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Abstract. We present efficient algorithms for the on-line q-adic covering of the
unit interval by sequences of segments. The basic method guarantees covering
provided the total length of segments is at least 1 + 2 · 1

q
− 1
q3
. Other algorithms

improve this estimate for q ≥ 6. The unit d-dimensional cube can be on-line
covered by an arbitrary sequence of cubes whose total volume is at least 2d+ 53 +
5
3 · 2

−d.

MSC 2000: 52C17

We say that a sequence Q1, Q2, . . . of subsets of Euclidean space E
d permits a covering of

a set C ⊂ Ed if there exist rigid motions τ1, τ2, . . . such that C is contained in the union
of sets τ1Q1, τ2Q2, . . .. Many questions arise about efficient covering algorithms. In the
on-line version of this problem, at the beginning we are given the first set Q1 but then we
learn every succeeding set Qi from the sequence only after the preceding set Qi−1 is used
for the covering. The reader can find more information about on-line covering algorithms
in the survey articles [1] and [7]. We prove that an arbitrary sequence of cubes whose total
volume is at least 2d + 5

3 +
5
3 · 2

−d is able to cover on-line the unit d-dimensional cube.
This is very close to the best off-line estimate of 2d − 1 (see [2]).
The closed interval with end-points x and y, where x < y, is denoted by [x, y]. The

symbol (x, y) denotes the corresponding open interval.
Recall the on-line q-adic covering problem (see [6]). Let q ≥ 2 be an integer. Find

an efficient algorithm for the on-line covering of the interval [0, 1] by a sequence of closed
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segments Si of lengths δi, where δi ∈ {q−1, q−2, . . .}, and where every segment τiSi is of
the form [ciδi, (ci + 1)δi] with ci ∈ {0, . . . , δ

−1
i − 1} for i = 1, 2, . . ..

We present an algorithm which is a substantial modification of the algorithm from [3].
We improve the assumption about the total length of a sequence of segments which allows
a covering from a little less than 1 + 3 · 1

q
to a little less than 1 + 2 · 1

q
. Next we propose

a more sophisticated algorithm which lowers the above estimate to a little over 1 + 5
3 ·
1
q
.

We also show how to decrease the factor 53 ≈ 1.667 arbitrarily close to
1
2 (1 +

√
5) ≈ 1.618.

A natural question is about more efficient algorithms.
An open problem is about a non-trivial lower estimate. The only known such estimate

is 43 = 1 +
2
3 ·
1
2 for q = 2 (see [4]).

Here is our basic algorithm. At every moment of the covering process we take into
account the greatest number b ∈ [0, 1] such that the whole interval [0, b] is covered. We
call b the current bottom. When a segment S, say of length q−r, is given to us, we find
the greatest integer a such that aq−r ≤ b. If the interval [(a + h − 1)q−r, (a + h)q−r],
where h ∈ {1, 2, . . .}, is a subset of [0, 1], then we call it the h-th interval. We place S
on the first not totally covered h-th interval of length q−r selected in the following order:
the (q + 1)-th interval, then the q-th interval and so on up to the 2-nd interval, next the
(q+2)-nd interval and the successive intervals up to the 2q-th interval, and finally the 1-st
interval. We end the covering process when the whole interval [0, 1] is covered.
It is natural to call this algorithm the (q + 1, . . . , 2, q + 2, . . . , 2q, 1)-algorithm. In

particular, for q = 2 we get the (3, 2, 4, 1)-algorithm that tries to place every segment by
checking successively the 3-rd, the 2-nd, the 4-th and the 1-st interval of length 2−r.
For the convenience of the reader, who possibly will compare the considerations, the

proof of Theorem 1 is organized similarly as the proof of Theorem 1 in [3]. We use analogous
notation to that in [3]. In particular, we have three analogous lemmas. Here is a lemma
similar to Lemma 1 in [3]. Also the proof is similar, hence we omit it.

Lemma 1. Let p < 1 be a positive multiple of q−w. Assume that the interval [0, p]
is not completely covered yet by the (q + 1, . . . , 2, q + 2, . . . , 2q, 1)-algorithm. For j ≥ 0
denote by νj the number of segments of length q

−w−j placed to the right of p. Assume that
ν0 ≥ q− 1, . . . , ν` ≥ q− 1 for some ` ≥ 0. Then there is at most one number z ∈ {0, . . . , l}
such that a segment of length q−w−z used for the covering contains p. In such a case
we have νj ≤ q − 1 for each j ∈ {0, . . . , z − 1}, we have q ≤ νz ≤ 2q − 1, we have
q − 1 ≤ νj ≤ 2q − 2 for every j > z, and the interval [p, p+ q−w+1] is completely covered.

For every integer i > 1, we denote by bi the position of the current bottom immediately
after putting the first i− 1 segments from our sequence. Moreover, let b1 = 0.

Lemma 2. Assume that we apply the (q + 1, . . . , 2, q + 2, . . . , 2q, 1)-algorithm and that
bi < bi+1 < 1. Let ∆b = bi+1 − bi and let ∆l be the total length of those among the first i
placed segments that have non-empty intersection with (bi, bi+1). Then

∆l <
(
1 +
1

q
+
1

q2

)
∆b.
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Proof. Let w mean the smallest positive integer such that a segment of length q−w has
been used for the covering of the interval (bi, bi+1). Of course,

q−w < ∆b ≤ 2q · q−w.

We have ∆b = λ0q
−w, where λ0 ∈ {2, . . . , 2q} or

∆b = λ0q
−w + λkq

−w−k + . . .+ λmq
−w−m,

where λ0 ∈ {1, . . . , 2q}, 1 ≤ k ≤ m and λk, . . . , λm ∈ {0, . . . , q − 1} with λk ≥ 1, λm ≥ 1.
Clearly, if λ0 ≥ 2, then bi+1 is a multiple of q−w. By the last segment we mean the segment
whose placement completes the covering of the interval (bi, bi+1). Denote by q

−t the length
of the last segment put on (bi, bi+1) and by µj the number of segments of length q

−w−j ,
distinct from the last segment and used for the covering of the interval (bi, bi+1). We have
0 ≤ µj ≤ 2q. Of course, ∆l = q−t +

∑∞
j=0 µjq

−w−j .

In Cases 2 and 3 we will consider the smallest multiple p of q−w such that the interval [0, p]
is not totally covered after putting all segments but the last one. Observe that the last
segment is placed so that p becomes its right end-point. Since λkq

−w−k+. . .+λmq
−w−m <

q−w−k+1, all segments (except the last one) of lengths between q−w−k+1 and q−w used for
the covering of (bi, bi+1) are placed to the right of p.

Figures 1–7 below show some extreme situations in the considered cases and subcases. We
present the order in which the segments are put on the interval [bi, bi+1] by showing them
level by level. A lower level means that a segment is placed later. In order to focus our
attention, we always take q = 3. The figures show only segments of length at least q−w−2

since shorter segments cannot be well drawn here. For a clear presentation of the worst
situation to the right of p, in Figures 4–7 we have 0 < p − bi < q−w−2 despite in general
0 < p− bi < q−w.

Case 1, when ∆b = s·q−w for s ∈ {2, . . . , 2q}. We will show that ∆l < (1+ 1
q
)∆b holds true

in Case 1. This inequality is stronger than the inequality announced in the formulation of
Lemma 2. Observe that bi and bi+1 are multiples of q

−w.

Subcase 1.1, when s = 2q. We have ∆l < q−t + (2q − 1)q−w + (2q − 2)q−w−1 + (2q −
2)q−w−2+ . . . ≤ 2q−w+(2q−2)

∑∞
j=w+1 q

−j = (2q−2) q
q−12q

−w+2q ·q−w = (2q+2)q−w =(
1 + 1

q

)
∆b. In this evaluation we consider at most 2q − 2 segments of each of the lengths

q−w−1, q−w−2, . . ., despite that it may happen that we place 2q − 1 segments of a specific
length q−w−c, where c ∈ {1, 2, . . .}. In such a case we have at least one less (than in the
above evaluation) segment of length q−w−c+1 and thus the estimate still holds true.

bi b+qi
-w bi+1

Fig. 1. A sequence of maximum total length in Subcase 1.1
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Subcase 1.2, when s ∈ {q + 1, . . . , 2q − 1}. This time the last segment has length at most
q−w−1. We have ∆l < q−t + (s − 1)q−w + (2q − 2)

∑∞
j=w+1 q

−j ≤ q−w−1 + (s − 1)q−w +

(2q − 2) q
q−1q

−w−1 = (s+ q+1
q
)q−w ≤ (s+ s

q
)q−w ≤ (1 + 1

q
)∆b. We take here into account

a similar remark about the coefficients 2q − 2 like in the previous subcase.

bi b+qi
-w bi+1

s=2q-1
q=3

Fig. 2. A sequence of maximum total length in Subcase 1.2

Subcase 1.3, when s ∈ {2, . . . , q}. The situation of this subcase occurs when a few segments
of length q−w are placed without causing an immediate increase of the current bottom, and
later the current bottom grows close to those segments thanks to placing sufficiently many
shorter segments. Again the last segment has length at most q−w−1 but fewer segments
of length q−w−1 can be placed to the left of bi + q

−w. We obtain ∆l < q−t + (s− 1)q−w +
(q − 1)q−w−1 + (2q − 2)

∑∞
j=w+2 q

−j ≤ q−w−1 + s · q−w − q−w−1 + (2q − 2) q
q−1q

−w−2 =

(s+ 2
q
)q−w ≤ (s+ s

q
)q−w ≤ (1+ 1

q
)∆b. And again we have in mind a similar remark about

the coefficients 2q − 2 as in Subcase 1.1.

bi b+qi
-w bi+1

Fig. 3. A sequence of maximum total length in Subcase 1.3

Case 2, when q · q−w < ∆b < 2q · q−w and when ∆b is not a multiple of q−w. Of course,
q ≤ λ0 ≤ 2q − 1 and µ0 ≥ q − 1.

Subcase 2.1, when µ1 ≥ q − 1, . . . , µk−1 ≥ q − 1. Assume first that there is a z ∈
{1, . . . , k− 1} such that a placed segment of length q−w−z, distinct from the last segment,
contains p. Lemma 1 implies that the sum of the lengths of segments (distinct from the last
segment) of lengths between q−w−k+1 and q−w put on (bi, bi+1) is at most (λ0 − 1)q−w +

(2q − 2)
∑w+z−1
j=w+1 q

−j + (2q − 1)q−w−z + (q − 1)
∑w+k−1
j=w+z+1 q

−j = (λ0 + 1)q
−w − q−w−k+1

(we take z = 1 in Fig. 4). We applied Lemma 1 since segments of length at most q−w−k+1

are placed to the right of p. It may also happen that µ0 = λ0 and that [p, p + q
−w] is

covered by a segment of length q−w placed “a long time before” the current bottom has
arrived up to our present bi (thus [p + q

−w, p + 2q−w] is covered by a segment of length
q−w later than [p, p+ q−w]). Then the total length is at most λ0q

−w + (q − 1)q−w−1.
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bi p p+q-w bi+1

Fig. 4. A sequence of maximum total length in the first part of Subcase 2.1

Now assume that p is not in the segments of lengths q−w−1, . . . , q−w−k+1 distinct from the
last segment used for the covering. The sum of the lengths of the considered segments is
at most λ0q

−w + (q − 1)
∑w+k−1
j=w+1 q

−j = (λ0 + 1)q
−w − q−w−k+1.

bi p p+q-w bi+1

Fig. 5. A sequence of maximum total length in the second part of Subcase 2.1

We see that always the sum of lengths of the segments distinct from the last segment put
on (bi, bi+1), whose lengths are between q

−w−k+1 and q−w, is at most

(λ0 + 1)q
−w − q−w−k+1. (1)

Now we estimate the total length of segments of length at most q−w−k distinct from the
last segment put on (bi, bi+1). The total length of them is less than

∑w+m−1
j=w+k (λj−w +

q − 1)q−j + (λm + q − 2)q−w−m +
∑∞
j=w+m+1(2q − 2)q

−j =
∑w+m
j=w+k λj−wq

−j + (q −

1)
∑w+m−1
j=w+k q

−j + (q − 2)q−w−m + (2q − 2)
∑∞
j=w+m+1 q

−j , which is less than

w+m∑

j=w+k

λj−wq
−j + q−w−k+1. (2)

In the above calculation we see components (λj + q − 1)q−j despite that sometimes up to
2q − 1 segments of length q−j can be put on (bi, bi+1) during the covering process. But
then the estimate (2) holds true as well. Just if between λj + q and 2q − 1 segments of a
specific length q−j , where j ∈ {w + k + 1, . . . , w +m− 1}, are used for the covering, then
one less segment of length q−j+1 can be placed there because of lack of space. In such a
case the total length is even smaller than (2). The reason is that in the calculation we add
here up to q−1 segments of length q−j and that we subtract one segment of length q−j+1.
By (1) and (2) we conclude that ∆l < q−t + (λ0 + 1)q

−w +
∑w+m
j=w+k λj−wq

−j .

If λ0 < 2q− 1, then t ≥ w+1. Thus ∆l <
(
λ0+1+

1
q

)
q−w +

∑w+m
j=w+k λj−wq

−j . This and

q ≤ λ0 imply that ∆l < (1 +
1
q
+ 1
q2
)∆b.
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If λ0 = 2q − 1, then ∆l < (2q + 1)q−w +
∑w+m
j=w+k λj−wq

−j < (1 + 1
q
+ 1
q2
)∆b.

Subcase 2.2, when at least one of the numbers µ1, . . . , µk−1 is smaller than q − 1. Let y
denote the smallest number from {1, . . . , k − 1} such that µy < q − 1. The evaluation
differs from that in Subcase 2.1 only by a different proof of (1). Now, the total length
of segments of lengths between q−w−k+1 and q−w used for the covering of (bi, bi+1) is

at most λ0q
−w + (q − 1)

∑w+y−1
j=w+1 q

−j + (q − 2)q−w−y + (2q − 2)
∑w+z−1
j=w+y+1 q

−j + (2q −

1)q−w−z + (q − 1)
∑w+k−1
j=w+z+1 q

−j , where z is defined at the beginning of Case 2.1 (in Fig.
6 we take y = 1 and z = 2). Instead of the last three components we may also have

(2q− 2)
∑w+k−2
j=w+y+1 q

−j + (2q− 1)q−w−k+1. The components λ0q−w + (q− 1)
∑w+y−1
j=w+1 q

−j

stand for the worst possible case and in other cases we take an expression of the form
(λ0 − 1)q−w + (2q − 2)

∑w+v−1
j=w+1 q

−j + (2q − 1)q−w−v + (q − 1)
∑w+y−1
j=w+v+1 q

−j . In all the

variants, the total length of segments is at most (λ0 + 1)q
−w − q−w−k+1.

bi p p+q-w bi+1

Fig. 6. A sequence of maximum total length in Subcase 2.2

Case 3, when q−w < ∆b < q · q−w and when ∆b is not a multiple of q−w. As in Subcase
1.3, the situation is the result of placing a number of segments of length q−w with later
growing of the current bottom close to those earlier placed segments of length q−w. Of
course, λ0 ≤ q − 1. By the description of our method we see that the last segment cannot
be of length q−w, this is t ≥ w + 1. We have

(
1 +
1

q
+
1

q2
)
∆b ≥ λ0q

−w + λ0q
−w−1 + λ0q

−w−2 +
w+m∑

j=w+k

λj−wq
−j . (3)

Subcase 3.1, when the interval [p, p+q−w] is not covered by a segment of length q−w. Since
at least one segment of length q−w is put on [b1, bi+1], we have λ0 ≥ 2.
We evaluate the sum of lengths of the segments put on (bi, bi+1) whose lengths are

between q−w−k+1 and q−w as in Case 2, but now one less segment of length q−w and one
more segment of length q−w−1 should be taken into account (of course, λ0 ≥ q in Case 2
and now λ0 < q). Thus this sum is not greater than

(
λ0 +

1

q

)
q−w − q−w−k+1. (4)

Now (4) substitutes (1) from Case 2 and the value of (2) remains unchanged. Considering
the sum of (4), (2) and of the length q−t of the last segment we obtain

∆l < q−t + λ0q
−w +

w+m∑

j=w+k

λj−wq
−j + q−w−1. (5)
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Since the last segment is of length at most q−w−1, by (3), (5) and by λ0 ≥ 2 we get
∆l < (1 + 1

q
+ 1
q2
)∆b.

bi p p+q-w bi+1

Fig. 7. A sequence of maximum total length in Subcase 3.1

Subcase 3.2, when [p, p+ q−w] is covered by a segment of length q−w. We show that

∆l < q−t + λ0q
−w +

w+m∑

j=w+k

λj−wq
−j + q−w−k. (6)

If bi+1 = p+ λ0q
−w, we show (6) in a way similar to that of showing (5). Remember that

(5) is the sum of (2), (4) and of q−t. The difference is that now we can place at most λk
segments of length q−w−k. This lowers (2) by (q− 1)q−w−k = q−w−k+1 − q−w−k and thus
leads to (6).
If bi+1 6= p + λ0q−w, we have λ0 = 1 and λ1 ∈ {1, . . . , q − 1}. Moreover, bi+1 =

p+ q−w + uq−w−1, where u ∈ {1, . . . , λ1}. Hence the only difference is that u segments of
length q−w−1 are placed to the right of p+ q−w−1 instead of to the left of p. Consequently,
(6) holds in this special situation also.
By (3) and (6) we see that if λ0 ≥ 2 or if k ≥ 2, then ∆l < (1 +

1
q
+ 1
q2
)∆b.

It remains to consider the case of λ0 = 1 and k = 1. Observe that t ≥ w + 2.
Thus ∆l ≤ q−w−2 + q−w +

∑w+m
j=w+k λj−wq

−j + q−w−1. Thanks to (3) we obtain ∆l <

(1 + 1
q
+ 1
q2
)∆b. �

Lemma 3. While using the (q + 1, . . . , 2, q + 2, . . . , 2q, 1)-algorithm, assume that ∆b =
bi+1 − bi, where bi+1 = 1, and let w be the integer for which q−w < ∆b ≤ q−w+1. Then
the total length ∆l of those among the first i− 1 segments that intersect (bi, 1) is less than
∆b+ q−w.

Proof. We consider two cases.

Case 1, when ∆b = s · q−w for s ∈ {2, . . . , q}. We obtain ∆l < (s − 1)q−w + (2q −
2)
∑∞
j=w+1 q

−j ≤ (s− 1)q−w + (2q− 2) q
q−1q

−w−1 = (s+1)q−w ≤ ∆b+ q−w. We take into
account a remark about the coefficients 2q − 2 as in Case 1 of the proof of Lemma 2.

Case 2, when ∆b is not a multiple of q−w. We have ∆b = λ0q
−w + λkq

−w−k + . . . +
λmq

−w−m, where λ0 ∈ {1, . . . , q − 1}, λk > 0 and λm > 0. We provide a consideration
similar to the one given at the beginning of Case 3 in the proof of Lemma 2. The difference
is that this time we can put a segment of length q−w on the interval [p, p+ q−w] provided
one less segment of length q−w−1 has been placed there. Also we do not count the last
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segment whose length is denoted by q−t in (5). In analogy to (5), we obtain ∆l < (λ0 +
1)q−w +

∑w+m
j=w+k λj−wq

−j . Thus ∆l < ∆b+ q−w. �

Theorem 1. Let q ≥ 2 be an integer. Every sequence of segments whose lengths are from
the set {q−1, q−2, . . .} and whose total length is at least

1 +
2

q
−
1

q3

permits on-line covering of the interval [0, 1] by the (q+1, . . . , 2, q+2, . . . , 2q, 1)-algorithm.

Proof. It is sufficient to show that if a sequence of segments of lengths from the set
{q−1, q−2, . . .} does not cover the interval [0, 1] by the algorithm, then the total length of
the segments in the sequence is less than 1+ 2

q
− 1
q3
. Observe that all segments from such

a sequence are used during the covering process.

Case 1, when bi = 0 during the whole covering process. We apply Lemma 3 with ∆b = 1
and w = 1. We conclude that the total length of segments placed during the covering
process is less than 1 + 1

q
. This is less than 1 + 2

q
− 1
q3
for every q ≥ 2.

Case 2, when limi→∞ bi = 1. By Lemma 2 we see that the total length of segments used
for the covering that have non-empty intersection with [0, bi] is less than (1 +

1
q
+ 1
q2
)bi.

Thus the total length of segments used is less than 1 + 1
q
+ 1
q2
< 1 + 2

q
− 1
q3
.

Case 3, when 0 < b′ < 1, where b′ is either limi→∞ bi, or b
′ = bi and bi+1 = 1. Consider

the smallest integer w for which q−w < 1 − b′. By Lemmas 2 and 3 we see that the total
length of segments used is less than (1 + 1

q
+ 1
q2
)b′ + (1 − b′) + q−w = 1 + ( 1

q
+ 1
q2
)b′ +

q−w ≤ 1 + ( 1
q
+ 1
q2
)(1 − q−w) + q−w = 1 + 1

q
+ 1
q2
+ (1 − 1

q
− 1
q2
)q−w. Thus it less than

1 + 1
q
+ 1
q2
+ (1− 1

q
− 1
q2
)q−1 = 1 + 2

q
− 1
q3
. �

Proposition. Let q ≥ 2 be an integer. Assume that an on-line q-adic covering of the
interval [0, 1] is provided by the (q + 1, . . . , 2, q + 2, . . . , 2q, 1)-algorithm up to the total
covering of this interval. Then the total length of the segments used is less than

1 +
3

q
−
1

q3
.

Proof. Assume that bi < 1 and bi+1 = 1. Let w be smallest integer w such that q
−w < 1−bi.

Of course, the segment that completes the covering of the interval [0, 1] is of length at most
q−1. This observation and Lemmas 2 and 3 imply that the total length of used segments
is less than (1 + 1

q
+ 1
q2
)b′ + (1− b′) + q−w + q−1. This number is smaller than 1 + 3

q
− 1
q3

(see the calculation in Case 3 of the proof of Theorem 1). �

If no segment is put yet on a q-adic interval A up to a moment of a covering process, we
call A vacant at this moment. If all points of A are covered, we call A totally covered at
this moment. If A is not vacant and not totally covered, we call it partially covered at this
moment.
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Lemma 4. Assume that a process of the covering of the interval [0, 1] by segments accord-
ing to the (q + 1, . . . , 2, q + 2, . . . , 2q, 1)-algorithm is not finished yet and that the current
bottom has arrived at least to a point (h − 1)q−1, where h ∈ {2, . . . , q − 1}. Then during
the covering process there is a moment at which

(i) exactly h − 1 or h among the q-adic intervals of length q−1 are totally covered by
segments of length at most q−2 and no q-adic interval of length q−1 is partially covered,
or there is a moment at which

(ii) exactly h− 1 from the q-adic intervals of length q−1 are totally covered by segments of
length at most q−2 and one or two q-adic intervals of length q−1 are partially covered
(if two, then the second one is covered by segments of length q−2 only).

Proof. We look at the first moment (if any) before the end of the covering process, when
the current bottom attains a value b ≥ (h− 1)q−1.
In order to focus our attention, we begin with taking into consideration a covering

process during which only segments of length at most q−2 are given to us.
Assume first that (h − 1)q−1 ≤ b ≤ hq−1. Of course, the interval [(h − 1)q−1, hq−1]

is not totally covered before the current bottom attains b. Thus by the description of the
(q+1, . . . , 2, q+2, . . . , 2q, 1)-algorithm we conclude that no segment of length at most q−2

is placed to the right of hq−1 (if the current bottom is below (h − 1)q−1, then a segment
can be placed to the right of hq−1 only if the interval [(h−1)q−1, hq−1] is totally covered).
We see that if b < hq−1, then the first h − 1 among the q-adic intervals of length q−1

are totally covered, the interval [(h − 1)q−1, hq−1] is vacant or partially covered, and the
remaining q-adic intervals of length q−1 are vacant. We have (i), or we have (ii) with one
partially covered interval of length q−w. Of course, if b = hq−1, then (i) holds true.
Assume now that b > hq−1. As a result of placing one segment, the current bottom

changes from a value b∗ < (h − 1)q−1 to b > hq−1. According to our algorithm, this is
possible only if the interval [(h − 1)q−1, hq−1] is totally covered. Thus, at the moment
when the current bottom is at b∗, we have exactly h − 1 intervals of length q−1 totally
covered (by segments of length at most q−2) and two such intervals partially covered. The
second interval is covered by segments of length q−2 only. Hence (ii) is fulfilled.
If segments of length q−1 are given to us also, they are placed successively from the

right to the left on the interval [0, 1]. It is clear that if they are put to the right of (h+1)q−1,
they do not affect the placement of segments of lengths at most q−2 considered earlier.
Observe that if a segment of length q−1 is put on the interval [hq−1, (h+1)q−1] before the
current bottom arrives to b, then the current bottom is unable to attain (h− 1)q−1 before
the end of the covering process and thus this situation cannot happen in our lemma. �

Here is the two-stage (q + 1, . . . , 2, q + 2, . . . , 2q, 1)-algorithm. Let h ∈ {2, . . . , q − 1}. In
the first stage of the covering process we apply the (q+1, . . . , 2, q+2, . . . , 2q, 1)-algorithm.
If we reach the first moment described in Lemma 4, we pass immediately to the second
stage. At the beginning of the second stage, applying the (q + 1, . . . , 2, q + 2, . . . , 2q, 1)-
algorithm, we place all segments of length at most q−2 only on the first not totally covered
q-adic interval of length q−1 considered now as the only interval for covering by segments
of length at most q−2. When this interval becomes totally covered, by the (q+1, . . . , 2, q+
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2, . . . , 2q, 1)-algorithm we place all segments of length at most q−2 on the next not totally
covered q-adic interval of length q−1 considered now as the only interval for our covering
process. We proceed similarly taking succeeding intervals of length q−1. If in meantime
we receive segments of length q−1, we put them on q-adic intervals of length q−1 starting
from [(q − 1)q−1, 1] and then proceeding one by one to the left.
Observe that the idea of the improvement in this algorithm is in avoiding the situation

that may happen if the original (q + 1, . . . , 2, q + 2, . . . , 2q, 1)-algorithm is applied, when
a segment of length q−1 is put on an “almost totally covered” q-adic interval of length
q−1 and when simultaneously not many vacant q-adic intervals of length q−1 are covered
by segments of length q−1 during the covering process. The price paid for the introduced
improvement is a loss of efficiency in the second stage of our algorithm (just Proposition
is applied instead of Lemma 2). A calculation shows that h =

⌈
2
3q
⌉
optimizes the choice

of the moment at which we decide to pass to the second stage.

Theorem 2. Let q ≥ 3 be an integer. Every sequence of segments whose lengths are in
the set {q−1, q−2, . . .} and whose total length is at least

1 +
5

3
·
1

q
+
5

3
·
1

q2

permits an on-line covering of the interval [0, 1]by the two-stage(q+1, . . . , 2, q+2, . . . , 2q, 1)-
algorithm with h =

⌈
2
3q
⌉
.

Proof. Since q ≥ 3, the requirement 2 ≤ h ≤ q − 1 of Lemma 4 and of the description of
our algorithm is fulfilled. We present h =

⌈
2
3q
⌉
as 23q provided q = 3c, where c is a positive

integer, as h = 2
3q +

1
3 for q = 3c+ 1, and in the form

2
3q +

2
3 for q = 3c+ 2.

Case 1, when the current bottom is below (h− 1)q−1 always before the end of the covering
process. We will show that each sequence of segments of total length at least

1 +
(
1 +
h

q

)1
q
+
h

q
·
1

q2
(7)

permits the covering of the interval [0, 1]. Assume the opposite. Then there is a sequence
of segments of total length at least (7) which does not cover [0, 1] by our algorithm. Let b′

denote the supremum of the values distinct from 1 attained by the current bottom during
the covering process. By Lemma 2 we conclude that the total length of segments that have
non-empty intersection with the interval (0, b′) is less than (1+ 1

q
+ 1
q2
)b′. By Lemma 3 we

see that the total length of segments (distinct from the segment finishing the process) that
have non-empty intersection with the interval (b′, 1) is less than 1− b′+ q−1. Providing an
evaluation as in Case 3 of the proof of Theorem 1 and taking into account the inequality
b′ < h

q
we see that the total length of segments in our sequence is smaller than (7). This

contradiction confirms that every sequence of segments of total length at least (7) permits
the covering of the interval [0, 1] in Case 1. Substituting h = 2

3q in (7), we obtain the
estimate 1 + 53 ·

1
q
+ 23 ·

1
q2
. Similarly, for h = 2

3q +
1
3 we get 1 +

5
3 ·
1
q
+ 1
q2
+ 13 ·

1
q3
, and for

h = 2
3q +

2
3 we get 1 +

5
3 ·
1
q
+ 43 ·

1
q2
+ 23 ·

1
q3
.
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Case 2, when the current bottom attains at least (h− 1)q−1 before the end of the covering
process. According to Lemma 4 and to the description of the algorithm, when we pass
to the second stage, (i) or (ii) holds true. We will assume (ii) with the exception of one
sentence at the end of Subcase 2.1 where we take care about the possibility (i).
Assume that we have two partially covered intervals (if we have one only, then we

can take the first vacant q-adic interval of length q−1 in the part of the second partially
covered interval). Denote by T the rightmost one of our two partially covered intervals.

Subcase 2.1, when T is not covered by a segment of length q−1 during the covering process.
We apply Lemma 2. We also apply Proposition and Theorem 1 but for the scaled down
by a factor of q image of the original situation. They are just applied for the process of
the covering of separate q-adic intervals of length q−1 by q-adic segments of length at most
q−2. This explains the factors 1

q
in the following estimate: (1 + 1

q
+ 1
q2
)h−1
q
+ (q − h)(1 +

3
q
− 1
q3
) 1
q
+(1+ 2

q
− 1
q3
) 1
q
. Consequently, the interval [0, 1] can be covered if the total length

of segments in a sequence is at least

1 +
(
3− 2 ·

h

q

)
·
1

q
+
(
1 +
h

q

)
·
1

q2
+
(
− 2 +

h

q

)
·
1

q3
−
1

q4
. (8)

Substituting h = 2
3q in (8), we obtain the estimate 1+

5
3 ·
1
q
+ 53 ·

1
q2
− 43 ·

1
q3
− 1
q4
. Similarly,

for h = 2
3q +

1
3 , we get the estimate 1 +

5
3 ·

1
q
+ 1
q2
− 1
q3
− 2
3 ·

1
q4
, and for h = 2

3q +
2
3 we

obtain 1 + 53 ·
1
q
+ 13 ·

1
q2
− 23 ·

1
q3
− 13 ·

1
q4
.

If (i) holds true with h totally covered intervals, then in place of (8) we have (1+ 1
q
+

1
q2
)h
q
+ (q− h− 1)(1 + 3

q
− 1
q3
) 1
q
+ (1+ 2

q
− 1
q3
) 1
q
which is smaller by 2 · 1

q2
− 1
q3
− 1
q4
than

(8), and in the case of h− 1 totally covered intervals in (i) we get even a smaller value.

Subcase 2.2, when T is covered by a segment of length q−1 during the covering process.
By Lemma 4, by the description of the two-stage algorithm and by the assumption of
our subcase we see that before a segment of length q−1 covers T , segments of length q−2

only are put on T . Of course, the number of them is at most q − 1. We take this into
account when we provide a calculation similar to that from Subcase 1.1. We see that
the interval [0, 1] can be covered if the total length of segments in a sequence is at least
(1+ 1

q
+ 1
q2
)h−1
q
+(q− 1) 1

q2
+(q− h) 1

q
+(1+ 2

q
− 1
q3
) 1
q
= 1+

(
1+ h

q

)
· 1
q
+ h
q
· 1
q2
− 1
q3
− 1
q4
.

Since this is smaller than (7), we can disregard Subcase 2.2 in further calculations.

Comparing (7) and (8) (or rather the three pairs of corresponding particular estimates
resulting by (7) and (8)) we see that if q has the form 3c, we get the estimate

1 +
5

3
·
1

q
+
5

3
·
1

q2
−
4

3
·
1

q3
−
1

q4
. (9)

Similarly, if q has the form 3c+ 1, we obtain the estimate

1 +
5

3
·
1

q
+
1

q2
+
1

q3
(10)

and if q has the form 3c+ 2, we obtain

1 +
5

3
·
1

q
+
4

3
·
1

q2
+
2

3
·
1

q3
. (11)
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Of course, (9)–(11) are smaller than 1 + 53 ·
1
q
+ 53 ·

1
q2
for every q ≥ 3. �

The formulas (9)–(11) are more precise than the simple formula in Theorem 2. They give
a better estimate than Theorem 1 for q ≥ 6.
We can improve the two-stage (q+1, . . . , 2, q+2, . . . , 2q, 1)-algorithm by applying the

two-stage approach additionally for the covering of some q-adic intervals of length q−2. We
apply our two-stage algorithm with an h = h1 ∈ {2, . . . , q−1}. The difference is that in the
second stage, for the covering of the q-adic intervals of length q−2 we apply the reduced in
size by a factor of q variant of the two-stage (q + 1, . . . , 2, q + 2, . . . , 2q, 1)-algorithm (with
h2 =

⌈
2
3q
⌉
) instead of the (q + 1, . . . , 2, q + 2, . . . , 2q, 1)-algorithm. An interval of length

q−2 is q times shorter than the interval of length q−1, and we are putting q times shorter
segments (now they are of lengths q−2, q−3, . . . instead of lengths q−1, q−2, . . .).
Let us estimate the efficiency of the above algorithm in analogous way as in the proof

of Theorem 2. Again we have two cases.
The first case is when the current bottom is below (h−1)q−1 always before the end of

the covering process. We repeat the considerations of Case 1 of Theorem 2. We conclude
that every sequence of segments of total length at least (7) permits the covering.
The second case is when the current bottom attains at least (h − 1)q−1 before the

end of the covering process. Again we apply Lemma 4 and we consider two subcases
analogous to Subcases 2.1 and 2.2 of the proof of Theorem 2. In the first subcase we apply
Lemma 2, Theorem 2 and a modification of Proposition related to Theorem 2 (instead
to Theorem 1). We provide an analogous calculation like in Subcase 2.1 of the proof of
Theorem 2: (1+ 1

q
+ 1
q2
)h−1
q
+(q−h)(1+ 83 ·

1
q
+ 53 ·

1
q2
) 1
q
+(1+ 53 ·

1
q
+ 53 ·

1
q2
) 1
q
. We see that

the interval [0, 1] can be covered if the total length of segments in a sequence is at least

1 +
(8
3
−
5

3
·
h

q

)
·
1

q
+
(7
3
−
2

3
·
h

q

)
·
1

q2
+
2

3
·
1

q3
. (12)

In the second subcase we again obtain an estimate slightly better than in the first case.
For every specific q ≥ 3 we are looking for the best choice of h1 in the part of h, so

that the greater of the values (7) and (12) is minimized. When we substitute h1 =
⌈
5
8q
⌉

for h in (7) and in (12), then they both become at most 1+ 138 ·
1
q
plus a constant times 1

q2
.

We see that the component 53 ·
1
q
from Theorem 2 is lowered to 138 ·

1
q
.

We can still improve the algorithm by applying the two-stage approach to shorter q-adic
intervals. We omit here the calculation that shows that a proper application of this method
lowers the crucial component to 3421 ·

1
q
when also q-adic intervals of length q−3 are covered

in two stages, and to 8955 ·
1
q
when additionally the q-adic intervals of length q−4 are covered

in two stages. An evaluation shows that the sequence 2, 53 ,
13
8 ,
34
21 ,

89
55 , . . . of our factors

tends to 12 (1 +
√
5) = 1.61803 . . ..

Each on-line 2d-adic algorithm which permits a covering of the unit interval by se-
quences of segments of total length l induces an on-line algorithm which permits a covering
of the unit cube of Ed by every sequence of cubes of total volume 2dl. This construction
invented in [5] is described in Part 3 of [3] and in Part 6.2 of [7]. Thus Theorem 2 implies
the following result.
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Theorem 3. Every sequence of cubes of sides at most 1 in Ed whose total volume is at
least

2d +
5

3
+
5

3
· 2−d

permits an on-line covering of the unit cube of Ed.

We see that the assumption about the total volume of a sequence of cubes is improved from
almost 2d + 3 in [3] to slightly over 2d + 53 . Despite of the on-line restriction, this value is
very close to the best possible off-line estimate 2d− 1 (see [2]). In particular, the estimate
for the three dimensional case is lowered from 10.657 . . . to 9.875 . . .. But if we apply (11),
which is more precise for q = 8 than the estimate in the formulation of Theorem 2, we get
a further improvement down to 9.843 . . ..
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(1994), 207–210.

[7] Lassak, M.: A survey of algorithms for on-line packing and covering by sequences of
convex bodies. Bolyai Society Mathematical Studies 6 (1997), 129–157.

Zbl 0883.52014−−−−−−−−−−−−

Received March 1, 2001; revised version June 20, 2001

http://www.emis.de/MATH-item?0863.52010
http://www.emis.de/MATH-item?0815.52014
http://www.emis.de/MATH-item?0883.52014

