI - (A_0 + A_1x))$ is a polynomial in $\overline{R[t]}$ with leading term t^{n-1} . The non-diagonal entries in $adj(tI - (A_0 + A_1x))$ are polynomials in $\overline{R[t]}$ of degree less than n - 1. In consequence, the matrices $B_0(t) \in M_n(R_0[t])$ and $B_1(t) \in M_n(R_1[t])$ in

$$\operatorname{adj}((tI - A_0) + (-A_1)x) = B_0(t) + B_1(t)x$$

have the following properties: each non-diagonal entry of $B_0(t)$ and each entry of $B_1(t)$ is of degree (in t) less than n-1, moreover the leading term of each diagonal element in $B_0(t)$ is t^{n-1} . Thus each element in the diagonal of the product matrix $(tI - A)(B_0(t) + B_1(t))$ is a polynomial with leading term t^n . Since the non-diagonal entries in $(tI - A)(B_0(t) + B_1(t))$ are of degree less or equal than n-1, we obtain that the leading term of the right characteristic polynomial det $((tI - A)(B_0(t) + B_1(t))) = rdet(tI - A) = \chi_A(t)$ is $(t^n)^n = t^{n^2}$, i.e. that $k = n^2$ and $\lambda_{n^2} = 1$.

To prove $\lambda_0 = \operatorname{rdet}(-A)$, let $\operatorname{adj}(-A_0 - A_1 x) = C_0 + C_1 x$ with $C_0 \in M_n(R_0)$ and $C_1 \in M_n(R_1)$. Now

$$adj(tI - (A_0 + A_1x)) = (C_0 + C_1x) + C(t)t$$

for some $C(t) \in M_n(\overline{R}[t])$, whence we get that $B_0(t) + B_1(t) = (C_0 + C_1) + H(t)t$ for some $H(t) \in M_n(R[t])$. It follows, that

$$\chi_A(t) = \operatorname{rdet}(tI - A) = \operatorname{det}((tI - A)(B_0(t) + B_1(t))) =$$

= $\operatorname{det}(H(t)t^2 - AH(t)t + C_0t + C_1t - A(C_0 + C_1)).$

Since $A(C_0+C_1)$ does not contain t, we deduce that the constant term in $\chi_A(t)$ is $rdet(-A) = det(-A(C_0+C_1))$.

3.4. Theorem. If $\chi_A(t) \in R[t]$ is the right characteristic polynomial of an $n \times n$ matrix $A \in M_n(R)$ over a centrally \mathbb{Z}_2 -graded ring $R = R_0 \oplus R_1$ and $h(t) \in R[t]$ is arbitrary, then the left substitution of A into the product polynomial $\chi_A(t)h(t) = \mu_0 + \mu_1 t + \cdots + \mu_m t^m$ is zero: $I\mu_0 + A\mu_1 + \cdots + A^m\mu_m = 0$.

Proof. Using

$$(tI - A)(U_0 + U_1t + \dots + U_{m-1}t^{m-1}) = (\mu_0 + \mu_1t + \dots + \mu_mt^m)I$$

in $M_n(R[t]) \cong (M_n(R))[t]$ with $(\operatorname{radj}(tI-A))h(t) = U_0 + U_1t + \cdots + U_{m-1}t^{m-1}$ and $U_i \in M_n(R)$ for the indices $0 \le i \le m-1$, we can proceed as in the proof of Theorem 4.2 in [4]. \Box

4. The inverse formula for $n \times n$ matrices over the Grassmann algebra

An element g of $E = F \langle v_1, v_2, \dots, v_i, \dots | v_i v_j = -v_j v_i$ for all integers $1 \le i \le j \rangle$ can be uniquely written in the form

$$g = c_g + \sum_{1 \le i_1 < i_2 < \ldots < i_k} c_g(i_1, i_2, \ldots, i_k) v_{i_1} v_{i_2} \ldots v_{i_k} ,$$

where $c_g, c_g(i_1, i_2, \ldots, i_k) \in F$. Now $\gamma(g) = c_g$ defines an *F*-algebra homomorphism $\gamma : E \to F$ and γ naturally extends to an *F*-algebra homomorphism $\overline{\gamma} : M_n(E) \to M_n(F)$ of the matrix algebras. If $N = A - \overline{\gamma}(A)$, then it is easy to see that BN is a nilpotent matrix for all $B \in M_n(E)$. The existence of the inverse matrix $(\overline{\gamma}(A))^{-1}$ in $M_n(F)$ implies the existence of the inverse of $A = \overline{\gamma}(A)(I + (\overline{\gamma}(A))^{-1}N)$ in $M_n(E)$:

$$A^{-1} = (I + (-(\overline{\gamma}(A))^{-1}N) + (-(\overline{\gamma}(A))^{-1}N)^2 + \dots + (-(\overline{\gamma}(A))^{-1}N)^{m-1})(\overline{\gamma}(A))^{-1},$$

where *m* is the index of the nilpotence of $(\overline{\gamma}(A))^{-1}N$. Thus $\det(\overline{\gamma}(A)) \neq 0$ implies the existence of $A^{-1} \in M_n(E)$. On the other hand, AB = I in $M_n(E)$ implies that $\overline{\gamma}(A)\overline{\gamma}(B) = \overline{\gamma}(AB) = \overline{\gamma}(I) = I$ in $M_n(F)$, whence we get that $\det(\overline{\gamma}(A)) \neq 0$. In consequence, the existence of A^{-1} in $M_n(E)$ is equivalent to $\det(\overline{\gamma}(A)) \neq 0$.

4.1. Theorem. For a matrix $A \in M_n(E)$ we have $A = A_0 + A_1$ for some unique $A_0 \in M_n(E_0)$ and $A_1 \in M_n(E_1)$. If A is invertible, then

$$A^{-1} = (\mathrm{adj}(A_0) + \alpha_1(A)) \mathrm{adj} \left(A(\mathrm{adj}(A_0) + \alpha_1(A)) \right) \{ \det \left(A(\mathrm{adj}(A_0) + \alpha_1(A)) \right) \}^{-1},$$

where $\operatorname{adj}(A_0 + A_1 x) = B_0 + B_1 x$ in $M_n(\overline{E})$ with $B_0 = \operatorname{adj}(A_0) \in M_n(E_0)$, $B_1 = \alpha_1(A) \in M_n(E_1)$ and $\operatorname{det}(A(\operatorname{adj}(A_0) + \alpha_1(A)))$ is an invertible element of E.

Proof. In view of $\overline{\gamma}(A_1) = \overline{\gamma}(B_1) = 0$, $\overline{\gamma}(A_0) = \overline{\gamma}(A)$ and $\det(\overline{\gamma}(A)) \neq 0$, we can write that

$$\gamma(\operatorname{rdet}(A)) = \gamma(\operatorname{det}((A_0 + A_1)(B_0 + B_1))) = \operatorname{det}(\overline{\gamma}((A_0 + A_1)(B_0 + B_1))) =$$

$$= \operatorname{det}(\overline{\gamma}(A_0 + A_1)\overline{\gamma}(B_0 + B_1)) = \operatorname{det}(\overline{\gamma}(A_0)\overline{\gamma}(B_0)) = \operatorname{det}(\overline{\gamma}(A_0B_0)) =$$

$$= \gamma(\operatorname{det}(A_0B_0)) = \gamma(\operatorname{det}(\operatorname{det}(A_0)I)) = \gamma((\operatorname{det}(A_0))^n) =$$

$$= (\gamma(\operatorname{det}(A_0)))^n = (\operatorname{det}(\overline{\gamma}(A_0)))^n = (\operatorname{det}(\overline{\gamma}(A)))^n \neq 0,$$

whence we get that $\operatorname{rdet}(A)$ is an invertible element of E. From $A \operatorname{radj}(A) = \operatorname{rdet}(A)I$, the right multiplication by $(\operatorname{rdet}(A))^{-1}$ gives that $A^{-1} = \operatorname{radj}(A)(\operatorname{rdet}(A))^{-1}$, where $\operatorname{radj}(A) = (B_0 + B_1)\operatorname{adj}(A(B_0 + B_1))$ and $\operatorname{rdet}(A) = \operatorname{det}(A(B_0 + B_1))$.

4.2. Remark. The idea of considering the companion matrix $A_0 + A_1x$ arose in the following way. If $A \in M_n(E)$ with $A = A_0 + A_1$ and v_i is a generator of E not occurring in the elements of A, then A can be completely read off the matrix $A_0 + A_1v_i$ and $A_0 + A_1v_i \in M_n(E_0)$ lies in a commutative environment. Thus the use of $A_0 + A_1v_i$ instead of A is a natural challenge.

References

- Domokos, M.: Cayley-Hamilton theorem for 2×2 matrices over the Grassmann algebra. J. Pure Appl. Algebra 133 (1998), 69–81.
 Zbl 0941.15026
- [2] Kemer, A. R.: Varieties of Z_2 -graded algebras. Math. USSR Izv. **25** (1985), 359–374. Zbl 0586.16010
- [3] Kemer, A. R.: Ideals of Identities of Associative Algebras. Translations of Math. Monographs, Vol. 87 (1991), AMS Providence, Rhode Island. Zbl 0732.16001
- [4] Szigeti, J.: New determinants and the Cayley-Hamilton theorem for matrices over Lie nilpotent rings. Proc. Amer. Math. Soc. 125(8) (1997), 2245–2254. Zbl 0888.16011

Received September 25, 2000