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Abstract. Let k be a field, R a k-algebra and A = R[θ1, θ2, . . . , θn] a Poincaré-
Birkhoff-Witt extension of R. If each θi acts locally finitely on R, then we show
that GKdim(A) = GKdim(R) + n. From this we deduce some results concerning
incomparability, prime length and Tauvel’s height formula in the crossed product
R?g where g is a finite-dimensional Lie algebra acting as derivations on R. Similar
results are obtained for R ?G, where G is a free abelian group of finite rank. As a
corollary of the results for G, Tauvel’s height formula is established in R ⊗k P (λ)
where P (λ) is the quantum torus.

0. Introduction

All rings (except the Lie algebras) in this paper are associative with identity. When we say
that a ring is noetherian we mean left and right noetherian.
For the basic material concerning the Gelfand-Kirillov dimension (denoted byGKdim) we

refer to [8]. We refer the reader to [5, 7, 12] for some definitions and undefined terminologies.
Let k be a field. We say that Tauvel’s height formula holds in a noetherian k-algebra A

with finite Gelfand-Kirillov dimension provided

ht(P ) +GKdim(A/P ) = GKdim(A)

for any prime ideal P of A where ht(P ) denotes the height of P .
Throughout, we fix a field k, an algebra R over k and a positive integer n.
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Let g be a k-Lie algebra of finite dimension n. We suppose that g acts by derivations on
R and we denote by A = R ? g the crossed product of R by the enveloping algebra U(g) of g
(see [1, 12, 13]).
For any g-prime ideal P of R, g-ht(P ) denotes the g-height of P; i.e.

sup{s : there is a chain of g-prime ideals P0 ⊂ P1 ⊂ · · · ⊂ Ps = P of R}.

We denote by specg(R) the set of g-prime ideals of R. If k has characteristic zero and if R is
noetherian or g-locally finite with g solvable, any g-prime ideal of R is prime [2, Proposition
4.4]; so g-ht(P ) ≤ ht(P ).
If X ∈ g, we denote by X̄ the canonical image of X in R ? g and we set δ(X) = δX . We

recall that there exist a linear map δ from g to the k-Lie algebra of k-derivations of R and a
bilinear map t : g × g → R such that [X̄, Ȳ ] − [X, Y ] = t(X, Y ). If t is the 0-map, R ? g is
usually denoted by R#U(g); in this case R is a g-module.
We say that condition (C1) (resp. (C2)) is satisfied in specg(R) if Tauvel’s height formula

holds for all g-prime ideals of R (resp. if the g-height and the height are finite and coincide
on the g-prime ideals of R).
Let R be finitely generated over k and A = R[θ1, θ2, . . . , θn] a PBW extension of R.

In [11], J. Matczuk showed that GKdim(A) = GKdim(R) + n. This result generalizes
[12, 8.2.10] and from this, he deduced some results concerning incomparability and prime
length. On the other hand a result of M. Lorenz [10] states that if R is δ-locally finite, then
GKdim(R[θ]) = GKdim(R) + 1 where δ is the derivation of R determined by θ.
In the first section of this paper, we show that all the results in [11] are also true if we

replace the “finitely generated” hypothesis on R by the assumption that each θi acts locally
finitely on R. This result generalizes [10] and it enables us to obtain the results in [11] with
their g-invariant version in the ring R ? h if R is g-locally finite or finitely generated, where
h is an ideal of g. If further k is of characteristic 0, g is completely solvable, condition (C1)
is satisfied in specg(R) and R is g-hypernormal, we have improved the preceding results. To
close this section, we show that if R is noetherian of finite Gelfand-Kirillov dimension and
if conditions (C1) and (C2) hold in specg(R), then conditions (C1) and (C2) also hold in
specg(R?gi) for each i; where the gi are terms of a composition series of g (see the definition
after Corollary 1.11).
In the second section, G is a free abelian group of finite rank n. We prove similar

statements as in Section 1.

1. When the action comes from a Lie algebra

In this section the characteristic of k is arbitrary. A Poincaré-Birkhoff-Witt extension (or
PBW extension) of R is a ring extension A ⊇ R generated by elements {θ1, . . . , θn} such that

- [θi, r] ∈ R for each i = 1, 2, . . . , n.

- [θi, θj] ∈ R +Rθ1 +Rθ2 + · · ·+Rθn.

- A is free as (left and right) R-module with basis θi11 θ
i2
2 ...θ

in
n ; where the ij are positive

integers [11].
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The Poincaré-Birkhoff-Witt theorem implies that any crossed product R?g is a PBW exten-
sion of R. We will denote by δi the derivation of R determined by θi; i.e. δi(r) = [θi, r] for
all r ∈ R and we will set ∆ = {δ1, . . . , δn}. We say that R is ∆-locally finite if every element
of R is contained in a finite-dimensional ∆-stable subspace of R.

Let A = R[θ1, θ2, . . . , θn] be a PBW extension of R. Our aim in the next theorem is to give
a relation between the Gelfand-Kirillov dimension of R and A.

Theorem 1.1. Suppose that A = R[θ1, θ2, . . . , θn] is a PBW extension of R. If R is ∆-locally
finite, then GKdim(A) = GKdim(R) + n.

Proof. Denote by X the k-linear subspace of A spanned by 1, θ1, θ2, . . . , θn. For any l ≥ 1,
let Al ⊆ X l denote the subspace spanned by all monomials of the form θ

i1
1 θ
i2
2 ...θ

in
n where

i1 + i2 + · · ·+ in ≤ l, 0 ≤ ij for j = 1, . . . , n.
Let W be a finite-dimensional k-vector subspace of A. Using locally finite-dimensionality

of ∆, we can choose a finite-dimensional ∆-invariant subspace V of R such that W ⊆∑
i1+i2+···+in≤t

V θi11 θ
i2
2 ...θ

in
n for some t ∈ N where the ij ′s ∈ N and [θi, θj] ∈ V + V θ1 +

· · · + V θn = V X for all 0 ≤ i, j ≤ n. Thus, eventually replacing V by k.1 + V , we may
assume that 1 ∈ V . Now, it is clear that each power of V is ∆-stable and V l ⊆ V l+1 for any
l ∈ N. We can show as in the proof of [11, Theorem A] that between the subspaces V,X and
Al the following relations

X tV ⊆ V X t + V 2X t−1 + · · ·+ V tX + V t+1

and
X t ⊆ V t−1At

hold for any t ≥ 1. From these relations, we deduce that W ′t ⊆ V tX t for any t ≥ 1; where
W ′ = X + V ⊆ V X. Now the same argument as in [11] shows that GKdim(k[W ′]) ≤
GKdim(R) + n. It is clear that W ⊆ k[W ′]; so GKdim(k[W ]) ≤ GKdim(R) + n. This
means that GKdim(A) ≤ GKdim(R) + n.
Let V ′ be a finite-dimensional k-vector subspace of R. Since R is ∆-locally finite, we

can find a finite-dimensional ∆-stable subspace V of R such that V ′ ⊆ V and [θi, θj] ∈
V + V θ1 + · · · + V θn = V X for all 0 ≤ i, j ≤ n. We may suppose that 1 ∈ V . Set
W = V +X ⊆ V X. It is easy to see that V ′tAt ⊆ V tAt ⊆ W 2t for any t ≥ 1. This implies
that

GKdim(k[V ′]) + n ≤ GKdim(k[V ]) + n ≤ GKdim(k[W ]) ≤ GKdim(A).

It follows that GKdim(R) + n ≤ GKdim(A).

Remark 1.2. All the results in [11] remain true if we replace the “finitely generated”
hypothesis on R by the assumption that R is ∆-locally finite.

Let b ∈ R. Then U(g).b is a g-stable k-vector subspace of R. We say that b is g-finite if
U(g).b has a finite dimension. It is clear that an element of R?h is g-finite if and only if it is
g/h-finite. If b and b′ are two g-finite elements of R, then bb′ is a g-finite element of R. We
say that R is g-locally finite if all its elements are g-finite.
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The enveloping algebra of an ideal h of g is g-locally finite for the left adjoint action of
g. If R is g-locally finite, any g-invariant factor of R is g-locally finite. If g acts trivially on
R, then R is g-locally finite.
Let (X1, X2, . . . , Xn) be a basis of g. Then R is g-locally finite if and only if R is ∆-locally

finite, where ∆ = {δXi ; 1 ≤ i ≤ n}.

Lemma 1.3. Let h be an ideal of g of dimension l and let Y ∈ h.

(1) If the k-bilinear map t is identically zero, then Ȳ is a g-finite element of R#U(h).
(2) If R is g-locally finite, then Ȳ is a g-finite element of R ? h.

Proof. Let (Y1, Y2, . . . , Yl) be a basis of h and X any element of g.

(1) We have δX(Ȳ ) = [X, Y ] ∈ kY1 + · · ·+ kYl = kY1+· · ·+kYl. It is clear that kY1+· · ·+kYl
is a finite-dimensional g-stable subspace of R#U(h).

(2) The image Imt of t is a finite-dimensional subspace of R. Since R is g-locally finite, Imt is
contained in a finite-dimensional g-stable subspace V of R. Now, δX(Ȳ ) = [X, Y ]+t(X, Y ) ∈
kY1 + · · ·+ kYl + V = kY1 + · · · + kYl + V and kY1 + · · · + kYl + V is a finite-dimensional
g-stable subspace of R ? h.

Corollary 1.4. Let h be an ideal of g. If R is g-locally finite, then so is R ? h.

The following is a generalization of the well known result [12, 8.2.7] which asserts that
GKdim(R⊗k U(g)) = GKdim(R) + n.

Corollary 1.5. Let h be an ideal of g of dimension l. Suppose that R is g-locally finite.
Then GKdim(R ? h) = GKdim(R) + l.

Proof. R is h-locally finite, since it is g-locally finite. The result follows from Theorem 1.1.

As an application of Corollary 1.5 we shall show some results concerning incomparability,
prime length and Tauvel’s height formula. We denote by dim the classical Krull dimension
and by g-dim its g-invariant version; i.e. the maximal length of a chain of g-prime ideals of
R. If k is of characteristic zero and if R is noetherian or g-locally finite with g solvable, then
g-dim(R) ≤ dim(R).

Corollary 1.6. Let R be noetherian of finite Gelfand-Kirillov dimension, h an ideal of g of
dimension l, A = R?g and B = R?h. Suppose that R is finitely generated or g-locally finite.

(1) Let k be of characteristic zero and P be a g-prime ideal of B such that P ∩ R = 0.
Then g-ht(P ) ≤ ht(P ) ≤ l. If R is g-simple, then g-dim(B) ≤ l.

(2) Let P be a prime ideal of A such that P ∩ R = 0. Then ht(P ) ≤ n. If R is g-simple,
then dim(A) ≤ n.

Proof. (1) The lower bound was previously noted. Since R = R/(P ∩ R) is a subalgebra of
B/P , we have GKdim(R) ≤ GKdim(B/P ). Corollary 1.5 in the g-locally finite case ([12,
8.2.10] in the finitely generated case) implies that GKdim(B) − GKdim(B/P ) ≤ l. By [8,
Corollary 3.16], ht(P ) ≤ l.
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If R is g-simple, by the preceding paragraph, ht(Q) ≤ l for any g-prime ideal Q of B.
Thus g-dim(B) ≤ l.

(2) Note that the g-prime ideals of R?g are precisely its prime ideals and that in (1) we have
assumed char(k) = 0 to be sure that all the g-prime ideals of B = R ? h are prime.

The next result bounds g-dim(B) in terms of dimk(h) and of g-dim(R). Although, the bound
is surely not sharp.

Proposition 1.7. Let R be noetherian of finite Gelfand-Kirillov dimension, h an ideal of g
of dimension l, A = R ? g and B = R ? h. Suppose that R is finitely generated or g-locally
finite.

(1) Let k be of characteristic zero. Suppose that P0 ⊂ P1 ⊂ · · · ⊂ Pl+1 is a strictly increasing
chain of g-prime ideals of B, then P0 ∩ R ⊂ Pl+1 ∩ R and g-dim(B) < (l + 1)(g-
dim(R) + 1).

(2) Suppose that P0 ⊂ P1 ⊂ · · · ⊂ Pn+1 is a strictly increasing chain of prime ideals of A,
then P0 ∩R ⊂ Pn+1 ∩R and dim(A) < (n+ 1)(g-dim(R) + 1).

Proof. (1) Suppose that P0 ∩ R = Pl+1 ∩ R = I. Then I is a g-prime ideal of R and
B/IB ' (R/I) ? h. Set R̄ = R/I and B̄ = B/IB. In B̄, we have a strictly increasing chain
of g-prime ideals P0 ⊂ P1 ⊂ · · · ⊂ Pl+1 of length l + 1 such that P0 ∩ R̄ = Pl+1 ∩ R̄ = Ī = 0;
where Pi’s denote the natural images of Pi’s in B̄. It follows that g-ht(Pl+1) ≥ l + 1. By
Corollary 1.6(1), g-ht(Pl+1) ≤ l and we get a contradiction.
Let P0 ⊂ P1 ⊂ · · · ⊂ Ps be a strictly increasing chain of g-prime ideals of B. By the

preceding paragraph,

P0 ∩R ⊂ Pl+1 ∩R ⊂ P2(l+1) ∩R ⊂ P3(l+1) ∩R ⊂ · · ·

is a strictly increasing chain of g-prime ideals of R. Since this chain can contain at most
(1+g-dim(R)) g-prime ideals, we conclude that s < (l + 1)(g-dim(R) + 1).

(2) The proof is similar to that of (1). Use Corollary 1.6(2) in the place of Corollary 1.6(1).

Remarks 1.8. (1) Under the assumption that R is finitely generated, the results in Corollary
1.6(2) and Proposition 1.7(2) are consequences of [11]. In the g-locally finite case, they are
new.

(2) If the characteristic of k is 0, Passman [14, Corollary 4.4] established (1.7(2)) in a more
general setting without the assumptions that R has finite Gelfand-Kirillov dimension and is
“finitely generated” or “g-locally finite”.

(3) Let g be abelian. If the characteristic of k is 0 (resp. p > 0), Chin [1, Theorem 2.11]
(resp. Chin and Quinn [2, Theorem 1.10]) established the first assertion of (1.7(2)) without
the assumptions that R is noetherian of finite Gelfand-Kirillov dimension and is finitely
generated or g-locally finite.

(4) If the characteristic of k is 0 and g is solvable, Chin [1, Corollary 2.19] established the
first assertion of (1.7(2)) for a chain of prime ideals

P0 ⊂ P1 ⊂ · · · ⊂ Pl
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such that l ≥ 2n without the assumptions that R is noetherian with finite Gelfand-Kirillov
dimension and is finitely generated or g-locally finite.

The ring R is g-hypernormal if for any pair of distinct comparable g-invariant ideals I ⊂ J
in R, the factor J/I contains a nonzero normal element of (R/I) ? g. If R is g-simple, R is
g-hypernormal. Let k be algebraically closed of characteristic 0. If g is solvable and if R is
commutative g-locally finite then R is g-hypernormal.
We say that condition (C1) (resp. (C2)) is satisfied in specg(R) if Tauvel’s height formula

is valid for all g-prime ideals of R (resp. if the g-height and the height are finite and coincide
on the g-prime ideals of R).
By [5, Corollaire 2.8], condition (C2) is satisfied in specg(R) if char(k) = 0 and R is

noetherian g-hypernormal.
If R is g-simple, conditions (C1) and (C2) are trivially satisfied in specg(R).
Proposition 1.7 can be improved under additional hypotheses.

Corollary 1.9. Let k be of characteristic 0, R noetherian of finite Gelfand-Kirillov dimen-
sion, h an ideal of g of dimension l, A = R ? g and B = R ? h. Suppose that R is finitely
generated or g-locally finite. Assume also that condition (C1) is satisfied in specg(R).

(1) If P is a g-prime ideal of B, then g-ht(P ) ≤ ht(P ) ≤ ht(P ∩R) + l.

(2) Then g-dim(B) ≤ dim(R) + l. In particular, dim(A) ≤ dim(R) + n.

Proof. (1) SetQ=P∩R. So R/Q is a subalgebra of B/P andGKdim(R/Q)≤GKdim(B/P ).
By condition (C1), GKdim(R)−ht(Q) ≤ GKdim(B/P ). Corollary 1.5 in the g-locally finite
case and [12, 8.2.10] in the finitely generated case imply that GKdim(B)−GKdim(B/P ) ≤
ht(Q) + l, hence the upper bound follows from [8, Corollary 3.16].

Corollary 1.10. Let k be of characteristic 0, R noetherian g-hypernormal of finite Gelfand-
Kirillov dimension, h an ideal of g of dimension l, A = R?g and B = R?h. Suppose that R
is finitely generated or g-locally finite. Assume also that condition (C1) and (C2) are satisfied
in specg(R).

(1) If P is a g-prime ideal of B, then g-ht(P ) ≤ ht(P ) ≤ g-ht(P ∩R) + l.

(2) Then g-dim(B) ≤ g-dim(R) + l. In particular, dim(A) ≤ g-dim(R) + n.

Proof. (1) By condition (C2), we have g-ht(P ∩ R) = ht(P ∩ R). The results follow from
Corollary 1.9(1).

Corollary 1.11. Let k be algebraically closed of characteristic 0, g solvable, h an ideal
of g of dimension l, R commutative noetherian g-locally finite with finite Gelfand-Kirillov
dimension, A = R ? g and B = R ? h. Suppose that condition (C1) is satisfied in specg(R).
(1) If P is a g-prime ideal of B, then g-ht(P ) ≤ g-ht(P ∩R) + l.

(2) Then g-dim(B) ≤ g-dim(R) + l. In particular, dim(A) ≤ g-dim(R) + n.

Proof. By [5, Corollaire 2.18] and [6, Remark 0.1], B is g-hypernormal.

Now we shall study Tauvel’s height formula in R ? g. Our aim is to obtain the results of [4]
in the case where the ring R is g-locally finite instead of finitely generated.
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Let g be completely solvable. We fix a composition series of g; i.e. a chain

0 = g0 ⊂ g1 ⊂ · · · ⊂ gn = g

of ideals of g such that gi+1/gi has dimension one. We shall set Ri = R ? gi; 0 ≤ i ≤ n and
B = Rm; so R0 = R and R? gn = R? g. Choose Xi in gi− gi−1 such that Xi+ gi−1 is a basis
of gi/gi−1. So (X1, X2, . . . , Xn) is a basis of g. We have Ri ' Ri−1[θi, δi]; where δi(r) = δXi(r)
for any r ∈ Ri−1.

Suppose that condition (C2) is satisfied in specg(R). Let P be a g-prime ideal of B = R ∗ gm,
0 ≤ m ≤ n and Q = P ∩ R. Set l = g-ht(Q). So there exists a strictly saturated increasing
chain of g-prime ideals of R ending at Q

Q0 ⊂ Q1 ⊂ · · · ⊂ Ql = Q.

Set Pi = QiB; 0 ≤ i ≤ l and Pl+i = (P ∩ Ri)B; 0 ≤ i ≤ m. So Pl = QlB = QB and
Pl+m = P . Consider the chain of g-prime ideals of B ending at P

P0 ⊂ P1 ⊂ · · · ⊂ Pl ⊆ Pl+1 ⊆ · · · ⊆ Pl+m = P (α)

Proposition 1.12. Let k be of characteristic 0, g completely solvable, R noetherian g-locally
finite with finite Gelfand-Kirillov dimension, B = R ∗ gm; 0 ≤ m ≤ n and P a g-prime ideal
of B. Suppose that conditions (C1) and (C2) are satisfied in specg(R). Then the length of
the chain (α) is GKdim(B)−GKdim(B/P ).

Proof. The proof is similar to that of [4, Proposition 3.1] using “g-locally finite” in the place
of “finitely generated”. If m = 0, the result is true by the hypotheses. Assume that the
result is true in Ri, 0 ≤ i < m. Set B′ = R ∗ gm−1, P ′ = P ∩ B′; so P ∩ Ri = P ′ ∩ Ri
for 0 ≤ i ≤ m − 1. Set P ′i = QiB

′; 0 ≤ i ≤ l and P ′l+i = (P
′ ∩ Ri)B′; 0 ≤ i ≤ m − 1; so

P ′ = P ′l+m−1. By the induction hypothesis, the length of the chain

P ′0 ⊂ P
′
1 ⊂ · · · ⊂ P

′
l = QB

′ ⊆ P ′l+1 ⊆ · · · ⊆ P
′
l+m−1 = P

′ (β)

is GKdim(B′)−GKdim(B′/P ′). By Corollary 1.5, its length is GKdim(B)−GKdim(B/P ′B).
Clearly, Pi = P

′
iB for 0 ≤ i ≤ l; Pl+i = P

′
l+iB and Pl+i ∩ B

′ = P ′l+i for 0 ≤ i ≤ m − 1. We
deduce that Pi = Pi+1 if and only if P

′
i = P

′
i+1, 0 ≤ i ≤ l and P

′
l+i+1 = P

′
l+i if and only if

Pl+i+1 = Pl+i. It follows that the chain of g-prime ideals of B

P0 ⊂ P1 ⊂ · · · ⊂ Pl ⊆ Pl+1 ⊆ · · · ⊆ Pl+m−1 = P
′B

has the same length as the chain (β). Thus, its length is GKdim(B)−GKdim(B/P ′B). If
P = P ′B, then by Corollary 1.5, the result is true.
If P ′B ⊂ P , the chain (α) has for length GKdim(B)−GKdim(B/P ′B)+1. Now we shall

show that GKdim(B/P ) = GKdim(B/P ′B)− 1. As B′/P ′ is a subalgebra of B/P , we have
GKdim(B′/P ′) ≤ GKdim(B/P ); hence GKdim(B/P ′B)−1 ≤ GKdim(B/P ), by Corollary
1.5. On the other hand, P/P ′B is a nonzero g-invariant ideal of the prime noetherian ring
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B/P ′B. By [12, 2.3.5 (ii)], P/P ′B contains a regular element. By [8, Proposition 3.15],
GKdim(B/P ) ≤ GKdim(B/P ′B)− 1 and the proposition is proved.

We are now ready to prove Tauvel’s height formula in R ? g.

Proposition 1.13. Let k be of characteristic 0, g completely solvable, R noetherian g-
locally finite with finite Gelfand-Kirillov dimension, B = R ∗ gm; 0 ≤ m ≤ n and P a
g-prime ideal of B. Suppose that conditions (C1) and (C2) are satisfied in specg(R). Then
GKdim(B) = GKdim(B/P ) + ht(P ).

Proof. By (1.12), GKdim(B)−GKdim(B/P ) ≤ htP . By [8, Corollary 3.16], GKdim(B)−
GKdim(B/P ) ≥ htP .

The following result is not already known.

Corollary 1.14. Let k be of characteristic 0, g completely solvable, R noetherian g-locally
finite g-simple with finite Gelfand-Kirillov dimension. Set B = R ∗ gm, 0 ≤ m ≤ n and let P
be a g-prime ideal of B. Then we have GKdim(B) = GKdim(B/P ) + ht(P ).

Corollary 1.15. Let k be of characteristic 0, g completely solvable, R noetherian g-locally
finite with finite Gelfand-Kirillov dimension, B = R∗gm; 0 ≤ m ≤ n and P a g-prime ideal of
B. Suppose that conditions (C1) and (C2) are satisfied in specg(R). Then g-ht(P ) = ht(P ).

Proof. Let h′ be an ideal of g of codimension 1 in h. Assume that the property is true in
B′ = R ? h′. Set B = R ? h and P ′ = P ∩B′. So B = B′ ? (h/h′), B/P ′B = (B′/P ′) ? (h/h′),
g-ht(P ′) = ht(P ′) and (cf [4, Lemme 4.9]),

ht(P ′) = g − ht(P ′) ≤ g − ht(P ′B) ≤ g − ht(P ) (∗∗)

By Corollary 1.5, GKdim(B/P ′B) = GKdim(B′/P ′)+1 and GKdim(B) = GKdim(B′)+1,
since B′ and B′/P ′ are h/h′-locally finite. We deduce from Proposition 1.13 that ht(P ′B) =
ht(P ′).
If P = P ′B, (∗∗) implies that ht(P ) ≤ g-ht(P ), as claimed.
If P ′B ⊂ P then ht(P ′) = ht(P ′B) < ht(P ). As B′/P ′ is a subalgebra of B/P , we

have GKdim(B′/P ′) ≤ GKdim(B/P ). On the other hand, Proposition 1.13 implies that
ht(P ) ≤ ht(P ′) + 1. It follows that ht(P ) = ht(P ′) + 1. By [4, Lemme 4.9], g-ht(P ) ≥g-
ht(P ′B) + 1. But g-ht(P ′B) = ht(P ′B) = ht(P ′), so g-ht(P ) ≥ ht(P ′) + 1 ≥ ht(P ) and the
proof is complete.

2. When the action comes from an abelian group

In this section R is a k-algebra. Let G be a group and kG the group algebra of G. We
suppose that G acts on R by k-algebra automorphisms. Denote by R?G the crossed product
of R by G. For any x ∈ G, we denote by x̄ the canonical image of x in R ?G. We recall that
there exists a map t : G×G→ U(R); (U(R) is the multiplicative group of unit elements of
R) such that

x̄ȳ = xyt(x, y)
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and x̄r = x(r)x̄. It follows that

x(ȳ) = x(y)t(xy, x−1)t(x, x−1)−1x(t(x, y))

where x(y) = xyx−1.
If t(x, y) = 1 ∀ x, y ∈ G then R is a G-module, R ? G is usually denoted by R#G [12]

and is the k-algebra generated by R and kG.
For any G-prime ideal P of R, G-ht(P ) denotes the G-height of P . We denote by G-dim

the G-invariant version of dim.
Let P be a G-prime ideal of R. Then P is semi-prime invariant and G permutes transi-

tively the minimal prime ideals over P . It follows that ht(P ) = ht(I) and GKdim(R/P ) =
GKdim(R/I), where I is any minimal prime ideal over P .
From now on G is a free abelian group of finite rank n with basis x1, x2, . . . , xn.
We denote by Gi the subgroup of G whose basis is x1, x2, . . . , xi. We will set Ri = R?Gi;

0 ≤ i ≤ n. So we have R0 = R, R ? Gn = R ? G and Ri = Ri−1[x̄i, x̄i−1, φi]; where
φi(r) = xi(r) = x̄irx̄i

−1 for any r ∈ Ri−1. If Imt is contained in the center of R, the φi are
commuting automorphisms of R.
In the remainder of this section we suppose (except 2.7) that the image of t is contained

in a fieldW which is a finite-dimensional G-stable subalgebra of R. This condition is satisfied
if the image Imt of t is contained in k; in particular if Imt is identically 1.

Lemma 2.1.
(1) If y ∈ Gi, then ȳ is a G-finite element of Ri.

(2) If R is G-locally finite, then Ri is G-locally finite.

Proof. (1) Since G is abelian we have

x(ȳ) = ȳt(xy, x−1)t(x, x−1)−1x(t(x, y)).

(Note in passing that we have also x(ȳ) = ȳt(y, x−1)t(x, y).) So x(ȳ) ∈ ȳW and ȳW is a
finite-dimensional G-stable k-vector subspace of R.

(2) Suppose that Ri−1 is G-locally finite. Let u ∈ Ri−1. Then g(u) ∈ V where V is a finite-
dimensional G-stable subspace of R and g(ux̄i) = g(u)g(x̄i) ∈ V x̄iW . Now it is easy to see
that V x̄iW is a finite-dimensional G-stable subspace of Ri. Then Ri is G-locally finite.

Lemma 2.2. Let R be G-locally finite. Then GKdim(Ri) = GKdim(Ri−1) + 1; 1 ≤ i ≤ n.

Proof. By (2.1), Ri is G-locally finite. So Ri is φi+1-locally finite. By [9, Proposition 1],
GKdim(Ri+1) = GKdim(Ri) + 1.

Let λ = (λij) be an n × n matrix of nonzero elements of k such that λii = 1 and λji = λ
−1
ij

for 1 ≤ i, j ≤ n. The multiparameter coordinate ring of quantum affine n-space is the k-
algebra Oλ(k

n) generated by elements x1, . . . , xn subject only to the relation xixj = λijxjxi
for 1 ≤ i, j ≤ n. Denote by P (λ) the localisation of Oλ(kn) with respect to the multiplicative
set generated by the xi. The P (λ) are exactly the k-algebras which are crossed product k?Zn
of the field k by the group Zn.
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We deduce from (2.2) that the Gelfand-Kirillov dimension of R⊗kP (λ) is GKdim(R)+n,
since R⊗k P (λ) ' R ? G where G acts trivially on R and Imt is contained in k.

Let P be a G-prime ideal of R. Then G permutes transitively the minimal prime ideals over
P . A consequence of this fact is that ht(P ) = ht(I) for any minimal prime I over P .

Proposition 2.3. Let R be noetherian G-locally finite with finite Gelfand-Kirillov dimension.
Set A = R ? G and B = R ? Gm.

(1) Let P be a G-prime ideal of B such that P ∩R = 0. Then ht(P ) ≤ m.

(2) If R is G-simple, then G-dim(B) ≤ m.

(3) Suppose that P0 ⊂ P1 ⊂ · · · ⊂ Pm+1 is a strictly increasing chain of G-prime ideals of
B, then P0 ∩R ⊂ Pm+1 ∩R.

(4) Then G-dim(B) < (m+ 1)(G-dim(R) + 1).

Proof. (1) Since R = R/(P∩R) is a subalgebra of B/P , we have GKdim(R)≤GKdim(B/P ).
Lemma 2.2 implies that GKdim(B) − GKdim(B/P ) ≤ m. Note that GKdim(B/P ) =
GKdim(B/I) for any minimal prime ideal I over P . By [8, Corollary 3.16], ht(I) ≤
GKdim(B)−GKdim(B/I). But ht(I) = ht(P ); so ht(P ) ≤ m.

(2) By [7, Proposition 3.6, Corollaire 3.8], B is G-hypernormal and G-ht(P ) = ht(P ).

(3) and (4) Adapt the proof of Proposition 1.7 (1).

Remarks 2.4. (1) If G is abelian finitely generated, Chin [1, Theorem 3.9] established
(2.3(3)) for m = n without the assumptions that R is noetherian G-locally finite of finite
Gelfand-Kirillov dimension.

(2) If G is nilpotent finitely generated of Hirsch number n, Chin [1, Theorem 3.10] established
(2.3(3)) for m = n and for a chain of prime ideals

P0 ⊂ P1 ⊂ · · · ⊂ Pl

such that l ≥ 2n without the assumptions that R is noetherian G-locally finite with finite
Gelfand-Kirillov dimension.

We say that condition (C1) is satisfied in specG(R) if Tauvel’s height formula is valid for all
G-prime ideals of R.
By [7, Remarque 3.5(ii)], G-ht(P ) ≤ ht(P ) for any G-prime ideal P of R if R is commu-

tative noetherian. Proposition 2.3(3) can be improved under additional hypothesis.

Corollary 2.5. Let R be commutative noetherian G-locally finite with finite Gelfand-Kirillov
dimension. Set A = R ? G and B = R ? Gm. Suppose that condition (C1) is satisfied in
specG(R).

(1) Let P be a G-prime ideal of B, then G-ht(P ) ≤ ht(P ) ≤ ht(P ∩R) +m.

(2) Then G-dim(B) ≤ dim(R) +m.
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Proof. (1) Adapt the proof of Corollary 1.9.

Lemma 2.6. Let k be algebraically closed.

(1) Assume that W is contained in the center of R. If I is a nonzero G-invariant ideal of
R, then there exists in I a nonzero element u such that x(u) = λxu for any x ∈ G;
where λx ∈ k.

(2) If R is commutative, then R is G-hypernormal.

Proof. (1) See the proof of [7, Lemme 4.12].

Corollary 2.7. Let k be algebraically closed, R commutative noetherian G-locally finite with
finite Gelfand-Kirillov dimension. Set A = R ? G and B = R ? Gm. Suppose that condition
(C1) is satisfied in specG(R).

(1) Let P be a G-prime ideal of B, then G-ht(P ) ≤ G-ht(P ∩R) +m.

(2) Then G-dim(B) ≤ G-dim(R) +m. In particular, dim(A) ≤ G-dim(R) + n.

Proof. By Corollary 2.6(2), R is G-hypernormal. By [7, Corollaire 3.8], B is G-hypernormal.
By [7, Proposition 3.6], G-ht(P ∩ R) = ht(P ∩ R) and G-ht(P ) = ht(P ). The results follow
from Corollary 2.5.

The following proposition and its two corollaries are generalizations of [7, Proposition 4.14,
Corollaries 4.15, 4.16]

Proposition 2.8. Let k be algebraically closed, R commutative noetherian G-locally finite
with finite Gelfand-Kirillov dimension. Set A = R?G and B = R?Gm; 0 ≤ m ≤ n. Suppose
that condition (C1) is satisfied in specG(R). Then Tauvel’s height formula holds in specG(B).

Proof. The result follows from [7, Corollaire 4.5].

From Proposition 2.8, we get the two following corollaries.

Corollary 2.9. Let k be algebraically closed, R commutative, finitely generated, G-locally
finite and G-prime with finite Gelfand-Kirillov dimension. Set A = R ? G and B = R ? Gm;
0 ≤ m ≤ n. Then Tauvel’s height formula holds in specG(B).

Corollary 2.10. Let k be algebraically closed, R commutative, noetherian, G-locally finite
and G-simple with finite Gelfand-Kirillov dimension. Set A = R ? G and B = R ? Gm;
0 ≤ m ≤ n. Then Tauvel’s height formula holds in specG(B).

As last application of [7, Proposition 4.5], we get the following result which was proved for
R = k in [3].

Proposition 2.11. Let R be noetherian hypernormal with finite Gelfand-Kirillov dimension.
If Tauvel’s height formula holds in R then it also holds in R⊗k P (λ).
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3. When the action comes from an abelian monoid

Let S = R[x1, φ1][x2, φ2] . . . [xn, φn] be an iterated skew polynomial ring over k. For 1 ≤ i ≤ n
set Si = R[x1, φ1][x2, φ2] . . . [xi, φi] with S0 = R, Sn = S and assume that the following
conditions hold:

(1) for 1 ≤ i ≤ n, φi is a k-algebra automorphism of R,

(2) for 1 ≤ i < j ≤ n, φj is a k-algebra automorphism of Si,

(3) for 1 ≤ i < j ≤ n, there exists λi,j ∈ k∗ such that φj(xi) = λi,jxi.

Set Φi,j = {φi, φi+1, . . . , φj}; 1 ≤ i < j ≤ n. We say that R is Φi,j-locally finite if each
element of R is contained in a finite-dimensional φl-stable subspace of R; l = i, i+ 1, . . . , j.

Lemma 3.1. If R is Φ1,n-locally finite, then Si is Φi+1,n-locally finite.

Proposition 3.2. If R is Φ1,n-locally finite, then GKdim(S) = GKdim(R) + n.

Corollary 3.3. The Gelfand-Kirillov dimension of R⊗k Oλ(kn) is GKdim(R) + n.

Proof. R⊗k Oλ(kn) ' R[x1, φ1][x2, φ2] . . . [xn, φn] where each φi acts trivially on R.

The result in Corollary (3.3) is known for R = k (see [3]).
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[7] Guédénon, T.: Anneaux munis d’une action de groupe superrésoluble. Algebras, Groups
and Geometries 17(1) (2000), 17–48.

[8] Krause, G.; Lenagan, T. H.: Growth of Algebras and Gelfand-Kirillov dimension. Re-
search Notes in Math. 116, Pitman, London 1985. Zbl 0564.16001−−−−−−−−−−−−

[9] Leroy, A.; Matczuk, J.; Okninski, J.: On the Gelfand-Kirillov dimension of nor-
mal localizations and twisted polynomial rings. In: Perspectives in Rings Theory (F.
Van Oystaeyen and L. Le Bruyn, eds.), Kluwer Academic Publishers 1988, 205–214.

Zbl 0692.16018−−−−−−−−−−−−

http://www.emis.de/MATH-item?0611.16023
http://www.emis.de/MATH-item?0737.16023
http://www.emis.de/MATH-item?0864.16018
http://www.emis.de/MATH-item?0796.16018
http://www.emis.de/MATH-item?0837.17004
http://www.emis.de/MATH-item?01475126
http://www.emis.de/MATH-item?0564.16001
http://www.emis.de/MATH-item?0692.16018
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