Matrices over Centrally \mathbb{Z}_{2}-graded Rings

Sudarshan Sehgal ${ }^{1}$ Jenő Szigeti ${ }^{2}$
Department of Mathematics, University of Alberta Edmonton, T6G 2G1, Canada
e-mail: s.sehgal@ualberta.ca
Institute of Mathematics, University of Miskolc
Miskolc, Hungary 3515
e-mail: matszj@gold.uni-miskolc.hu

Abstract

We introduce a new computational technique for $n \times n$ matrices, over a \mathbb{Z}_{2}-graded ring $R=R_{0} \oplus R_{1}$ with $R_{0} \subseteq Z(R)$, leading us to a new concept of determinant, which can be used to derive an invariant Cayley-Hamilton identity. An explicit construction of the inverse matrix A^{-1} for any invertible $n \times n$ matrix A over a Grassmann algebra E is also obtained. MSC 2000: 16A38, 15A15 (primary); 15A33 (secondary) Keywords: \mathbb{Z}_{2}-graded ring, skew polynomial ring, determinant and adjoint

1. Introduction

The main aim of the present paper is to introduce a new computational technique for matrices over certain \mathbb{Z}_{2}-graded rings. We shall consider $n \times n$ matrices over a \mathbb{Z}_{2}-graded ring $R=$ $R_{0} \oplus R_{1}$ with the property $R_{0} \subseteq Z(R)$, where $Z(R)$ denotes the centre of R. For these matrices our method provides a possibility to use the classical determinant theory of matrices over commutative rings. The most important example for \mathbb{Z}_{2}-graded rings with the above mentioned property is the exterior (Grassmann) algebra

$$
\left.E=F\left\langle v_{1}, v_{2}, \ldots, v_{i}, \ldots\right| v_{i} v_{j}=-v_{j} v_{i} \text { for all integers } 1 \leq i \leq j\right\rangle
$$

[^0]and the polynomial algebra $E[t]$, where F is a field, t is a commuting indeterminant. The $\mathbb{Z}_{2^{-}}$ gradings are $E=E_{0} \oplus E_{1}$ and $E[t]=E_{0}[t] \oplus E_{1}[t]$ with E_{0} being the subspace (subalgebra) generated by the monomials of even length and E_{1} being the subspace generated by the monomials of odd length. We note that the F-algebra $M_{n}(E)$ of $n \times n$ matrices over the (infinite dimensional) exterior algebra E with $\operatorname{char}(F)=0$ is one of the most important objects of study in the theory of PI-algebras (see Kemer's structure theory of T-ideals in [2] and [3]).

First of all, our technique leads to a new concept of invariant determinant, which can be used to derive an invariant Cayley-Hamilton identity in $M_{n}(R)$. An immediate application of our results will provide a new explicit construction of the inverse matrix A^{-1} for any invertible $n \times n$ matrix $A \in M_{n}(E)$.

Since the existence of a \mathbb{Z}_{2}-grading $R=R_{0} \oplus R_{1}$ with the property $R_{0} \subseteq Z(R)$ implies that R is Lie nilpotent of index 2, it would be desirable to find the precise relationship between the concepts presented in the sequel and the Lie nilpotent determinant theory in [4]. The constructions in [4] are based on the use of the so called preadjoint, which is a natural but complicated generalization of the ordinary adjoint matrix. In defining our determinant, here we use only classical determinants and adjoints. Our results on $n \times n$ matrices over $R=R_{0} \oplus R_{1}$ with $R_{0} \subseteq Z(R)$ are similar to the results of [4] specialized to $n \times n$ matrices over Lie nilpotent rings of index 2 . We believe that our present approach is easier to understand and gives more chance to find an explicit form of the Cayley-Hamilton equation (Newton formulae) for $n \geq 3$. Using sophisticated calculations, starting from the characteristic polynomial defined in [4], M. Domokos obtained Newton formulae for 2×2 matrices over the Grassmann algebra (see [1]).

2. \mathbb{Z}_{2}-gradings and skew polynomial rings

A \mathbb{Z}_{2}-grading of an (associative) ring R is a pair $\left(R_{0}, R_{1}\right)$, where R_{0} and R_{1} are additive subgroups of R such that $R=R_{0} \oplus R_{1}$ and $R_{i} R_{j} \subseteq R_{i+j}$ for all $i, j \in\{0,1\}$ and $i+j$ is taken modulo 2. The relation $R_{0} R_{0} \subseteq R_{0}$ ensures that R_{0} is a subring of R. Now any element $r \in R$ can be uniquely written as $r=r_{0}+r_{1}$, where $r_{0} \in R_{0}$ and $r_{1} \in R_{1}$. It is easy to see that the existence of $1 \in R$ implies that $1 \in R_{0}$. The function $\sigma: R \longrightarrow R$ defined by $\sigma\left(r_{0}+r_{1}\right)=r_{0}-r_{1}$ is a ring homomorphism (actually, it is an automorphism of R). A more general situation is, when R is considered as a C-algebra for some commutative ring $C \subseteq Z(R)$ and $R=\underset{u \in S}{\oplus} R_{u}$ is graded by a subsemigroup $S \subseteq U(C)$ of the multiplicative group of units in C (each $R_{u} \subseteq R$ is a C-submodule) and $\sigma\left(\sum_{u \in S} r_{u}\right)=\sum_{u \in S} u r_{u}$.

For a \mathbb{Z}_{2}-graded ring $R=R_{0} \oplus R_{1}$ let us consider the skew polynomial ring $R[x, \sigma]$ in the skew indeterminate x. The elements of $R[x, \sigma]$ are left polynomials of the form $f(x)=$ $a_{0}+a_{1} x+\cdots+a_{k} x^{k}$ with $a_{0}, a_{1}, \ldots, a_{k} \in R$. Besides the obvious addition, we have the following multiplication rule in $R[x, \sigma]$:

$$
x r=\sigma(r) x \text { for all } r \in R \text {, i.e. that } x\left(r_{0}+r_{1}\right)=\left(r_{0}-r_{1}\right) x \text { for all } r_{0} \in R_{0}, r_{1} \in R_{1}
$$

and

$$
\left(a_{0}+a_{1} x+\cdots+a_{k} x^{k}\right)\left(b_{0}+b_{1} x+\cdots+b_{l} x^{l}\right)=c_{0}+c_{1} x+\cdots+c_{k+l} x^{k+l}
$$

where

$$
c_{m}=\sum_{i+j=m, i \geq 0, j \geq 0} a_{i} \sigma^{i}\left(b_{j}\right) .
$$

Since σ is an involution, x^{2} is a central element of $R[x, \sigma]$: we have $\sigma(\sigma(r))=r$ and $x^{2} r=$ $x \sigma(r) x=\sigma(\sigma(r)) x^{2}=r x^{2}$ for all $r \in R$, moreover x^{2} commutes with the powers of x. Thus the ideal $\left(x^{2}\right) \triangleleft R[x, \sigma]$ generated by x^{2} can be written as $\left(x^{2}\right)=R[x, \sigma] x^{2}=x^{2} R[x, \sigma]$. Consider the factor ring $R[x, \sigma] /\left(x^{2}\right)$, then for any element $f(x) \in R[x, \sigma]$ there exists exactly one left polynomial of the form $r+s x \in R[x, \sigma]$ in the residue class $f(x)+\left(x^{2}\right)$. Hence the elements of $R[x, \sigma] /\left(x^{2}\right)$ can be represented by linear left polynomials with coefficients in R and the multiplication in $R[x, \sigma] /\left(x^{2}\right)$ is the following:

$$
(r+s x)(p+q x)=r p+(r q+s \sigma(p)) x
$$

where $r, s, p, q \in R$. The above observation ensures that $R[x, \sigma] /\left(x^{2}\right)=R \oplus R x$ is a $\mathbb{Z}_{2^{-}}$ grading with $(R x)(R x)=\{0\}$. It follows that the $n \times n$ matrices $P, Q \in M_{n}\left(R[x, \sigma] /\left(x^{2}\right)\right)$ can be uniquely written as $P=P^{\prime}+P^{\prime \prime} x$ and $Q=Q^{\prime}+Q^{\prime \prime} x$ for some $P^{\prime}, P^{\prime \prime}, Q^{\prime}, Q^{\prime \prime} \in M_{n}(R)$ and that

$$
\begin{equation*}
P Q=P^{\prime} Q^{\prime}+\left(P^{\prime} Q^{\prime \prime}+P^{\prime \prime} \sigma\left(Q^{\prime}\right)\right) x, \tag{*}
\end{equation*}
$$

where $\sigma\left(Q^{\prime}\right)=\left[\sigma\left(q_{i j}^{\prime}\right)\right]$ is the natural action of σ on $Q^{\prime}=\left[q_{i j}^{\prime}\right]$ and the products $P^{\prime} Q^{\prime}, P^{\prime} Q^{\prime \prime}$, $P^{\prime \prime} \sigma\left(Q^{\prime}\right)$ are taken in $M_{n}(R)$. It can be easily seen, that

$$
\bar{R}=\left\{r_{0}+s_{1} x \mid r_{0} \in R_{0} \text { and } s_{1} \in R_{1}\right\} \subseteq\{r+s x \mid r, s \in R\}=R[x, \sigma] /\left(x^{2}\right)
$$

is a subring of $R[x, \sigma] /\left(x^{2}\right)$. Indeed, $\left(r_{0}+s_{1} x\right)\left(p_{0}+q_{1} x\right)=r_{0} p_{0}+\left(r_{0} q_{1}+s_{1} \sigma\left(p_{0}\right)\right) x$, where $r_{0} p_{0} \in R_{0}$ and $r_{0} q_{1}+s_{1} \sigma\left(p_{0}\right)=r_{0} q_{1}+s_{1} p_{0} \in R_{1}$ for all $r_{0}, p_{0} \in R_{0}$ and $s_{1}, q_{1} \in R_{1}$. In consequence, $\bar{R}=R_{0} \oplus R_{1} x$ is a \mathbb{Z}_{2}-grading. We note that \bar{R} can be defined directly on the product $R_{0} \times R_{1}$ with componentwise addition and taking the multiplication $\left(r_{0}, s_{1}\right)\left(p_{0}, q_{1}\right)=$ $\left(r_{0} p_{0}, r_{0} q_{1}+s_{1} p_{0}\right)$. If $R_{0} \subseteq Z(R)$ with $Z(R)$ being the centre of R, then \bar{R} is commutative:

$$
\begin{aligned}
& \left(r_{0}+s_{1} x\right)\left(p_{0}+q_{1} x\right)=r_{0} p_{0}+\left(r_{0} q_{1}+s_{1} p_{0}\right) x= \\
& =p_{0} r_{0}+\left(p_{0} s_{1}+q_{1} r_{0}\right) x=\left(p_{0}+q_{1} x\right)\left(r_{0}+s_{1} x\right) .
\end{aligned}
$$

The condition $R_{0} \subseteq Z(R)$ also implies the Lie nilpotence (of index 2) of R. For the elements $r, s \in R$ we have $r=r_{0}+r_{1}, s=s_{0}+s_{1}$ for some $r_{0}, s_{0} \in R_{0}$ and $r_{1}, s_{1} \in R_{1}$. Now $r_{0}, s_{0} \in Z(R)$ implies that $\left[r_{0}, s\right]=\left[r_{1}, s_{0}\right]=0$, whence we get $[r, s]=\left[r_{0}+r_{1}, s\right]=\left[r_{0}, s\right]+\left[r_{1}, s\right]=$ $\left[r_{1}, s_{0}+s_{1}\right]=\left[r_{1}, s_{0}\right]+\left[r_{1}, s_{1}\right]=\left[r_{1}, s_{1}\right]=r_{1} s_{1}-s_{1} r_{1} \in R_{0}$. Thus $[r, s] \in Z(R)$, so we obtain that $[[r, s], w]=0$ for all $r, s, w \in R$.

3. Computing with $n \times n$ matrices over a centrally \mathbb{Z}_{2}-graded ring

A \mathbb{Z}_{2}-grading $\left(R_{0}, R_{1}\right)$ of the ring R is called central, if $R_{0} \subseteq Z(R)$. Let $A=\left[a_{i j}\right] \in M_{n}(R)$ be an $n \times n$ matrix over a ring with a central \mathbb{Z}_{2}-grading, then $a_{i j}=a_{i j}^{(0)}+a_{i j}^{(1)}$ for some
unique $a_{i j}^{(0)} \in R_{0}$ and $a_{i j}^{(1)} \in R_{1}$ for all integers $1 \leq i \leq n$ and $1 \leq j \leq n$, i.e. $A=A_{0}+A_{1}$ with $A_{0}=\left[a_{i j}^{(0)}\right] \in M_{n}\left(R_{0}\right)$ and $A_{1}=\left[a_{i j}^{(1)}\right] \in M_{n}\left(R_{1}\right)$. The companion matrix of A in $M_{n}(\bar{R})$ is defined as

$$
A_{0}+A_{1} x=\left[a_{i j}^{(0)}+a_{i j}^{(1)} x\right] .
$$

Since \bar{R} is commutative, the determinant and the adjoint of $A_{0}+A_{1} x$ are defined and can be written as

$$
\operatorname{det}\left(A_{0}+A_{1} x\right)=d_{0}+d_{1} x \in \bar{R}
$$

and

$$
\operatorname{adj}\left(A_{0}+A_{1} x\right)=\left[b_{i j}^{(0)}+b_{i j}^{(1)} x\right]=B_{0}+B_{1} x \in M_{n}(\bar{R}),
$$

where $d_{0} \in R_{0}$ and $d_{1} \in R_{1}$ are elements, $B_{0}=\left[b_{i j}^{(0)}\right] \in M_{n}\left(R_{0}\right)$ and $B_{1}=\left[b_{i j}^{(1)}\right] \in M_{n}\left(R_{1}\right)$ are $n \times n$ matrices, each of these objects is uniquely determined by A. Clearly, $d_{0}=\operatorname{det}\left(A_{0}\right)$, $B_{0}=\operatorname{adj}\left(A_{0}\right)$ and the elements $d_{1}, b_{i j}^{(1)} \in R_{1}$ are also polynomial expressions of the $a_{i j}^{(0)}$, s and the $a_{i j}^{(1)}$'s (it is not hard to give them explicitly).

3.1. Theorem. The elements of the product matrices

$$
A\left(B_{0}+B_{1}\right)=\left(A_{0}+A_{1}\right)\left(B_{0}+B_{1}\right) \text { and }\left(B_{0}+B_{1}\right) A=\left(B_{0}+B_{1}\right)\left(A_{0}+A_{1}\right)
$$

are contained in the subring $R_{0}\left[d_{1}\right]$ of R generated by d_{1} and the elements of R_{0}, namely:

$$
A\left(B_{0}+B_{1}\right),\left(B_{0}+B_{1}\right) A \in M_{n}\left(R_{0}\left[d_{1}\right]\right)
$$

Proof. Since $d_{0}+d_{1} x$ is the determinant and $B_{0}+B_{1} x$ is the adjoint of $A_{0}+A_{1} x$, we have

$$
\left(A_{0}+A_{1} x\right)\left(B_{0}+B_{1} x\right)=\left(d_{0}+d_{1} x\right) I
$$

in $M_{n}(\bar{R})$, where I is the identity matrix. In view of

$$
M_{n}(\bar{R})=M_{n}\left(R_{0} \oplus R_{1} x\right) \subseteq M_{n}(R \oplus R x)=M_{n}\left(R[x, \sigma] /\left(x^{2}\right)\right)
$$

and $\sigma\left(B_{0}\right)=B_{0}$, the application of $(*)$ gives that

$$
A_{0} B_{0}+\left(A_{0} B_{1}+A_{1} B_{0}\right) x=d_{0} I+\left(d_{1} I\right) x
$$

where $A_{0} B_{0}$ and $A_{0} B_{1}+A_{1} B_{0}$ are taken in $M_{n}(R)$. Using the unique $r_{0}+s_{1} x$ form (with $r_{0} \in R_{0}$ and $s_{1} \in R_{1}$) of the elements in \bar{R} and matching the coefficients of x in the left and the right side of the above equation, we obtain the following identity in $M_{n}(R)$:

$$
A_{0} B_{1}+A_{1} B_{0}=d_{1} I
$$

Thus

$$
\begin{gathered}
A\left(B_{0}+B_{1}\right)=\left(A_{0}+A_{1}\right)\left(B_{0}+B_{1}\right)=\left(A_{0} B_{0}+A_{1} B_{1}\right)+\left(A_{0} B_{1}+A_{1} B_{0}\right)= \\
\left(A_{0} B_{0}+A_{1} B_{1}\right)+d_{1}
\end{gathered}
$$

and $A_{0} B_{0}+A_{1} B_{1} \in M_{n}\left(R_{0}\right)$ imply that $A\left(B_{0}+B_{1}\right) \in M_{n}\left(R_{0}\left[d_{1}\right]\right)$. The similar statement on the product ($B_{0}+B_{1}$) A can be proved analogously.

The condition $R_{0} \subseteq Z(R)$ implies that the subring $R_{0}\left[d_{1}\right] \subseteq R$ is commutative (the elements of $R_{0}\left[d_{1}\right]$ are polynomials of d_{1} with coefficients in $\left.R_{0}\right)$. As a consequence of Theorem 3.1 the determinant and the adjoint of the matrices $A\left(B_{0}+B_{1}\right),\left(B_{0}+B_{1}\right) A \in M_{n}\left(R_{0}\left[d_{1}\right]\right)$ are defined: $\operatorname{det}\left(A\left(B_{0}+B_{1}\right)\right)$ is called the right determinant (with respect to the given central \mathbb{Z}_{2}-grading $\left.R=R_{0} \oplus R_{1}\right)$ and $\left(B_{0}+B_{1}\right) \operatorname{adj}\left(A\left(B_{0}+B_{1}\right)\right)$ is called the right adjoint (with respect to the given central \mathbb{Z}_{2}-grading $R=R_{0} \oplus R_{1}$) of the matrix $A \in M_{n}(R)$. We use the following notations:

$$
\operatorname{rdet}(A)=\operatorname{det}\left(A\left(B_{0}+B_{1}\right)\right) \quad \text { and } \operatorname{radj}(A)=\left(B_{0}+B_{1}\right) \operatorname{adj}\left(A\left(B_{0}+B_{1}\right)\right) .
$$

Since $A\left(B_{0}+B_{1}\right) \operatorname{adj}\left(A\left(B_{0}+B_{1}\right)\right)=\operatorname{det}\left(A\left(B_{0}+B_{1}\right)\right) I$ in $M_{n}\left(R_{0}\left[d_{1}\right]\right)$, we immediately obtain (in $M_{n}(R)$) that:

$$
A \operatorname{radj}(A)=\operatorname{rdet}(A) I
$$

3.2. Proposition. (i) If $T \in \mathrm{GL}_{n}\left(R_{0}\right)$ is an invertible matrix and $A \in M_{n}(R)$, then $\operatorname{rdet}\left(T A T^{-1}\right)=\operatorname{rdet}(A)$ and $\operatorname{radj}\left(T A T^{-1}\right)=T(\operatorname{radj}(A)) T^{-1}$.
(ii) If $A \in M_{n}\left(R_{0}\right)$, then $\operatorname{rdet}(A)=(\operatorname{det}(A))^{n}$ and $\operatorname{radj}(A)=(\operatorname{det}(A))^{n-1} \operatorname{adj}(A)$.

Proof. (i) In view of $T A_{0} T^{-1} \in M_{n}\left(R_{0}\right)$ and $T A_{1} T^{-1} \in M_{n}\left(R_{1}\right)$, the companion matrix of $T A T^{-1}=T A_{0} T^{-1}+T A_{1} T^{-1}$ is $T A_{0} T^{-1}+T A_{1} T^{-1} x$. Using $\operatorname{adj}\left(A_{0}+A_{1} x\right)=B_{0}+B_{1} x$, we obtain that

$$
\begin{gathered}
\operatorname{adj}\left(T A_{0} T^{-1}+T A_{1} T^{-1} x\right)=\operatorname{adj}\left(T\left(A_{0}+A_{1} x\right) T^{-1}\right)=T\left(\operatorname{adj}\left(A_{0}+A_{1} x\right)\right) T^{-1}= \\
=T\left(B_{0}+B_{1} x\right) T^{-1}=\left(T B_{0} T^{-1}\right)+\left(T B_{1} T^{-1}\right) x
\end{gathered}
$$

It follows that

$$
\begin{aligned}
& \operatorname{rdet}\left(T A T^{-1}\right)=\operatorname{det}\left(T A T^{-1}\left(T B_{0} T^{-1}+T B_{1} T^{-1}\right)\right)= \\
& =\operatorname{det}\left(T A\left(B_{0}+B_{1}\right) T^{-1}\right)=\operatorname{det}\left(A\left(B_{0}+B_{1}\right)\right)=\operatorname{rdet}(A)
\end{aligned}
$$

and

$$
\begin{gathered}
\operatorname{radj}\left(T A T^{-1}\right)=\left(T B_{0} T^{-1}+T B_{1} T^{-1}\right) \operatorname{adj}\left(T A T^{-1}\left(T B_{0} T^{-1}+T B_{1} T^{-1}\right)\right)= \\
=T\left(B_{0}+B_{1}\right) T^{-1} \operatorname{adj}\left(T A\left(B_{0}+B_{1}\right) T^{-1}\right)= \\
=T\left(B_{0}+B_{1}\right) T^{-1} T\left(\operatorname{adj}\left(A\left(B_{0}+B_{1}\right)\right)\right) T^{-1}=T(\operatorname{radj}(A)) T^{-1} .
\end{gathered}
$$

(ii) Since $A \in M_{n}\left(R_{0}\right)$ implies that $A_{0}=A$ and $A_{1}=0$, from $\operatorname{adj}\left(A_{0}+A_{1} x\right)=B_{0}+B_{1} x$ we get that $B_{0}=\operatorname{adj}(A)$ and $B_{1}=0$. Thus

$$
\operatorname{rdet}(A)=\operatorname{det}\left(A\left(B_{0}+B_{1}\right)\right)=\operatorname{det}\left(A_{0} B_{0}\right)=\operatorname{det}(\operatorname{det}(A) I)=(\operatorname{det}(A))^{n}
$$

and

$$
\begin{gathered}
\operatorname{radj}(A)=\left(B_{0}+B_{1}\right) \operatorname{adj}\left(A\left(B_{0}+B_{1}\right)\right)=B_{0} \operatorname{adj}\left(A_{0} B_{0}\right)= \\
=\operatorname{adj}(A) \operatorname{adj}(\operatorname{det}(A) I)=\operatorname{adj}(A)(\operatorname{det}(A))^{n-1} I=(\operatorname{det}(A))^{n-1} \operatorname{adj}(A) .
\end{gathered}
$$

If $\left(R_{0}, R_{1}\right)$ is a \mathbb{Z}_{2}-grading of the ring R, then $\left(R_{0}[t], R_{1}[t]\right)$ is a natural \mathbb{Z}_{2}-grading of the polynomial ring $R[t]$ of the commuting indeterminant t. It is straightforward to see that $(R[t])\left[x, \sigma_{t}\right] /\left(x^{2}\right) \cong\left(R[x, \sigma] /\left(x^{2}\right)\right)[t]$ and $\overline{R[t]}=\left(R_{0}[t]\right) \oplus\left(R_{1}[t]\right) x \cong\left(R_{0} \oplus R_{1} x\right)[t]=\bar{R}[t]$ are ring isomorphisms, where $\sigma_{t}: R[t] \longrightarrow R[t]$ is the natural extension of σ. For a central $\mathbb{Z}_{2^{-}}$ grading $\left(R_{0}, R_{1}\right)$, the induced \mathbb{Z}_{2}-grading $\left(R_{0}[t], R_{1}[t]\right)$ of $R[t]$ is also central: $R_{0}[t] \subseteq Z(R[t])$.

We define the right characteristic polynomial (with respect to the given central \mathbb{Z}_{2}-grading $R=R_{0} \oplus R_{1}$) of a matrix $A \in M_{n}(R)$ as the right determinant (with respect to the induced central \mathbb{Z}_{2}-grading $\left.R[t]=R_{0}[t] \oplus R_{1}[t]\right)$ of the matrix $t I-A \in M_{n}(R[t])$, where I is the identity matrix in $M_{n}(R)$:

$$
\chi_{A}(t)=\operatorname{rdet}(t I-A)=\lambda_{0}+\lambda_{1} t+\cdots+\lambda_{k} t^{k} \in R[t], \lambda_{0}, \lambda_{1}, \ldots, \lambda_{k} \in R \text { and } \lambda_{k} \neq 0 .
$$

Since $\mathrm{GL}_{n}\left(R_{0}\right) \subseteq \mathrm{GL}_{n}\left(R_{0}[t]\right)$, an immediate consequence of Proposition 3.2 is that $\chi_{T A T^{-1}}(t)=$ $\chi_{A}(t)$ for any invertible matrix $T \in \mathrm{GL}_{n}\left(R_{0}\right)$.
3.3. Proposition. If $\chi_{A}(t)=\lambda_{0}+\lambda_{1} t+\cdots+\lambda_{k} t^{k}$ is the right characteristic polynomial of the $n \times n$ matrix $A \in M_{n}(R)$, then $k=n^{2}$ and $\lambda_{n^{2}}=1, \quad \lambda_{0}=\operatorname{rdet}(-A)$.

Proof. If $A=A_{0}+A_{1}$ with $A_{0} \in M_{n}\left(R_{0}\right)$ and $A_{1} \in M_{n}\left(R_{1}\right)$, then $t I-A=\left(t I-A_{0}\right)+\left(-A_{1}\right)$ with $t I-A_{0} \in M_{n}\left(R_{0}[t]\right)$ and $-A_{1} \in M_{n}\left(R_{1}[t]\right)$. The companion matrix of $t I-A$ in $M_{n}(\overline{R[t]}) \cong M_{n}(\bar{R}[t])$ is $\left(t I-A_{0}\right)+\left(-A_{1}\right) x=t I-\left(A_{0}+A_{1} x\right)$ (here $\overline{R[t]} \cong \bar{R}[t]$ is a commutative ring). It is well known that each of the elements in the diagonal of adj $(t I-$ $\left.\left(A_{0}+A_{1} x\right)\right)$ is a polynomial in $\bar{R}[t]$ with leading term t^{n-1}. The non-diagonal entries in $\operatorname{adj}\left(t I-\left(A_{0}+A_{1} x\right)\right)$ are polynomials in $\bar{R}[t]$ of degree less than $n-1$. In consequence, the matrices $B_{0}(t) \in M_{n}\left(R_{0}[t]\right)$ and $B_{1}(t) \in M_{n}\left(R_{1}[t]\right)$ in

$$
\operatorname{adj}\left(\left(t I-A_{0}\right)+\left(-A_{1}\right) x\right)=B_{0}(t)+B_{1}(t) x
$$

have the following properties: each non-diagonal entry of $B_{0}(t)$ and each entry of $B_{1}(t)$ is of degree (in t) less than $n-1$, moreover the leading term of each diagonal element in $B_{0}(t)$ is t^{n-1}. Thus each element in the diagonal of the product matrix $(t I-A)\left(B_{0}(t)+B_{1}(t)\right)$ is a polynomial with leading term t^{n}. Since the non-diagonal entries in $(t I-A)\left(B_{0}(t)+B_{1}(t)\right)$ are of degree less or equal than $n-1$, we obtain that the leading term of the right characteristic polynomial $\operatorname{det}\left((t I-A)\left(B_{0}(t)+B_{1}(t)\right)\right)=\operatorname{rdet}(t I-A)=\chi_{A}(t)$ is $\left(t^{n}\right)^{n}=t^{n^{2}}$, i.e. that $k=n^{2}$ and $\lambda_{n^{2}}=1$.

To prove $\lambda_{0}=\operatorname{rdet}(-A)$, let $\operatorname{adj}\left(-A_{0}-A_{1} x\right)=C_{0}+C_{1} x$ with $C_{0} \in M_{n}\left(R_{0}\right)$ and $C_{1} \in$ $M_{n}\left(R_{1}\right)$. Now

$$
\operatorname{adj}\left(t I-\left(A_{0}+A_{1} x\right)\right)=\left(C_{0}+C_{1} x\right)+C(t) t
$$

for some $C(t) \in M_{n}(\bar{R}[t])$, whence we get that $B_{0}(t)+B_{1}(t)=\left(C_{0}+C_{1}\right)+H(t) t$ for some $H(t) \in M_{n}(R[t])$. It follows, that

$$
\begin{aligned}
& \chi_{A}(t)=\operatorname{rdet}(t I-A)=\operatorname{det}\left((t I-A)\left(B_{0}(t)+B_{1}(t)\right)\right)= \\
& \quad=\operatorname{det}\left(H(t) t^{2}-A H(t) t+C_{0} t+C_{1} t-A\left(C_{0}+C_{1}\right)\right) .
\end{aligned}
$$

Since $A\left(C_{0}+C_{1}\right)$ does not contain t, we deduce that the constant term in $\chi_{A}(t)$ is $\operatorname{rdet}(-A)=$ $\operatorname{det}\left(-A\left(C_{0}+C_{1}\right)\right)$.
3.4. Theorem. If $\chi_{A}(t) \in R[t]$ is the right characteristic polynomial of an $n \times n$ matrix $A \in M_{n}(R)$ over a centrally \mathbb{Z}_{2}-graded ring $R=R_{0} \oplus R_{1}$ and $h(t) \in R[t]$ is arbitrary, then the left substitution of A into the product polynomial $\chi_{A}(t) h(t)=\mu_{0}+\mu_{1} t+\cdots+\mu_{m} t^{m}$ is zero: $I \mu_{0}+A \mu_{1}+\cdots+A^{m} \mu_{m}=0$.

Proof. Using

$$
(t I-A)\left(U_{0}+U_{1} t+\cdots+U_{m-1} t^{m-1}\right)=\left(\mu_{0}+\mu_{1} t+\cdots+\mu_{m} t^{m}\right) I
$$

in $M_{n}(R[t]) \cong\left(M_{n}(R)\right)[t]$ with $(\operatorname{radj}(t I-A)) h(t)=U_{0}+U_{1} t+\cdots+U_{m-1} t^{m-1}$ and $U_{i} \in M_{n}(R)$ for the indices $0 \leq i \leq m-1$, we can proceed as in the proof of Theorem 4.2 in [4].

4. The inverse formula for $n \times n$ matrices over the Grassmann algebra

An element g of $E=F\left\langle v_{1}, v_{2}, \ldots, v_{i}, \ldots\right| v_{i} v_{j}=-v_{j} v_{i}$ for all integers $\left.1 \leq i \leq j\right\rangle$ can be uniquely written in the form

$$
g=c_{g}+\sum_{1 \leq i_{1}<i_{2}<\ldots<i_{k}} c_{g}\left(i_{1}, i_{2}, \ldots, i_{k}\right) v_{i_{1}} v_{i_{2}} \ldots v_{i_{k}}
$$

where $c_{g}, c_{g}\left(i_{1}, i_{2}, \ldots, i_{k}\right) \in F$. Now $\gamma(g)=c_{g}$ defines an F-algebra homomorphism $\gamma: E \rightarrow$ F and γ naturally extends to an F-algebra homomorphism $\bar{\gamma}: M_{n}(E) \rightarrow M_{n}(F)$ of the matrix algebras. If $N=A-\bar{\gamma}(A)$, then it is easy to see that $B N$ is a nilpotent matrix for all $B \in M_{n}(E)$. The existence of the inverse matrix $(\bar{\gamma}(A))^{-1}$ in $M_{n}(F)$ implies the existence of the inverse of $A=\bar{\gamma}(A)\left(I+(\bar{\gamma}(A))^{-1} N\right)$ in $M_{n}(E)$:

$$
A^{-1}=\left(I+\left(-(\bar{\gamma}(A))^{-1} N\right)+\left(-(\bar{\gamma}(A))^{-1} N\right)^{2}+\cdots+\left(-(\bar{\gamma}(A))^{-1} N\right)^{m-1}\right)(\bar{\gamma}(A))^{-1},
$$

where m is the index of the nilpotence of $(\bar{\gamma}(A))^{-1} N$. Thus $\operatorname{det}(\bar{\gamma}(A)) \neq 0$ implies the existence of $A^{-1} \in M_{n}(E)$. On the other hand, $A B=I$ in $M_{n}(E)$ implies that $\bar{\gamma}(A) \bar{\gamma}(B)=$ $\bar{\gamma}(A B)=\bar{\gamma}(I)=I$ in $M_{n}(F)$, whence we get that $\operatorname{det}(\bar{\gamma}(A)) \neq 0$. In consequence, the existence of A^{-1} in $M_{n}(E)$ is equivalent to $\operatorname{det}(\bar{\gamma}(A)) \neq 0$.
4.1. Theorem. For a matrix $A \in M_{n}(E)$ we have $A=A_{0}+A_{1}$ for some unique $A_{0} \in$ $M_{n}\left(E_{0}\right)$ and $A_{1} \in M_{n}\left(E_{1}\right)$. If A is invertible, then

$$
A^{-1}=\left(\operatorname{adj}\left(A_{0}\right)+\alpha_{1}(A)\right) \operatorname{adj}\left(A\left(\operatorname{adj}\left(A_{0}\right)+\alpha_{1}(A)\right)\right)\left\{\operatorname{det}\left(A\left(\operatorname{adj}\left(A_{0}\right)+\alpha_{1}(A)\right)\right)\right\}^{-1}
$$

where $\operatorname{adj}\left(A_{0}+A_{1} x\right)=B_{0}+B_{1} x$ in $M_{n}(\bar{E})$ with $B_{0}=\operatorname{adj}\left(A_{0}\right) \in M_{n}\left(E_{0}\right), B_{1}=\alpha_{1}(A) \in$ $M_{n}\left(E_{1}\right)$ and $\operatorname{det}\left(A\left(\operatorname{adj}\left(A_{0}\right)+\alpha_{1}(A)\right)\right)$ is an invertible element of E.

Proof. In view of $\bar{\gamma}\left(A_{1}\right)=\bar{\gamma}\left(B_{1}\right)=0, \bar{\gamma}\left(A_{0}\right)=\bar{\gamma}(A)$ and $\operatorname{det}(\bar{\gamma}(A)) \neq 0$, we can write that

$$
\begin{gathered}
\gamma(\operatorname{rdet}(A))=\gamma\left(\operatorname{det}\left(\left(A_{0}+A_{1}\right)\left(B_{0}+B_{1}\right)\right)\right)=\operatorname{det}\left(\bar{\gamma}\left(\left(A_{0}+A_{1}\right)\left(B_{0}+B_{1}\right)\right)\right)= \\
=\operatorname{det}\left(\bar{\gamma}\left(A_{0}+A_{1}\right) \bar{\gamma}\left(B_{0}+B_{1}\right)\right)=\operatorname{det}\left(\bar{\gamma}\left(A_{0}\right) \bar{\gamma}\left(B_{0}\right)\right)=\operatorname{det}\left(\bar{\gamma}\left(A_{0} B_{0}\right)\right)= \\
=\gamma\left(\operatorname{det}\left(A_{0} B_{0}\right)\right)=\gamma\left(\operatorname{det}\left(\operatorname{det}\left(A_{0}\right) I\right)\right)=\gamma\left(\left(\operatorname{det}\left(A_{0}\right)\right)^{n}\right)= \\
=\left(\gamma\left(\operatorname{det}\left(A_{0}\right)\right)\right)^{n}=\left(\operatorname{det}\left(\bar{\gamma}\left(A_{0}\right)\right)\right)^{n}=(\operatorname{det}(\bar{\gamma}(A)))^{n} \neq 0,
\end{gathered}
$$

whence we get that $\operatorname{rdet}(A)$ is an invertible element of E. From $A \operatorname{radj}(A)=\operatorname{rdet}(A) I$, the right multiplication by $(\operatorname{rdet}(A))^{-1}$ gives that $A^{-1}=\operatorname{radj}(A)(\operatorname{rdet}(A))^{-1}$, where $\operatorname{radj}(A)=$ $\left(B_{0}+B_{1}\right) \operatorname{adj}\left(A\left(B_{0}+B_{1}\right)\right)$ and $\operatorname{rdet}(A)=\operatorname{det}\left(A\left(B_{0}+B_{1}\right)\right)$.
4.2. Remark. The idea of considering the companion matrix $A_{0}+A_{1} x$ arose in the following way. If $A \in M_{n}(E)$ with $A=A_{0}+A_{1}$ and v_{i} is a generator of E not occurring in the elements of A, then A can be completely read off the matrix $A_{0}+A_{1} v_{i}$ and $A_{0}+A_{1} v_{i} \in M_{n}\left(E_{0}\right)$ lies in a commutative environment. Thus the use of $A_{0}+A_{1} v_{i}$ instead of A is a natural challenge.

References

[1] Domokos, M.: Cayley-Hamilton theorem for 2×2 matrices over the Grassmann algebra. J. Pure Appl. Algebra 133 (1998), 69-81.

Zbl 0941.15026
[2] Kemer, A. R.: Varieties of Z_{2}-graded algebras. Math. USSR Izv. 25 (1985), 359-374.
Zbl 0586.16010
[3] Kemer, A. R.: Ideals of Identities of Associative Algebras. Translations of Math. Monographs, Vol. 87 (1991), AMS Providence, Rhode Island.

Zbl 0732.16001
[4] Szigeti, J.: New determinants and the Cayley-Hamilton theorem for matrices over Lie nilpotent rings. Proc. Amer. Math. Soc. 125(8) (1997), 2245-2254. Zbl 0888.16011

Received September 25, 2000

[^0]: ${ }^{1}$ Research supported by NSERC grant A-5300
 ${ }^{2}$ The second author was supported by OTKA of Hungary, grant no. T 029525

