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Abstract. It is well known that optimal ternary codes of length 5 and covering
radius 1 have 27 codewords. The structure of such optimal codes has been studied,
but a classification of these is still lacking. In this work, a complete classification is
carried out by constructing codes coordinate by coordinate in a backtrack search.
Linear inequalities and equivalence checking are used to prune the search. In total
there are 17 optimal codes.
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1. Introduction

Let Znq denote the set of all n-tuples (x1, . . . , xn) with xi ∈ Zq = {0, . . . , q−1}. The covering
radius of a code C ⊆ Znq is the smallest R such that all words in Z

n
q are within Hamming

distance R from at least one codeword in C. A q-ary code with length n, covering radius R,
and cardinality M is called an (n,M)qR code. A central problem in combinatorial coding
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theory is that of determining Kq(n,R), which denotes the smallest M such that an (n,M)qR
code exists. An (n,Kq(n,R))qR code is called optimal . See [2] for an extensive survey of
covering codes.
The problem of determining K3(n, 1) is known as the football pool problem. In the 1960s,

Kamps and Van Lint [3] proved that K3(5, 1) = 27. The tricky part of this proof is the lower
bound, as the upper bound K3(5, 1) ≤ 27 is obtained directly by lengthening the (4, 9)31
Hamming code.
Knowing that K3(5, 1) = 27, one may proceed further and classify (5, 27)31 codes up

to equivalence; two codes in Znq are equivalent if one can be obtained from the other by
a permutation of the coordinates and permutations of the coordinate values, one for each
coordinate. Kolev [4] studied (5, 27)31 codes and proved that all such codes have at least one
coordinate with the property that the three subcodes obtained by deleting this coordinate
are equivalent to the (4, 9)31 Hamming code. As in [7], we say that such a code is split in
this coordinate. In [7], it is shown that although in a sense every optimal (8, 32)21 code C
can be obtained from two subcodes equivalent to the (7, 16)21 Hamming code, not every C
is split.
In Section 2, we discuss methods for classifying covering codes. These can essentially be

divided into methods that complete the code word by word, and ones that go coordinate by
coordinate. In this work, we use the latter approach. We prune the search by using linear
inequalities, given below, and also by detecting equivalent subcodes. Our classification reveals
17 optimal (5, 27)31 codes and is verified by obtaining the same codes with an alternative
approach that assumes the result by Kolev [4] on the structure of such codes. A complete
list of the codes is given in Section 3, including a discussion of some of their properties.

2. Classifying covering codes

An (n,M)qR code can be expressed using an n ×M matrix with entries from Zq. As with
any other incidence structure, backtrack search may be used to build up such matrices, either
column by column (codeword by codeword) or row by row (coordinate by coordinate). Both
of these approaches have been used for covering codes earlier in, for example, [7] and [6],
respectively.
There are two basic ways of pruning this backtrack search. First, we may use the fact

that the final code must have covering radius R. Second, it is only necessary to consider one
(sub)code from each equivalence class.
In this work we carry out equivalence tests on all subcodes. We transform the codes to be

tested into graphs and use the graph automorphism program nauty [5]. Such a transformation
is presented for binary codes in [7], to which the interested reader is referred for details; a
generalization to q-ary codes is straightforward.
In constructing a code word by word, the covering property can be utilized in the search

by picking an uncovered word and requiring that it be covered by the next word chosen [7].
In proceeding coordinate by coordinate, on the other hand, we have a set of linear inequalities
that must be fulfilled.
The following approach was first used in [3, 8] together with combinatorial arguments.

It is used in [1, 6] to obtain new bounds for binary covering codes.
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For given lengths m and n with m ≤ n and a given word x ∈ Zm3 , let Qx ⊆ Z
n
3 denote

the set of 3n−m words whose first m coordinates coincide with x. Moreover, given a code C
of length n and covering radius 1, let Mx = |Qx ∩C|, and let B(x) = {y ∈ Zm3 | d(x, y) = 1}.
Since all words in Qx must be covered by a codeword, we have that

(2n− 2m+ 1)Mx +
∑

y∈B(x)

My ≥ 3
n−m, x ∈ Zm3 . (1)

We have the additional equalities

Mz0 +Mz1 +Mz2 =Mz. (2)

For m = 1, 2, . . ., we now solve (using any software of choice) the integer linear programming
instances given by (1), (2), and if we have a solution for m = n, then there exists an (n,M)31
code. Moreover, a complete classification can be carried out by finding all such solutions and
accepting only one code from each equivalence class.
In the intermediate stages we also require that

Mx ≤ 3
n−m, (3)

since no codeword occurs more than once in an optimal code.
By applying this method, we obtained the following results for (5, 27)31 codes. The

number of inequivalent subcodes fulfilling (1), (2), (3) for 1 ≤ m ≤ 5 is 7, 40, 148, 22, and
17. So there are 17 inequivalent (5, 27)31 codes.
We verified this result using an alternative approach. Assuming the result by Kolev [4],

one may construct a (5, 27)31 code as C = {s0, t1, u2 : s ∈ C ′, t ∈ C ′′, u ∈ C ′′′}, where
C ′, C ′′, and C ′′′ are equivalent to the unique optimal (4, 9)31 Hamming code H. Since
|Aut(H)| = 432, the number of distinct codes equivalent to H is

n!(q!)n

|Aut(H)|
=
4!64

432
= 72.

We may fix C ′ and choose C ′′ and C ′′′ among the 72 distinct codes; here repetitions are
allowed, and order does not matter. We checked these 73 · 72/2 = 2628 combinations and
found 17 inequivalent codes, which coincide with the codes found earlier.

3. The codes

Before describing the classified codes, we define a set of invariants, also used in [7], that is
useful in distinguishing the codes. Given words v, w in Znq , let D(v, w) be the set of indices of
coordinates where v and w differ. Clearly the cardinality of D(v, w) is the Hamming distance
d(v, w) between v and w.
Let C be a code in Znq and d a positive integer. For some non-negative integer k, there

will be k distinct sets D1, . . . , Dk that occur as sets D(v, w) as we examine pairs v, w of words
of C satisfying d(v, w) = d. For each i, 1 ≤ i ≤ k, let mi denote the number of occurrences
of Di; we may assume that the Di’s are ordered so that mi ≥ mi+1 for each i, 1 ≤ i < k.
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Then let Sd(C) denote the ordered k-tuple [m1, . . . ,mk]. It is easily seen that if Ca and Cb
are equivalent codes, then Sd(Ca) = Sd(Cb) for each d.
In the list of codes below, we give for each code Ci enough of the values Sd(Ci) to

distinguish Ci from the other codes, except that Sd(C13) = Sd(C14) for all d. These two
codes may be distinguished in other ways. For example, S1(C13) = S1(C14) = [3], but in C13
the three adjacencies involve only three words (a triangle is formed), while in C14 six words
are involved (there are three independent edges).
We will take the Hamming code H in Z43 to be all linear combinations of 1102 and 1202

over Z3. By [4], for any (5, 27)31 code C, there are τ1, τ2 ∈ Aut(Z43) such that C = {s0, t1, u2 :
s ∈ H, t ∈ τ1(H), u ∈ τ2(H)}. For our purpose, it suffices to use automorphisms that
permute the values in each coordinate. We describe these as follows. The six permutations
of Z3 will be labeled π1 = identity, π2 = (0, 1, 2), π3 = (0, 2, 1), π4 = (1, 2), π5 = (0, 2),
and π6 = (0, 1), where each permutation is given in cycle form. Then let π[m1,m2,m3,m4]
denote the automorphism of Z43 that applies the permutation πmi in the ith coordinate.

C1: τ1 = τ2 = identity. S1(C1) = [27] and |Aut(C1)| = 2592. This is just 3 copies of H, and
Aut(C1) ∼= Aut(H)× S3.

C2: τ1 = identity, τ2 = π[1, 4, 5, 6]. S1(C2) = [15] and |Aut(C2)| = 72.

C3: τ1 = identity, τ2 = π[1, 1, 3, 2]. S1(C3) = [9], S2(C3) = [18], and |Aut(C3)| = 108.

C4: τ1 = identity, τ2 = π[1, 4, 5, 2]. S1(C4) = [11] and |Aut(C4)| = 32.

C5: τ1 = identity, τ2 = π[1, 1, 3, 6]. S1(C5) = [9], S2(C5) = [6, 6, 6], and |Aut(C5)| = 36.

C6: τ1 = π[1, 4, 4, 4], τ2 = π[1, 4, 5, 6]. S1(C6) = [6] and |Aut(C6)| = 36.

C7: τ1 = π[1, 1, 3, 2], τ2 = π[1, 2, 1, 2]. S1(C7) = [], S2(C7) = [27] and |Aut(C7)| = 648.
Code C7 is the only code that is split in more than one coordinate – in coordinates 1 and 5.

C8: τ1 = π[1, 1, 1, 5], τ2 = π[1, 4, 5, 6]. S1(C8) = [7] and |Aut(C8)| = 8.

C9: τ1 = π[1, 4, 4, 4], τ2 = π[1, 4, 5, 2]. S1(C9) = [4] and |Aut(C9)| = 2.

C10: τ1 = π[1, 4, 4, 2], τ2 = π[1, 1, 2, 3]. S1(C10) = [2] and |Aut(C10)| = 4.

C11: τ1 = π[1, 1, 1, 5], τ2=π[1, 1, 3, 2]. S1(C11)=[3], S2(C11)=[12, 6, 3, 3], and |Aut(C11)|=6.

C12: τ1 = π[1, 1, 3, 6], τ2 = π[1, 2, 1, 2]. S1(C12) = [], S2(C12) = [15, 6, 6], and |Aut(C12)| = 12.

C13: τ1 = π[1, 4, 5, 2], τ2=π[4, 4, 1, 3]. S1(C13)=[3], S2(C13)=[6, 6, 6, 6], and |Aut(C13)|=48.

C14: τ1 = π[1, 1, 5, 5], τ2 = π[1, 4, 1, 4]. S1(C14) = [3], S2(C14)=[6, 6, 6, 6], and |Aut(C14)|=6.

C15: τ1 = π[1, 1, 5, 3], τ2 = π[1, 4, 1, 2]. S1(C15) = [1] and |Aut(C15)| = 2.

C16: τ1 = π[1, 1, 3, 3], τ2 = π[4, 1, 4, 6]. S1(C16) = [], S2(C16)=[9, 6, 6, 6], and |Aut(C16)|=18.

C17: τ1 = π[1, 1, 1, 2], τ2 = π[1, 1, 2, 3]. S1(C17) = [], S2(C17) = [9, 9, 9], and |Aut(C17)| = 54.

Note that S1(C) = [] implies that the minimum distance of C is greater than 1. Hence codes
C7, C12, C16, and C17 have minimum distance 2; all other codes have minimum distance 1.
Two of the codes, C1 and C7, are equivalent to linear codes.
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